EP4212965A1 - Method for limiting the deformation of a silicon timepiece - Google Patents

Method for limiting the deformation of a silicon timepiece Download PDF

Info

Publication number
EP4212965A1
EP4212965A1 EP22151563.8A EP22151563A EP4212965A1 EP 4212965 A1 EP4212965 A1 EP 4212965A1 EP 22151563 A EP22151563 A EP 22151563A EP 4212965 A1 EP4212965 A1 EP 4212965A1
Authority
EP
European Patent Office
Prior art keywords
silicon
timepiece
wafer
deformation
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP22151563.8A
Other languages
German (de)
French (fr)
Inventor
Enrica MONTINARO
Nicolas Tille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigatec Sa
Richemont International SA
Original Assignee
Sigatec Sa
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigatec Sa, Richemont International SA filed Critical Sigatec Sa
Priority to EP22151563.8A priority Critical patent/EP4212965A1/en
Priority to EP23151601.4A priority patent/EP4212966A1/en
Publication of EP4212965A1 publication Critical patent/EP4212965A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • G04B1/145Composition and manufacture of the springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials

Definitions

  • the present invention relates to the field of manufacturing parts for watchmaking.
  • the invention relates more particularly to a method for limiting the deformation of a silicon timepiece, in particular a silicon hairspring.
  • the movements of mechanical watches are regulated by means of a mechanical regulator comprising a resonator, that is to say an elastically deformable component whose oscillations determine the rate of the watch.
  • a mechanical regulator comprising a resonator, that is to say an elastically deformable component whose oscillations determine the rate of the watch.
  • Many watches include, for example, a regulator comprising a hairspring as a resonator, mounted on the axis of a balance wheel and set in oscillation by means of an escapement.
  • the natural frequency of the balance-spring couple makes it possible to regulate the watch and depends in particular on the stiffness of the balance-spring.
  • the stiffness of the hairspring also defines its intrinsic vibratory characteristics, such as the natural frequency and the resonant frequencies.
  • the natural frequency of an elastic system is the frequency at which this system oscillates when it is in free evolution, that is to say without exciting force.
  • a resonance frequency of an elastic system subjected to an exciting force is a frequency at which a local maximum of displacement amplitude can be measured for a given point of the elastic system.
  • the displacement amplitude slopes upward before this resonant frequency, and slopes downward afterwards, at any point that does not correspond to a node of vibration.
  • the recording of the displacement amplitude as a function of the excitation frequency shows a displacement amplitude peak or resonance peak which is associated with or which characterizes the resonance frequency.
  • the natural frequency of the regulator member formed by the balance spring of stiffness R coupled to a balance wheel of inertia I is in particular proportional to the square root of the stiffness of the balance spring.
  • the main specification of a spiral spring is its stiffness, which must be within a well-defined range in order to be paired with a balance wheel, which forms the inertial element of the oscillator. This operation pairing is essential to precisely adjust the frequency of a mechanical oscillator.
  • silicon hairsprings can be manufactured on a single wafer using micro-fabrication technologies. It is in particular known to produce a plurality of hairsprings in silicon with very high precision by using photolithography and machining/etching processes in a silicon wafer.
  • the methods for producing these mechanical hairsprings generally use monocrystalline silicon wafers, but wafers made of other materials can also be used, for example polycrystalline or amorphous silicon, other semiconductor materials, glass, ceramic , carbon, carbon nanotubes or a composite comprising these materials.
  • monocrystalline silicon belongs to the cubic crystalline class m3m whose coefficient of thermal expansion (alpha) is isotropic.
  • Silicon has a very negative value of the first thermoelastic coefficient, and consequently the stiffness of a silicon resonator, and therefore its natural frequency, varies greatly according to the temperature.
  • the documents EP1422436 , EP2215531 And WO2016128694 describe a spiral-type mechanical resonator made from a core (or two cores in the case of WO2016128694 ) in monocrystalline silicon and whose variations in temperature of the Young's modulus are compensated by a layer of amorphous silicon oxide (SiO 2 ) surrounding the core (or cores), the latter being one of the rare materials having a thermoelastic coefficient positive.
  • SiO 2 amorphous silicon oxide
  • the document WO2019/180596 proposes to arrange the plates horizontally and on a support, making it possible to limit the deformations related to the own weight of the hairspring and to the heat.
  • the applicants have found another unexpected solution to this problem.
  • the solution identified can be generalized to other silicon timepieces for which it is essential to control the dimensions and manufacturing tolerances.
  • the invention relates to a process for limiting the deformation of a silicon timepiece formed in a wafer, during thermal oxidation, characterized in that the thermal oxidation is carried out on a highly doped silicon timepiece.
  • Another aspect of the invention relates to a use of a wafer comprising at least one layer of highly doped silicon, to limit the deformation of a timepiece formed in said highly doped silicon layer, during thermal oxidation.
  • WO2019/180596 describes the steps that make it possible to etch watch components, particularly hairsprings, in a wafer (also called a wafer) of silicon. These lithography steps are well known to those skilled in the art and are incorporated by reference into the present application.
  • This wafer can be of different types, comprising a single layer of silicon, or a layer of silicon arranged on a layer of silicon oxide (SOI), or several layers of silicon, with a layer of silicon oxide interposed between the silicon layers.
  • SOI silicon oxide
  • the component is etched in the silicon layer or in a group of silicon layers.
  • Silicon can be of different natures, monocrystalline, polycrystalline or even amorphous.
  • these oxidation steps are carried out in an oxidation furnace 10, at temperatures typically between 600° C. and 1300° C., which makes it possible to form a layer of silicon oxide (SiO 2 ) which covers the wafer and etched components, consuming silicon from the wafer.
  • SiO 2 silicon oxide
  • the wafers are loaded into the oven by being arranged horizontally.
  • this solution cannot work for wafers 12 arranged vertically, in particular in furnaces 10 with horizontal loading, as represented on the figure 1 .
  • the doping is high boron or phosphorus doping.
  • high doping is meant an average concentration of dopant within the same wafer greater than 1x10 18 , more particularly greater than 1x10 19 , even more particularly greater than 5x10 19 atoms per cm 3 .
  • a high doping can be defined as a doping corresponding to a resistivity smaller than 0.01 ohm.cm, or even a resistivity between 0.0045 and 0.0055 ohm.cm, even more particularly a resistivity of 0.005 ohm.cm.
  • the effects of doping are particularly sensitive with hairsprings made of monocrystalline silicon, in particular having crystalline orientations ⁇ 100> or ⁇ 110>. It is in fact the types of silicon which are particularly subject to deformation during a thermal oxidation operation.
  • the use of a highly doped silicon wafer makes it possible to avoid the deformations encountered with undoped silicon wafers, during thermal oxidation steps during which the wafers are arranged vertically, without having to flip or change the orientation of the wafers between successive oxidation steps.
  • the effect is also obtained when the wafers are arranged horizontally, even if this deformation is less noticeable, the fact remains that the hairsprings can deform outside the plane of the wafer, under the effect of their weight, and that such deformation is also limited with heavily doped hairsprings.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de limitation de la déformation d'une pièce d'horlogerie en silicium ménagée dans une plaquette, au cours d'une oxydation thermique, caractérisé par le fait que l'oxydation thermique est effectuée sur une pièce d'horlogerie en silicium fortement dopé. L'invention concerne également une utilisation d'un wafer comprenant au moins une couche de silicium fortement dopé, pour limiter la déformation d'une pièce d'horlogerie ménagée dans ladite couche de silicium fortement dopé, au cours d'une oxydation thermique.The invention relates to a method for limiting the deformation of a silicon timepiece formed in a wafer, during thermal oxidation, characterized in that the thermal oxidation is carried out on a timepiece highly doped silicon. The invention also relates to a use of a wafer comprising at least one layer of heavily doped silicon, to limit the deformation of a timepiece formed in said layer of heavily doped silicon, during thermal oxidation.

