EP3304216B1 - Thermocompensated horology resonator and method for producing such a resonator - Google Patents

Thermocompensated horology resonator and method for producing such a resonator Download PDF

Info

Publication number
EP3304216B1
EP3304216B1 EP16728737.4A EP16728737A EP3304216B1 EP 3304216 B1 EP3304216 B1 EP 3304216B1 EP 16728737 A EP16728737 A EP 16728737A EP 3304216 B1 EP3304216 B1 EP 3304216B1
Authority
EP
European Patent Office
Prior art keywords
coil spring
modified portion
hairspring
cte
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16728737.4A
Other languages
German (de)
French (fr)
Other versions
EP3304216A1 (en
Inventor
Susana del Carmen TOBENAS BORRON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Publication of EP3304216A1 publication Critical patent/EP3304216A1/en
Application granted granted Critical
Publication of EP3304216B1 publication Critical patent/EP3304216B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Definitions

  • the invention relates to a method of manufacturing a spiral spring.
  • the time base of a timepiece uses a resonator whose oscillations must be maintained.
  • a resonator with a given resonant frequency most often performs this function.
  • resonators such as the pendulum (which involves gravity), the quartz (piezoelectricity), the tuning fork (vibrating blades) or the return springs of more diverse forms, depending on whether they are designed to oscillate over large or small amplitudes.
  • the regulating member consists of the balance wheel/hairspring assembly.
  • the hairspring is in this case fixed by one end to the balance shaft and by the other end to a bridge in which the balance shaft pivots. In this way, the spring contracts and relaxes alternately around its center during the oscillations of the balance wheel. Since its creation, a few hundred years ago, and until today, the spiral springs are mainly made from a metallic blade of rectangular section wound on itself in the form of an Archimedean spiral.
  • Current metal spiral springs are mainly made from FeNiCr (commonly called elinvar) or NbZr, which the latter having in addition to the first a reduced magnetic susceptibility.
  • elinvar commonly called elinvar
  • NbZr which the latter having in addition to the first a reduced magnetic susceptibility.
  • the choice of these materials is mainly dictated by the need to have a resonator whose mechanical and geometric properties vary as little as possible during temperature changes to which the watch may be exposed, i.e. a range of up to sixty degrees, more specifically within a range of 8 to 38°C for watches certified to meet the criteria governing “chronometer” certification.
  • the high amplitude of the balance wheel and a low maintenance torque of its oscillations favored the development of a spiral-shaped spring to equip the regulating organ of mechanical watches.
  • this geometric shape has drawbacks, such as the action of gravity. Indeed, the slight deformations due to the own weight of the hairspring can induce defects in the concentric development of the hairspring around the axis of the balance wheel and therefore affect the precision of the watch.
  • thermoelastic coefficient of the modulus of elasticity of this material is however too great to guarantee the frequency precision of such a resonator.
  • Research on the subject has led to the addition of a layer of a material whose thermoelastic coefficient is opposite to that of silicon.
  • Berry and Pritchet IBM Technical Disclosure Bulletin #1237, Vol. 14, No. 4, 1971 ) have shown that amorphous silica (SiO 2 ) responds advantageously to this condition. That's what Shen et al.
  • the document EP1422436 discloses a spiral spring resulting from the cutting of a ⁇ 001 ⁇ silicon plate.
  • the aim of this invention is to overcome the drawbacks described above, proposing a hairspring whose sensitivity to variations in temperature and to magnetic fields is minimized.
  • the precision manufacturing technology (Ion Etching) proposed for the shaping of these hairsprings combined with modeling and compensation of the anisotropy due to the crystalline orientation of the material, makes it possible to reduce the retouching of the regulating organ and to improve the reproducibility of the process.
  • the frequency drift of resonators made of monocrystalline silicon may require complex corrections depending on the application. This comes from the anisotropic character of physical quantities such as the Young's modulus and the coefficient of thermal expansion of this material.
  • thermocompensated resonator comprising a ceramic spring whose surface is coated with at least a second material whose CTE (thermoelastic coefficient) has the opposite sign to the
  • thermoelastic properties of a so-called photopatternable glass following exposure to a UV source This technique has several limitations inherent in the choice of material and process.
  • the material is on the one hand limited to a particular category of so-called “photostructurable” glasses, which are glasses doped in particular with a photoactive element such as cerium and with a nucleating agent such as silver.
  • a photoactive element such as cerium
  • a nucleating agent such as silver
  • the photostructuring process described in the patent EP1958031 requires the use of masks in order to hide some areas of the photopatternable material from exposure to UV radiation.
  • the irradiation process may involve multiphoton absorption in the vitreous material.
  • the modified portion is adjusted so that its physical properties compensate for the physical properties of the rest of the vitreous material (unmodified portion).
  • the resonator is thermocompensated, and its stiffness can also be adjusted.
  • the resonator thus obtained is non-magnetic and thermocompensated while avoiding the use of coatings.
  • the material also comprises a locally modified portion so that said modified portion has a second stiffness which differs from the first stiffness of the unmodified material.
  • the method includes adjusting the frequency of the hairspring. This adjustment can be made before assembling the hairspring with a balance wheel.
  • the frequency of the hairspring is adjusted so as to pair the hairspring with the balance wheel.
  • a balance-spring intended to equip a resonator of the balance-spring type of a mechanical watch is made of a vitreous material.
  • the expression "vitreous material” includes in particular pseudo-amorphous (that is to say non-crystalline) materials exhibiting the glass transition phenomenon.
  • the glass transition is a reversible phenomenon of transition between the hard form and the "molten” or rubbery form of an amorphous material.
  • the temperature of The glass transition of an amorphous material is always lower than the melting point of its crystalline form.
  • the term “vitreous material” also means a material that is partially vitreous (therefore at least partially amorphous).
  • the vitreous material can comprise any glass as defined above.
  • the vitreous material has a low coefficient of thermal expansion, that is to say less than 1 ppm/°C.
  • the vitreous material is based on silica (amorphous ⁇ SiO 2 ) having a coefficient of thermal expansion of around 0.5 ppm/°C.
  • the vitreous material can comprise a pure amorphous silica, a borosilicate, an aluminosilicate, or a silica-based glass with a controlled level of impurities.
  • the spiral spring 1 comprises a vitreous material having a first ⁇ 1 .
  • the vitreous material is locally modified so as to produce a modified portion 3 directly from the vitreous material, the modified portion 3 of the vitreous material having a second CTE ⁇ 2 different from the first CTE ⁇ 1 .
  • the modified portion comprises said vitreous material having undergone, locally, structural modifications.
  • the hairspring 1 is characterized by an effective CTE ⁇ eff which is defined by the combination of the first CTE ⁇ 1 and the second CTE ⁇ 2 .
  • the presence of the modified portion makes it possible to minimize the thermal drift of the resonator formed by the hairspring and the balance wheel.
  • the vitreous material also has a first coefficient of thermal expansion ⁇ 1 and the modified portion has a second coefficient of thermal expansion ⁇ 2 which may be different from the first coefficient of thermal expansion ⁇ 1 .
  • the vitreous material also has a first Young's modulus E 1 and the modified portion has a second Young's modulus E 2 which may be different from the first Young's modulus E 1 .
  • the hairspring 1 is therefore also characterized by an effective coefficient of thermal expansion ⁇ eff which is defined by the combination of the first and second coefficients of thermal expansion ⁇ 1 , ⁇ 2 and by an effective Young's modulus E eff which is defined by the combination of the first and second Young's modulus E 1 , E 2 .
  • the figures 1 to 6 represent a section of the blade of a hairspring 1 comprising a matrix in an at least partially vitreous material 2 and a modified portion 3.
  • Said modified portion may comprise a central modified zone 3 ( figures 1 and 4 ), two surface modified areas 3 ( figures 2 and 3 ) according to examples useful for understanding the invention.
  • the exposed zones 3 may have varied geometries and distributions, an asymmetry of these zones also being able to be chosen to overcome different compressive and tensile stresses with respect to the neutral fiber of the blade. These different geometries can be, if necessary, combined on portions distributed along the blade to respect the isotropy of the material or to meet other needs.
  • the exposed zones 3 can be located anywhere on the blade, preferably without contact with the surface of the latter.
  • the configuration of the modified portion 3 can also vary along the hairspring 1.
  • this variation can include the geometric configuration of the modified portion 3 which varies along the hairspring 1, but also a variation of the value of the second CTE ⁇ 2 , and possibly also of the second coefficient of thermal expansion ⁇ 2 and of the second Young's modulus E 2 , in the various modified portions 3, along the hairspring 1.
  • the modified portion 3 can be arranged so as to extend in the longitudinal direction of the hairspring 1 in a continuous manner (such as continuous fibers) or in a discontinuous manner.
  • elongated geometries of the modified portion 3 can be oriented in any direction, preferably in the longitudinal direction of the hairspring 1.
  • the geometry of the hairspring 1 may advantageously incorporate attachment means at its two ends, as they are known to man. trade, with rigid mounting means or, preferably, elastics.
  • attachment means at its two ends, as they are known to man. trade, with rigid mounting means or, preferably, elastics.
  • identification references can be micro-engraved on the hairspring 1.
  • the thermal drift of the resonator relates to the relative variations in the frequency of oscillation of the regulating organ following changes in temperature in the range of 8 to 38°C.
  • the relative frequency variations with temperature depend mainly on the effective coefficient of thermal expansion ⁇ eff and on the effective CTE ⁇ eff of the hairspring 1.
  • K the stiffness of the hairspring and l the moment of inertia of the balance.
  • I mr 2 where m is the mass of the pendulum and r is the radius of gyration of the pendulum
  • K is described by equation (3):
  • K E delete Hey 3 12 L
  • E eff is the effective Young's modulus of the hairspring-hairspring, h the height of the hairspring-hairspring, e the thickness of the hairspring-hairspring and L the length of the hairspring-hairspring.
  • thermal compensation is obtained thanks to the growth of a layer of amorphous SiO 2 around the core of the spring-spring.
  • Amorphous SiO 2 is one of the rare materials with a positive CTE, around 200 ppm/C.
  • the thickness of the SiO 2 layer for the thermal compensation of the hairspring is predicted according to the dimensions of the blade of the hairspring as described in the document EP1422436 .
  • the CTE of the hairspring is in this case an effective CTE ⁇ eff comprising the contribution of the monocrystalline silicon core of the hairspring and the contribution of the outer layer of amorphous SiO 2 .
  • said structural modifications of the vitreous material result in a second CTE ⁇ 2 of the locally modified vitreous material (modified portion) which differs from the first CTE ⁇ 1 of the unmodified vitreous material.
  • the hairspring therefore has an effective CTE ⁇ eff which differs from that which it would have in the absence of the modified portion (which would then correspond to the first CTE ⁇ 1 ). Equation (6) can therefore be satisfied for the resonator using the contributions of the first CTE ⁇ 1 and of the second CTE ⁇ 2 to the effective CTE ⁇ eff .
  • An advantage of the proposed solution is that it is not necessary to add or grow a different material to that forming the hairspring to modify the effective CTE ⁇ eff of the hairspring.
