EP3002638B1 - Method for manufacturing a thermocompensated hairspring - Google Patents

Method for manufacturing a thermocompensated hairspring Download PDF

Info

Publication number
EP3002638B1
EP3002638B1 EP15183042.9A EP15183042A EP3002638B1 EP 3002638 B1 EP3002638 B1 EP 3002638B1 EP 15183042 A EP15183042 A EP 15183042A EP 3002638 B1 EP3002638 B1 EP 3002638B1
Authority
EP
European Patent Office
Prior art keywords
coating
deposition
process according
temperature
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15183042.9A
Other languages
German (de)
French (fr)
Other versions
EP3002638A3 (en
EP3002638A2 (en
Inventor
Jean-Charles Fiaccabrino
Gideon Levingston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Carbontime Ltd
Original Assignee
Richemont International SA
Carbontime Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA, Carbontime Ltd filed Critical Richemont International SA
Publication of EP3002638A2 publication Critical patent/EP3002638A2/en
Publication of EP3002638A3 publication Critical patent/EP3002638A3/en
Application granted granted Critical
Publication of EP3002638B1 publication Critical patent/EP3002638B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring

Definitions

  • the present invention relates to a method of manufacturing a thermocompensated mechanical oscillator of a clockwork movement, of a MEMS sensor or of another precision instrument, such as in particular a thermocompensated spiral spring which is intended to equip a resonator. mechanical sprung balance.
  • the present invention also relates to an oscillator obtained by the method.
  • a mechanical balance-spring oscillator or resonator of a mechanical watch is conventionally composed of a flywheel, called a balance, and a spiral spring, called a spiral or spiral spring, fixed by one end to the axis of the balance. and by the other end on a bridge, called cock, in which the axis of the balance pivots.
  • the spiral spring equipping, to date, mechanical watch movements is an elastic metal blade of rectangular section wound on itself in an Archimedean spiral and comprising 12 to 15 turns.
  • the sprung balance oscillates around its equilibrium position (or neutral). When the balance leaves this position, it arms the hairspring. This creates a return torque which, when the balance is released, causes it to return to its equilibrium position. As it has acquired a certain speed, therefore kinetic energy, it goes beyond its neutral point until the opposite torque of the hairspring stops it and forces it to turn in the other direction. Thus, the hairspring regulates the period of oscillation of the balance.
  • the precision of mechanical watches depends on the stability of the natural frequency of the oscillator formed by the sprung balance.
  • the thermal expansions of the hairspring and the balance, as well as the variation of the Young's modulus of the hairspring modify the natural frequency of this oscillating assembly, disturbing the precision of the watch.
  • the thermal compensation of the mechanical oscillator is obtained by adjusting the CTE of the hairspring as a function of the coefficients thermal expansion of the balance spring and balance.
  • a spiral-shaped spring is made of monocrystalline silicon. It is dimensioned so as to have a constant return torque, to provide a high precision electrical measuring device.
  • this document is silent as to the thermal stability of the constant of the return torque of this spring. It cannot therefore be used directly as a spiral spring in a timepiece.
  • a spiral spring is made of monocrystalline silicon coated with silicon dioxide so as to obtain good stability of the shape of the balance spring with temperature variations.
  • the thermal stability of the constant of the return torque of this spring is also not mentioned in this document.
  • the CTE of silicon is strongly influenced by temperature and compensation for this effect is necessary for its use in horological applications. Indeed, the CTE of silicon is of the order of -60 x 10 -6 / ° C and the thermal drift of a silicon spiral spring is thus about 155 seconds / day, for a temperature variation of 23 ° C +/- 15 ° C. This makes it incompatible with watchmaking requirements which are of the order of 8 seconds / day.
  • the document EP1422436 describes a spiral spring cut from a ⁇ 001 ⁇ monocrystalline silicon wafer.
  • the hairspring comprises a layer of SiO 2 , exhibiting a CTE opposite to that of silicon and formed around the outer surface of the hairspring, in order to minimize the thermal drift of the balance-spring assembly.
  • thermocompensated resonator comprising a body formed by ceramic where at least part of the body comprises at least one coating whose variations in Young's modulus as a function of temperature (CTE) are of opposite sign to those (CTE) of material used for the core in order to allow said resonator to have a frequency variation as a function of the temperature at least at the first order substantially zero.
  • ceramics can include both positive and negative first order and second order thermoelastic coefficients
  • the coating (s) used can incidentally include both negative and positive first order and second order thermoelastic coefficients.
  • Germanium oxide (GeO 2 ) or tantalum oxide (Ta 2 O 5 ) and / or oxides of zirconium or hafnium can be used as coatings.
  • the coatings also form a moisture barrier, and a primer layer may be deposited between the core and the coating.
  • thermocompensated resonator comprising a body formed from a cutting plate in a quartz crystal and comprising a coating, for example of oxide of germanium or tantalum oxide, deposited at least partially against the core.
  • the document CH699780 discloses research towards optimal coating materials and dopants to effect better compensation by adjusting the value of the thermoelastic coefficient of the coating to compensate for the change in the thermoelastic coefficient of the core with temperature.
  • the present invention relates to a method of manufacturing a mechanical oscillator as claimed in claim 1, such as a spiral spring, as claimed in claim 15, for equipping a mechanical sprung balance resonator of a timepiece movement. or other precision instrument.
  • the spiral spring comprises a core made of a material chosen from metals and their alloys, metalloids including silicon (amorphous, monocrystalline or polycrystalline), ceramics, carbon and its various allotropic forms, or composite materials having a first coefficient thermoelastic of a first sign.
  • the spring also comprises a peripheral coating of an oxide, preferably SiO 2 , having a second thermoelastic coefficient of a second sign opposite to the first sign of the first thermoelastic coefficient, the method comprising depositing the coating at a temperature below 500 ° C, and an annealing heat treatment of the coating at a temperature of at least 550 ° C.
  • an oxide preferably SiO 2
  • the heat treatment for annealing the coating may be preceded by a gradual increase in temperature.
  • the method can comprise the deposition of a tie layer of Al 2 O 3 between the core and the coating.
  • the tie layer can be deposited with a thickness of about 5 nm.
  • the method may include depositing an outer layer of Al 2 O 3 on the coating.
  • the outer layer can be deposited with a thickness of about 300 nm.
  • the outer layer can then control the frequency of the oscillator and / or protect the assembly formed by the core and the coating against humidity.
  • the present invention relates to a spiral spring obtained by the method as well as a mechanical sprung balance resonator comprising such a spiral spring.
  • the present invention also relates to other types of mechanical oscillators such as tuning forks and MEMS sensors.
  • the proposed solution makes it possible to manufacture a spiral spring whose core consists of a material whose control of the thermoelastic behavior, in particular the abnormal change in the value of the Young's modulus, is not or cannot be obtained for various reasons by the growth of a thermal oxide on its surface, but instead involves the deposition of an oxide on the surface of the core by a deposition process. This is the case, for example, where an SiO 2 coating is formed on a core not comprising silicon.
  • the solution of the present invention is also applicable, for example, to an oscillator comprising a silicon core and a SiO 2 coating where the coating is formed by a deposition process proper and not by the growth of a thermal oxide. .
  • Obtaining a coated oscillator by such a process can be advantageous where it is desired to better control the dimensions and the frequency of the oscillator, because with a growth of a thermal oxide on the surface of a silicon core a portion of the core becomes oxidized during the oxidation step.
  • This solution is applicable to a set of materials compatible with the heat treatment processes used to stabilize the compensation, and is intended, inter alia, for functions exploiting the stability of mechanical properties, and in particular elastic properties, such as oscillators and resonators.
  • the figure 1 shows a top view of a spiral spring 1 and the figures 2a and 2b show a longitudinal and transverse sectional view of the spiral spring 1 according to the invention.
  • the spiral spring 1 comprises a core 2 formed from a material having a first thermoelastic coefficient ⁇ 1 of a first sign (typically negative or normal).
  • the spiral spring 1 also comprises a peripheral coating 4 of an oxide, preferably silicon dioxide (SiO 2 ), deposited and at least partially covering the outer surface of the core 2.
