EP3002638B1 - Herstellungsverfahren einer thermokompensierten spiralfeder - Google Patents
Herstellungsverfahren einer thermokompensierten spiralfeder Download PDFInfo
- Publication number
- EP3002638B1 EP3002638B1 EP15183042.9A EP15183042A EP3002638B1 EP 3002638 B1 EP3002638 B1 EP 3002638B1 EP 15183042 A EP15183042 A EP 15183042A EP 3002638 B1 EP3002638 B1 EP 3002638B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- deposition
- process according
- temperature
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000576 coating method Methods 0.000 claims description 81
- 239000011248 coating agent Substances 0.000 claims description 79
- 238000000151 deposition Methods 0.000 claims description 29
- 238000000137 annealing Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 28
- 230000008021 deposition Effects 0.000 claims description 23
- 238000000231 atomic layer deposition Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 18
- 230000000694 effects Effects 0.000 claims description 16
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000011282 treatment Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000005240 physical vapour deposition Methods 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000000499 gel Substances 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 2
- 238000005334 plasma enhanced chemical vapour deposition Methods 0.000 claims 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims 1
- 238000007669 thermal treatment Methods 0.000 claims 1
- 239000011162 core material Substances 0.000 description 43
- 229910004298 SiO 2 Inorganic materials 0.000 description 23
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 238000005137 deposition process Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
Definitions
- the present invention relates to a method of manufacturing a thermocompensated mechanical oscillator of a clockwork movement, of a MEMS sensor or of another precision instrument, such as in particular a thermocompensated spiral spring which is intended to equip a resonator. mechanical sprung balance.
- the present invention also relates to an oscillator obtained by the method.
- a mechanical balance-spring oscillator or resonator of a mechanical watch is conventionally composed of a flywheel, called a balance, and a spiral spring, called a spiral or spiral spring, fixed by one end to the axis of the balance. and by the other end on a bridge, called cock, in which the axis of the balance pivots.
- the spiral spring equipping, to date, mechanical watch movements is an elastic metal blade of rectangular section wound on itself in an Archimedean spiral and comprising 12 to 15 turns.
- the sprung balance oscillates around its equilibrium position (or neutral). When the balance leaves this position, it arms the hairspring. This creates a return torque which, when the balance is released, causes it to return to its equilibrium position. As it has acquired a certain speed, therefore kinetic energy, it goes beyond its neutral point until the opposite torque of the hairspring stops it and forces it to turn in the other direction. Thus, the hairspring regulates the period of oscillation of the balance.
- the precision of mechanical watches depends on the stability of the natural frequency of the oscillator formed by the sprung balance.
- the thermal expansions of the hairspring and the balance, as well as the variation of the Young's modulus of the hairspring modify the natural frequency of this oscillating assembly, disturbing the precision of the watch.
- the thermal compensation of the mechanical oscillator is obtained by adjusting the CTE of the hairspring as a function of the coefficients thermal expansion of the balance spring and balance.
- a spiral-shaped spring is made of monocrystalline silicon. It is dimensioned so as to have a constant return torque, to provide a high precision electrical measuring device.
- this document is silent as to the thermal stability of the constant of the return torque of this spring. It cannot therefore be used directly as a spiral spring in a timepiece.
- a spiral spring is made of monocrystalline silicon coated with silicon dioxide so as to obtain good stability of the shape of the balance spring with temperature variations.
- the thermal stability of the constant of the return torque of this spring is also not mentioned in this document.
- the CTE of silicon is strongly influenced by temperature and compensation for this effect is necessary for its use in horological applications. Indeed, the CTE of silicon is of the order of -60 x 10 -6 / ° C and the thermal drift of a silicon spiral spring is thus about 155 seconds / day, for a temperature variation of 23 ° C +/- 15 ° C. This makes it incompatible with watchmaking requirements which are of the order of 8 seconds / day.