  • the second CTE ⁇ 2 can be modulated in a controlled manner.
  • the machining step can be carried out by a chemical etching process, by a physical etching process or by a combination of the two processes.
  • the step of forming said modified portion 3 can be performed before, during or after the machining step.
  • the method can also comprise another step of forming the modified portion, after the machining step.
  • the step of locally modifying the vitreous material includes laser treatment.
  • the laser is operated in a non-ablative mode. That is to say that we do not remove material in the zone where the laser is focused.
  • the laser uses ultrashort pulse durations, that is to say pulse durations comprised between a few femtoseconds to a few nanoseconds, and preferably between a few femtoseconds to a few picoseconds.
  • Ultrashort laser pulse durations induce structural changes resulting from complex nonlinear phenomena which also give rise to a local modification of the CTE of the modulus of elasticity as well as of the modulus of elasticity itself.
  • pulse durations between a few femtoseconds and a few picoseconds promotes radiation-matter interaction mechanisms based on multiphoton absorption.
  • Pulse durations comprised between a few femtoseconds and a few nanoseconds can be obtained with several types of lasers of very diverse wavelengths such as, for example, and preferably, a Ti:Sapphire laser (650 to 1100 nm), a laser Yb (1030 nm) or even a mid-infrared laser (mid infrared, 1050 nm).
  • a Ti:Sapphire laser 650 to 1100 nm
  • a laser Yb (1030 nm)
  • a mid-infrared laser mid infrared, 1050 nm.
  • the precise nature of the laser-matter interaction will differ.
  • the first CTE ⁇ 1 of the vitreous matrix will be modified, at least locally so as to obtain the modified portion 3 having the second CTE ⁇ 2 .
  • the same reasoning also applies to obtain the modified portion 3 having the second coefficient of thermal expansion ⁇ 2 different from the first coefficient of thermal expansion ⁇ 1 and having a second Young's modulus E 2 different from the first Young's modulus E 1 .
  • Such a laser treatment would make it possible to modify the effective CTE ⁇ eff of the hairspring 1, to modify the effective coefficient of thermal expansion ⁇ eff and/or to adjust the value of the effective Young's modulus E eff of said spring 1.
  • the fine adjustment of the effective Young's modulus E eff of the spring 1 makes it possible to adjust its stiffness (and therefore the frequency of the resonator) without needing to modify either the height or the thickness of the vibrating body (1). This facilitates, for example, hairspring-balance pairing operations at the same time as allowing a significant increase in the output of these operations.
  • the figure 7 shows a top view of a spiral spring 1 .
  • the spiral spring 1 comprises an inner terminal curve 4 and an outer terminal curve 5.
  • a detail of a section 6 of the spiral spring 1 is shown in figure 8 .
  • the modified portion 3 comprises a portion 3' extending in the longitudinal direction of the hairspring 1 continuously and discontinuously.
  • the modification of the effective Young's modulus E eff in a specific portion of the balance-spring 1, such as for example in the terminal curve of the balance-spring, makes it possible to optimize the concentricity of its deployment with respect to the axis of the balance wheel. It is also possible to compensate for subsidence effects due to gravity or other isochronism defects.
  • the structure of a solid material exhibiting the glass transition phenomenon (in other words, its specific volume or its density) can be fixed according to the thermal cycle (heating-cooling ramp) to which it is subjected. It is therefore possible, depending on the thermal cycle, to freeze the structure of a material exhibiting the glass transition phenomenon, either in a particular vitreous state or even in a crystalline state. In the particular case of a glass, it is possible to freeze its structure by subjecting it to a thermal cycle which does not include passing through the liquid state of the material. That said, by remaining in the solid vitreous zone of the material, it is possible to change its structure by subjecting it to a particular thermal cycle.
  • Silica-based glasses become denser following an increase in their fictitious temperature.
  • the fictitious temperature of a glass is the temperature at which its structure (atomic arrangement) is fixed.
  • the fictitious temperature depends on the rate of cooling during a thermal cycle. For an ordinary glass, the higher is its fictitious temperature (the faster it is cooled), the greater its specific volume. In the particular case of silica, an opposite trend is observed. Indeed, at higher fictitious temperature one will find smaller specific volumes.
  • the local modification of the vitreous material by a focused laser treatment using ultrashort laser pulse durations makes it possible to obtain a modified portion thanks to phenomena of a thermal nature such as those described above.
  • the phenomena of a thermal nature leading to a local change in the structure of the vitreous material can be modulated, in particular by playing with the repetition rate of the laser.
  • the modified portion 3 has a density which differs from the density of the vitreous material.
  • the different density of the modified portion 3 can comprise the creation of a crystalline polymorph of an amorphous silica (such as for example alpha or beta quartz, stishovite, tridymite, chalcedony or even cristobalite), or the formation of metallic clusters according to the presence or absence of impurities or the formation of a densified region following a local increment of the fictitious temperature of the silica, or the formation of structurally modified zones due to any absorption mechanism nonlinear.
  • an amorphous silica such as for example alpha or beta quartz, stishovite, tridymite, chalcedony or even cristobalite
  • the laser is focused at the nano or micrometric scale.
  • Such a laser allows the generation of the modified portion whose CTE of the modulus of elasticity and the stiffness can be modified, and this in proportions which are not necessarily constant or linear.
  • the formation of the modified portion having a second CTE ⁇ 2 different from the first CTE ⁇ 1 makes it possible to adjust, case by case, the value of the effective CTE ⁇ eff of the resonator.
  • the method of the invention offers the advantage of being able to precisely and individually adjust the thermomechanical properties of each resonator with the aim of fine-tuning the temperature behavior of the oscillator.
  • the figure 9 shows a wafer 7 of vitreous material in which a plurality of spiral springs 1 are made.
  • figure 10 shows a sectional view of the wafer of the figure 9 during the local modification step making it possible to form the modified portion 3, for example, by irradiation with a focused laser 8.
  • the laser beam 8 can move, for example in x, y, z, so as to carry out the local modification according to a more or less complex shape, here an "annular" shape in the mass of the body of the hairspring 1.
  • the parts indicated by the number "9" correspond to the vitreous material which is machined in the machining step.
  • the figure 11 illustrates the sectional view of the figure 9 after the machining step during which the parts 9 have been eliminated by the machining releasing the spiral springs 1 comprising the modified portion 3.
  • the figure 9 also shows parts 7a, 7b, 7c of the wafer 7 for which the hairsprings 1 have undergone a different irradiation treatment depending on the part 7a, 7b, 7c of the wafer in which the hairsprings 1 are located. Consequently, the spiral springs 1 in one of the different parts 7a, 7b, 7c may have a modified portion 3 whose physical properties differ from those of the modified portion 3 of the spiral springs 1 in the other parts 7a, 7b, 7c of the wafer 7.
  • the step of locally modifying the vitreous material can therefore be carried out locally not only on the scale of the body used in deformation (spring-spiral) 1 but also on the scale of the wafer 7.
  • the method also has the advantage of being applicable to a vast category of glasses, in particular those said to be “non-photostructurable”. Consequently, the process of transformation of the vitreous material takes place directly without the need for additional steps such as the heat treatments required in the case of so-called “photostructurable” glasses.
  • the use of multiphoton absorption mechanisms makes it possible to use a wide range of wavelengths ranging from infrared to ultraviolet. Also, such a method makes it possible to locally modify the thermoelastic properties of the vitreous material without any restriction as to the location of the modified portion in the volume of the vitreous material.
  • the material is locally modified (using a laser, preferably of the femtosecond type) so as to produce a modified portion 3 having a second Young's modulus E 2 which differs from a first Young's modulus E 1 of the unmodified portion of the material .
  • a value of the effective Young's modulus E eff of the hairspring 1 defined by the combination of the first and second Young's modulus E 1 , E 2 .
  • the stiffness of the hairspring 1 depends on its Young's modulus (its rigidity) but also on the ratio of its section to its length. It can however be assumed that the ratio of the section to the length of the hairspring will not be changed by the local modification.
  • the material has a first stiffness K 1 and the modified portion has a second stiffness K 2 which may be different from the first stiffness K 1 .
  • the adjustment of the effective Young's modulus E eff of the balance-spring 1 therefore makes it possible to adjust a value of the effective stiffness K eff of the balance-spring 1, without needing to modify either the height or the thickness of the balance-spring 1.
  • the effective stiffness K eff of the hairspring 1 is defined by the combination of the first and the second stiffness K 1 , K 2 .
  • the local modification of the stiffness of the hairspring 1 can be used to adjust the frequency of the hairspring 1, for example before it is assembled with a balance wheel. This facilitates, for example, balance-spring pairing operations, or even pairing of the regulating member as a whole with respect to the movement, at the same time as allowing a significant increase in the efficiency of this operation.
  • the local modification of the Young's modulus and of the stiffness can be applied to the outer terminal curve 5 and/or to the curve inner terminal 4 of spiral spring 1, as shown in figure 7 .
  • the modified portion 3 may comprise a portion 3' extending in the longitudinal direction of the hairspring 1 continuously and/or discontinuously.
  • the modification of the effective Young's modulus E eff and/or of the effective stiffness K eff in a specific portion of the hairspring 1, such as for example in the terminal curve of the hairspring, makes it possible to optimize the concentricity of its deployment with respect to the axis of the balance. It is also possible to compensate for subsidence effects due to gravity or other isochronism defects.
  • the material is locally modified so as to adjust the internal stresses in the modified portion 3.
  • the local modification is carried out using laser treatment, preferably using a laser using ultrashort pulse durations, that is to say pulse durations between a few femtoseconds to a few nanoseconds, and preferably between a few femtoseconds to a few picoseconds.
  • the use of such lasers allows the precise control of very localized modifications of the material by the nonlinear methods of absorption of the energy of the laser.
  • the modifications thus induced in the modified portion of the material can be of a continuous nature, formation of (nano) self-organized structures, and/or the formation of nanovoids.
  • These modifications can induce different types of anisotropy in the modified portion of the material, which can have important effects on the chemical, optical, thermal and/or mechanical properties.
  • the change in the volume of the material resulting from the exposure induces stresses around the zones exposed by laser, and thus modifications of the internal stresses, which can be compressive or tensile stresses, in the modified portion.
  • the induced stress depends mainly on two parameters: the polarization and the energy per pulsation.
  • the local modification can be carried out in such a way as not to influence the thermocompensation of the modified portion of the material, or at least not in a linear manner.
  • the effective Young's modulus and the effective CTE can be controlled by the total quantity of modified zones while the residual stresses can be controlled by the location of the affected zones with respect to the component produced.