  • a tie layer 3 can also be deposited. between the core 2 and the coating 4.
  • the core has a helical shape and comprises at least one turn of rectangular section of thickness w and height h. It will be understood, however, that the geometry of the core may be other than that illustrated in this example, for example, the core may have a straight or circular section.
  • the core 2 can be made in monocrystalline silicon, with an orientation such as ⁇ 001 ⁇ , ⁇ 111 ⁇ or other, or it can be made in a polycrystalline or amorphous material (polycrystalline silicon; amorphous silicon, quartz glass, etc. silica glass).
  • the material of the core can also be a metallic material whose melting point remains compatible with the heat treatment step (described below) of the present invention.
  • the material of the core can comprise a ceramic material, in particular a silicon nitride, a silicon carbide, or a silicon oxynitride.
  • the core material may further comprise a composite material or a polymer or carbon material.
  • the core 2 can be a composite of carbon fibers, the list of materials mentioned here not being by any means exhaustive.
  • the core is made of a material whose coefficient thermoelastic is normal and the melting point is compatible with the heat treatments applied as indicated below.
  • the coating 4 is deposited using a low temperature deposition process, that is to say, at a temperature substantially lower than that used for the post treatment, in particular below 500 ° C.
  • the deposition of the coating 1 is carried out at a temperature below 300 ° C, even more preferred at a temperature below 200 ° C and according to a variant at a temperature of approximately 100 ° C.
  • the deposition temperature can vary, and in particular it can drop, during this deposition step.
  • the coating 4 can be deposited using a thin-film deposition process which may include, in a non-exhaustive manner, processes such as physical vapor deposition (PVD) or even a process of coating. chemical vapor deposition (CVD). Other thin film deposition methods can also be envisaged for the deposition of the coating 4 provided that the deposition temperature remains equal to or less than 500 ° C.
  • coating 4 can be deposited using a plasma assisted chemical vapor deposition (PECVD), high density plasma (HDPCVD), molecular vapor deposition (MVD) process. , deposition of atomic layers (Atomic Layer Deposition, or ALD), or deposits obtained using sol-gels.
  • the SiO 2 coating obtained from such a low-temperature deposition process is in principle structurally or chemically different from a SiO 2 coating obtained by thermal oxidation of silicon at substantially higher temperatures, for example, of around 1000 ° C.
  • SiO 2 coating 4 can also include a small percentage of hydrogen or other impurities. Under these conditions, the thermoelastic coefficient of SiO 2 is not necessarily (or is not sufficiently) abnormal to obtain the desired thermocompensation.
  • the method of manufacturing the spiral spring 1 comprises a heat treatment for annealing the coating 4, making it possible to make the thermoelastic coefficient sufficiently compensatory (or even sufficiently abnormal in the context of SiO 2 ) and to stabilize it.
  • the annealing heat treatment is carried out with an annealing temperature of at least 550 ° C, and preferably a temperature of between approximately 800 ° C and 1050 ° C.
  • the annealing temperature is either about 800 ° C or about 1050 ° C.
  • the annealing time is between 2 to 6 hours, and in one embodiment it is around four hours.
  • this annealing operation can take place in continuity with the operation of depositing the coating 4 or equally spaced at a time interval of several days.
  • the annealing heat treatment of the coating 4 makes it possible to modify the coating 4 so that the second thermoelastic coefficient ⁇ 2 of the coating 4 has a second sign opposite to the first sign of the first thermoelastic coefficient ⁇ 1 of the core 2 in order to adjust the second thermoelastic coefficient ⁇ 2 so that the latter compensates for the effect of the variation of the first thermoelastic coefficient ⁇ 1 of the core with temperature.
  • the annealing heat treatment can be carried out under an inert atmosphere, for example under a nitrogen atmosphere.
  • the annealing temperature can be reached by a gradual rise in temperature of the order of 10 ° C / min from a loading temperature, for example 200 ° C. After annealing, the temperature can be lowered to a speed of the order of 3 ° C / min, up to an unloading temperature, for example of about 200 ° C.
  • the annealing heat treatment makes it possible to modify the structure, in particular to densify the coating and to reduce the internal stresses of the coating 4.
  • the annealing heat treatment of the coating 4 deposited by the low-temperature deposition process can therefore modify the thermoelastic behavior of the coating. coating 4 and make it possible to obtain a compensation for the effect of the variation of the CTE of the core with the temperature.
  • the desired compensation effect is preferably obtained when the annealing temperature is between approximately 800 ° C and 1050 ° C. This effect is not as great as one moves away from these annealing temperatures and is generally not obtained below a temperature of 550 ° C.
  • the annealing heat treatment also makes it possible to stabilize the properties of the SiO 2 coating 4 obtained by the low temperature deposition process.
  • the oxide coating 4 can be deposited in the presence of a flux, including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature.
  • a flux including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature.
  • a flux including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature.
  • fluxes such as Al 2 O 3 or B 2 O 3 can increase the value of Young's modulus.
  • the thickness of the coating 4 can be adjusted so as to obtain a desired value of the thermoelastic coefficient of the spiral spring.
  • the thermoelastic coefficient of the spiral spring depends on the combination of the first thermoelastic coefficient ⁇ 1 of the material of the core 2 and of the second thermoelastic coefficient ⁇ 2 of the coating 4.
  • the thickness of the coating 4 is between 0.1 ⁇ m and 10 ⁇ m, and preferably between 1 ⁇ m and 5 ⁇ m. In one embodiment, the coating 4 is deposited with a thickness of approximately 2 ⁇ m.
  • the core 2 of the spiral spring 1 is a flexible structure subjected to mechanical stresses
  • a separation of the coating 4 deposited on the core 2 is possible. Detachment can be caused, for example, by delamination. Such separation is all the more possible when the mechanical properties, such as the coefficient of thermal expansion, the Young's modulus, of the material making up the core 2 from that of the coating 4 differ.
  • the internal stresses in the deposited coating 4 can be high.
  • the method of manufacturing the spiral spring 1 comprising the deposition of a tie layer 3 between the core 2 and the coating 4.
  • the tie layer 3 consists of a aluminum oxide (Al 2 O 3 ).
  • the tie layer 3 can be deposited using an ALD deposition process.
  • the ALD deposition process has very good microscopic distributing power.
  • the ALD deposition has the advantage of being able to deposit the aluminum oxide in a conforming manner to the surface of the core 2, including in the pores present on the surface of the core 2.
  • the quality of the l The anchoring of the tie layer 3 is all the better.
  • the deposition of the bonding layer 3 in Al 2 O 3 makes it possible to form strong bonds between the aluminum oxide and the functional groups active agents available at the surface of the core 2, in particular of the various forms of carboxyls and hydroxyls present on the surface of the core 2 (which depends on the material constituting the core).
  • the tie layer 3 is deposited with a thickness of about 5 nm.
  • a small thickness of the bonding layer 3 has the advantage of not significantly modifying the mechanical properties of the core 2, and in particular the frequency of the spiral balance oscillator.
  • a small thickness of the tie layer 3 also makes it possible to make the method of manufacturing the spiral spring 1 economically more interesting.
  • the method of manufacturing the spiral spring 1 comprises the deposition of an outer layer 5 of an aluminum oxide (Al 2 O 3 ) at least partially covering the outer surface of the coating 4.
  • the outer layer 5 is preferably deposited with a thickness of about 300 nm.
  • the step of depositing the outer layer 5 makes it possible to make the core 2 and coating 4 assembly less sensitive to the effects of humidity.
  • the mechanical properties of the SiO 2 coating 4 can be adversely affected in the presence of humidity.
  • the heat treatment step should preferably be carried out before the deposition of the outer layer 5.
  • a heat treatment at the end of the deposition of the layer 5 does not produce the desired effects.
  • Table A shows the variation values of the CTE with temperature and relative humidity, for a spiral spring comprising the bonding layer 3 of Al 2 O 3 deposited by ALD the coating 4 of SiO 2 deposited by PECVD and the outer layer 5 of Al 2 O 3 filed by ALD. (columns 3 to 5).
  • the variation of CTE with temperature and relative humidity is minimal.
  • a notable increase in the variation of the CTE is however observed when the annealing is carried out after the step of depositing the outer layer 5.