Description

Domaine techniqueTechnical area

La présente invention se rapporte au domaine de la fabrication de pièces pour l'horlogerie. L'invention concerne plus particulièrement un procédé de limitation de la déformation d'une pièce d'horlogerie en silicium, notamment un spiral en silicium.The present invention relates to the field of manufacturing parts for watchmaking. The invention relates more particularly to a method for limiting the deformation of a silicon timepiece, in particular a silicon hairspring.

Etat de la techniqueState of the art

Les mouvements de montres mécaniques sont régulés au moyen d'un régulateur mécanique comprenant un résonateur, c'est-à-dire un composant déformable élastiquement et dont les oscillations déterminent la marche de la montre. De nombreuses montres comportent par exemple un régulateur comprenant un spiral comme résonateur, monté sur l'axe d'un balancier et mis en oscillation grâce à un échappement. La fréquence propre du couple balancier-spiral permet de réguler la montre et dépend notamment de la raideur du spiral.The movements of mechanical watches are regulated by means of a mechanical regulator comprising a resonator, that is to say an elastically deformable component whose oscillations determine the rate of the watch. Many watches include, for example, a regulator comprising a hairspring as a resonator, mounted on the axis of a balance wheel and set in oscillation by means of an escapement. The natural frequency of the balance-spring couple makes it possible to regulate the watch and depends in particular on the stiffness of the balance-spring.

En effet, la fréquence f de l'organe régulateur formé par le spiral de raideur R accouplé à un balancier d'inertie I est donnée par la formule : f = 1 2 π R I

Figure imgb0001
Indeed, the frequency f of the regulating organ formed by the balance spring of stiffness R coupled to a balance wheel of inertia I is given by the formula: f = 1 2 π R I
Figure imgb0001

La raideur du spiral définit également ses caractéristiques vibratoires intrinsèques, comme la fréquence propre et les fréquences de résonance. Dans la présente demande, la fréquence propre d'un système élastique (un résonateur seul ou un couple résonateur - balancier) est la fréquence à laquelle oscille ce système lorsqu'il est en évolution libre, c'est-à-dire sans force excitatrice. Par ailleurs, une fréquence de résonance d'un système élastique soumis à une force excitatrice est une fréquence à laquelle on peut mesurer un maximum local d'amplitude de déplacement pour un point donné du système élastique. En d'autres termes, si le système élastique est excité avec une source d'excitation de fréquence variable au cours du temps, l'amplitude de déplacement suit une pente ascendante avant cette fréquence de résonance, et suit une pente descendante après, en tout point qui ne correspond pas à un nœud de vibration. Typiquement, lors d'un tel essai, l'enregistrement de l'amplitude de déplacement en fonction de la fréquence d'excitation présente un pic d'amplitude de déplacement ou pic de résonance qui est associé ou qui caractérise la fréquence de résonance.The stiffness of the hairspring also defines its intrinsic vibratory characteristics, such as the natural frequency and the resonant frequencies. In the present application, the natural frequency of an elastic system (a single resonator or a resonator-pendulum couple) is the frequency at which this system oscillates when it is in free evolution, that is to say without exciting force. . Furthermore, a resonance frequency of an elastic system subjected to an exciting force is a frequency at which a local maximum of displacement amplitude can be measured for a given point of the elastic system. In other words, if the elastic system is excited with an excitation source of variable frequency over time, the displacement amplitude slopes upward before this resonant frequency, and slopes downward afterwards, at any point that does not correspond to a node of vibration. Typically, during such a test, the recording of the displacement amplitude as a function of the excitation frequency shows a displacement amplitude peak or resonance peak which is associated with or which characterizes the resonance frequency.