Description

Domaine techniqueTechnical area

L'invention se rapporte à une méthode de fabrication d'un ressort spiral.The invention relates to a method of manufacturing a spiral spring.

Etat de la techniqueState of the art

La base de temps d'une pièce d'horlogerie fait appel à un résonateur dont les oscillations doivent être entretenues. Un résonateur avec une fréquence de résonance donnée remplit le plus souvent des cas cette fonction. Il est connu, notamment, des résonateurs tels que le pendule (qui fait intervenir la gravité), le quartz (piézoélectricité), le diapason (lames vibrantes) ou encore les ressorts de rappel de formes plus diverses, selon qu'ils sont conçus pour osciller sur de grandes ou de petites amplitudes.The time base of a timepiece uses a resonator whose oscillations must be maintained. A resonator with a given resonant frequency most often performs this function. It is known, in particular, resonators such as the pendulum (which involves gravity), the quartz (piezoelectricity), the tuning fork (vibrating blades) or the return springs of more diverse forms, depending on whether they are designed to oscillate over large or small amplitudes.

En particulier, dans la plupart des montres mécaniques, l'organe réglant est constitué par l'ensemble balancier/spiral. Le ressort-spiral est dans ce cas fixé par une extrémité sur l'axe de balancier et par l'autre extrémité sur un pont dans lequel pivote l'axe du balancier. De cette manière, le ressort se contracte et se détend de manière alternative autour de son centre durant les oscillations du balancier. Depuis sa création, quelques centaines d'années en arrière, et jusqu'à nos jours, les ressorts spiraux sont principalement fabriqués à partir d'une lame métallique de section rectangulaire enroulée sur elle-même sous forme de spiral d'Archimède.In particular, in most mechanical watches, the regulating member consists of the balance wheel/hairspring assembly. The hairspring is in this case fixed by one end to the balance shaft and by the other end to a bridge in which the balance shaft pivots. In this way, the spring contracts and relaxes alternately around its center during the oscillations of the balance wheel. Since its creation, a few hundred years ago, and until today, the spiral springs are mainly made from a metallic blade of rectangular section wound on itself in the form of an Archimedean spiral.

Les ressorts-spiraux métalliques actuels sont principalement réalisés à base de FeNiCr (communément appelé élinvar) ou de NbZr, ce dernier ayant en plus du premier une susceptibilité magnétique réduite. Le choix de ces matériaux est principalement dicté par le besoin d'avoir un résonateur dont les propriétés mécaniques et géométriques varient le moins possible lors de changements de température auxquels peut être exposée la montre, à savoir une plage pouvant aller jusqu'à une soixantaine de degrés, plus spécifiquement dans une plage de 8 à 38 °C pour les montres certifiées devant répondre aux critères régissant la certification « chronomètre ».Current metal spiral springs are mainly made from FeNiCr (commonly called elinvar) or NbZr, which the latter having in addition to the first a reduced magnetic susceptibility. The choice of these materials is mainly dictated by the need to have a resonator whose mechanical and geometric properties vary as little as possible during temperature changes to which the watch may be exposed, i.e. a range of up to sixty degrees, more specifically within a range of 8 to 38°C for watches certified to meet the criteria governing “chronometer” certification.

Ces résonateurs sont difficiles à fabriquer. Il s'agit de garantir la maîtrise et la répétabilité des procédés de fabrication métallurgiques complexes ayant un impact définitif dans les propriétés mécaniques intrinsèques du ressort-spiral. De faibles variations de composition chimique de l'alliage, de traitements thermiques, de taux d'écrouissage de la matière lors de sa transformation d'un lingot à un fil fin, ou encore des imprécisions géométriques des fils produits sont à l'origine de grandes variations dans les propriétés mécaniques des spiraux produits. Des opérations de retouche du ressort-spiral lors du réglage de la montre sont effectuées afin de pallier en partie à ces inconvénients.These resonators are difficult to manufacture. It is a question of guaranteeing the control and the repeatability of the complex metallurgical manufacturing processes having a definitive impact on the intrinsic mechanical properties of the hairspring. Slight variations in the chemical composition of the alloy, heat treatments, work hardening rate of the material during its transformation from an ingot to a fine wire, or even geometric inaccuracies in the wires produced are the cause of large variations in the mechanical properties of the hairsprings produced. Retouching operations of the hairspring during adjustment of the watch are carried out in order to partially overcome these drawbacks.

De plus, l'amplitude élevée du balancier et un couple faible d'entretien de ses oscillations ont favorisé le développement d'un ressort en forme de spiral pour équiper l'organe réglant des montres mécaniques. Cette forme géométrique présente cependant des inconvénients, comme par exemple l'action de la gravité. En effet, les faibles déformations dues au propre poids du spiral peuvent induire des défauts dans le développement concentrique du spiral autour de l'axe du balancier et donc affecter la précision de la montre.In addition, the high amplitude of the balance wheel and a low maintenance torque of its oscillations favored the development of a spiral-shaped spring to equip the regulating organ of mechanical watches. However, this geometric shape has drawbacks, such as the action of gravity. Indeed, the slight deformations due to the own weight of the hairspring can induce defects in the concentric development of the hairspring around the axis of the balance wheel and therefore affect the precision of the watch.

D'autre part, certains alliages métalliques très répandus dans la fabrication de spiraux, comme ceux à base de FeNiCr, sont sensibles à l'action d'un champ magnétique.On the other hand, certain metal alloys which are widely used in the manufacture of hairsprings, such as those based on FeNiCr, are sensitive to the action of a magnetic field.

Une alternative aux résonateurs métalliques a été proposée sur la base de silicium. Ce matériau arbore un certain nombre d'avantages, comme des propriétés mécaniques stables, une insensibilité aux champs magnétiques, des procédés de microfabrication (DRIE notamment) permettant une grande précision et reproductibilité des géométries, une densité faible, donc des perturbations dues à la gravité réduites, et un facteur de qualité élevé. Le brevet JPH06117470 (Yokogawa, 1992 ) mentionne notamment un ressort-spiral réalisé dans un tel matériau.An alternative to metal resonators has been proposed based on silicon. This material has a number of advantages, such as stable mechanical properties, insensitivity to magnetic fields, microfabrication processes (DRIE in particular) allowing high precision and reproducibility of geometries, low density, therefore reduced disturbances due to gravity, and a high quality factor. The patent JPH06117470 (Yokogawa, 1992 ) mentions in particular a hairspring made of such a material.

Le coefficient thermoélastique négatif du module d'élasticité de ce matériau est cependant trop important pour garantir la précision de fréquence d'un tel résonateur. Des recherches sur le sujet ont mené à l'ajout d'une couche d'un matériau dont le coefficient thermoélastique est opposé à celui du silicium. Ainsi, Berry et Pritchet (IBM Technical Disclosure Bulletin #1237, Vol. 14, No. 4, 1971 ) ont montré que la silice amorphe (SiO2) répondait avantageusement à cette condition. C'est ce que Shen et al. (Sensors & Actuators A 95, 2001 ) ont vérifié, exposant les calculs permettant d'optimiser l'épaisseur de cette couche pour une épaisseur donnée du barreau d'un résonateur en silicium monocristallin ou polycristallin, indiquant que la même démarche peut être utilisée pour tout autre matériau de résonateur.The negative thermoelastic coefficient of the modulus of elasticity of this material is however too great to guarantee the frequency precision of such a resonator. Research on the subject has led to the addition of a layer of a material whose thermoelastic coefficient is opposite to that of silicon. Thus, Berry and Pritchet (IBM Technical Disclosure Bulletin #1237, Vol. 14, No. 4, 1971 ) have shown that amorphous silica (SiO 2 ) responds advantageously to this condition. That's what Shen et al. (Sensors & Actuators A 95, 2001 ) have checked, exposing the calculations making it possible to optimize the thickness of this layer for a given thickness of the bar of a monocrystalline or polycrystalline silicon resonator, indicating that the same approach can be used for any other material of resonator.

Le document EP1422436 divulgue un ressort spiral issu du découpage d'une plaque {001} en Silicium. Cette invention a pour but de pallier les inconvénients décrits ci-dessus proposant un spiral dont la sensibilité aux variations de température et aux champs magnétiques est minimisée. De plus la technologie de fabrication de précision (Ion Etching) proposée pour la mise en forme de ces spiraux, combinée à une modélisation et une compensation de l'anisotropie due à l'orientation cristalline du matériau, permet de réduire les retouches de l'organe réglant et d'améliorer la reproductibilité du procédé.The document EP1422436 discloses a spiral spring resulting from the cutting of a {001} silicon plate. The aim of this invention is to overcome the drawbacks described above, proposing a hairspring whose sensitivity to variations in temperature and to magnetic fields is minimized. In addition, the precision manufacturing technology (Ion Etching) proposed for the shaping of these hairsprings, combined with modeling and compensation of the anisotropy due to the crystalline orientation of the material, makes it possible to reduce the retouching of the regulating organ and to improve the reproducibility of the process.

Cependant, la dérive de la fréquence des résonateurs fabriqués en silicium monocristallin peut nécessiter des corrections complexes selon les applications. Ceci vient du caractère anisotrope des grandeurs physiques comme le module de Young et le coefficient de dilatation thermique de ce matériau.However, the frequency drift of resonators made of monocrystalline silicon may require complex corrections depending on the application. This comes from the anisotropic character of physical quantities such as the Young's modulus and the coefficient of thermal expansion of this material.

Le but de l'invention décrite dans le document EP2590325 est de pallier au moins en partie à l'inconvénient cité précédemment. Ce document divulgue un résonateur thermocompensé comportant un ressort en céramique dont la surface est revêtue avec au moins un deuxième matériau dont le CTE (coefficient thermoélastique) est de signe opposé auThe object of the invention described in the document EP2590325 is to overcome at least in part the drawback mentioned above. This document discloses a thermocompensated resonator comprising a ceramic spring whose surface is coated with at least a second material whose CTE (thermoelastic coefficient) has the opposite sign to the

CTE du matériau utilisé pour l'âme du ressort. Le document EP2597536A1 décrit la fabrication d'un spiral de balancier en verre de quartz dont une partie est exposée à un LASER femtoseconde.CTE of the material used for the spring core. The document EP2597536A1 describes the fabrication of a quartz glass balance spring, part of which is exposed to a femtosecond LASER.

L'utilisation de revêtements dans les résonateurs de montres compromet leur robustesse mécanique. Les revêtements déposés sur les ressorts doivent supporter des contraintes très importantes. Typiquement ces contraintes se concentrent à proximité de l'interface revêtement-substrat. La répétition des déformations lors du développement concentrique du ressort (armage et désarmage) peut donc résulter dans la cassure du revêtement ou dans sa délamination, ceci entraînant un changement sensible de la fréquence d'oscillation.The use of coatings in watch resonators compromises their mechanical robustness. The coatings deposited on the springs must withstand very high stresses. Typically these stresses are concentrated close to the coating-substrate interface. The repetition of the deformations during the concentric development of the spring (winding and unwinding) can therefore result in the breakage of the coating or in its delamination, this leading to a significant change in the frequency of oscillation.