- the document EP1422436 describes a spiral spring cut from a ⁇ 001 ⁇ monocrystalline silicon wafer.
- the hairspring comprises a layer of SiO 2 , exhibiting a CTE opposite to that of silicon and formed around the outer surface of the hairspring, in order to minimize the thermal drift of the balance-spring assembly.
- thermocompensated resonator comprising a body formed by ceramic where at least part of the body comprises at least one coating whose variations in Young's modulus as a function of temperature (CTE) are of opposite sign to those (CTE) of material used for the core in order to allow said resonator to have a frequency variation as a function of the temperature at least at the first order substantially zero.
- ceramics can include both positive and negative first order and second order thermoelastic coefficients
- the coating (s) used can incidentally include both negative and positive first order and second order thermoelastic coefficients.
- Germanium oxide (GeO 2 ) or tantalum oxide (Ta 2 O 5 ) and / or oxides of zirconium or hafnium can be used as coatings.
- the coatings also form a moisture barrier, and a primer layer may be deposited between the core and the coating.
- thermocompensated resonator comprising a body formed from a cutting plate in a quartz crystal and comprising a coating, for example of oxide of germanium or tantalum oxide, deposited at least partially against the core.
- the document CH699780 discloses research towards optimal coating materials and dopants to effect better compensation by adjusting the value of the thermoelastic coefficient of the coating to compensate for the change in the thermoelastic coefficient of the core with temperature.
- the present invention relates to a method of manufacturing a mechanical oscillator as claimed in claim 1, such as a spiral spring, as claimed in claim 15, for equipping a mechanical sprung balance resonator of a timepiece movement. or other precision instrument.
- the spiral spring comprises a core made of a material chosen from metals and their alloys, metalloids including silicon (amorphous, monocrystalline or polycrystalline), ceramics, carbon and its various allotropic forms, or composite materials having a first coefficient thermoelastic of a first sign.
- the spring also comprises a peripheral coating of an oxide, preferably SiO 2 , having a second thermoelastic coefficient of a second sign opposite to the first sign of the first thermoelastic coefficient, the method comprising depositing the coating at a temperature below 500 ° C, and an annealing heat treatment of the coating at a temperature of at least 550 ° C.
- an oxide preferably SiO 2
- the heat treatment for annealing the coating may be preceded by a gradual increase in temperature.
- the method can comprise the deposition of a tie layer of Al 2 O 3 between the core and the coating.
- the tie layer can be deposited with a thickness of about 5 nm.
- the method may include depositing an outer layer of Al 2 O 3 on the coating.
- the outer layer can be deposited with a thickness of about 300 nm.
- the outer layer can then control the frequency of the oscillator and / or protect the assembly formed by the core and the coating against humidity.
- the present invention relates to a spiral spring obtained by the method as well as a mechanical sprung balance resonator comprising such a spiral spring.
- the present invention also relates to other types of mechanical oscillators such as tuning forks and MEMS sensors.
- the proposed solution makes it possible to manufacture a spiral spring whose core consists of a material whose control of the thermoelastic behavior, in particular the abnormal change in the value of the Young's modulus, is not or cannot be obtained for various reasons by the growth of a thermal oxide on its surface, but instead involves the deposition of an oxide on the surface of the core by a deposition process. This is the case, for example, where an SiO 2 coating is formed on a core not comprising silicon.
- the solution of the present invention is also applicable, for example, to an oscillator comprising a silicon core and a SiO 2 coating where the coating is formed by a deposition process proper and not by the growth of a thermal oxide. .
- Obtaining a coated oscillator by such a process can be advantageous where it is desired to better control the dimensions and the frequency of the oscillator, because with a growth of a thermal oxide on the surface of a silicon core a portion of the core becomes oxidized during the oxidation step.
- This solution is applicable to a set of materials compatible with the heat treatment processes used to stabilize the compensation, and is intended, inter alia, for functions exploiting the stability of mechanical properties, and in particular elastic properties, such as oscillators and resonators.