La raideur d'un résonateur de type spiral dépend typiquement des caractéristiques du matériau dans lequel il est réalisé, ainsi que de ses dimensions et en particulier de l'épaisseur (c'est-à-dire de la largeur) de ses spires le long de son barreau. La raideur est donnée plus spécifiquement par : R = M ϕ

Figure imgb0002
avec :

  • ϕ, l'angle de torsion du ressort, et
  • M, le couple de rappel du ressort spiral,
  • où M, pour un barreau de section constante constitué d'un matériau spécifique, est donné par : M = E e 3 h 12 ϕ L
    Figure imgb0003
    avec :
  • E, le module d'Young du matériau employé pour le barreau,
  • L, la longueur du barreau,
  • h, la hauteur du barreau, et
  • e, l'épaisseur ou la largeur du barreau.
The stiffness of a spiral-type resonator typically depends on the characteristics of the material in which it is made, as well as its dimensions and in particular the thickness (that is to say the width) of its turns along of his bar. The stiffness is given more specifically by: R = M ϕ
Figure imgb0002
with :
  • ϕ , the torsion angle of the spring, and
  • M, the return torque of the spiral spring,
  • where M, for a bar of constant section made of a specific material, is given by: M = E e 3 h 12 ϕ I
    Figure imgb0003
    with :
  • E, the Young's modulus of the material used for the bar,
  • L, the length of the bar,
  • h, the height of the rung, and
  • e, the thickness or width of the bar.

La fréquence propre de l'organe régulateur formé par le spiral de raideur R accouplé à un balancier d'inertie I est notamment proportionnelle à la racine carrée de la raideur du spiral. La spécification principale d'un ressort spiral est sa raideur, qui doit se trouver dans un intervalle bien défini pour pouvoir être appairé avec un balancier, qui forme l'élément inertiel de l'oscillateur. Cette opération d'appairage est indispensable pour régler précisément la fréquence d'un oscillateur mécanique.The natural frequency of the regulator member formed by the balance spring of stiffness R coupled to a balance wheel of inertia I is in particular proportional to the square root of the stiffness of the balance spring. The main specification of a spiral spring is its stiffness, which must be within a well-defined range in order to be paired with a balance wheel, which forms the inertial element of the oscillator. This operation pairing is essential to precisely adjust the frequency of a mechanical oscillator.

Il est très important que les caractéristiques de l'oscillateur soient aussi stables que possible, afin d'avoir une marche de la montre qui soit également stable. L'importance des champs magnétiques dans l'environnement moderne, a poussé les horlogers à utiliser depuis quelques années, des spiraux en silicium, moins sensible aux perturbations magnétiques que des spiraux métalliques.It is very important that the characteristics of the oscillator are as stable as possible, in order to have a rate of the watch which is also stable. The importance of magnetic fields in the modern environment has prompted watchmakers to use silicon hairsprings for several years, which are less sensitive to magnetic disturbances than metal hairsprings.

Très avantageusement, on peut fabriquer plusieurs centaines de spiraux en silicium sur une seule plaquette (en anglais « wafer ») en utilisant les technologies de micro-fabrication. Il est notamment connu de réaliser une pluralité de spiraux en silicium avec une très haute précision en utilisant des procédés de photolithographie et d'usinage / gravure dans une plaquette en silicium. Les procédés de réalisation de ces spiraux mécaniques utilisent généralement des plaquettes de silicium monocristallin, mais des plaquettes en d'autres matériaux sont également utilisables, par exemple en silicium polycristallin ou amorphe, en d'autres matériaux semi-conducteurs, en verre, en céramique, en carbone, en nanotubes de carbone ou en un composite comprenant ces matériaux. Pour sa part, le silicium monocristallin appartient à la classe cristalline cubique m3m dont le coefficient d'expansion thermique (alpha) est isotrope.Very advantageously, several hundred silicon hairsprings can be manufactured on a single wafer using micro-fabrication technologies. It is in particular known to produce a plurality of hairsprings in silicon with very high precision by using photolithography and machining/etching processes in a silicon wafer. The methods for producing these mechanical hairsprings generally use monocrystalline silicon wafers, but wafers made of other materials can also be used, for example polycrystalline or amorphous silicon, other semiconductor materials, glass, ceramic , carbon, carbon nanotubes or a composite comprising these materials. For its part, monocrystalline silicon belongs to the cubic crystalline class m3m whose coefficient of thermal expansion (alpha) is isotropic.

Le silicium présente une valeur du premier coefficient thermoélastique très négative, et par conséquent, la raideur d'un résonateur en silicium, et donc sa fréquence propre, varie fortement selon la température. Afin de compenser au moins partiellement cet inconvénient, les documents EP1422436 , EP2215531 et WO2016128694 décrivent un résonateur mécanique de type spiral réalisé à partir d'une âme (ou de deux âmes dans le cas de WO2016128694 ) en silicium monocristallin et dont les variations en température du module d'Young sont compensées par une couche en oxyde de silicium (SiO2) amorphe entourant l'âme (ou les âmes), ce dernier étant un des rares matériaux présentant un coefficient thermoélastique positif.Silicon has a very negative value of the first thermoelastic coefficient, and consequently the stiffness of a silicon resonator, and therefore its natural frequency, varies greatly according to the temperature. In order to at least partially compensate for this drawback, the documents EP1422436 , EP2215531 And WO2016128694 describe a spiral-type mechanical resonator made from a core (or two cores in the case of WO2016128694 ) in monocrystalline silicon and whose variations in temperature of the Young's modulus are compensated by a layer of amorphous silicon oxide (SiO 2 ) surrounding the core (or cores), the latter being one of the rare materials having a thermoelastic coefficient positive.

Il est connu d'ajuster les dimensions des spiraux après gravure, notamment pour réduire la dispersion de raideurs que l'on observe entre les spiraux, selon leur positionnement sur la plaquette dans laquelle ils sont réalisés. Cet ajustement se fait par une succession d'oxydation et de désoxydation, qui permet de modifier avec précision la dimension des spiraux, mais également de lisser les flancs de ces spiraux. L'opération d'oxydation est effectuée thermiquement, par une opération de chauffage typiquement effectuée entre 600 et 1300°C.It is known to adjust the dimensions of the hairsprings after etching, in particular to reduce the dispersion of stiffness that is observed between the hairsprings, according to their positioning on the wafer in which they are made. This adjustment is made by a succession of oxidation and deoxidation, which makes it possible to precisely modify the dimension of the hairsprings, but also to smooth the sides of these hairsprings. The oxidation operation is carried out thermally, by a heating operation typically carried out between 600 and 1300°C.