Nous mentionnons enfin le brevet EP1958031 qui fait état d'une compensation thermique par modification des propriétés thermoélastiques d'un verre dit photostructurable suite à l'exposition à une source UV. Cette technique présente plusieurs limitations inhérentes au choix du matériau et du procédé. Le matériau est d'une part limité à une catégorie particulière de verres dits « photostructurables », qui sont des verres dopés notamment avec un élément photoactif comme le cérium et avec un agent de nucléation comme l'argent. Lors de l'exposition de l'élément photoactif à la radiation ultraviolette ce dernier est photoionisé, ceci donnant lieu à un électron. Ces électrons seront donc piégés par la suite par les agents de nucléation ce qui permettra la formation de centres de nucléation ou des clusters à l'origine du processus de formation de nano ou de microcristaux dans la matrice vitreuse. Le processus décrit précédemment est très dépendant de la température, raison pour laquelle des traitements thermiques conséquents (T > 500°C) sont requis afin de compléter (figer ?)le processus de photostructuration de ce type de matériaux.Finally, we mention the patent EP1958031 which reports thermal compensation by modifying the thermoelastic properties of a so-called photopatternable glass following exposure to a UV source. This technique has several limitations inherent in the choice of material and process. The material is on the one hand limited to a particular category of so-called “photostructurable” glasses, which are glasses doped in particular with a photoactive element such as cerium and with a nucleating agent such as silver. When the photoactive element is exposed to ultraviolet radiation, it is photoionized, giving rise to an electron. These electrons will therefore be trapped subsequently by the nucleating agents, which will allow the formation of nucleation centers or clusters at the origin of the process of formation of nano or microcrystals in the vitreous matrix. The process described above is very dependent on the temperature, which is why substantial heat treatments (T > 500°C) are required in order to complete (freeze?) the process of photostructuring of this type of material.

D'autre part le procédé de photostructuration décrit dans le brevet EP1958031 nécessite l'utilisation de masques afin de cacher quelques zones de la matière photostructurable de l'exposition au rayonnement UV.On the other hand, the photostructuring process described in the patent EP1958031 requires the use of masks in order to hide some areas of the photopatternable material from exposure to UV radiation.

Il n'est donc pas possible par ce procédé de réaliser des modifications locales de la matière photostructurable sans que la partie de la couche extérieure du substrat située entre les zones modifiées et la source lumineuse ne soit elle aussi modifiée. Enfin, ce procédé se limite aux longueurs d'onde UV de la lumière et à l'utilisation des outillages spécifiques.It is therefore not possible by this process to carry out local modifications of the photopatternable material without the part of the outer layer of the substrate located between the modified zones and the light source also being modified. Finally, this process is limited to UV wavelengths of light and the use of specific tools.

Bref résumé de l'inventionBrief summary of the invention

Dans le cadre de la présente invention, on propose de palier à ces inconvénients en proposant une méthode de fabrication du résonateur, selon la revendication 1.In the context of the present invention, it is proposed to overcome these drawbacks by proposing a method of manufacturing the resonator, according to claim 1.

Dans un mode de réalisation, le procédé d'irradiation peut faire intervenir une absorption multiphotonique dans le matériau vitreux.In one embodiment, the irradiation process may involve multiphoton absorption in the vitreous material.

La portion modifiée est ajustée de manière à ce que ses propriétés physiques compensent les propriétés physiques du reste du matériau vitreux (portion non modifiée). De la sorte, le résonateur est thermocompensé, et sa raideur peut elle aussi être ajustée.The modified portion is adjusted so that its physical properties compensate for the physical properties of the rest of the vitreous material (unmodified portion). In this way, the resonator is thermocompensated, and its stiffness can also be adjusted.

Le résonateur ainsi obtenu est amagnétique et thermocompensé tout en évitant l'utilisation de revêtements.The resonator thus obtained is non-magnetic and thermocompensated while avoiding the use of coatings.

Le matériau comporte également une portion localement modifiée de manière à ce que ladite portion modifiée ait une seconde raideur qui diffère de la première raideur du matériau non modifié.The material also comprises a locally modified portion so that said modified portion has a second stiffness which differs from the first stiffness of the unmodified material.

La méthode comprend l'ajustement de la fréquence du ressort-spiral. Cet ajustement peut être réalisé avant l'assemblage du ressort-spiral avec un balancier.The method includes adjusting the frequency of the hairspring. This adjustment can be made before assembling the hairspring with a balance wheel.

La fréquence du ressort-spiral est ajustée de manière à appairer le ressort-spiral avec le balancier.The frequency of the hairspring is adjusted so as to pair the hairspring with the balance wheel.

Brève description des figuresBrief description of figures

Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • les figures 1 à 6 représentent une vue en coupe d'une lame d'un ressort-spiral selon des exemples utiles pour comprendre l'invention; les figures 5 et 6 indiquent des modes de réalisation selon la présente invention;
  • la figure 7 montre une vue de dessus d'un ressort-spiral 1;
  • la figure 8 montre un détail d'une section du ressort-spiral de la figure 7;
  • la figure 9 montre un wafer en matériau vitreux dans lequel est fabriquée une pluralité de ressorts-spiraux, selon un mode de réalisation;
  • la figure 10 est une vue en coupe du wafer de la figure 9 pendant un procédé d'irradiation, selon un mode de réalisation; et
  • la figure 11 illustre la vue en coupe de la figure 9 après une étape d'usinage, selon un mode de réalisation.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • the figures 1 to 6 represent a sectional view of a blade of a hairspring according to examples useful for understanding the invention; the figures 5 and 6 indicate embodiments according to the present invention;
  • the figure 7 shows a top view of a spiral spring 1;
  • the figure 8 shows a detail of a section of the hairspring of the figure 7 ;
  • the figure 9 shows a glassy material wafer in which a plurality of spiral springs are fabricated, according to one embodiment;
  • the figure 10 is a sectional view of the wafer of the figure 9 during an irradiation process, according to one embodiment; and
  • the figure 11 illustrates the sectional view of the figure 9 after a machining step, according to one embodiment.

Exemple(s) de mode de réalisation de l'inventionExample(s) of embodiment of the invention

Selon un mode de réalisation, un ressort-spiral destiné à équiper un résonateur de type balancier-spiral d'une montre mécanique est réalisé dans un matériau vitreux. Ici, l'expression "matériau vitreux" comprend notamment des matériaux pseudo-amorphes (c'est-à-dire non cristallins) présentant le phénomène de transition vitreuse. La transition vitreuse est un phénomène réversible de transition entre la forme dure et la forme « fondue » ou caoutchouteuse d'un matériau amorphe. La température de transition vitreuse d'un matériau amorphe est toujours plus basse que le point de fusion de sa forme cristalline. On entend également par "matériau vitreux" un matériau étant partiellement vitreux (donc au moins partiellement amorphe).According to one embodiment, a balance-spring intended to equip a resonator of the balance-spring type of a mechanical watch is made of a vitreous material. Here, the expression "vitreous material" includes in particular pseudo-amorphous (that is to say non-crystalline) materials exhibiting the glass transition phenomenon. The glass transition is a reversible phenomenon of transition between the hard form and the "molten" or rubbery form of an amorphous material. The temperature of The glass transition of an amorphous material is always lower than the melting point of its crystalline form. The term “vitreous material” also means a material that is partially vitreous (therefore at least partially amorphous).

Le matériau vitreux peut comprendre n'importe quel verre tel que défini ci-dessus. De manière préférée, le matériau vitreux possède un faible coefficient de dilatation thermique, c'est-à-dire inférieur à 1 ppm/°C. Par exemple le matériau vitreux est à base de silice (αSiO2 amorphe) ayant un coefficient de dilatation thermique d'environ 0.5 ppm/°C. Par exemple, le matériau vitreux peut comprendre une silice amorphe pure, un borosilicate, un aluminosilicate, ou un verre à base de silice avec un taux d'impuretés contrôlé.The vitreous material can comprise any glass as defined above. Preferably, the vitreous material has a low coefficient of thermal expansion, that is to say less than 1 ppm/°C. For example, the vitreous material is based on silica (amorphous αSiO 2 ) having a coefficient of thermal expansion of around 0.5 ppm/°C. For example, the vitreous material can comprise a pure amorphous silica, a borosilicate, an aluminosilicate, or a silica-based glass with a controlled level of impurities.

Le ressort-spiral 1 comprend un matériau vitreux ayant un premier β1. Le matériau vitreux est localement modifié de sorte à produire une portion modifiée 3 à même le matériau vitreux, la portion modifiée 3 du matériau vitreux ayant un second CTE β2 différent du premier CTE β1. Autrement dit, la portion modifiée comprend ledit matériau vitreux ayant subi, localement, des modifications structurelles. De la sorte, le ressort-spiral 1 est caractérisé par un CTE effectif βeff qui est défini par la combinaison du premier CTE β1 et du second CTE β2. La présence de la portion modifiée permet de minimiser la dérive thermique du résonateur formé par le ressort-spiral et le balancier.The spiral spring 1 comprises a vitreous material having a first β 1 . The vitreous material is locally modified so as to produce a modified portion 3 directly from the vitreous material, the modified portion 3 of the vitreous material having a second CTE β 2 different from the first CTE β 1 . In other words, the modified portion comprises said vitreous material having undergone, locally, structural modifications. In this way, the hairspring 1 is characterized by an effective CTE β eff which is defined by the combination of the first CTE β 1 and the second CTE β 2 . The presence of the modified portion makes it possible to minimize the thermal drift of the resonator formed by the hairspring and the balance wheel.

Le matériau vitreux a également un premier coefficient d'expansion thermique α1 et la portion modifiée a un second coefficient d'expansion thermique α2 qui peut être différent du premier d'expansion thermique α1. Le matériau vitreux a également un premier module de Young E1 et la portion modifiée a un second module de Young E2 qui peut être différent du premier module de Young E1. Le ressort-spiral 1 est donc également caractérisé par un coefficient d'expansion thermique effectif αeff qui est défini par la combinaison du premier et second coefficient d'expansion thermique α1, α2 et par un module de Young effectif Eeff qui est défini par la combinaison du premier et second module de Young E1, E2.The vitreous material also has a first coefficient of thermal expansion α 1 and the modified portion has a second coefficient of thermal expansion α 2 which may be different from the first coefficient of thermal expansion α 1 . The vitreous material also has a first Young's modulus E 1 and the modified portion has a second Young's modulus E 2 which may be different from the first Young's modulus E 1 . The hairspring 1 is therefore also characterized by an effective coefficient of thermal expansion α eff which is defined by the combination of the first and second coefficients of thermal expansion α 1 , α 2 and by an effective Young's modulus E eff which is defined by the combination of the first and second Young's modulus E 1 , E 2 .