- the figure 1 shows a top view of a spiral spring 1 and the figures 2a and 2b show a longitudinal and transverse sectional view of the spiral spring 1 according to the invention.
- the spiral spring 1 comprises a core 2 formed from a material having a first thermoelastic coefficient ⁇ 1 of a first sign (typically negative or normal).
- the spiral spring 1 also comprises a peripheral coating 4 of an oxide, preferably silicon dioxide (SiO 2 ), deposited and at least partially covering the outer surface of the core 2.
- a tie layer 3 can also be deposited. between the core 2 and the coating 4.
- the core has a helical shape and comprises at least one turn of rectangular section of thickness w and height h. It will be understood, however, that the geometry of the core may be other than that illustrated in this example, for example, the core may have a straight or circular section.
- the core 2 can be made in monocrystalline silicon, with an orientation such as ⁇ 001 ⁇ , ⁇ 111 ⁇ or other, or it can be made in a polycrystalline or amorphous material (polycrystalline silicon; amorphous silicon, quartz glass, etc. silica glass).
- the material of the core can also be a metallic material whose melting point remains compatible with the heat treatment step (described below) of the present invention.
- the material of the core can comprise a ceramic material, in particular a silicon nitride, a silicon carbide, or a silicon oxynitride.
- the core material may further comprise a composite material or a polymer or carbon material.
- the core 2 can be a composite of carbon fibers, the list of materials mentioned here not being by any means exhaustive.
- the core is made of a material whose coefficient thermoelastic is normal and the melting point is compatible with the heat treatments applied as indicated below.
- the coating 4 is deposited using a low temperature deposition process, that is to say, at a temperature substantially lower than that used for the post treatment, in particular below 500 ° C.
- the deposition of the coating 1 is carried out at a temperature below 300 ° C, even more preferred at a temperature below 200 ° C and according to a variant at a temperature of approximately 100 ° C.
- the deposition temperature can vary, and in particular it can drop, during this deposition step.
- the coating 4 can be deposited using a thin-film deposition process which may include, in a non-exhaustive manner, processes such as physical vapor deposition (PVD) or even a process of coating. chemical vapor deposition (CVD). Other thin film deposition methods can also be envisaged for the deposition of the coating 4 provided that the deposition temperature remains equal to or less than 500 ° C.
- coating 4 can be deposited using a plasma assisted chemical vapor deposition (PECVD), high density plasma (HDPCVD), molecular vapor deposition (MVD) process. , deposition of atomic layers (Atomic Layer Deposition, or ALD), or deposits obtained using sol-gels.
- the SiO 2 coating obtained from such a low-temperature deposition process is in principle structurally or chemically different from a SiO 2 coating obtained by thermal oxidation of silicon at substantially higher temperatures, for example, of around 1000 ° C.
- SiO 2 coating 4 can also include a small percentage of hydrogen or other impurities. Under these conditions, the thermoelastic coefficient of SiO 2 is not necessarily (or is not sufficiently) abnormal to obtain the desired thermocompensation.
- the method of manufacturing the spiral spring 1 comprises a heat treatment for annealing the coating 4, making it possible to make the thermoelastic coefficient sufficiently compensatory (or even sufficiently abnormal in the context of SiO 2 ) and to stabilize it.
- the annealing heat treatment is carried out with an annealing temperature of at least 550 ° C, and preferably a temperature of between approximately 800 ° C and 1050 ° C.
- the annealing temperature is either about 800 ° C or about 1050 ° C.
- the annealing time is between 2 to 6 hours, and in one embodiment it is around four hours.
- this annealing operation can take place in continuity with the operation of depositing the coating 4 or equally spaced at a time interval of several days.
- the annealing heat treatment of the coating 4 makes it possible to modify the coating 4 so that the second thermoelastic coefficient ⁇ 2 of the coating 4 has a second sign opposite to the first sign of the first thermoelastic coefficient ⁇ 1 of the core 2 in order to adjust the second thermoelastic coefficient ⁇ 2 so that the latter compensates for the effect of the variation of the first thermoelastic coefficient ⁇ 1 of the core with temperature.