Description

Domaine techniqueTechnical area

La présente invention concerne un procédé de fabrication d'un oscillateur mécanique thermocompensé d'un mouvement d'horlogerie, d'un senseur MEMS ou d'un autre instrument de précision, tel que notamment un ressort spiral thermocompensé qui est destiné à équiper un résonateur mécanique balancier-spiral. La présente invention concerne également un oscillateur obtenu par le procédé.The present invention relates to a method of manufacturing a thermocompensated mechanical oscillator of a clockwork movement, of a MEMS sensor or of another precision instrument, such as in particular a thermocompensated spiral spring which is intended to equip a resonator. mechanical sprung balance. The present invention also relates to an oscillator obtained by the method.

Etat de la techniqueState of the art

Un oscillateur ou résonateur mécanique balancier-spiral d'une montre mécanique est conventionnellement composé d'un volant d'inertie, appelé balancier et d'un ressort en spirale, appelé spiral ou ressort spiral, fixé par une extrémité sur l'axe du balancier et par l'autre extrémité sur un pont, appelé coq, dans lequel pivote l'axe du balancier. Plus précisément, le ressort spiral équipant, à ce jour, les mouvements de montres mécaniques est une lame métallique élastique de section rectangulaire enroulée sur elle-même en spirale d'Archimède et comportant de 12 à 15 tours.A mechanical balance-spring oscillator or resonator of a mechanical watch is conventionally composed of a flywheel, called a balance, and a spiral spring, called a spiral or spiral spring, fixed by one end to the axis of the balance. and by the other end on a bridge, called cock, in which the axis of the balance pivots. More precisely, the spiral spring equipping, to date, mechanical watch movements is an elastic metal blade of rectangular section wound on itself in an Archimedean spiral and comprising 12 to 15 turns.

Le balancier-spiral oscille autour de sa position d'équilibre (ou point mort). Lorsque le balancier quitte cette position, il arme le spiral. Cela crée un couple de rappel qui, lorsque le balancier est libéré, le fait revenir à sa position d'équilibre. Comme il a acquis une certaine vitesse, donc une énergie cinétique, il dépasse son point mort jusqu'à ce que le couple contraire du spiral l'arrête et l'oblige à tourner dans l'autre sens. Ainsi, le spiral régule la période d'oscillation du balancier.The sprung balance oscillates around its equilibrium position (or neutral). When the balance leaves this position, it arms the hairspring. This creates a return torque which, when the balance is released, causes it to return to its equilibrium position. As it has acquired a certain speed, therefore kinetic energy, it goes beyond its neutral point until the opposite torque of the hairspring stops it and forces it to turn in the other direction. Thus, the hairspring regulates the period of oscillation of the balance.

La précision des montres mécaniques dépend de la stabilité de la fréquence propre de l'oscillateur formé du balancier-spiral. Lorsque la température varie, les dilatations thermiques du spiral et du balancier, ainsi que la variation du module de Young du spiral, modifient la fréquence propre de cet ensemble oscillant, perturbant la précision de la montre.The precision of mechanical watches depends on the stability of the natural frequency of the oscillator formed by the sprung balance. When the temperature varies, the thermal expansions of the hairspring and the balance, as well as the variation of the Young's modulus of the hairspring, modify the natural frequency of this oscillating assembly, disturbing the precision of the watch.

La plupart des méthodes proposées pour compenser ces variations de fréquence sont basées sur la considération que cette fréquence propre dépend exclusivement du rapport entre la constante du couple de rappel exercé par le spiral sur le balancier et le moment d'inertie de ce dernier, comme indiqué dans la relation suivante: F = 1 / 2 π C / I 0.5

Figure imgb0001
où F est la fréquence propre de l'oscillateur, C est la constante du couple de rappel exercé par le spiral de l'oscillateur, et I est le moment d'inertie du balancier de l'oscillateur.Most of the methods proposed to compensate for these variations in frequency are based on the consideration that this natural frequency depends exclusively on the ratio between the constant of the return torque exerted by the hairspring on the balance and the moment of inertia of the latter, as indicated. in the following relation: F = 1 / 2 π VS / I 0.5
Figure imgb0001
where F is the natural frequency of the oscillator, C is the constant of the return torque exerted by the balance spring of the oscillator, and I is the moment of inertia of the balance of the oscillator.

Par exemple, depuis la découverte des alliages à base de Fe-Ni possédant un coefficient thermique du module de Young (ci-après CTE) positif, la compensation thermique de l'oscillateur mécanique est obtenue en ajustant le CTE du spiral en fonction des coefficients de dilatation thermique du spiral et du balancier. En effet, en exprimant le couple et l'inertie à partir des caractéristiques du spiral et du balancier, puis en dérivant l'équation (1) par rapport à la température, on obtient la variation thermique de la fréquence propre : 1 / F dF / dT = ½ 1 / E dE / dT + 3 c s 2 c b

Figure imgb0002
où l'expression "1/E dE/dT" correspond au coefficient thermique du module de Young du spiral (CTE), cs est le coefficient de dilatation thermique du spiral, et cb est le coefficient de dilatation thermique du balancier.For example, since the discovery of Fe-Ni-based alloys having a positive thermal coefficient of Young's modulus (hereinafter CTE), the thermal compensation of the mechanical oscillator is obtained by adjusting the CTE of the hairspring as a function of the coefficients thermal expansion of the balance spring and balance. Indeed, by expressing the torque and inertia from the characteristics of the hairspring and the balance, then by deriving equation (1) with respect to the temperature, we obtain the thermal variation of the natural frequency: 1 / F dF / dT = ½ 1 / E of / dT + 3 vs s - 2 vs b
Figure imgb0002
where the expression "1 / E dE / dT" corresponds to the thermal coefficient of the Young's modulus of the hairspring (CTE), c s is the coefficient of thermal expansion of the hairspring, and c b is the coefficient of thermal expansion of the balance.

En ajustant le terme d'autocompensation A = ½ (CTE + 3cs) à la valeur du coefficient de dilatation thermique du balancier cb, il est possible d'annuler l'équation (2). Ainsi, la variation thermique de la fréquence propre de l'oscillateur mécanique peut être éliminée.By adjusting the self-compensation term A = ½ (CTE + 3c s ) to the value of the thermal expansion coefficient of the balance c b , it is possible cancel equation (2). Thus, the thermal variation of the natural frequency of the mechanical oscillator can be eliminated.

Actuellement, on utilise des alliages complexes, tant par le nombre des composants que par les procédés métallurgiques utilisés dans le but d'obtenir une autocompensation des variations du module d'élasticité du métal en combinant deux influences contraires: celle de la température et celle de la magnétoconstriction (contraction des corps magnétiques sous l'effet de l'aimantation).Currently, complex alloys are used, both by the number of components and by the metallurgical processes used in order to obtain self-compensation for variations in the modulus of elasticity of the metal by combining two contrary influences: that of temperature and that of magnetoconstriction (contraction of magnetic bodies under the effect of magnetization).

Cependant, les spiraux composés de ces alliages sont difficiles à fabriquer. Tout d'abord, en raison de la complexité des procédés utilisés pour réaliser les alliages, les propriétés mécaniques intrinsèques du métal ne sont pas constantes d'une production à l'autre. Ensuite, le réglage de l'organe régulateur, qui est la technique permettant de faire en sorte que la montre indique en tout temps l'heure la plus juste, est fastidieux et long. Cette opération nécessite de nombreuses interventions manuelles et beaucoup de pièces défectueuses doivent être éliminées. Pour ces raisons, la production est coûteuse et le maintien d'une qualité constante est un défi permanent.However, balance springs made from these alloys are difficult to manufacture. First of all, due to the complexity of the processes used to make the alloys, the intrinsic mechanical properties of the metal are not constant from one production to another. Then, the adjustment of the regulator, which is the technique allowing the watch to indicate the most accurate time at all times, is tedious and long. This operation requires many manual interventions and many defective parts must be eliminated. For these reasons, production is expensive and maintaining consistent quality is an ongoing challenge.

Dans le document JP6117470 , un ressort en forme de spiral est réalisé en silicium monocristallin. Il est dimensionné de manière à avoir un couple de rappel constant, pour fournir un appareil de mesure électrique de grande précision. Toutefois, ce document est muet quant à la stabilité thermique de la constante du couple de rappel de ce ressort. Il ne peut donc être utilisé directement comme ressort spiral dans une pièce d'horlogerie.In the document JP6117470 , a spiral-shaped spring is made of monocrystalline silicon. It is dimensioned so as to have a constant return torque, to provide a high precision electrical measuring device. However, this document is silent as to the thermal stability of the constant of the return torque of this spring. It cannot therefore be used directly as a spiral spring in a timepiece.

Dans le document DE10127733 , un ressort spiral est fabriqué en silicium monocristallin revêtu de dioxyde de silicium de sorte à obtenir une bonne stabilité de la forme du spiral avec des variations de température. La stabilité thermique de la constante du couple de rappel de ce ressort n'est non plus pas mentionnée dans ce document.In the document DE10127733 , a spiral spring is made of monocrystalline silicon coated with silicon dioxide so as to obtain good stability of the shape of the balance spring with temperature variations. The thermal stability of the constant of the return torque of this spring is also not mentioned in this document.

Le CTE du silicium est fortement influencé par la température et une compensation de cet effet est nécessaire pour son utilisation dans des applications horlogères. En effet, le CTE du silicium est de l'ordre de -60 x 10-6/°C et la dérive thermique d'un ressort spiral en silicium est ainsi d'environ 155 secondes/jour, pour une variation de température de 23°C +/-15°C. Cela le rend incompatible avec les exigences horlogères qui sont de l'ordre de 8 secondes/jour.The CTE of silicon is strongly influenced by temperature and compensation for this effect is necessary for its use in horological applications. Indeed, the CTE of silicon is of the order of -60 x 10 -6 / ° C and the thermal drift of a silicon spiral spring is thus about 155 seconds / day, for a temperature variation of 23 ° C +/- 15 ° C. This makes it incompatible with watchmaking requirements which are of the order of 8 seconds / day.