Les figures 1 à 6 représentent une section de la lame d'un ressort-spiral 1 comprenant une matrice dans un matériau au moins partiellement vitreux 2 et une portion modifiée 3. Ladite portion modifiée peut comprendre une zone modifiée centrale 3 (figures 1 et 4), deux zones modifiées surfaciques 3 (figures 2 et 3) selon des exemples utiles permettant de comprendre l'invention. comprend Une pluralité de zones modifiées 3 sont distribuées dans la matrice de matériau vitreux (figures 5 et 6) selon la présente invention. Sans être limitatif aux variantes illustrées, les zones exposées 3 pourront avoir des géométries et des répartitions variées, une asymétrie de ces zones pouvant aussi être choisie pour pallier à des contraintes de compression et de traction différentes par rapport à la fibre neutre de la lame. Ces différentes géométries peuvent être, si nécessaire, combinées sur des portions réparties le long de la lame pour respecter l'isotropie du matériau ou pour répondre à d'autres besoins. Les zones exposées 3 peuvent se trouver en n'importe quel endroit de la lame, de préférence sans contact avec la surface de celle-ci.The figures 1 to 6 represent a section of the blade of a hairspring 1 comprising a matrix in an at least partially vitreous material 2 and a modified portion 3. Said modified portion may comprise a central modified zone 3 ( figures 1 and 4 ), two surface modified areas 3 ( figures 2 and 3 ) according to examples useful for understanding the invention. comprises A plurality of modified zones 3 are distributed in the matrix of vitreous material ( figures 5 and 6 ) according to the present invention. Without being limiting to the variants illustrated, the exposed zones 3 may have varied geometries and distributions, an asymmetry of these zones also being able to be chosen to overcome different compressive and tensile stresses with respect to the neutral fiber of the blade. These different geometries can be, if necessary, combined on portions distributed along the blade to respect the isotropy of the material or to meet other needs. The exposed zones 3 can be located anywhere on the blade, preferably without contact with the surface of the latter.

La configuration de la portion modifiée 3 peut également varier le long du ressort-spiral 1. En particulier, cette variation peut comprendre la configuration géométrique de la portion modifiée 3 qui varie le long du ressort-spiral 1, mais aussi une variation de la valeur du second CTE β2, et possiblement également du second coefficient d'expansion thermique α2 et du second module de Young E2,dans les différentes portions modifiées 3, le long du ressort-spiral 1. La portion modifiée 3 peut être arrangée de manière à s'étendre dans la direction longitudinale du ressort-spiral 1de manière continue (telle des fibres continues) ou de manière discontinue. De la même manière, des géométries allongées de la portion modifiée 3 pourront être orientées dans n'importe quelle direction, de préférence dans la direction longitudinale du ressort-spiral 1.The configuration of the modified portion 3 can also vary along the hairspring 1. In particular, this variation can include the geometric configuration of the modified portion 3 which varies along the hairspring 1, but also a variation of the value of the second CTE β 2 , and possibly also of the second coefficient of thermal expansion α 2 and of the second Young's modulus E 2 , in the various modified portions 3, along the hairspring 1. The modified portion 3 can be arranged so as to extend in the longitudinal direction of the hairspring 1 in a continuous manner (such as continuous fibers) or in a discontinuous manner. In the same way, elongated geometries of the modified portion 3 can be oriented in any direction, preferably in the longitudinal direction of the hairspring 1.

Afin de profiter de la haute précision et répétabilité des procédés de microfabrication et du procédé de thermocompensation proposé, la géométrie du ressort-spiral 1 pourra de manière avantageuse intégrer des moyens d'attache à ses deux extrémités, comme ils sont connus de l'homme du métier, avec des moyens de montage rigides ou, de préférence, élastiques. Pour des besoins d'identification divers (appairage, etc.), des références d'identification pourront être micro-gravés sur le ressort-spiral 1.In order to take advantage of the high precision and repeatability of the microfabrication processes and of the proposed thermocompensation process, the geometry of the hairspring 1 may advantageously incorporate attachment means at its two ends, as they are known to man. trade, with rigid mounting means or, preferably, elastics. For various identification needs (pairing, etc.), identification references can be micro-engraved on the hairspring 1.

La dérive thermique du résonateur concerne les variations relatives de la fréquence d'oscillation de l'organe réglant suite à des changements de température dans la plage de 8 à 38°C. Les variations relatives de fréquence avec la température dépendent principalement du coefficient d'expansion thermique effectif αeff et du CTE effectif βeff du ressort-spiral 1.The thermal drift of the resonator relates to the relative variations in the frequency of oscillation of the regulating organ following changes in temperature in the range of 8 to 38°C. The relative frequency variations with temperature depend mainly on the effective coefficient of thermal expansion α eff and on the effective CTE β eff of the hairspring 1.

Dans le cas particulier du résonateur, la fréquence d'oscillation peut être écrite selon: f = 1 2 K I

Figure imgb0001
où K est la raideur du ressort-spiral et l le moment d'inertie du balancier. Ce dernier est décrit par l'équation (2): I = mr 2
Figure imgb0002
où m est la masse du balancier et r est le rayon de giration du balancier, et K est décrit par l'équation (3): K = E eff he 3 12 L
Figure imgb0003
où Eeff est le module de Young effectif du ressort-spiral, h la hauteur ressort-spiral, e l'épaisseur ressort-spiral et L la longueur ressort-spiral.In the particular case of the resonator, the oscillation frequency can be written as: f = 1 2 K I
Figure imgb0001
where K is the stiffness of the hairspring and l the moment of inertia of the balance. The latter is described by equation (2): I = mr 2
Figure imgb0002
where m is the mass of the pendulum and r is the radius of gyration of the pendulum, and K is described by equation (3): K = E delete Hey 3 12 L
Figure imgb0003
where E eff is the effective Young's modulus of the hairspring-hairspring, h the height of the hairspring-hairspring, e the thickness of the hairspring-hairspring and L the length of the hairspring-hairspring.

En première approximation la variation relative de la fréquence en fonction de la température peut être formulée selon: Δf f T 0 = A β eff 2 + 3 2 α eff α b ΔT

Figure imgb0004
où A est une constante, βeff le coefficient thermoélastique effectif du ressort-spiral, αeff le coefficient d'expansion thermique effectif du ressort-spiral, αb le coefficient d'expansion thermique du balancier.As a first approximation, the relative variation of frequency as a function of temperature can be formulated as: Δf f T 0 = HAS β delete 2 + 3 2 α delete α b ΔT
Figure imgb0004
where A is a constant, β eff the effective thermoelastic coefficient of the hairspring, α eff the effective thermal expansion coefficient of the hairspring, α b the thermal expansion coefficient of the balance wheel.

Si l'on cherche à minimiser la dérive thermique de la fréquence du résonateur, il faudrait satisfaire la relation suivante: β eff 2 + 3 2 α eff = α b

Figure imgb0005
If one seeks to minimize the thermal drift of the frequency of the resonator, it would be necessary to satisfy the following relation: β delete 2 + 3 2 α delete = α b
Figure imgb0005

Comme le CTE de la plupart de métaux est très négatif, de l'ordre de 1000 ppm/C, et le coefficient d'expansion thermique est plutôt de l'ordre de 10 ppm/C, des alliages complexes comme le Nivarox CT® ou le Parachrom® ont dû être développés afin de satisfaire l'équation précédente.As the CTE of most metals is very negative, around 1000 ppm/C, and the coefficient of thermal expansion is rather around 10 ppm/C, complex alloys such as Nivarox CT ® or Parachrom ® had to be developed in order to satisfy the previous equation.

Dans le cas de l'utilisation du silicium monocristallin (CTE ~ -60 ppm/C), on obtient la thermo compensation grâce à la croissance d'une couche de SiO2 amorphe autour de l'âme du ressort-ressort. Le SiO2 amorphe est une des rares matières présentant un CTE positif, de l'ordre de 200 ppm/C. L'épaisseur de la couche de SiO2 pour la thermocompensation du ressort-spiral est prédite en fonction des dimensions de la lame du ressort-spiral comme décrit dans le document EP1422436 . Le CTE du ressort-spiral est dans ce cas un CTE effectif βeff comprenant la contribution de l'âme en silicium monocristallin du ressort-spiral et la contribution de la couche extérieure en SiO2 amorphe. Ce CTE effectif βeff satisfait l'équation (6) pour autant que le αb soit connu et que le α du ressort-spiral ne diffère pas significativement du α de l'âme: β eff = 2 α b 3 α

Figure imgb0006
In the case of the use of monocrystalline silicon (CTE ~ -60 ppm/C), thermal compensation is obtained thanks to the growth of a layer of amorphous SiO 2 around the core of the spring-spring. Amorphous SiO 2 is one of the rare materials with a positive CTE, around 200 ppm/C. The thickness of the SiO 2 layer for the thermal compensation of the hairspring is predicted according to the dimensions of the blade of the hairspring as described in the document EP1422436 . The CTE of the hairspring is in this case an effective CTE β eff comprising the contribution of the monocrystalline silicon core of the hairspring and the contribution of the outer layer of amorphous SiO 2 . This effective CTE β eff satisfies equation (6) provided that the α b is known and that the α of the hairspring does not differ significantly from the α of the web: β delete = 2 α b 3 α
Figure imgb0006

Dans la présente invention, lesdites modifications structurelles du matériau vitreux résultent dans un second CTE β2 du matériau vitreux localement modifié (portion modifiée) qui diffère du premier CTE β1 du matériau vitreux non-modifié. Le ressort-spiral a donc un CTE effectif βeff qui diffère de celui qu'il aurait en absence de la portion modifiée (qui correspondrait alors au premier CTE β1). L'équation (6) peut donc être satisfaite pour le résonateur à l'aide des contributions du premier CTE β1 et du second CTE β2 au CTE effectif βeff.In the present invention, said structural modifications of the vitreous material result in a second CTE β 2 of the locally modified vitreous material (modified portion) which differs from the first CTE β 1 of the unmodified vitreous material. The hairspring therefore has an effective CTE β eff which differs from that which it would have in the absence of the modified portion (which would then correspond to the first CTE β 1 ). Equation (6) can therefore be satisfied for the resonator using the contributions of the first CTE β 1 and of the second CTE β 2 to the effective CTE β eff .

Un avantage de la solution proposée est qu'il n'est pas nécessaire d'ajouter ni de faire croitre une matière différente à celle formant le ressort-spiral pour modifier le CTE effectif βeff du ressort-spiral. De plus, le second CTE β2 peut être modulé de façon contrôlée.An advantage of the proposed solution is that it is not necessary to add or grow a different material to that forming the hairspring to modify the effective CTE β eff of the hairspring. In addition, the second CTE β 2 can be modulated in a controlled manner.