- the annealing heat treatment can be carried out under an inert atmosphere, for example under a nitrogen atmosphere.
- the annealing temperature can be reached by a gradual rise in temperature of the order of 10 ° C / min from a loading temperature, for example 200 ° C. After annealing, the temperature can be lowered to a speed of the order of 3 ° C / min, up to an unloading temperature, for example of about 200 ° C.
- the annealing heat treatment makes it possible to modify the structure, in particular to densify the coating and to reduce the internal stresses of the coating 4.
- the annealing heat treatment of the coating 4 deposited by the low-temperature deposition process can therefore modify the thermoelastic behavior of the coating. coating 4 and make it possible to obtain a compensation for the effect of the variation of the CTE of the core with the temperature.
- the desired compensation effect is preferably obtained when the annealing temperature is between approximately 800 ° C and 1050 ° C. This effect is not as great as one moves away from these annealing temperatures and is generally not obtained below a temperature of 550 ° C.
- the annealing heat treatment also makes it possible to stabilize the properties of the SiO 2 coating 4 obtained by the low temperature deposition process.
- the oxide coating 4 can be deposited in the presence of a flux, including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature.
- a flux including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature.
- a flux including in particular one of Na 2 O, K 2 O, Li 2 O, CaO, MgO, Al 2 O 3 , B 2 O 3 or a combination of these flows, so as to reduce the melting temperature of SiO 2 , which accordingly modifies the post-treatment temperature.
- fluxes such as Al 2 O 3 or B 2 O 3 can increase the value of Young's modulus.
- the thickness of the coating 4 can be adjusted so as to obtain a desired value of the thermoelastic coefficient of the spiral spring.
- the thermoelastic coefficient of the spiral spring depends on the combination of the first thermoelastic coefficient ⁇ 1 of the material of the core 2 and of the second thermoelastic coefficient ⁇ 2 of the coating 4.
- the thickness of the coating 4 is between 0.1 ⁇ m and 10 ⁇ m, and preferably between 1 ⁇ m and 5 ⁇ m. In one embodiment, the coating 4 is deposited with a thickness of approximately 2 ⁇ m.
- the core 2 of the spiral spring 1 is a flexible structure subjected to mechanical stresses
- a separation of the coating 4 deposited on the core 2 is possible. Detachment can be caused, for example, by delamination. Such separation is all the more possible when the mechanical properties, such as the coefficient of thermal expansion, the Young's modulus, of the material making up the core 2 from that of the coating 4 differ.
- the internal stresses in the deposited coating 4 can be high.
- the method of manufacturing the spiral spring 1 comprising the deposition of a tie layer 3 between the core 2 and the coating 4.
- the tie layer 3 consists of a aluminum oxide (Al 2 O 3 ).
- the tie layer 3 can be deposited using an ALD deposition process.
- the ALD deposition process has very good microscopic distributing power.
- the ALD deposition has the advantage of being able to deposit the aluminum oxide in a conforming manner to the surface of the core 2, including in the pores present on the surface of the core 2.
- the quality of the l The anchoring of the tie layer 3 is all the better.
- the deposition of the bonding layer 3 in Al 2 O 3 makes it possible to form strong bonds between the aluminum oxide and the functional groups active agents available at the surface of the core 2, in particular of the various forms of carboxyls and hydroxyls present on the surface of the core 2 (which depends on the material constituting the core).
- the tie layer 3 is deposited with a thickness of about 5 nm.
- a small thickness of the bonding layer 3 has the advantage of not significantly modifying the mechanical properties of the core 2, and in particular the frequency of the spiral balance oscillator.
- a small thickness of the tie layer 3 also makes it possible to make the method of manufacturing the spiral spring 1 economically more interesting.