Le document EP1422436 décrit un ressort spiral découpé dans une plaque {001} de silicium monocristallin. Le spiral comporte une couche de SiO2, présentant un CTE opposé à celui du silicium et formée autour de la surface extérieure du spiral, afin de minimiser la dérive thermique de l'ensemble balancier-spiral.The document EP1422436 describes a spiral spring cut from a {001} monocrystalline silicon wafer. The hairspring comprises a layer of SiO 2 , exhibiting a CTE opposite to that of silicon and formed around the outer surface of the hairspring, in order to minimize the thermal drift of the balance-spring assembly.

Le document WO2013064351 décrit un résonateur thermocompensé comportant un corps formé par de la céramique où au moins une partie du corps comporte au moins un revêtement dont les variations du module d'Young en fonction de la température (CTE) sont de signe opposé à celles (CTE) du matériau utilisé pour l'âme afin de permettre audit résonateur d'avoir une variation de fréquence en fonction de la température au moins au premier ordre sensiblement nulle. Selon ce document, les céramiques peuvent comporter aussi bien des coefficients thermoélastiques positifs que négatifs au premier ordre et au deuxième ordre, et le ou les revêtements utilisés peuvent incidemment comporter aussi bien des coefficients thermoélastiques négatifs que positifs au premier ordre et au deuxième ordre. L'oxyde de germanium (GeO2) ou l'oxyde de tantale (Ta2O5) et/ou des oxydes de zirconium ou d'hafnium sont utilisables comme revêtements. De préférence, les revêtements forment également une barrière contre l'humidité, et une couche d'accrochage peut être déposée entre l'âme et le revêtement.The document WO2013064351 describes a thermocompensated resonator comprising a body formed by ceramic where at least part of the body comprises at least one coating whose variations in Young's modulus as a function of temperature (CTE) are of opposite sign to those (CTE) of material used for the core in order to allow said resonator to have a frequency variation as a function of the temperature at least at the first order substantially zero. According to this document, ceramics can include both positive and negative first order and second order thermoelastic coefficients, and the coating (s) used can incidentally include both negative and positive first order and second order thermoelastic coefficients. Germanium oxide (GeO 2 ) or tantalum oxide (Ta 2 O 5 ) and / or oxides of zirconium or hafnium can be used as coatings. Preferably, the coatings also form a moisture barrier, and a primer layer may be deposited between the core and the coating.

Le document EP2395662B1 décrit un résonateur thermocompensé comportant un corps formé à partir d'une plaque de coupe dans un cristal de quartz et comportant un revêtement, par exemple en oxyde de germanium ou en oxyde de tantale, déposé au moins partiellement contre l'âme.The document EP2395662B1 describes a thermocompensated resonator comprising a body formed from a cutting plate in a quartz crystal and comprising a coating, for example of oxide of germanium or tantalum oxide, deposited at least partially against the core.

Le document CH699780 divulgue la recherche vers des matériaux et des dopants optimales du revêtement pour effectuer une meilleure compensation en ajustant la valeur du coefficient thermoélastique du revêtement pour compenser la variation du coefficient thermoélastique de l'âme avec la température.The document CH699780 discloses research towards optimal coating materials and dopants to effect better compensation by adjusting the value of the thermoelastic coefficient of the coating to compensate for the change in the thermoelastic coefficient of the core with temperature.

Bref résumé de l'inventionBrief summary of the invention

La présente invention concerne un procédé de fabrication d'un oscillateur mécanique comme revendiqué dans la revendication 1, tel qu'un ressort spiral, comme revendiqué dans la revendication 15, destiné à équiper un résonateur mécanique balancier-spiral d'un mouvement d'horlogerie ou autre instrument de précision. Le ressort spiral comprend une âme fabriquée dans un matériau choisi parmi les métaux et leurs alliages, les métalloïdes dont le silicium (amorphe, monocristallin ou polycristallin), les céramiques, le carbone est ses différentes formes allotropiques, ou les matériaux composites ayant un premier coefficient thermoélastique d'un premier signe. Le ressort comprend également un revêtement périphérique en un oxyde, de préférence le SiO2, présentant un second coefficient thermoélastique d'un second signe opposé au premier signe du premier coefficient thermoélastique, le procédé comprenant la déposition du revêtement à une température inférieure à 500°C, et un traitement thermique de recuit du revêtement à une température d'au moins 550°C.The present invention relates to a method of manufacturing a mechanical oscillator as claimed in claim 1, such as a spiral spring, as claimed in claim 15, for equipping a mechanical sprung balance resonator of a timepiece movement. or other precision instrument. The spiral spring comprises a core made of a material chosen from metals and their alloys, metalloids including silicon (amorphous, monocrystalline or polycrystalline), ceramics, carbon and its various allotropic forms, or composite materials having a first coefficient thermoelastic of a first sign. The spring also comprises a peripheral coating of an oxide, preferably SiO 2 , having a second thermoelastic coefficient of a second sign opposite to the first sign of the first thermoelastic coefficient, the method comprising depositing the coating at a temperature below 500 ° C, and an annealing heat treatment of the coating at a temperature of at least 550 ° C.

Dans un mode de réalisation, le traitement thermique de recuit du revêtement peut être précédé d'un accroissement progressif de la température.In one embodiment, the heat treatment for annealing the coating may be preceded by a gradual increase in temperature.

Dans un autre mode de réalisation, le procédé peut comprendre la déposition d'une couche d'accrochage de Al2O3 entre l'âme et le revêtement. La couche d'accrochage peut être déposée avec une épaisseur d'environ 5 nm.In another embodiment, the method can comprise the deposition of a tie layer of Al 2 O 3 between the core and the coating. The tie layer can be deposited with a thickness of about 5 nm.

Encore dans un autre mode de réalisation, le procédé peut comprendre la déposition d'une couche externe de Al2O3 sur le revêtement. La couche externe peut être déposée avec une épaisseur d'environ 300 nm. La couche externe peut alors contrôler la fréquence de l'oscillateur et/ou protéger l'ensemble formé par l'âme et le revêtement contre l'humidité.In yet another embodiment, the method may include depositing an outer layer of Al 2 O 3 on the coating. The outer layer can be deposited with a thickness of about 300 nm. The outer layer can then control the frequency of the oscillator and / or protect the assembly formed by the core and the coating against humidity.

La présente invention concerne un ressort spiral obtenu par le procédé ainsi qu'un résonateur mécanique balancier-spiral comprenant un tel ressort spiral. La présente invention concerne également d'autres types d'oscillateurs mécaniques tels que des diapasons et senseurs MEMS.The present invention relates to a spiral spring obtained by the method as well as a mechanical sprung balance resonator comprising such a spiral spring. The present invention also relates to other types of mechanical oscillators such as tuning forks and MEMS sensors.

La solution proposée permet de fabriquer un ressort spiral dont l'âme est constituée d'un matériau dont la maitrise du comportement thermoélastique, en particulier l'évolution anormale de la valeur du module de Young, n'est pas ou ne peut être obtenue pour diverses raisons par la croissance d'un oxyde thermique à sa surface, mais à la place implique la déposition d'un oxyde sur la surface de l'âme par un procédé de déposition. Ceci est le cas, par exemple, où un revêtement SiO2 est formé sur une âme ne comportant pas le silicium. Cependant la solution de la présente invention est également applicable, par exemple, à un oscillateur comprenant une âme en silicium et un revêtement en SiO2 où le revêtement est formé par un procédé de déposition proprement dit et pas par la croissance d'un oxyde thermique. L'obtention d'un oscillateur revêtu par un tel procédé peut être avantageux où il est désiré de mieux contrôler les dimensions et la fréquence de l'oscillateur, car avec une croissance d'un oxyde thermique à la surface d'une âme en silicium une portion de l'âme devient oxydée durant l'étape d'oxydation. Cette solution est applicable à un ensemble de matériaux compatibles avec les procédés traitement thermiques utilisés pour stabiliser la compensation, et est destinées entre-autres à des fonctions exploitant la stabilité des propriétés mécaniques, et en particulier élastiques, comme les oscillateurs et résonateurs.The proposed solution makes it possible to manufacture a spiral spring whose core consists of a material whose control of the thermoelastic behavior, in particular the abnormal change in the value of the Young's modulus, is not or cannot be obtained for various reasons by the growth of a thermal oxide on its surface, but instead involves the deposition of an oxide on the surface of the core by a deposition process. This is the case, for example, where an SiO 2 coating is formed on a core not comprising silicon. However, the solution of the present invention is also applicable, for example, to an oscillator comprising a silicon core and a SiO 2 coating where the coating is formed by a deposition process proper and not by the growth of a thermal oxide. . Obtaining a coated oscillator by such a process can be advantageous where it is desired to better control the dimensions and the frequency of the oscillator, because with a growth of a thermal oxide on the surface of a silicon core a portion of the core becomes oxidized during the oxidation step. This solution is applicable to a set of materials compatible with the heat treatment processes used to stabilize the compensation, and is intended, inter alia, for functions exploiting the stability of mechanical properties, and in particular elastic properties, such as oscillators and resonators.