Selon l'invention, le procédé de fabrication du résonateur, comprend les étapes:

  • d'usiner une pièce d'un matériau vitreux ayant un premier CTE β1 afin de former le résonateur; et
  • de modifier localement le matériau vitreux de manière à former ladite portion modifiée 3 ayant un second CTE β2 différent du premier CTE β1.
According to the invention, the process for manufacturing the resonator comprises the steps:
  • machining a piece of vitreous material having a first CTE β 1 to form the resonator; and
  • to locally modify the vitreous material so as to form said modified portion 3 having a second CTE β 2 different from the first CTE β 1 .

L'étape d'usinage peut être réalisée par un procédé de gravure chimique, par un procédé de gravure physique ou par une combinaison des deux procédés.The machining step can be carried out by a chemical etching process, by a physical etching process or by a combination of the two processes.

L'étape de former ladite portion modifiée 3 peut être réalisée avant, au cours de ou après l'étape d'usinage. Dans le cas où la formation de la portion modifiée 3 est réalisée avant l'étape d'usinage, le procédé peut en outre comprendre une autre étape de formation de la portion modifiée, après l'étape d'usinage.The step of forming said modified portion 3 can be performed before, during or after the machining step. In the case where the formation of the modified portion 3 is carried out before the machining step, the method can also comprise another step of forming the modified portion, after the machining step.

L'étape de modifier localement le matériau vitreux comprend un traitement laser.The step of locally modifying the vitreous material includes laser treatment.

Dans une variante, le laser est opéré en régime non ablatif. C'est-à-dire qu'on n'enlève pas de la matière dans la zone où le laser est focalisé.In a variant, the laser is operated in a non-ablative mode. That is to say that we do not remove material in the zone where the laser is focused.

Le laser utilise des durées d'impulsions ultracourtes, c'est-à-dire des durées d'impulsions comprises entre quelques femtosecondes à quelques nanosecondes, et préférablement entre quelques femtosecondes à quelques picosecondes.The laser uses ultrashort pulse durations, that is to say pulse durations comprised between a few femtoseconds to a few nanoseconds, and preferably between a few femtoseconds to a few picoseconds.

Des durées d'impulsions laser ultracourtes induisent des modifications structurelles issues de phénomènes non linéaires complexes qui donnent lieu aussi à une modification locale du CTE du module d'élasticité ainsi que du module d'élasticité lui-même.Ultrashort laser pulse durations induce structural changes resulting from complex nonlinear phenomena which also give rise to a local modification of the CTE of the modulus of elasticity as well as of the modulus of elasticity itself.

En particulier, l'utilisation de durées d'impulsion comprises entre quelques femtosecondes et quelques picosecondes favorisent des mécanismes d'interaction radiation-matière basés sur l'absorption multiphotonique.In particular, the use of pulse durations between a few femtoseconds and a few picoseconds promotes radiation-matter interaction mechanisms based on multiphoton absorption.

Des durées d'impulsion comprises entre quelques femtosecondes et quelques nanosecondes peuvent être obtenues avec plusieurs types de lasers de longueurs d'onde très diverses comme par exemple, et de préférence, un laser Ti :Sapphire (650 à 1 100 nm), un laser Yb (1030 nm) ou encore un laser dans l'infrarouge moyen (mid infrared, 1050 nm).Pulse durations comprised between a few femtoseconds and a few nanoseconds can be obtained with several types of lasers of very diverse wavelengths such as, for example, and preferably, a Ti:Sapphire laser (650 to 1100 nm), a laser Yb (1030 nm) or even a mid-infrared laser (mid infrared, 1050 nm).

En fonction de la combinaison des paramètres d'opération du laser, notamment de la durée de pulsation, de la puissance et du taux de répétition, la nature précise de l'interaction laser-matière sera différente. Cependant, pour autant qu'une modification structurelle puisse avoir lieu, le premier CTE β1 de la matrice vitreuse sera modifié, au moins localement de sorte à obtenir la portion modifiée 3 ayant le second CTE β2. Le même raisonnement s'applique également pour obtenir la portion modifiée 3 ayant le second coefficient d'expansion thermique α2 différent du premier d'expansion thermique α1 et ayant un second module de Young E2 différent du premier module de Young E1.Depending on the combination of laser operating parameters, including pulse duration, power, and repetition rate, the precise nature of the laser-matter interaction will differ. However, insofar as a structural modification can take place, the first CTE β 1 of the vitreous matrix will be modified, at least locally so as to obtain the modified portion 3 having the second CTE β 2 . The same reasoning also applies to obtain the modified portion 3 having the second coefficient of thermal expansion α 2 different from the first coefficient of thermal expansion α 1 and having a second Young's modulus E 2 different from the first Young's modulus E 1 .

Un tel traitement laser permettrait de modifier le CTE effectif βeff du ressort-spiral 1, de modifier le coefficient d'expansion thermique effectif αeff et/ou d'ajuster la valeur du module de Young effectif Eeff dudit ressort 1. Combiné avec la possibilité de travailler au « cas par cas », l'ajustement fin du module de Young effectif Eeff du ressort 1 permet d'ajuster sa raideur (et donc la fréquence du résonateur) sans avoir besoin de modifier ni la hauteur ni l'épaisseur du corps vibrant (1). Ceci facilite par exemple les opérations d'appairage spiral-balancier en même temps que de permettre une augmentation significative du rendement de ces opérations.Such a laser treatment would make it possible to modify the effective CTE β eff of the hairspring 1, to modify the effective coefficient of thermal expansion α eff and/or to adjust the value of the effective Young's modulus E eff of said spring 1. Combined with the possibility of working on a "case by case" basis, the fine adjustment of the effective Young's modulus E eff of the spring 1 makes it possible to adjust its stiffness (and therefore the frequency of the resonator) without needing to modify either the height or the thickness of the vibrating body (1). This facilitates, for example, hairspring-balance pairing operations at the same time as allowing a significant increase in the output of these operations.

La figure 7 montre une vue de dessus d'un ressort-spiral 1 . Le ressort-spiral 1 comprend une courbe terminale intérieure 4 et une courbe terminale extérieure 5. Un détail d'une section 6 du ressort-spiral 1 est montré à la figure 8. Dans la section 6, la portion modifiée 3 comprend une portion 3' s'étendant dans la direction longitudinale du ressort-spiral 1 de manière continue et de manière discontinue.The figure 7 shows a top view of a spiral spring 1 . The spiral spring 1 comprises an inner terminal curve 4 and an outer terminal curve 5. A detail of a section 6 of the spiral spring 1 is shown in figure 8 . In section 6, the modified portion 3 comprises a portion 3' extending in the longitudinal direction of the hairspring 1 continuously and discontinuously.

La modification du module de Young effectif Eeff dans une portion spécifique du ressort-spiral 1, comme par exemple dans la courbe terminale du spiral, permet d'optimiser la concentricité de son déploiement par rapport à l'axe du balancier. Il est également possible de compenser des effets de d'affaissement dus à la gravité ou encore autres défauts d'isochronisme.The modification of the effective Young's modulus E eff in a specific portion of the balance-spring 1, such as for example in the terminal curve of the balance-spring, makes it possible to optimize the concentricity of its deployment with respect to the axis of the balance wheel. It is also possible to compensate for subsidence effects due to gravity or other isochronism defects.

La structure d'un matériau solide présentant le phénomène de transition vitreuse (autrement dit, son volume spécifique ou sa densité) peut être figée en fonction du cycle thermique (rampe d'échauffement-refroidissement) auquel il est soumis. Il est donc possible, en fonction du cycle thermique, de figer la structure d'un matériau présentant le phénomène de transition vitreuse, soit dans un état vitreux particulier ou même dans un état cristallin. Dans le cas particulier d'un verre il est possible de figer sa structure en le faisant subir un cycle thermique qui ne comporte pas de passage dans l'état liquide du matériau. Cela dit, en restant dans la zone vitreuse solide du matériau, il est possible de changer sa structure en le soumettant à un cycle thermique particulier.The structure of a solid material exhibiting the glass transition phenomenon (in other words, its specific volume or its density) can be fixed according to the thermal cycle (heating-cooling ramp) to which it is subjected. It is therefore possible, depending on the thermal cycle, to freeze the structure of a material exhibiting the glass transition phenomenon, either in a particular vitreous state or even in a crystalline state. In the particular case of a glass, it is possible to freeze its structure by subjecting it to a thermal cycle which does not include passing through the liquid state of the material. That said, by remaining in the solid vitreous zone of the material, it is possible to change its structure by subjecting it to a particular thermal cycle.

Les verres à base de silice se densifient suite à un incrément de leur température fictive. La température fictive d'un verre est la température à laquelle sa structure (arrangement atomique) est figée. La température fictive dépend de la vitesse de refroidissement lors d'un cycle thermique. Pour un verre ordinaire, plus élevée est sa température fictive (plus rapidement il est refroidi), plus grand sera son volume spécifique. Dans le cas particulier de la silice, une tendance opposée est observée. En effet, à plus grande température fictive on trouvera des volumes spécifiques plus petits.Silica-based glasses become denser following an increase in their fictitious temperature. The fictitious temperature of a glass is the temperature at which its structure (atomic arrangement) is fixed. The fictitious temperature depends on the rate of cooling during a thermal cycle. For an ordinary glass, the higher is its fictitious temperature (the faster it is cooled), the greater its specific volume. In the particular case of silica, an opposite trend is observed. Indeed, at higher fictitious temperature one will find smaller specific volumes.

La modification locale du matériau vitreux par un traitement laser focalisé en utilisant des durées d'impulsions laser ultracourtes permet d'obtenir une portion modifiée grâce à des phénomènes de nature thermique comme ceux décrits ci-dessus. Les phénomènes de nature thermique menant à un changement local de la structure du matériau vitreux peuvent être modulables, notamment en jouant avec le taux de répétition du laser.The local modification of the vitreous material by a focused laser treatment using ultrashort laser pulse durations makes it possible to obtain a modified portion thanks to phenomena of a thermal nature such as those described above. The phenomena of a thermal nature leading to a local change in the structure of the vitreous material can be modulated, in particular by playing with the repetition rate of the laser.

Il est également connu que l'absorption multiphotonique dans le matériau vitreux peut mener à des phénomènes de nature plus complexe que les phénomènes de nature thermique, par exemple la photoionisation et même la création de nano espaces vides. En effet des modifications locales de la densité d'une matrice vitreuse à base de silice issues de l'interaction avec un laser à durée d'impulsion ultracourte ont été rapportés et ceci sans pour autant que ces phénomènes non linéaires soient totalement compris.It is also known that multiphoton absorption in the vitreous material can lead to phenomena of a more complex nature than phenomena of a thermal nature, for example photoionization and even the creation of nano empty spaces. Indeed local modifications of the density of a vitreous matrix based on silica resulting from the interaction with a laser with ultrashort pulse duration have been reported and this without these nonlinear phenomena being completely understood.