On observe que ces opérations induisent des déformations sur les spiraux, particulièrement les spiraux présentant des orientations cristallographiques isotropes, c'est-à-dire particulièrement les spiraux réalisés dans du silicium <100> et <110>. Une telle déformation peut notamment se traduire par une élongation du spiral et donc un déplacement de son extrémité extérieure. On observe également une déformation sous l'influence du propre poids du spiral, particulièrement lorsque l'oxydation est effectuée dans un four horizontal, dans lequel les plaquettes sont disposées verticalement. Les spires sont alors déformées par la gravité et ne sont plus enroulées régulièrement.It is observed that these operations induce deformations on the hairsprings, particularly the hairsprings having isotropic crystallographic orientations, that is to say particularly the hairsprings made in <100> and <110> silicon. Such a deformation can in particular result in an elongation of the hairspring and therefore a displacement of its outer end. A deformation is also observed under the influence of the own weight of the hairspring, particularly when the oxidation is carried out in a horizontal furnace, in which the wafers are arranged vertically. The turns are then deformed by gravity and are no longer wound regularly.

Le document WO2019/180596 propose de disposer les plaquettes horizontalement et sur un support, permettant de limiter les déformations liées au propre poids du spiral et à la chaleur.The document WO2019/180596 proposes to arrange the plates horizontally and on a support, making it possible to limit the deformations related to the own weight of the hairspring and to the heat.

Pour des wafers disposés verticalement, il est jusqu'alors nécessaire de procéder à N étapes d'oxydation, et d'effectuer entre chacun d'elles une rotation du wafer dans son support de 360/N°, afin d'obtenir une compensation entre les différentes déformations. Cela impose des manipulations qui ralentissent le flux de production et qui créent autant d'occasions de casse ou de pollution des wafers.For wafers arranged vertically, it has hitherto been necessary to carry out N oxidation stages, and to perform between each of them a rotation of the wafer in its support of 360/N°, in order to obtain a compensation between the different deformations. This imposes manipulations which slow down the production flow and which create as many opportunities for breakage or pollution of the wafers.

Les demanderesses ont trouvé une autre solution inattendue permettant de résoudre ce problème. La solution identifiée peut être généralisée à d'autres pièces d'horlogerie en silicium pour lesquelles il est primordial de contrôler les dimensions et tolérances de fabrication.The applicants have found another unexpected solution to this problem. The solution identified can be generalized to other silicon timepieces for which it is essential to control the dimensions and manufacturing tolerances.

Divulguation de l'inventionDisclosure of Invention

De façon plus précise, l'invention concerne un procédé de limitation de la déformation d'une pièce d'horlogerie en silicium ménagée dans une plaquette, au cours d'une oxydation thermique, caractérisé par le fait que l'oxydation thermique est effectuée sur une pièce d'horlogerie en silicium fortement dopé.More specifically, the invention relates to a process for limiting the deformation of a silicon timepiece formed in a wafer, during thermal oxidation, characterized in that the thermal oxidation is carried out on a highly doped silicon timepiece.

Un autre aspect de l'invention concerne une utilisation d'un wafer comprenant au moins une couche de silicium fortement dopé, pour limiter la déformation d'une pièce d'horlogerie ménagée dans ladite couche de silicium fortement dopé, au cours d'une oxydation thermique.Another aspect of the invention relates to a use of a wafer comprising at least one layer of highly doped silicon, to limit the deformation of a timepiece formed in said highly doped silicon layer, during thermal oxidation.

Selon ces deux aspects, il est possible de limiter, voire de supprimer les déformations subies par une pièce d'horlogerie en silicium, lorsqu'elle est soumise à une oxydation thermique, entre 600 et 1300°C, sans devoir manipuler les plaquettes.According to these two aspects, it is possible to limit or even eliminate the deformations undergone by a silicon timepiece, when it is subjected to thermal oxidation, between 600 and 1300° C., without having to manipulate the wafers.

Brève description des dessinsBrief description of the drawings

D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence au dessin annexé dans lequel :

  • la figure 1 est une représentation schématique d'une installation d'oxydation de plaquettes de silicium dans un four à chargement horizontal, les plaquettes étant disposés verticalement,
  • la figure 2 représente un spiral non dopé, déformé après une oxydation thermique dans un four, selon la disposition de la figure 1,
  • la figure 3 représente un spiral dopé, après une oxydation thermique dans un four, selon la disposition de la figure 1.
Other details of the invention will appear more clearly on reading the following description, made with reference to the appended drawing in which:
  • there figure 1 is a schematic representation of a silicon wafer oxidation installation in a horizontal loading furnace, the wafers being arranged vertically,
  • there figure 2 represents an undoped hairspring, deformed after thermal oxidation in an oven, according to the arrangement of the figure 1 ,
  • there picture 3 represents a doped hairspring, after thermal oxidation in an oven, according to the arrangement of the figure 1 .

Mode de réalisation de l'inventionEmbodiment of the invention

Le document WO2019/180596 décrit les étapes qui permettent de graver des composants horlogers, particulièrement des spiraux, dans une plaquette (également appelée wafer) de silicium. Ces étapes de lithographie sont bien connues de l'homme du métier et sont intégrées par référence à la présente demande.The document WO2019/180596 describes the steps that make it possible to etch watch components, particularly hairsprings, in a wafer (also called a wafer) of silicon. These lithography steps are well known to those skilled in the art and are incorporated by reference into the present application.