Brève description des figuresBrief description of the figures

Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • la figure 1 montre une vue du dessus d'un ressort spiral selon l'invention; et
  • les figures 2a et 2b montrent une vue en coupe transversale droite (figure 2a) et longitudinale (figure 2b) du ressort spiral comprenant une âme et un revêtement, selon un mode de réalisation.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • the figure 1 shows a top view of a spiral spring according to the invention; and
  • the figures 2a and 2b show a right cross-sectional view ( figure 2a ) and longitudinal ( figure 2b ) of the spiral spring comprising a core and a coating, according to one embodiment.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

La figure 1 montre une vue du dessus d'un ressort spiral 1 et les figures 2a et 2b montrent une vue en coupe longitudinale et transversale du ressort spiral 1 selon l'invention. Le ressort spiral 1 comprend une âme 2 formée dans un matériau présentant un premier coefficient thermoélastique β1 d'un premier signe (typiquement négatif ou normal). Le ressort spiral 1 comprend également un revêtement périphérique 4 d'un oxyde, préférablement de dioxyde de silicium (SiO2), déposé et couvrant au moins partiellement la surface extérieure de l'âme 2. Une couche d'accrochage 3 peut également être déposée entre l'âme 2 et le revêtement 4. Dans l'exemple des figures 1 et 2, l'âme a une forme hélicoïdale et comprend au moins une spire de section rectangulaire d'épaisseur w et de hauteur h. On comprendra cependant que la géométrie de l'âme peut être autre que celle illustrée dans cet exemple, par exemple, l'âme peut avoir une section droite ou circulaire.The figure 1 shows a top view of a spiral spring 1 and the figures 2a and 2b show a longitudinal and transverse sectional view of the spiral spring 1 according to the invention. The spiral spring 1 comprises a core 2 formed from a material having a first thermoelastic coefficient β 1 of a first sign (typically negative or normal). The spiral spring 1 also comprises a peripheral coating 4 of an oxide, preferably silicon dioxide (SiO 2 ), deposited and at least partially covering the outer surface of the core 2. A tie layer 3 can also be deposited. between the core 2 and the coating 4. In the example of figures 1 and 2 , the core has a helical shape and comprises at least one turn of rectangular section of thickness w and height h. It will be understood, however, that the geometry of the core may be other than that illustrated in this example, for example, the core may have a straight or circular section.

L'âme 2 peut être fabriquée dans le silicium monocristallin, avec une orientation telle que {001}, {111} ou autre, ou encore elle peut être fabriquée dans un matériau polycristallin ou amorphe (silicium polycristallin ; silicium amorphe, verre de quartz, verre de silice). Le matériau de l'âme peut également être un matériau métallique dont le point de fusion reste compatible avec l'étape de traitement thermique (décrite ci-dessous) de la présente invention. Par ailleurs, le matériau de l'âme peut comprendre un matériau céramique, notamment un nitrure de silicium, un carbure de silicium, ou un oxynitrure de silicium. Le matériau de l'âme peut en outre comprendre un matériau composite ou un matériau de polymère ou carbone. Par exemple, l'âme 2 peut être un composite de fibres de carbone, la liste des matériaux mentionnes ici n'étant absolument pas exhaustive. De préférence, l'âme est en un matériau dont le coefficient thermoélastique est normal et le point de fusion est compatible avec les traitements thermiques appliqués comme indiqués ci-dessous.The core 2 can be made in monocrystalline silicon, with an orientation such as {001}, {111} or other, or it can be made in a polycrystalline or amorphous material (polycrystalline silicon; amorphous silicon, quartz glass, etc. silica glass). The material of the core can also be a metallic material whose melting point remains compatible with the heat treatment step (described below) of the present invention. Furthermore, the material of the core can comprise a ceramic material, in particular a silicon nitride, a silicon carbide, or a silicon oxynitride. The core material may further comprise a composite material or a polymer or carbon material. For example, the core 2 can be a composite of carbon fibers, the list of materials mentioned here not being by any means exhaustive. Preferably, the core is made of a material whose coefficient thermoelastic is normal and the melting point is compatible with the heat treatments applied as indicated below.

Dans un mode de réalisation, un procédé de fabrication du ressort spiral 1 comprend les étapes de:

  • fournir l'âme 2 dans le matériau ayant le premier coefficient thermoélastique β1; et
  • déposer le revêtement oxyde 4 d'un second coefficient thermoélastique β2 au moins partiellement sur la surface extérieure de l'âme 2.
In one embodiment, a method of manufacturing the spiral spring 1 comprises the steps of:
  • providing the core 2 in the material having the first thermoelastic coefficient β 1 ; and
  • depositing the oxide coating 4 with a second thermoelastic coefficient β 2 at least partially on the outer surface of the core 2.

Le revêtement 4 est déposé à l'aide d'un procédé de déposition à basse température, c'est-à-dire, à une température sensiblement inférieure à celle utilisée pour le post traitement, notamment en dessous de 500°C. De façon préférée, la déposition du revêtement 1 est réalisée à une température inférieure à 300°C, encore plus privilégiée à une température inférieure à 200°C et selon une variante à une température d'environ 100°C. La température de déposition peut varier, et notamment elle peut descendre, lors de cette étape de déposition.The coating 4 is deposited using a low temperature deposition process, that is to say, at a temperature substantially lower than that used for the post treatment, in particular below 500 ° C. Preferably, the deposition of the coating 1 is carried out at a temperature below 300 ° C, even more preferred at a temperature below 200 ° C and according to a variant at a temperature of approximately 100 ° C. The deposition temperature can vary, and in particular it can drop, during this deposition step.

En particulier, le revêtement 4 peut être déposé à l'aide d'un procédé de déposition de couches minces pouvant comprendre, de façon non exhaustive, des procédés tels que la déposition physique en phase vapeur (PVD) ou encore d'un procédé de déposition chimique en phase vapeur (CVD). D'autres procédés de déposition de couches minces sont également envisageables pour la déposition du revêtement 4 pourvu que la température de dépôt reste égale ou inférieure à 500°C. Par exemple, le revêtement 4 peut être déposé à l'aide d'un procédé de dépôt chimique en phase vapeur assisté par plasma (PECVD), plasma de haute densité (HDPCVD), dépôt moléculaire en phase vapeur (molecular vapour deposition, MVD), déposition de couches atomiques (Atomic Layer Déposition, ou ALD), ou encore des dépôts obtenus à l'aide de sol-gels.In particular, the coating 4 can be deposited using a thin-film deposition process which may include, in a non-exhaustive manner, processes such as physical vapor deposition (PVD) or even a process of coating. chemical vapor deposition (CVD). Other thin film deposition methods can also be envisaged for the deposition of the coating 4 provided that the deposition temperature remains equal to or less than 500 ° C. For example, coating 4 can be deposited using a plasma assisted chemical vapor deposition (PECVD), high density plasma (HDPCVD), molecular vapor deposition (MVD) process. , deposition of atomic layers (Atomic Layer Deposition, or ALD), or deposits obtained using sol-gels.