- the method of manufacturing the spiral spring 1 comprises the deposition of an outer layer 5 of an aluminum oxide (Al 2 O 3 ) at least partially covering the outer surface of the coating 4.
- the outer layer 5 is preferably deposited with a thickness of about 300 nm.
- the step of depositing the outer layer 5 makes it possible to make the core 2 and coating 4 assembly less sensitive to the effects of humidity.
- the mechanical properties of the SiO 2 coating 4 can be adversely affected in the presence of humidity.
- the heat treatment step should preferably be carried out before the deposition of the outer layer 5.
- a heat treatment at the end of the deposition of the layer 5 does not produce the desired effects.
- Table A shows the variation values of the CTE with temperature and relative humidity, for a spiral spring comprising the bonding layer 3 of Al 2 O 3 deposited by ALD the coating 4 of SiO 2 deposited by PECVD and the outer layer 5 of Al 2 O 3 filed by ALD. (columns 3 to 5).
- the variation of CTE with temperature and relative humidity is minimal.
- a notable increase in the variation of the CTE is however observed when the annealing is carried out after the step of depositing the outer layer 5.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Springs (AREA)
- Micromachines (AREA)
Claims (16)
- Verfahren zur Herstellung eines mechanischen Oszillators (1), der dazu bestimmt ist, einen mechanischen Resonator eines Uhrwerks, einen MEM-Sensor oder ein anderes Präzisionsinstrument auszustatten; wobei der Oszillator (1) einen Kern (2) aus einem Material mit einem ersten thermoelastischen Koeffizienten (β1) eines ersten Vorzeichens und eine periphere Beschichtung (4) aus einem Oxid mit einem zweiten thermoelastischen Koeffizienten (β2) umfasst; dadurch gekennzeichnet, dass das Verfahren umfasst:- die Abscheidung der Beschichtung (4) bei einer Temperatur, die gleich oder unter 500°C bleibt; und- eine thermische Glühbehandlung der Beschichtung (4) bei einer Temperatur von mindestens 550°C, so dass der zweite thermoelastische Koeffizient (β2) der Beschichtung (4) ein zweites Vorzeichen hat, das dem ersten Vorzeichen des ersten thermoelastischen Koeffizienten (β1) entgegengesetzt ist und eine ausreichende Kompensation nach der thermischen Behandlung liefert, wobei letztere die Wirkung der Variation des ersten thermoelastischen Koeffizienten (β1) des Kerns mit der Temperatur kompensiert, wobei die ersten und zweiten thermoelastischen Koeffizienten die Variationen des Elastizitätsmoduls als Funktion der Temperatur des Kerns bzw. der Beschichtung definieren.
- Verfahren nach Anspruch 1, wobei die Beschichtung (4) mittels eines Verfahrens der Dünnschichtabscheidung abgeschieden wird.
- Verfahren nach Anspruch 2, wobei das Verfahren der Dünnschichtabscheidung eine physikalische Dampfabscheidung (PVD) oder eine chemische Dampfabscheidung (CVD) oder davon abgeleitete Verfahren wie eine plasmaunterstützte chemische Dampfabscheidung (PECVD) oder eine hochdichte plasmachemische Dampfabscheidung (HDPCVD), eine Abscheidung vom molekularen Typ (MVD) oder vom atomaren Typ (ALD) oder eine Abscheidung mittels Sol-Gelen umfasst.
- Verfahren nach einem der Ansprüche 1 bis 3, wobei die Abscheidung der Beschichtung (4) bei einer Temperatur, die gleich oder unter 300°C bleibt, oder gleich oder unter 200°C bleibt, oder bei einer Temperatur von etwa 100°C erfolgt.
- Verfahren nach einem der Ansprüche 1 bis 4, wobei die thermische Glühbehandlung der Beschichtung (4) bei einer Temperatur von mindestens etwa 600°C, vorzugsweise über 800°C, erfolgt
- Verfahren nach einem der Ansprüche 1 bis 5, wobei die thermische Glühbehandlung der Beschichtung (4) bei einer Temperatur unterhalb von etwa 1050°C erfolgt.