Cette plaquette peut être de différents types, comprenant une simple couche de silicium, ou une couche de silicium disposée sur une couche d'oxyde de silicium (SOI), ou plusieurs couches de silicium, avec une couche d'oxyde de silicium intercalée entre les couches de silicium. Selon les configurations, le composant est gravé dans la couche de silicium ou dans un groupe de couches de silicium.This wafer can be of different types, comprising a single layer of silicon, or a layer of silicon arranged on a layer of silicon oxide (SOI), or several layers of silicon, with a layer of silicon oxide interposed between the silicon layers. Depending on the configurations, the component is etched in the silicon layer or in a group of silicon layers.

Le silicium peut être de différentes natures, monocristallin, polycristallin ou encore amorphe.Silicon can be of different natures, monocrystalline, polycrystalline or even amorphous.

Parmi les étapes de fabrication, on effectue une voire plusieurs étapes d'oxydation thermique. Ces étapes d'oxydation peuvent avoir différents buts :

  • ajustement dimensionnel ou lissage des flancs lorsque l'étape d'oxydation est suivie d'une désoxydation,
  • ajustement du coefficient thermique d'élasticité du spiral, grâce au fait que l'oxyde de silicium présente un coefficient thermique d'élasticité de signe opposé à celui du silicium,
  • renforcement mécanique du composant.
Among the manufacturing steps, one or even several thermal oxidation steps are carried out. These oxidation steps can have different purposes:
  • dimensional adjustment or smoothing of the flanks when the oxidation step is followed by deoxidation,
  • adjustment of the thermal coefficient of elasticity of the hairspring, thanks to the fact that silicon oxide has a thermal coefficient of elasticity of opposite sign to that of silicon,
  • mechanical reinforcement of the component.

Comme illustré à la figure 1, ces étapes d'oxydation sont effectuées dans un four d'oxydation 10, à des températures comprises typiquement entre 600°C et 1300°C, ce qui permet de former une couche d'oxyde de silicium (SiO2) qui recouvre la plaquette et les composants gravés, en consommant du silicium de la plaquette.As shown in figure 1 , these oxidation steps are carried out in an oxidation furnace 10, at temperatures typically between 600° C. and 1300° C., which makes it possible to form a layer of silicon oxide (SiO 2 ) which covers the wafer and etched components, consuming silicon from the wafer.

Dans certains process, les wafers sont chargés dans le four en étant disposé horizontalement. Comme dans le document WO2019/180596 , il est proposé de disposer les wafers sur des supports munis d'entretoises, pour empêcher ou du moins limiter la déformation des spiraux sous l'effet de la gravité. Cependant, cette solution ne peut fonctionner pour des wafers 12 disposés verticalement, notamment dans des fours 10 à chargement horizontal, tel que représenté sur la figure 1.In some processes, the wafers are loaded into the oven by being arranged horizontally. As in the document WO2019/180596 , it is proposed to arrange the wafers on supports provided with spacers, to prevent or at least limit the deformation of the hairsprings under the effect of gravity. However, this solution cannot work for wafers 12 arranged vertically, in particular in furnaces 10 with horizontal loading, as represented on the figure 1 .

Les demanderesses ont remarqué avec surprise, que les déformations subies par les composants lors des opérations d'oxydation thermique, sous l'effet de la chaleur et du propre poids des composants, étaient très limitées, voire quasi nulles, en utilisant une plaquette dont la ou les couche(s) de silicium est/sont en silicium dopé. De préférence, le dopage est un dopage élevé au bore ou au phosphore. Par dopage élevé (cette expression étant équivalente à « fortement dopé »), on entend une concentration moyenne de dopant au sein du même wafer plus grande que 1x1018, plus particulièrement plus grande que 1x1019, encore plus particulièrement plus grande que 5x1019 atomes par cm3. On peut alternativement définir un dopage élevé comme un dopage correspondant à une résistivité plus petite que 0.01 ohm.cm, ou encore une résistivité comprise entre 0.0045 et 0.0055 ohm.cm, encore plus particulièrement une résistivité de 0.005 ohm.cm.The applicants noted with surprise that the deformations undergone by the components during the thermal oxidation operations, under the effect of the heat and the weight of the components themselves, were very limited, even almost zero, by using a wafer whose or the layer(s) of silicon is/are made of doped silicon. Preferably, the doping is high boron or phosphorus doping. By high doping (this expression being equivalent to “heavily doped”) is meant an average concentration of dopant within the same wafer greater than 1x10 18 , more particularly greater than 1x10 19 , even more particularly greater than 5x10 19 atoms per cm 3 . Alternatively, a high doping can be defined as a doping corresponding to a resistivity smaller than 0.01 ohm.cm, or even a resistivity between 0.0045 and 0.0055 ohm.cm, even more particularly a resistivity of 0.005 ohm.cm.

De manière avantageuse, les effets du dopage sont particulièrement sensibles avec des spiraux en silicium monocristallin, présentant notamment des orientations cristallines <100> ou <110>. Ce sont en effet les typologies de silicium qui sont particulièrement sujettes à une déformation lors d'une opération d'oxydation thermique.Advantageously, the effects of doping are particularly sensitive with hairsprings made of monocrystalline silicon, in particular having crystalline orientations <100> or <110>. It is in fact the types of silicon which are particularly subject to deformation during a thermal oxidation operation.

Il est connu d'utiliser du silicium dopé, voire fortement dopé, pour réaliser des composant horlogers. Cependant, les effets connus d'un tel dopage concernent les propriétés mécaniques du silicium, telles que sa dureté et son module de Young. Il a également été proposé de doper une portion d'un spiral en silicium pour obtenir une thermo-compensation de la raideur du spiral, en d'autres termes pour limiter les variations du couple élastique du spiral en fonction de la température. Les effets d'un dopage sur la déformation thermique du silicium n'ont jusqu'à présent pas été identifiés ou décrits.It is known to use doped, or even heavily doped, silicon to produce watch components. However, the known effects of such doping concern the mechanical properties of silicon, such as its hardness and Young's modulus. It has also been proposed to dope a portion of a silicon hairspring to obtain thermal compensation for the stiffness of the hairspring, in other words to limit variations in the elastic torque of the hairspring as a function of temperature. The effects of doping on the thermal deformation of silicon have so far not been identified or described.