Nos résultats expérimentaux, tel qu'indiqué dans le Tableau A ci-dessous, démontrent cependant que le revêtement 4 déposé par un procédé de déposition physique ou chimique à basse température, tel que décrit ci-dessus, ne permet pas nécessairement d'obtenir, tel quel, une compensation suffisante de l'effet de la variation du CTE de l'âme avec la température. Dans le Tableau A, la variation du CTE pour une âme en carbone amorphe sur une base journalière en fonction de la température est comparée pour un ressort spiral ne comportant pas le revêtement (colonne 0), un ressort spiral comprenant une couche d'accrochage 3 de Al2O3 déposé par ALD (colonne 1) et avec le revêtement 4 de SiO2 déposé par PECVD (colonne 2). Dans tous les cas, la variation du CTE avec la température reste importante. La variation du CTE sur une base journalière en fonction de l'humidité relative (RH%) est également montré dans la Tableau A. Tableau A Essais Etape de procédé 0 1 2 3 4 5 étape 1 - ALD Al2O3 ALD Al2O3 ALD Al2O3 ALD Al2O3 ALD Al2O3 étape 2 - - PECVD SiO2 PECVD SiO2 PECVD SiO2 PECVD SiO2 étape 3 - - - recuit 800°C recuit 1050°C ALD Al2O3 étape 4 - - - ALD Al2O3 ALD Al2O3 recuit 800°C variation en temp. [s/d/°C] -3.7 -4.2 -5.2 -1.8 -1.8 -3.9 variation en himidité [s/d/RH%] -0.2 -0.05 -0.2 -0.02 -0.03 -1.5 Our experimental results, as indicated in Table A below, however demonstrate that the coating 4 deposited by a physical or chemical deposition process at low temperature, as described above, does not necessarily make it possible to obtain, as is, sufficient compensation for the effect of varying the core CTE with temperature. In Table A, the variation of the CTE for an amorphous carbon core on a daily basis as a function of temperature is compared for a spiral spring without the coating (column 0), a spiral spring comprising a tie layer 3 of Al 2 O 3 deposited by ALD (column 1) and with the coating 4 of SiO 2 deposited by PECVD (column 2). In all cases, the variation of CTE with temperature remains significant. The variation of CTE on a daily basis as a function of relative humidity (RH%) is also shown in Table A. Table A Testing Process step 0 1 2 3 4 5 Step 1 - ALD Al 2 O 3 ALD Al 2 O 3 ALD Al 2 O 3 ALD Al 2 O 3 ALD Al 2 O 3 2nd step - - PECVD SiO 2 PECVD SiO 2 PECVD SiO 2 PECVD SiO 2 step 3 - - - annealing 800 ° C annealed 1050 ° C ALD Al 2 O 3 step 4 - - - ALD Al 2 O 3 ALD Al 2 O 3 annealing 800 ° C variation in temp. [s / d / ° C] -3.7 -4.2 -5.2 -1.8 -1.8 -3.9 humidity variation [s / d / RH%] -0.2 -0.05 -0.2 -0.02 -0.03 -1.5

En effet, le revêtement de SiO2 obtenu d'un tel procédé de déposition à basse température est en principe structurellement ou chimiquement différent d'un revêtement de SiO2 obtenu par oxydation thermique du silicium à des températures substantiellement plus élevées, par exemple, de l'ordre de 1000°C. Le revêtement 4 de SiO2 peut également comprendre un faible pourcentage d'hydrogène ou d'autres impuretés. Dans ces conditions, le coefficient thermoélastique du SiO2 n'est pas nécessairement (ou n'est pas suffisamment) anormal pour obtenir la thermocompensation désirée.Indeed, the SiO 2 coating obtained from such a low-temperature deposition process is in principle structurally or chemically different from a SiO 2 coating obtained by thermal oxidation of silicon at substantially higher temperatures, for example, of around 1000 ° C. SiO 2 coating 4 can also include a small percentage of hydrogen or other impurities. Under these conditions, the thermoelastic coefficient of SiO 2 is not necessarily (or is not sufficiently) abnormal to obtain the desired thermocompensation.

Selon la présente invention, le procédé de fabrication du ressort spiral 1 comprend un traitement thermique de recuit du revêtement 4, permettant de rendre le coefficient thermoélastique suffisamment compensatoire (voire suffisamment anormal dans le cadre de SiO2) et de le stabiliser. En particulier, le traitement thermique de recuit est réalisé avec une température de recuit d'au moins 550°C, et de préférence une température comprise entre environ 800°C et 1050°C. Selon un mode d'exécution, la température de recuit est soit d'environ 800°C soit d'environ 1050°C. De préférence, le temps de recuit est entre 2 à 6 heures, et dans une forme d'exécution il est aux environs de quatre heures. Par ailleurs, cette opération de recuit peut se dérouler en continuité à l'opération de déposition du revêtement 4 ou indifféremment espacée d'un intervalle de temps de plusieurs jours.According to the present invention, the method of manufacturing the spiral spring 1 comprises a heat treatment for annealing the coating 4, making it possible to make the thermoelastic coefficient sufficiently compensatory (or even sufficiently abnormal in the context of SiO 2 ) and to stabilize it. In particular, the annealing heat treatment is carried out with an annealing temperature of at least 550 ° C, and preferably a temperature of between approximately 800 ° C and 1050 ° C. According to one embodiment, the annealing temperature is either about 800 ° C or about 1050 ° C. Preferably, the annealing time is between 2 to 6 hours, and in one embodiment it is around four hours. Moreover, this annealing operation can take place in continuity with the operation of depositing the coating 4 or equally spaced at a time interval of several days.

Selon les matériaux utilisés pour l'âme 2 et le revêtement 4, le traitement thermique de recuit du revêtement 4 permet de modifier le revêtement 4 de sorte à ce que le second coefficient thermoélastique β2 du revêtement 4 ait un second signe opposé au premier signe du premier coefficient thermoélastique β1 de l'âme 2 afin d'ajuster le second coefficient thermoélastique β2 pour que ce dernier compense l'effet de la variation du premier coefficient thermoélastique β1 de l'âme avec la température.Depending on the materials used for the core 2 and the coating 4, the annealing heat treatment of the coating 4 makes it possible to modify the coating 4 so that the second thermoelastic coefficient β 2 of the coating 4 has a second sign opposite to the first sign of the first thermoelastic coefficient β 1 of the core 2 in order to adjust the second thermoelastic coefficient β 2 so that the latter compensates for the effect of the variation of the first thermoelastic coefficient β 1 of the core with temperature.

Le traitement thermique de recuit peut être réalisé sous atmosphère inerte, par exemple sous atmosphère d'azote. La température de recuit peut être atteinte par une montée progressive en température de l'ordre de 10°C/min à partir d'une température de chargement, par exemple de 200°C. Après le recuit, la température peut être diminuée à une vitesse de l'ordre de 3°C/min, jusqu'à une température de déchargement, par exemple d'environ 200°C.The annealing heat treatment can be carried out under an inert atmosphere, for example under a nitrogen atmosphere. The annealing temperature can be reached by a gradual rise in temperature of the order of 10 ° C / min from a loading temperature, for example 200 ° C. After annealing, the temperature can be lowered to a speed of the order of 3 ° C / min, up to an unloading temperature, for example of about 200 ° C.

Le traitement thermique de recuit permet de modifier la structure, notamment de densifier le revêtement et de réduire les contraintes internes du revêtement 4. Le traitement thermique de recuit du revêtement 4 déposé par le procédé de déposition à basse température peut donc modifier le comportement thermoélastique du revêtement 4 et permettre d'obtenir une compensation de l'effet de la variation du CTE de l'âme avec la température. En particulier, selon les expérimentations des inventeurs, l'effet de compensation recherché est préférablement obtenu lorsque la température de recuit est comprise entre environ 800°C et 1050°C. Cet effet n'est pas aussi important lorsque l'on s'éloigne de ces températures de recuit et il n'est généralement pas obtenu en dessous d'une température de 550°C. Le traitement thermique de recuit permet également de stabiliser les propriétés du revêtement 4 de SiO2 obtenu par le procédé de déposition à basse température.The annealing heat treatment makes it possible to modify the structure, in particular to densify the coating and to reduce the internal stresses of the coating 4. The annealing heat treatment of the coating 4 deposited by the low-temperature deposition process can therefore modify the thermoelastic behavior of the coating. coating 4 and make it possible to obtain a compensation for the effect of the variation of the CTE of the core with the temperature. In particular, according to the experiments of the inventors, the desired compensation effect is preferably obtained when the annealing temperature is between approximately 800 ° C and 1050 ° C. This effect is not as great as one moves away from these annealing temperatures and is generally not obtained below a temperature of 550 ° C. The annealing heat treatment also makes it possible to stabilize the properties of the SiO 2 coating 4 obtained by the low temperature deposition process.

L'effet du traitement thermique de recuit sur le revêtement 4 d'oxyde peut s'expliquer par la modification de la valeur du coefficient de dilation thermique du revêtement [ Cao Z. et al., J. Appl. Phys. 96 (8), 2004, p 4273-4280 ]. Hiller et. al. [ Hiller D. et al. J. Appl. Phys, 107, 064314, 2010, p 1-10 ], discute de l'effet d'un traitement thermique de type RTA (Rapid Thermal Annealing) sur la concentration d'hydrogène dans un dépôt de SiO2. Jansen et. al. [ Jansen F. et al. Appl. Phys. Lett, 50 (16), 1987, p 1059-1061 ] rapporte l'effet de la concentration résiduelle d'hydrogène sur les propriétés thermoélastiques du SiO2.The effect of the annealing heat treatment on the oxide coating 4 can be explained by the change in the value of the thermal expansion coefficient of the coating [ Cao Z. et al., J. Appl. Phys. 96 (8), 2004, p 4273-4280 ]. Hiller et. al. [ Hiller D. et al. J. Appl. Phys, 107, 064314, 2010, p 1-10 ], discusses the effect of a heat treatment of the RTA (Rapid Thermal Annealing) type on the hydrogen concentration in a deposit of SiO 2 . Jansen and. al. [ Jansen F. et al. Appl. Phys. Lett, 50 (16), 1987, p 1059-1061 ] reports the effect of the residual hydrogen concentration on the thermoelastic properties of SiO 2 .