Dans un mode de réalisation, la portion modifiée 3 a une densité qui diffère de la densité du matériau vitreux. La densité différente de la portion modifiée 3 peut comprendre la création d'un polymorphe cristallin d'une silice amorphe (comme par exemple le alpha ou le beta quartz, la stishovite, la tridymite, la calcédoine ou encore la cristobalite), ou la formation de clusters métalliques selon la présence ou pas d'impuretés ou la formation d'une région densifiée suite à un incrément local de la température fictive de la silice, ou encore la formation de zones structurellement modifiés due à n'importe quel mécanisme d'absorption non linaire.In one embodiment, the modified portion 3 has a density which differs from the density of the vitreous material. The different density of the modified portion 3 can comprise the creation of a crystalline polymorph of an amorphous silica (such as for example alpha or beta quartz, stishovite, tridymite, chalcedony or even cristobalite), or the formation of metallic clusters according to the presence or absence of impurities or the formation of a densified region following a local increment of the fictitious temperature of the silica, or the formation of structurally modified zones due to any absorption mechanism nonlinear.

De manière avantageuse, le laser est focalisé à l'échelle nano ou micrométrique. Un tel laser permet la génération de la portion modifiée dont le CTE du module d'élasticité et la raideur peuvent être modifiés, et ceci dans des proportions qui ne sont pas nécessairement constantes ou linéaires.Advantageously, the laser is focused at the nano or micrometric scale. Such a laser allows the generation of the modified portion whose CTE of the modulus of elasticity and the stiffness can be modified, and this in proportions which are not necessarily constant or linear.

La formation de la portion modifiée ayant un second CTE β2 différent du premier CTE β1 permet d'ajuster, au cas par cas, la valeur du CTE effectif βeff du résonateur.The formation of the modified portion having a second CTE β 2 different from the first CTE β 1 makes it possible to adjust, case by case, the value of the effective CTE β eff of the resonator.

La méthode de l'invention offre l'avantage de pouvoir régler de manière précise et individuelle les propriétés thermomécaniques de chaque résonateur dans le but d'un réglage fin du comportement en température de l'oscillateur.The method of the invention offers the advantage of being able to precisely and individually adjust the thermomechanical properties of each resonator with the aim of fine-tuning the temperature behavior of the oscillator.

La figure 9 montre un wafer 7 en matériau vitreux dans lequel est fabriquée une pluralité de ressorts-spiraux 1. La figure 10 montre une vue en coupe du wafer de la figure 9 pendant l'étape de modification locale permettant de former la portion modifiée 3, par exemple, par irradiation avec un laser focalisé 8. Comme suggéré dans la figure 10, le faisceau laser 8 peut se déplacer, par exemple en x, y, z, de manière à réaliser la modification locale selon une forme plus ou moins complexe, ici une forme "annulaire" dans la masse du corps du ressort-spiral 1. Dans la figure 10 les parties indiquées par le chiffre "9" correspondent au matériau vitreux qui est usiné dans l'étape d'usinage. La figure 11 illustre la vue en coupe de la figure 9 après l'étape d'usinage pendant laquelle les parties 9 ont été éliminées par l'usinage libérant les ressorts-spiraux 1 comportant la portion modifiée 3.The figure 9 shows a wafer 7 of vitreous material in which a plurality of spiral springs 1 are made. figure 10 shows a sectional view of the wafer of the figure 9 during the local modification step making it possible to form the modified portion 3, for example, by irradiation with a focused laser 8. As suggested in the figure 10 , the laser beam 8 can move, for example in x, y, z, so as to carry out the local modification according to a more or less complex shape, here an "annular" shape in the mass of the body of the hairspring 1. In the figure 10 the parts indicated by the number "9" correspond to the vitreous material which is machined in the machining step. The figure 11 illustrates the sectional view of the figure 9 after the machining step during which the parts 9 have been eliminated by the machining releasing the spiral springs 1 comprising the modified portion 3.

La figure 9 montre également des parties 7a, 7b, 7c du wafer 7 pour lesquelles les ressorts-spiraux 1 ont subi un traitement d'irradiation différent selon la partie 7a, 7b, 7c du wafer dans laquelle se trouvent les ressorts-spiraux 1. Par conséquent, les ressorts-spiraux 1 dans l'une des différentes parties 7a, 7b, 7c pourront avoir une portion modifiée 3 dont les propriétés physiques diffèrent de celles de la portion modifiée 3 des ressorts-spiraux 1 dans les autres parties 7a, 7b, 7c du wafer 7.The figure 9 also shows parts 7a, 7b, 7c of the wafer 7 for which the hairsprings 1 have undergone a different irradiation treatment depending on the part 7a, 7b, 7c of the wafer in which the hairsprings 1 are located. Consequently, the spiral springs 1 in one of the different parts 7a, 7b, 7c may have a modified portion 3 whose physical properties differ from those of the modified portion 3 of the spiral springs 1 in the other parts 7a, 7b, 7c of the wafer 7.

L'étape de modifier localement le matériau vitreux peut donc être réalisée localement non seulement à l'échelle du corps utilisé en déformation (ressort- spiral) 1 mais également à l'échelle du wafer 7.The step of locally modifying the vitreous material can therefore be carried out locally not only on the scale of the body used in deformation (spring-spiral) 1 but also on the scale of the wafer 7.

La méthode a également l'avantage d'être applicable à une vaste catégorie de verres notamment à ceux dits «non photostructurables». Par conséquent, le processus de transformation du matériau vitreux a lieu de manière directe sans besoin d'étapes supplémentaires comme les traitements thermiques requis dans le cas des verres dits «photostructurables». De plus l'utilisation de mécanismes d'absorption multiphotoniques permet d'utiliser une gamme étendue de longueurs d'ondes allant de l'infrarouge à l'ultraviolette. Egalement, une telle méthode permet de modifier localement les propriétés thermoélastiques du matériau vitreux sans aucune restriction quant à la localisation de la portion modifiée dans le volume du matériau vitreux.The method also has the advantage of being applicable to a vast category of glasses, in particular those said to be “non-photostructurable”. Consequently, the process of transformation of the vitreous material takes place directly without the need for additional steps such as the heat treatments required in the case of so-called “photostructurable” glasses. In addition, the use of multiphoton absorption mechanisms makes it possible to use a wide range of wavelengths ranging from infrared to ultraviolet. Also, such a method makes it possible to locally modify the thermoelastic properties of the vitreous material without any restriction as to the location of the modified portion in the volume of the vitreous material.

Le matériau est localement modifié ( en utilisant un laser, préférablement de type femtosecondes) de manière à produire une portion modifiée 3 ayant un second module de Young E2 qui diffère d'un premier module de Young E1 de la portion non modifiée du matériau. De la sorte, il est possible d'ajuster une valeur du module de Young effectif Eeff du ressort-spiral 1, définie par la combinaison du premier et du second module de Young E1, E2.The material is locally modified (using a laser, preferably of the femtosecond type) so as to produce a modified portion 3 having a second Young's modulus E 2 which differs from a first Young's modulus E 1 of the unmodified portion of the material . In this way, it is possible to adjust a value of the effective Young's modulus E eff of the hairspring 1, defined by the combination of the first and second Young's modulus E 1 , E 2 .

La raideur du ressort-spiral 1 dépend de son module de Young (de sa rigidité) mais aussi du rapport de sa section à sa longueur. On peut cependant supposer que le rapport de la section à la longueur du ressort-spiral ne sera pas changé par la modification locale. Autrement dit, le matériau a une première raideur K1 et la portion modifiée a une seconde raideur K2 qui peut être différente de la première raideur K1. L'ajustement du module de Young effectif Eeff du ressort-spiral 1 permet donc d'ajuster une valeur de la raideur effective Keff du ressort-spiral 1, sans avoir besoin de modifier ni la hauteur ni l'épaisseur du ressort-spiral 1. La raideur effective Keff du ressort-spiral 1 est définie par la combinaison de la première et de la seconde raideur K1, K2.The stiffness of the hairspring 1 depends on its Young's modulus (its rigidity) but also on the ratio of its section to its length. It can however be assumed that the ratio of the section to the length of the hairspring will not be changed by the local modification. In other words, the material has a first stiffness K 1 and the modified portion has a second stiffness K 2 which may be different from the first stiffness K 1 . The adjustment of the effective Young's modulus E eff of the balance-spring 1 therefore makes it possible to adjust a value of the effective stiffness K eff of the balance-spring 1, without needing to modify either the height or the thickness of the balance-spring 1. The effective stiffness K eff of the hairspring 1 is defined by the combination of the first and the second stiffness K 1 , K 2 .

La modification locale de la raideur du ressort-spiral 1 peut être utilisée pour l'ajustement de la fréquence du ressort-spiral 1, par exemple avant son assemblage avec un balancier. Ceci facilite par exemple les opérations d'appairage spiral-balancier, voire d'appairage de l'organe réglant dans son ensemble par rapport au mouvement, en même temps que de permettre une augmentation significative du rendement de cette opération.The local modification of the stiffness of the hairspring 1 can be used to adjust the frequency of the hairspring 1, for example before it is assembled with a balance wheel. This facilitates, for example, balance-spring pairing operations, or even pairing of the regulating member as a whole with respect to the movement, at the same time as allowing a significant increase in the efficiency of this operation.

La modification locale du module de Young et de la raideur peut être appliquée à la courbe terminale extérieure 5 et/ou à la courbe terminale intérieure 4 du ressort-spiral 1, comme illustré à la figure 7. La portion modifiée 3 peut comprendre une portion 3' s'étendant dans la direction longitudinale du ressort-spiral 1 de manière continue et/ou de manière discontinue.The local modification of the Young's modulus and of the stiffness can be applied to the outer terminal curve 5 and/or to the curve inner terminal 4 of spiral spring 1, as shown in figure 7 . The modified portion 3 may comprise a portion 3' extending in the longitudinal direction of the hairspring 1 continuously and/or discontinuously.

La modification du module de Young effectif Eeff et/ou de la raideur effective Keff dans une portion spécifique du ressort-spiral 1, comme par exemple dans la courbe terminale du spiral, permet d'optimiser la concentricité de son déploiement par rapport à l'axe du balancier. Il est également possible de compenser des effets de d'affaissement dus à la gravité ou encore autres défauts d'isochronisme.The modification of the effective Young's modulus E eff and/or of the effective stiffness K eff in a specific portion of the hairspring 1, such as for example in the terminal curve of the hairspring, makes it possible to optimize the concentricity of its deployment with respect to the axis of the balance. It is also possible to compensate for subsidence effects due to gravity or other isochronism defects.