- Verfahren nach einem der Ansprüche 1 bis 6, wobei die thermische Glühbehandlung der Beschichtung (4) für eine Dauer von 2 bis 6 Stunden durchgeführt wird.
- Verfahren nach einem der Ansprüche 1 bis 7, wobei die Beschichtung (4) mit einer Dicke in der Größenordnung eines Mikrometers, vorzugsweise 2 µm, abgeschieden wird.
- Verfahren nach einem der Ansprüche 1 bis 8, ferner umfassend die Abscheidung einer Adhäsionsschicht (3) aus Al2O3 zwischen dem Kern (2) und der Beschichtung (4).
- Verfahren nach Anspruch 9, wobei die Adhäsionsschicht (3) mittels eines Verfahrens der Atomlagenabscheidung (ALD) abgeschieden wird.
- Verfahren nach einem der Ansprüche 1 bis 10, ferner umfassend die Abscheidung einer äußeren Schicht (5) aus Al2O3 auf der Beschichtung (4).
- Verfahren nach Anspruch 11, wobei die äußere Schicht (5) nach der thermischen Glühbehandlung der Beschichtung (4) abgeschieden wird.
- Verfahren nach einem der Ansprüche 1 bis 12, wobei das Material, aus dem der Kern besteht, den Kohlenstoff, das Silizium oder die Keramik aufweist.
- Verfahren nach einem der Ansprüche 1 bis 13, wobei die Beschichtung Siliziumdioxid umfasst.
- Oszillator in Form einer Spiralfeder (1), hergestellt nach dem Verfahren nach einem der Ansprüche 1 bis 14.
- Mechanischer Unruhspiralfederresonator mit der Spiralfeder nach Anspruch 15.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH13492014 | 2014-09-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3002638A2 EP3002638A2 (de) | 2016-04-06 |
EP3002638A3 EP3002638A3 (de) | 2016-07-13 |
EP3002638B1 true EP3002638B1 (de) | 2021-08-18 |
Family
ID=51535297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15183042.9A Active EP3002638B1 (de) | 2014-09-08 | 2015-08-28 | Herstellungsverfahren einer thermokompensierten spiralfeder |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3002638B1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3456859A1 (de) | 2017-09-13 | 2019-03-20 | Rolex Sa | Schutzbeschichtung für ein komplexes uhrenbauteil |
EP3502288B1 (de) | 2017-12-21 | 2020-10-14 | Nivarox-FAR S.A. | Herstellungsverfahren einer spiralfeder für uhrwerk |
EP3502785B1 (de) | 2017-12-21 | 2020-08-12 | Nivarox-FAR S.A. | Spiralfeder für uhrwerk, und ihr herstellungsverfahren |
EP3608728B1 (de) * | 2018-08-08 | 2022-02-16 | Nivarox-FAR S.A. | Thermokompensierte gefärbte feder, und ihr herstellungsverfahren |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06117470A (ja) | 1992-10-07 | 1994-04-26 | Yokogawa Electric Corp | 渦巻きバネ及び指示電気計器 |
DE10127733B4 (de) | 2001-06-07 | 2005-12-08 | Silicium Energiesysteme E.K. Dr. Nikolaus Holm | Schrauben- oder Spiralfederelemente aus kristallinem, insbesondere einkristallinem Silicium |
DE60206939T2 (de) | 2002-11-25 | 2006-07-27 | Csem Centre Suisse D'electronique Et De Microtechnique S.A. | Spiraluhrwerkfeder und Verfahren zu deren Herstellung |
CH699780B1 (fr) * | 2008-10-22 | 2014-02-14 | Richemont Int Sa | Ressort spiral de montre autocompensé. |
EP2395661A1 (de) | 2010-06-10 | 2011-12-14 | The Swatch Group Research and Development Ltd. | Temperaturkompensierter Resonator mit reduzierten Temperaturkoeffizienten erster und zweiter Ordnung |
EP2590325A1 (de) | 2011-11-04 | 2013-05-08 | The Swatch Group Research and Development Ltd. | Thermokompensierter Resonator aus Keramik |
US10372083B2 (en) * | 2012-07-06 | 2019-08-06 | Rolex Sa | Method for treating a surface of a timepiece component, and timepiece component obtained from such a method |
CH707225A2 (fr) * | 2012-11-16 | 2014-05-30 | Nivarox Sa | Spiral compensateur comportant une barrière d'humidité. |
-
2015