Dans une variante, le revêtement 4 d'oxyde peut être déposé en présence d'un flux, incluant notamment l'un de Na2O, K2O, Li2O, CaO, MgO, Al2O3, B2O3 ou une combinaison de ces flux, de manière à réduire la température de fusion du SiO2 ce qui modifie d'autant la température de post traitement. On notera que l'utilisation de flux tels que l'Al2O3 ou le B2O3 peut augmenter la valeur du module de Young. L'utilisation du flux CaO peut de même augmenter la résistance à la traction du revêtement 4 et agir comme un stabilisateur contre l'absorption de l'eau par le SiO2.In a variant, the oxide coating 4 can be deposited in the presence of a flux, including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature. It will be noted that the use of fluxes such as Al 2 O 3 or B 2 O 3 can increase the value of Young's modulus. The use of flow CaO can likewise increase the tensile strength of coating 4 and act as a stabilizer against absorption of water by SiO 2 .

L'épaisseur du revêtement 4 peut être ajustée de manière à obtenir une valeur souhaitée du coefficient thermoélastique du ressort spiral. En effet, le coefficient thermoélastique du ressort spiral dépend de la combinaison du premier coefficient thermoélastique β1 du matériau de l'âme 2 et du second coefficient thermoélastique β2 du revêtement 4. En pratique, l'épaisseur du revêtement 4 est comprise entre 0.1 µm et 10 µm, et préférablement entre 1 µm et 5 µm. Dans un mode de réalisation, le revêtement 4 est déposé avec une épaisseur d'environ 2 µm.The thickness of the coating 4 can be adjusted so as to obtain a desired value of the thermoelastic coefficient of the spiral spring. Indeed, the thermoelastic coefficient of the spiral spring depends on the combination of the first thermoelastic coefficient β 1 of the material of the core 2 and of the second thermoelastic coefficient β 2 of the coating 4. In practice, the thickness of the coating 4 is between 0.1 µm and 10 µm, and preferably between 1 µm and 5 µm. In one embodiment, the coating 4 is deposited with a thickness of approximately 2 μm.

Comme l'âme 2 du ressort spiral 1 est une structure flexible soumise à des sollicitations mécaniques, une désolidarisation du revêtement 4 déposé sur l'âme 2 est possible. La désolidarisation peut être causée, par exemple, suite à une délamination. Une telle désolidarisation est d'autant plus possible que les propriétés mécaniques, telles que le coefficient de dilatation thermique, le module de Young, du matériau composant l'âme 2 de celui du revêtement 4 diffèrent. De plus, les contraintes internes dans le revêtement 4 déposé peuvent être élevées.As the core 2 of the spiral spring 1 is a flexible structure subjected to mechanical stresses, a separation of the coating 4 deposited on the core 2 is possible. Detachment can be caused, for example, by delamination. Such separation is all the more possible when the mechanical properties, such as the coefficient of thermal expansion, the Young's modulus, of the material making up the core 2 from that of the coating 4 differ. In addition, the internal stresses in the deposited coating 4 can be high.

Dans un mode de réalisation, le procédé de fabrication du ressort spiral 1 comprenant la déposition d'une couche d'accrochage 3 entre l'âme 2 et le revêtement 4. De façon préférée, la couche d'accrochage 3 est constituée d'un oxyde d'aluminium (Al2O3). La couche d'accrochage 3 peut être déposée à l'aide d'un procédé de déposition ALD. Le procédé de déposition ALD a un très bon pouvoir de répartition microscopique. Autrement dit, la déposition ALD a l'avantage de pouvoir déposer l'oxyde d'aluminium de façon conforme à la surface de l'âme 2, y compris dans les pores présents sur la surface de l'âme 2. La qualité de l'ancrage de la couche d'accrochage 3 est d'autant meilleure.In one embodiment, the method of manufacturing the spiral spring 1 comprising the deposition of a tie layer 3 between the core 2 and the coating 4. Preferably, the tie layer 3 consists of a aluminum oxide (Al 2 O 3 ). The tie layer 3 can be deposited using an ALD deposition process. The ALD deposition process has very good microscopic distributing power. In other words, the ALD deposition has the advantage of being able to deposit the aluminum oxide in a conforming manner to the surface of the core 2, including in the pores present on the surface of the core 2. The quality of the l The anchoring of the tie layer 3 is all the better.

Le dépôt de la couche d'accrochage 3 en Al2O3 permet de former des liaisons fortes entre l'oxyde d'aluminium et les groupes fonctionnels actifs disponibles à la surface de l'âme 2, notamment des différentes formes de carboxyles et hydroxyles présentes à la surface de l'âme 2 (ce qui dépend du matériau constituant l'âme).The deposition of the bonding layer 3 in Al 2 O 3 makes it possible to form strong bonds between the aluminum oxide and the functional groups active agents available at the surface of the core 2, in particular of the various forms of carboxyls and hydroxyls present on the surface of the core 2 (which depends on the material constituting the core).

De façon préférée, la couche d'accrochage 3 est déposée avec une épaisseur d'environ 5 nm. Une faible épaisseur de la couche d'accrochage 3 a l'avantage de ne pas modifier significativement les propriétés mécaniques de l'âme 2, et en particulier la fréquence de l'oscillateur balancier spiral. Une faible épaisseur de la couche d'accrochage 3 permet en outre de rendre le procédé de fabrication du ressort spiral 1 économiquement plus intéressant.Preferably, the tie layer 3 is deposited with a thickness of about 5 nm. A small thickness of the bonding layer 3 has the advantage of not significantly modifying the mechanical properties of the core 2, and in particular the frequency of the spiral balance oscillator. A small thickness of the tie layer 3 also makes it possible to make the method of manufacturing the spiral spring 1 economically more interesting.

Le revêtement 4, surtout lorsqu'il comprend le SiO2, peut avoir des propriétés hydrophiles, même si le traitement thermique de recuit diminue le caractère hydrophile du revêtement 4. Encore dans un mode de réalisation, le procédé de fabrication du ressort spiral 1 comprend la déposition d'une couche externe 5 d'un oxyde d'aluminium (Al2O3) couvrant au moins partiellement la surface extérieure du revêtement 4. La couche externe 5 est préférablement déposée avec une épaisseur d'environ 300 nm. L'étape de déposition de la couche externe 5 permet de rendre l'ensemble âme 2 et revêtement 4 moins sensible aux effets de l'humidité. En particulier, les propriétés mécaniques du revêtement 4 en SiO2 peuvent être défavorablement affectées en présence d'humidité. La demanderesse a découvert au cours d'expérimentations élaborées que pour maintenir à la fois les effets de compensation thermoélastique et de protection contre les effets de l'humidité, l'étape de traitement thermique doit préférablement être conduite avant la déposition de la couche externe 5. Un traitement thermique en fin de déposition de la couche 5 ne produit pas les effets recherchés.The coating 4, especially when it comprises SiO 2 , can have hydrophilic properties, even if the annealing heat treatment decreases the hydrophilic character of the coating 4. Still in one embodiment, the method of manufacturing the spiral spring 1 comprises the deposition of an outer layer 5 of an aluminum oxide (Al 2 O 3 ) at least partially covering the outer surface of the coating 4. The outer layer 5 is preferably deposited with a thickness of about 300 nm. The step of depositing the outer layer 5 makes it possible to make the core 2 and coating 4 assembly less sensitive to the effects of humidity. In particular, the mechanical properties of the SiO 2 coating 4 can be adversely affected in the presence of humidity. The Applicant has discovered in the course of elaborate experiments that in order to maintain both the effects of thermoelastic compensation and of protection against the effects of humidity, the heat treatment step should preferably be carried out before the deposition of the outer layer 5. A heat treatment at the end of the deposition of the layer 5 does not produce the desired effects.