Pour illustrer ces effets, on a représenté sur la figure 2 un spiral non dopé réalisé dans un wafer <100> ayant subi une oxydation thermique en étant positionné verticalement dans un four d'oxydation. La flèche symbolise l'orientation du champ gravitationnel lors de l'étape d'oxydation. On constate que les spires sont décalées progressivement par rapport à leur position nominale sous l'effet de leur poids. Après l'opération d'oxydation, la déformation induite est définitive et le spiral au repos et à plat reste déformé. Pour quantifier la déformation, un segment a été disposé radialement et parallèlement au champ gravitationnel sur la figure 2. Il arrive au niveau de la 7ème spire sur le spiral non dopé, en partant du centre.To illustrate these effects, we have represented on the picture 2 an undoped hairspring produced in a <100> wafer having undergone thermal oxidation while being positioned vertically in an oxidation furnace. The arrow symbolizes the orientation of the gravitational field during the oxidation step. It can be seen that the turns are progressively shifted with respect to their nominal position under the effect of their weight. After the oxidation operation, the induced deformation is final and the balance spring, at rest and flat, remains deformed. To quantify the deformation, a segment was placed radially and parallel to the gravitational field on the figure 2 . It arrives at the level of the 7th turn on the undoped hairspring, starting from the centre.

On a représenté sur la figure 3 un spiral réalisé dans un wafer <100> présentant un dopage élevé, au sens des paragraphes ci-dessus, ayant subi une oxydation thermique en étant positionné verticalement dans un four d'oxydation. Dans sa géométrie, il est très proche de sa forme avant oxydation. On a représenté un segment de même longueur que celui représenté sur la figure 2 et positionné de manière identique. On constate qu'il se termine au niveau de la 5ème spire, soit un décalage de 2 spires entre un spiral en silicium non dopé (figure 2) et un spiral fortement dopé (figure 3).We represented on the picture 3 a hairspring produced in a wafer <100> having a high doping, within the meaning of the paragraphs above, having undergone thermal oxidation while being positioned vertically in an oxidation furnace. In its geometry, it is very close to its form before oxidation. A segment of the same length as that shown on the figure 2 and positioned identically. It can be seen that it ends at the level of the 5th turn, i.e. a shift of 2 turns between an undoped silicon hairspring ( figure 2 ) and a heavily doped hairspring ( picture 3 ).

On a également mesuré le pas entre l'avant dernière-spire et la dernière spire de spiraux réalisés dans un wafer <100> fortement dopé (échantillon A), et de spiraux réalisés dans un wafer<100> non dopé (échantillon B), les spiraux ayant subi une oxydation thermique dans un four à chargement horizontal, en étant positionnés verticalement.We also measured the pitch between the penultimate turn and the last turn of hairsprings made in a heavily doped <100> wafer (sample A), and of hairsprings made in an undoped <100> wafer (sample B), the hairsprings having undergone thermal oxidation in a horizontal loading oven, being positioned vertically.

Sur des échantillons de 20 spiraux, le pas moyen depuis le centre et dans la direction de la gravité mesuré pour l'échantillon B s'est réduit de plus de 15%, tandis que le pas moyen depuis le centre et dans la direction de la gravité pour l'échantillon A ne s'est réduit que d'une valeur inférieure à 3%, par rapport aux spiraux avant l'étape d'oxydation thermique. Les autres paramètres (temps d'oxydation, température d'oxydation, position du wafer dans le four, position de l'attache, géométrie du spiral etc..) étant par ailleurs constants, cette amélioration du comportement du spiral à l'oxydation est dû au dopage.On samples of 20 hairsprings, the average pitch from the center and in the direction of gravity measured for sample B was reduced by more than 15%, while the average pitch from the center and in the direction of gravity for sample A was only reduced by less than 3%, compared to the hairsprings before stage thermal oxidation. The other parameters (oxidation time, oxidation temperature, position of the wafer in the oven, position of the attachment, geometry of the hairspring, etc.) being otherwise constant, this improvement in the behavior of the hairspring to oxidation is due to doping.

Ainsi, on constate que l'utilisation d'un wafer en silicium fortement dopé permet d'éviter les déformations rencontrées avec des wafers en silicium non dopé, lors d'étapes d'oxydation thermique au cours desquelles les wafers sont disposés verticalement, cela sans devoir retourner ou modifier l'orientation des wafers entre des étapes d'oxydation successives. L'effet est également obtenu lorsque les plaquettes sont disposées horizontalement, même si cette déformation est moins sensible, il n'en demeure pas moins que les spiraux peuvent se déformer en-dehors du plan du wafer, sous l'effet de leur poids, et qu'une telle déformation est également limitée avec des spiraux fortement dopés.Thus, it is found that the use of a highly doped silicon wafer makes it possible to avoid the deformations encountered with undoped silicon wafers, during thermal oxidation steps during which the wafers are arranged vertically, without having to flip or change the orientation of the wafers between successive oxidation steps. The effect is also obtained when the wafers are arranged horizontally, even if this deformation is less noticeable, the fact remains that the hairsprings can deform outside the plane of the wafer, under the effect of their weight, and that such deformation is also limited with heavily doped hairsprings.