Encore selon un mode de réalisation, le matériau est localement modifié de manière à ajuster les contraintes internes dans la portion modifiée 3.Still according to one embodiment, the material is locally modified so as to adjust the internal stresses in the modified portion 3.

Dans le cas où la modification locale est réalisée à l'aide d'un traitement laser, préférablement à l'aide d'un laser utilisant des durées d'impulsions ultracourtes, c'est-à-dire des durées d'impulsions comprises entre quelques femtosecondes à quelques nanosecondes, et préférablement entre quelques femtosecondes à quelques picosecondes.In the case where the local modification is carried out using laser treatment, preferably using a laser using ultrashort pulse durations, that is to say pulse durations between a few femtoseconds to a few nanoseconds, and preferably between a few femtoseconds to a few picoseconds.

L'utilisation de tels lasers permet le contrôle précis de modifications très localisées du matériau par les procédés d'absorption nonlinéaires de l'énergie du laser. Les modifications ainsi induites dans la portion modifiée du matériau peuvent être de nature continue, formation de (nano) structures auto organisées, et/ou la formation de nano vides. Ces modifications peuvent induire différents types d'anisotropie dans la portion modifiée du matériau, qui peuvent avoir des effets importants sur les propriétés chimique, optiques, thermiques et/ou mécaniques. Notamment, le changement du volume de la matière résultant de l'exposition induit des contraintes autour des zones exposées par laser, et ainsi des modifications des contraintes internes, qui peuvent être des contraintes de compression ou de traction, dans la portion modifiée. La contrainte induite dépend principalement de deux paramètres : la polarisation et l'énergie par pulsation.The use of such lasers allows the precise control of very localized modifications of the material by the nonlinear methods of absorption of the energy of the laser. The modifications thus induced in the modified portion of the material can be of a continuous nature, formation of (nano) self-organized structures, and/or the formation of nanovoids. These modifications can induce different types of anisotropy in the modified portion of the material, which can have important effects on the chemical, optical, thermal and/or mechanical properties. In particular, the change in the volume of the material resulting from the exposure induces stresses around the zones exposed by laser, and thus modifications of the internal stresses, which can be compressive or tensile stresses, in the modified portion. The induced stress depends mainly on two parameters: the polarization and the energy per pulsation.

La modification locale peut être réalisée de manière à ne pas influencer sur la thermocompensation de la portion modifiée du matériau, ou du moins pas de manière linéaire. En effet, le module d'Young effectif et le CTE effectif peuvent être contrôlés par la quantité totale de zones modifiées tandis que les contraintes résiduelles peuvent être contrôlées par la localisation des zones affectées par rapport au composant réalisé.The local modification can be carried out in such a way as not to influence the thermocompensation of the modified portion of the material, or at least not in a linear manner. Indeed, the effective Young's modulus and the effective CTE can be controlled by the total quantity of modified zones while the residual stresses can be controlled by the location of the affected zones with respect to the component produced.

Numéros de référence employés sur les figuresReference numbers used in the figures

11
ressort-spiralspiral spring
22
matrice en matériau vitreuxglassy material matrix
33
portion modifiéemodified portion
44
courbe terminale intérieureinterior terminal curve
55
courbe terminale extérieureouter terminal curve
66
section du spiralhairspring section
77
waferwafer
7a7a
portion du waferportion of the wafer
88
irradiation laserlaser radiation
99
parties usinées du wafermachined parts of the wafer
α1α1
premier coefficient d'expansion thermiquefirst coefficient of thermal expansion
α2α2
second coefficient d'expansion thermiquesecond coefficient of thermal expansion
αeffαeff
coefficient d'expansion thermique effectifeffective coefficient of thermal expansion
β1β1
premier coefficient thermoélastiquefirst thermoelastic coefficient
β2β2
second coefficient thermoélastiquesecond thermoelastic coefficient
βeffβeff
coefficient thermoélastique effectifeffective thermoelastic coefficient
CTEETC
coefficient thermoélastiquethermoelastic coefficient
E1E1
premier module de YoungYoung's first modulus
E2E2
second module de Youngsecond Young's modulus
EeffEeff
module de Young effectifeffective Young's modulus
K1K1
première raideurfirst stiffness
K2K2
seconde raideursecond stiffness
KeffKeff
raideur effectiveeffective stiffness

Claims (12)

  1. Method of manufacturing a coil spring of a balance-spring assembly of a timepiece, the coil spring including a body used in deformation (1), the body (1) being made of a glassy material having a first thermoelastic coefficient CTE (β1) and a first stiffness (K1), the method comprising:
    • machining a piece of said glassy material to form the body used in deformation (1) of the coil spring; and
    • locally modifying said glassy material so as to form a modified portion (3) having a second CTE (β2) different from said first CTE (β1) so that the coil spring is thermocompensated;
    characterized in that said local modification is performed by laser irradiation using ultrashort pulses, and in that the modified portion (3) is distributed in the matrix of the glassy material and is modified so as to have a second stiffness (K2) which differs from the first stiffness (K1), and in that the modification of the second stiffness (K2) of the modified portion (3) allows the frequency of the coil spring (1) to be adjusted so as to match the coil spring (1) with the balance wheel.
  2. Method according to claim 1, wherein said local modification is performed in a direct manner, without the need for additional steps.
  3. Method according to claim 1 or 2, wherein the laser is a nanoscale or microscale focused laser.
  4. Method according to one of claims 1 to 3, wherein the laser uses ultrashort pulses comprised between a few femtoseconds and a few nanoseconds or between a few femtoseconds and a few picoseconds.
  5. Method according to one of claims 1 to 4, wherein the machining can be performed by a chemical etching process, by a physical etching process, or by a combination of both processes.
  6. Method according to one of claims 1 to 5, wherein the frequency of the coil spring (1) is adjusted prior to its assembly with a balance wheel.
  7. Method according to one of claims 1 to 6, wherein the frequency of the coil spring (1) is adjusted so as to match the regulating organ in the movement.
  8. Method according to one of claims 1 to 7, wherein the modified portion (3) comprises an amorphous silica which has been modified by creating a crystalline polymorph.
  9. Method of claim 8, wherein the crystalline polymorph comprises one of: alpha quartz, beta quartz, stishovite, tridymite, chalcedony or cristobalite.
  10. Method of one of claims 1 to 9, wherein said modified portion (3) has internal stresses that differ from those of the unmodified portion of said material.
  11. Method according to one of claims 1 to 10, wherein the modified portion (3) comprises a portion (3') extending in the longitudinal direction of the coil spring (1) continuously and/or discontinuously.
  12. Method according to one of claims 1 to 11, wherein said modified portion (3) is located in the outer end curve (5) and/or in the inner end curve (4) of the coil spring (1).
EP16728737.4A 2015-06-08 2016-06-08 Thermocompensated horology resonator and method for producing such a resonator Active EP3304216B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8162015 2015-06-08
PCT/IB2016/053369 WO2016199039A1 (en) 2015-06-08 2016-06-08 Temperature-compensated timepiece resonator and method for producing such a resonator

Publications (2)

Publication Number Publication Date
EP3304216A1 EP3304216A1 (en) 2018-04-11
EP3304216B1 true EP3304216B1 (en) 2022-04-27

Family

ID=53397746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16728737.4A Active EP3304216B1 (en) 2015-06-08 2016-06-08 Thermocompensated horology resonator and method for producing such a resonator

Country Status (2)

Country Link
EP (1) EP3304216B1 (en)
WO (1) WO2016199039A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781968A1 (en) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Resonator that is less sensitive to climate variations
EP3839644A1 (en) * 2019-12-20 2021-06-23 Nivarox-FAR S.A. Flexible timepiece component, in particular for oscillator mechanism, and clockwork comprising such a component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791039A1 (en) * 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Hairspring made from athermic glass for a timepiece movement and its method of manufacture
EP2597536A1 (en) * 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Improved spiral spring and method for manufacturing said spiral spring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117470A (en) 1992-10-07 1994-04-26 Yokogawa Electric Corp Spiral spring and electric indicating instrument
EP1422436B1 (en) 2002-11-25 2005-10-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production
EP2590325A1 (en) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Thermally compensated ceramic resonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791039A1 (en) * 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Hairspring made from athermic glass for a timepiece movement and its method of manufacture
EP2597536A1 (en) * 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Improved spiral spring and method for manufacturing said spiral spring

Also Published As

Publication number Publication date
WO2016199039A1 (en) 2016-12-15
EP3304216A1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
EP3181938B1 (en) Method for manufacturing a hairspring with a predetermined stiffness by removing material
EP1958031B1 (en) Hairspring made from athermic glass for a timepiece movement and its method of manufacture
EP2514094B1 (en) Resonator thermocompensated at least to the first and second orders
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP3181939B1 (en) Method for manufacturing a hairspring with predetermined stiffness by adding material
WO2015113973A1 (en) Thermally compensated hairspring made from ceramic comprising silicon in the composition of same and method for adjusting same
EP3759554B1 (en) Method for manufacturing a hairspring
EP0886195A1 (en) Auto-compensating spring for mechanical oscillatory spiral spring of clockwork movement and method of manufacturing the same
EP2774268A1 (en) Ceramic thermally-compensated resonator
CH707554A2 (en) Thermocompensated resonator for use in electronic quartz watch, has body whose portion is arranged with metal coating whose Young's modulus is changed based on temperature so as to enable resonator to have variable frequency
EP3304216B1 (en) Thermocompensated horology resonator and method for producing such a resonator
CH702151A1 (en) Pieces of method for producing micromechanical including glass ceramic.
EP2795411B1 (en) Method for manufacturing a resonator
EP3002638B1 (en) Method for manufacturing a thermocompensated hairspring
CH705945A2 (en) Method for manufacturing resonator e.g. hairspring resonator, for watch, involves modifying structure of zone of substrate to make zone more selective, and engraving zone to selectively manufacture resonator whose arm is formed with recess
EP3285124B1 (en) Mechanical resonator for timepiece and method for manufacturing such a resonator
EP3982205A1 (en) Method for manufacturing a timepiece spring with precise stiffness
EP4030241A1 (en) Method for manufacturing timepiece hairsprings
EP4212965A1 (en) Method for limiting the deformation of a silicon timepiece
CH719361A2 (en) Process for limiting the deformation of a silicon timepiece during thermal oxidation.
EP4111264A1 (en) Silicon timepiece component for a timepiece
CH718081A2 (en) ELASTIC ELEMENT FOR A MICROMECHANICAL SYSTEM.
CH712824B1 (en) Component for a mechanical watch movement as well as a method of manufacturing such a component.
CH705725A2 (en) Thermo-compensated ceramic resonator i.e. microelectromechanical system resonator, for use in timepiece, has body whose portion comprises electrically-conductive coatings, which change in Young's modulus as function of temperature
CH711960B1 (en) A method of manufacturing a hairspring of predetermined stiffness with removal of material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016071481

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1487411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016071481

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220608

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220608

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220727

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160608