A titre illustratif, le Tableau A reporte des valeurs de variation du CTE avec la température et l'humidité relative, pour un ressort spiral comprenant la couche d'accrochage 3 de Al2O3 déposé par ALD le revêtement 4 de SiO2 déposé par PECVD et la couche externe 5 de Al2O3 déposé par ALD. (colonnes 3 à 5). Dans le cas où un recuit à 200°C et à 1050°C est effectué après le dépôt du revêtement, la variation du CTE avec la température et l'humidité relative est minimale. Une augmentation notable de la variation du CTE est cependant observée lorsque le recuit est effectué après l'étape de déposition de la couche externe 5.By way of illustration, Table A shows the variation values of the CTE with temperature and relative humidity, for a spiral spring comprising the bonding layer 3 of Al 2 O 3 deposited by ALD the coating 4 of SiO 2 deposited by PECVD and the outer layer 5 of Al 2 O 3 filed by ALD. (columns 3 to 5). In the case where annealing at 200 ° C and 1050 ° C is performed after deposition of the coating, the variation of CTE with temperature and relative humidity is minimal. A notable increase in the variation of the CTE is however observed when the annealing is carried out after the step of depositing the outer layer 5.

Numéros de référence employés sur les figuresReference numbers used in figures

11
ressort spiralspiral spring
22
âmesoul
33
couche d'accrochagetack coat
44
revêtement périphériqueperipheral coating
55
couche externeouter layer
β1β1
premier coefficient thermoélastiquefirst thermoelastic coefficient
β2β2
second coefficient thermoélastiquesecond thermoelastic coefficient
hh
hauteurheight
ww
épaisseurthickness

Claims (16)

  1. Process for the production of a mechanical oscillator (1) intended to equip a mechanical resonator of a clockwork movement, a MEM sensor or another precision instrument; the oscillator (1) comprising a core (2) made of a material having a first thermoelastic coefficient (β1) of a first sign and a peripheral coating (4) in an oxide presenting a second thermoelastic coefficient (β2); characterized in that the process comprises:
    - the deposition of the coating (4) at a temperature remaining equal or below 500°C; and
    - a thermal annealing treatment of the coating (4) at a temperature of at least 550°C, so that the second thermoelastic coefficient (β2) of the coating (4) has a second sign, opposite the first sign of the first thermoelastic coefficient (β1) and provides sufficient compensation after said thermal treatment wherein the later compensates the effect of the variation of the first thermoelastic coefficient (β1) of the core with the temperature, wherein said first and second thermoelastic coefficients define the variations of the Young modulus as a function of the temperature of the core and of the coating, respectively.
  2. Process according to claim 1, wherein the coating (4) is deposited by means of a process of thin layer deposition.
  3. Process according to claim 2, wherein said process of thin layer deposition comprises physical vapour deposition (PVD) or a chemical vapour deposition (CVD) or their derived processes such as a plasma enhanced chemical vapour deposition (PECVD) or high-density plasma chemical vapour deposition (HDPCVD), molecular type (MVD) or atomic type (ALD) of deposition or deposition obtained by means of sol-gels.
  4. Process according to one of claims 1 to 3, wherein the deposition of the coating (4) is realised at a temperature remaining equal or below 300°C, or remaining equal or below 200°C or at a temperature of about 100°C.
  5. Process according to one of claims 1 to 4, wherein the thermal annealing treatment of the coating (4) occurs at a temperature of at least about 600°C, preferably above 800°C.
  6. Process according to one of claims 1 to 5, wherein the thermal annealing treatment of the coating (4) occurs at a temperature below about 1050°C.
  7. Process according to one of claims 1 to 6, wherein the thermal annealing treatment of the coating (4) is applied for a duration of 2 to 6 hours.
  8. Process according to one of claims 1 to 7, wherein the coating (4) is deposited with a thickness in the order of a micrometre, preferably 2 µm.
  9. Process according to one of claims 1 to 8, further comprising the deposition of an adhesion layer (3) of Al2O3 between the core (2) and the coating (4).
  10. Process according to claim 9, wherein the adhesion layer (3) is deposited by means of a process of atomic layer deposition (ALD).
  11. Process according to one of claims 1 to 10, further comprising the deposition of an external layer (5) of Al2O3 on the coating (4).
  12. Process according to claim 11, wherein the external layer (5) is deposited after the thermal annealing treatment of the coating (4).
  13. Process according to one of claims 1 to 12, wherein the material making the core comprises the carbon, the silicon or the ceramic.
  14. Process according to on of claims 1 to 13, wherein the coating comprises silicon dioxide.
  15. Oscillator in chape of a spiral spring (1) obtained according to the process according to one of claims 1 to 14.
  16. Mechanical balance hairspring resonator comprising the spiral spring according to claim 15.
EP15183042.9A 2014-09-08 2015-08-28 Method for manufacturing a thermocompensated hairspring Active EP3002638B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH13492014 2014-09-08

Publications (3)

Publication Number Publication Date
EP3002638A2 EP3002638A2 (en) 2016-04-06
EP3002638A3 EP3002638A3 (en) 2016-07-13
EP3002638B1 true EP3002638B1 (en) 2021-08-18

Family

ID=51535297

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15183042.9A Active EP3002638B1 (en) 2014-09-08 2015-08-28 Method for manufacturing a thermocompensated hairspring

Country Status (1)

Country Link
EP (1) EP3002638B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456859A1 (en) 2017-09-13 2019-03-20 Rolex Sa Protective coating for a complex watch component
EP3502785B1 (en) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Hairspring for clock movement and method for manufacturing same
EP3502288B1 (en) 2017-12-21 2020-10-14 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
EP3608728B1 (en) * 2018-08-08 2022-02-16 Nivarox-FAR S.A. Coloured thermocompensated spring and method for manufacturing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117470A (en) 1992-10-07 1994-04-26 Yokogawa Electric Corp Spiral spring and electric indicating instrument
DE10127733B4 (en) 2001-06-07 2005-12-08 Silicium Energiesysteme E.K. Dr. Nikolaus Holm Screw or spiral spring elements of crystalline, in particular monocrystalline silicon
DE60206939T2 (en) 2002-11-25 2006-07-27 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Spiral clockwork spring and process for its production
CH699780B1 (en) * 2008-10-22 2014-02-14 Richemont Int Sa of self-compensating balance spring watch.
EP2395661A1 (en) 2010-06-10 2011-12-14 The Swatch Group Research and Development Ltd. Resonator with temperature compensation of thermal coefficients of first and second order
EP2590325A1 (en) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Thermally compensated ceramic resonator
US10372083B2 (en) * 2012-07-06 2019-08-06 Rolex Sa Method for treating a surface of a timepiece component, and timepiece component obtained from such a method
CH707225A2 (en) * 2012-11-16 2014-05-30 Nivarox Sa Spiral compensator for thermically compensated spiral-beam resonator for clock element, has core that is formed from non-metal material, where core is entirely covered with moisture stable layer that is provided with specific thickness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3002638A3 (en) 2016-07-13
EP3002638A2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
EP3002638B1 (en) Method for manufacturing a thermocompensated hairspring
EP2774268B1 (en) Thermally compensated ceramic resonator
EP2105807B1 (en) Monobloc elevated curve spiral and method for manufacturing same
EP2104006B1 (en) Single-body double spiral and method for manufacturing same
EP2765705B1 (en) Resonator thermocompensated by a shape-memory metal
EP2514094B1 (en) Resonator thermocompensated at least to the first and second orders
EP3502785B1 (en) Hairspring for clock movement and method for manufacturing same
CH699780A2 (en) Self-compensating balance spring for mechanical spiral balance-wheel oscillator of e.g. timepiece, has silicon bar with exterior surface, and material in form of cover, where cover partially covers exterior surface
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP2395661A1 (en) Resonator with temperature compensation of thermal coefficients of first and second order
EP3958066A1 (en) Method of manufacturing of a thermocompensated ceramic hairspring
EP2930572A2 (en) Clock set using an amorphous metal alloy
CH706020B1 (en) Motor spring for watch movement barrel with increased running time.
EP2580369A1 (en) Method for producing a coated amorphous metal part
WO2017220672A1 (en) Clockwork component, clockwork, timepiece, and method for manufacturing a clockwork component of said type
CH708067B1 (en) of self-compensating balance spring watch.
EP2631721A1 (en) Diamond-covered titanium clock components
CH702576B1 (en) micro-mechanical part coated.
EP3304216B1 (en) Thermocompensated horology resonator and method for producing such a resonator
EP3285124B1 (en) Mechanical resonator for timepiece and method for manufacturing such a resonator
CH703271A2 (en) Thermocompensated resonator e.g. inverted type turning fork resonator, to manufacture quartz electronic watch, has body with coating partially deposited against core, where cutting angle of plate and thickness of coating are provided
CH717141B1 (en) Process for assembling watch components.
EP4111264A1 (en) Silicon timepiece component for a timepiece
CH718082B1 (en) Process for manufacturing an elastic element for a micromechanical system.
EP4019459A1 (en) Method for manufacturing a thermocompensated hairspring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 17/06 20060101AFI20160608BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170110

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARBONTIME LTD

Owner name: RICHEMONT INTERNATIONAL S.A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015072339

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1422180

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1422180

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015072339

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210828

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 9