Si les effets découlant de l'invention ont pu être montrés sur des spiraux, on les retrouve de manière identique avec d'autres pièces horlogères en silicium, pour lesquelles il est primordial de contrôler les dimensions et tolérances de fabrication. Il est effet connu de l'homme de l'art, qu'une étape d'oxydation thermique est présente dans quasiment tous les procédés de mise en œuvre d'une pièce en silicium, au moins dans l'un des buts cités ci-dessus (ajustement dimensionnel, lissage, ajustement du coefficient thermique, renforcement mécanique). On pourra notamment viser des ancres, des roues, des systèmes à pivot virtuel tels que des ancres, des balanciers ou des oscillateurs complets, c'est-à-dire comprenant un organe de rappel et une masse inertielle.While the effects resulting from the invention have been shown on hairsprings, they are found identically with other watchmaking parts in silicon, for which it is essential to control the dimensions and manufacturing tolerances. It is known to those skilled in the art that a thermal oxidation step is present in almost all processes for implementing a silicon part, at least for one of the purposes mentioned above. above (dimensional adjustment, smoothing, thermal coefficient adjustment, mechanical reinforcement). It will be possible in particular to target anchors, wheels, virtual pivot systems such as anchors, pendulums or complete oscillators, that is to say comprising a return member and an inertial mass.

Claims (20)

Procédé de limitation de la déformation d'une pièce d'horlogerie en silicium ménagée dans une plaquette, au cours d'une oxydation thermique, caractérisé par le fait que l'oxydation thermique est effectuée sur une pièce d'horlogerie en silicium fortement dopé.Process for limiting the deformation of a silicon timepiece formed in a wafer, during thermal oxidation, characterized in that the thermal oxidation is carried out on a highly doped silicon timepiece. Procédé de limitation selon la revendication 1, caractérisé en ce que la pièce d'horlogerie est réalisée en silicium monocristallin.Limitation method according to Claim 1, characterized in that the timepiece is made of monocrystalline silicon. Procédé de limitation selon la revendication 2, caractérisé en ce que la pièce d'horlogerie est réalisée en silicium monocristallin d'orientation <100> ou <110>.Limitation method according to Claim 2, characterized in that the timepiece is made of monocrystalline silicon with orientation <100> or <110>. Procédé de limitation selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape de fourniture d'une plaquette en silicium fortement dopé.Limitation method according to one of the preceding claims, characterized in that it comprises a step of supplying a highly doped silicon wafer. Procédé de limitation selon l'une des revendications précédentes, caractérisé en ce que le silicium présente une concentration de dopant plus grande que 1x1018, plus particulièrement plus grande que 1x1019, encore plus particulièrement plus grande que 5x1019 atomes par cm3.Limiting process according to one of the preceding claims, characterized in that the silicon has a dopant concentration greater than 1x10 18 , more particularly greater than 1x10 19 , even more particularly greater than 5x10 19 atoms per cm 3 . Procédé de limitation selon l'une des revendications précédentes, caractérisé en ce que le silicium présente une résistivité plus petite que 0.01 ohm.cm, plus particulièrement une résistivité de 0.005 ohm.cm.Limitation method according to one of the preceding claims, characterized in that the silicon has a resistivity lower than 0.01 ohm.cm, more particularly a resistivity of 0.005 ohm.cm. Procédé de limitation selon l'une des revendications précédentes, caractérisé en ce que le dopant est choisi parmi du bore ou du phosphore.Limitation process according to one of the preceding claims, characterized in that the dopant is chosen from boron or phosphorus. Procédé de limitation selon l'une des revendications précédentes, caractérisé en ce qu'il est effectué avec des pièces d'horlogerie formées dans une plaquette disposée verticalement dans un four d'oxydation.Limiting method according to one of the preceding claims, characterized in that it is carried out with timepieces formed in a wafer placed vertically in an oxidation furnace. Procédé de limitation selon la revendication 8, caractérisé en ce qu'il ne comprend pas d'étape de retournement ou de rotation de la plaquette.Limiting method according to Claim 8, characterized in that it does not include a step of turning over or rotating the wafer. Procédé de limitation selon l'une des revendications 1 à 9, caractérisé en ce que la pièce d'horlogerie est choisie parmi un spiral, une ancre, une roue, un système à pivot virtuel tels que qu'une ancre, qu'un balancier ou un oscillateur.Limitation method according to one of Claims 1 to 9, characterized in that the timepiece is chosen from among a hairspring, an anchor, a wheel, a virtual pivot system such as an anchor, a balance or an oscillator. Utilisation d'un wafer comprenant au moins une couche de silicium fortement dopé, pour limiter la déformation d'une pièce d'horlogerie ménagée dans ladite couche de silicium fortement dopé, au cours d'une oxydation thermique.Use of a wafer comprising at least one layer of heavily doped silicon, to limit the deformation of a timepiece formed in said layer of heavily doped silicon, during thermal oxidation. Utilisation selon la revendication 11, caractérisée en ce que la pièce d'horlogerie est réalisée en silicium monocristallin.Use according to Claim 11, characterized in that the timepiece is made of monocrystalline silicon. Utilisation selon la revendication 12, caractérisée en ce que la pièce d'horlogerie est réalisée en silicium monocristallin d'orientation <100> ou <110>.Use according to Claim 12, characterized in that the timepiece is made of monocrystalline silicon with orientation <100> or <110>. Utilisation selon l'une des revendications 11 à 13, caractérisée en ce qu'il comprend une étape de fourniture d'une plaquette en silicium fortement dopé.Use according to one of Claims 11 to 13, characterized in that it comprises a step of supplying a highly doped silicon wafer. Utilisation selon l'une des revendications 11 à 14, caractérisée en ce que le silicium présente une concentration de dopant plus grande que 1x1018, plus particulièrement plus grande que 1x1019, encore plus particulièrement plus grande que 5x1019 atomes par cm3.Use according to one of Claims 11 to 14, characterized in that the silicon has a dopant concentration greater than 1x10 18 , more particularly greater than 1x10 19 , even more particularly greater than 5x10 19 atoms per cm 3 . Utilisation de réalisation selon l'une des revendications 11 à 15, caractérisée en ce que le silicium présente une résistivité plus petite que 0.01 ohm.cm, plus particulièrement une résistivité comprise entre 0.0045 et 0.0055 ohm.cm, encore plus particulièrement une résistivité de 0.005 ohm.cm.Use of embodiment according to one of Claims 11 to 15, characterized in that the silicon has a resistivity lower than 0.01 ohm.cm, more particularly a resistivity of between 0.0045 and 0.0055 ohm.cm, even more particularly a resistivity of 0.005 ohm.cm. Utilisation selon l'une des revendications 11 à 16, caractérisée en ce que le dopant est choisi parmi du bore ou du phosphore.Use according to one of Claims 11 to 16, characterized in that the dopant is chosen from boron or phosphorus. Utilisation selon l'une des revendications 11 à 17, caractérisée en ce qu'il est effectué avec des pièces d'horlogerie formées dans une plaquette disposée verticalement dans un four d'oxydation.Use according to one of Claims 11 to 17, characterized in that it is carried out with timepieces formed in a wafer placed vertically in an oxidation furnace. Utilisation selon la revendication 18, caractérisée en ce qu'il ne comprend pas d'étape de retournement ou de rotation de la plaquetteUse according to claim 18, characterized in that it does not include a step of turning over or rotating the wafer Utilisation selon l'une des revendications 11 à 19, dans laquelle la pièce d'horlogerie est choisie parmi un spiral, une ancre, une roue, un système à pivot virtuel tels que qu'une ancre, qu'un balancier ou un oscillateur.Use according to one of Claims 11 to 19, in which the timepiece is chosen from a hairspring, an anchor, a wheel, a virtual pivot system such as an anchor, a balance wheel or an oscillator.
EP22151563.8A 2022-01-14 2022-01-14 Method for limiting the deformation of a silicon timepiece Withdrawn EP4212965A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22151563.8A EP4212965A1 (en) 2022-01-14 2022-01-14 Method for limiting the deformation of a silicon timepiece
EP23151601.4A EP4212966A1 (en) 2022-01-14 2023-01-13 Method for limiting the deformation of a silicon timepiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22151563.8A EP4212965A1 (en) 2022-01-14 2022-01-14 Method for limiting the deformation of a silicon timepiece