- 2015-08-28 EP EP15183042.9A patent/EP3002638B1/de active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3002638A2 (de) | 2016-04-06 |
EP3002638A3 (de) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3002638B1 (de) | Herstellungsverfahren einer thermokompensierten spiralfeder | |
EP2774268B1 (de) | Thermokompensierter resonator aus keramik | |
EP2105807B1 (de) | Monoblockspirale zur Erhöhung der Kurve und ihr Herstellungsverfahren | |
EP3958066B1 (de) | Herstellungsverfahren eines thermokompensierten spiralfeders | |
EP2104006B1 (de) | Monoblock-Doppelspirale und ihr Herstellungsverfahren | |
EP2765705B1 (de) | Durch ein Metall mit Formgedächtnis thermokompensierter Resonator | |
EP3181940B2 (de) | Herstellungsverfahren einer spiralfeder mit einer vorbestimmten steifigkeit durch lokalisierte wegnahme von material | |
CH699780A2 (fr) | Ressort spiral de montre autocompensé. | |
EP2395661A1 (de) | Temperaturkompensierter Resonator mit reduzierten Temperaturkoeffizienten erster und zweiter Ordnung | |
EP2930572A2 (de) | Uhrensortiment, das eine amorphe metalllegierung verwendet | |
CH706020B1 (fr) | Ressort-moteur pour barillet de mouvement d'horlogerie présentant une durée de marche accrue. | |
WO2011154312A1 (fr) | Procede de fabrication d'une piece en metal amorphe revetue | |
EP2631721A1 (de) | Uhrkomponenten aus diamantverkleidetem Titan | |
CH708067B1 (fr) | Ressort spiral de montre autocompensé. | |
CH702576B1 (fr) | Pièce de micro-mécanique revêtue. | |
CH717141B1 (fr) | Procédé d'assemblage de composants horlogers. | |
EP3304216B1 (de) | Thermokompensierte resonator für uhrwerk und verfahren zur herstellung einer solchen resonator | |
EP3285124B1 (de) | Mechanischer resonator für uhrwerk, sowie herstellungsverfahren eines solchen resonators | |
CH703271A2 (fr) | Résonateur thermocompensé aux premier et second ordres. | |
CH718081A2 (fr) | Élément élastique pour un système micromécanique. | |
CH718082A2 (fr) | Procédé de fabrication d'un élément élastique pour un système micromécanique. | |
EP4111264A1 (de) | Bauteil aus silizium für eine uhr | |
EP4019459A1 (de) | Verfahren zur herstellung einer thermokompensierten spiralfeder | |
CH712824A1 (fr) | Composant mécanique horloger ainsi que procédé de réalisation d'un tel composant. | |
CH709517A2 (fr) | Assortiment horloger utilisant un élément de fixation en alliage métallique amorphe. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 17/06 20060101AFI20160608BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170110 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191115 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210408 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CARBONTIME LTD Owner name: RICHEMONT INTERNATIONAL S.A. |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015072339 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH Ref country code: AT Ref legal event code: REF Ref document number: 1422180 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210818 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1422180 Country of ref document: AT Kind code of ref document: T Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211220 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211118 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015072339 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210828 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220519 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210828 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230902 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 |