Publications (1)

Publication Number Publication Date
EP4212965A1 true EP4212965A1 (en) 2023-07-19

Family

ID=79730216

Family Applications (2)

Application Number Title Priority Date Filing Date
EP22151563.8A Withdrawn EP4212965A1 (en) 2022-01-14 2022-01-14 Method for limiting the deformation of a silicon timepiece
EP23151601.4A Pending EP4212966A1 (en) 2022-01-14 2023-01-13 Method for limiting the deformation of a silicon timepiece

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP23151601.4A Pending EP4212966A1 (en) 2022-01-14 2023-01-13 Method for limiting the deformation of a silicon timepiece

Country Status (1)

Country Link
EP (2) EP4212965A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (en) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production
EP2215531A1 (en) 2007-11-28 2010-08-11 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Mechanical oscillator having an optimized thermoelastic coefficient
WO2016128694A1 (en) 2015-02-13 2016-08-18 Tronic's Microsystems Mechanical oscillator and associated production method
EP3159746A1 (en) * 2015-10-19 2017-04-26 Rolex Sa Heavily doped silicon hairspring for timepiece
WO2019180596A1 (en) 2018-03-20 2019-09-26 Patek Philippe Sa Geneve Method for producing silicon watchmaking components
EP3709098A1 (en) * 2019-03-14 2020-09-16 Seiko Epson Corporation Watch component, watch movement and watch
CH716696A2 (en) * 2019-10-15 2021-04-15 Sigatec Sa Manufacturing process for watch balance springs.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422436A1 (en) 2002-11-25 2004-05-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production
EP2215531A1 (en) 2007-11-28 2010-08-11 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Mechanical oscillator having an optimized thermoelastic coefficient
WO2016128694A1 (en) 2015-02-13 2016-08-18 Tronic's Microsystems Mechanical oscillator and associated production method
EP3159746A1 (en) * 2015-10-19 2017-04-26 Rolex Sa Heavily doped silicon hairspring for timepiece
WO2019180596A1 (en) 2018-03-20 2019-09-26 Patek Philippe Sa Geneve Method for producing silicon watchmaking components
EP3709098A1 (en) * 2019-03-14 2020-09-16 Seiko Epson Corporation Watch component, watch movement and watch
CH716696A2 (en) * 2019-10-15 2021-04-15 Sigatec Sa Manufacturing process for watch balance springs.

Also Published As

Publication number Publication date
EP4212966A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
EP0886195B1 (en) Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP2423764B1 (en) Device for measuring the torque of a hairspring
EP1605182B1 (en) Temperature compensated hairspring-balance oscillator
WO2015189278A2 (en) Oscillator for a timepiece balance spring assembly
EP3181939A1 (en) Method for manufacturing a hairspring with predetermined stiffness by adding material
EP3759554B1 (en) Method for manufacturing a hairspring
EP1519250A1 (en) Thermally compensated balance-hairspring resonator
EP3159746B1 (en) Heavily doped silicon hairspring for timepiece
TWI793285B (en) Method for producing a silicon-based timepiece spring
EP4212965A1 (en) Method for limiting the deformation of a silicon timepiece
CH719361A2 (en) Process for limiting the deformation of a silicon timepiece during thermal oxidation.
EP1654597B1 (en) Thermally-compensated balance wheel
EP3106930A1 (en) Manufacturing method comprising a modified machining step
EP3273309B1 (en) Timepiece with hybrid oscillator
EP3112950B1 (en) Manufacturing method comprising a modified bar turning step
EP2703910B1 (en) Paired balance wheel - hairspring resonator
EP3304216B1 (en) Thermocompensated horology resonator and method for producing such a resonator
CH710308A2 (en) Thermocompensated silicon resonator.
EP3047337B1 (en) Mechanical oscillator for clockwork and method for manufacturing the same
EP3534222A1 (en) Method for producing a thermally compensated oscillator
CH716696A2 (en) Manufacturing process for watch balance springs.
EP4030241A1 (en) Method for manufacturing timepiece hairsprings
WO2021170473A1 (en) Silicon timepiece component for a timepiece
WO2023242756A1 (en) Timepiece movement with increased power reserve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240120