EP3502288B1 - Herstellungsverfahren einer spiralfeder für uhrwerk - Google Patents

Herstellungsverfahren einer spiralfeder für uhrwerk Download PDF

Info

Publication number
EP3502288B1
EP3502288B1 EP17209686.9A EP17209686A EP3502288B1 EP 3502288 B1 EP3502288 B1 EP 3502288B1 EP 17209686 A EP17209686 A EP 17209686A EP 3502288 B1 EP3502288 B1 EP 3502288B1
Authority
EP
European Patent Office
Prior art keywords
alloy
niobium
titanium
deformation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17209686.9A
Other languages
English (en)
French (fr)
Other versions
EP3502288A1 (de
Inventor
Christian Charbon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60811848&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3502288(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Priority to EP17209686.9A priority Critical patent/EP3502288B1/de
Priority to US16/211,289 priority patent/US20190196406A1/en
Priority to JP2018234274A priority patent/JP6751749B2/ja
Priority to RU2018145229A priority patent/RU2696809C1/ru
Priority to CN201811562272.5A priority patent/CN110007582B/zh
Publication of EP3502288A1 publication Critical patent/EP3502288A1/de
Application granted granted Critical
Publication of EP3502288B1 publication Critical patent/EP3502288B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • B21F35/04Making flat springs, e.g. sinus springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/007Antimagnetic alloys

Definitions

  • the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a clockwork movement.
  • spiral springs are also centered on the concern for thermal compensation, so as to guarantee regular chronometric performance. This requires obtaining a thermoelastic coefficient close to zero. We are also looking to produce spiral springs with limited sensitivity to magnetic fields.
  • New balance springs have been developed from alloys of niobium and titanium.
  • these alloys pose problems of sticking and seizing in the drawing or drawing dies (diamond or hard metal) and against the rolling rolls (hard metal or steel), which makes them almost impossible to transform into wires. purposes by standard processes used eg for steel.
  • An object of the present invention is to provide a method of manufacturing a spiral spring intended to equip a balance with a clockwork movement making it possible to facilitate deformation, and more particularly to obtain easy rolling.
  • the method comprises, before the deformation step, a step of depositing, on the alloy blank, a surface layer of a ductile material chosen from the group comprising copper, nickel, cupro-nickel, cupro-manganese, gold, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B, to facilitate the shaping in the form of wire, the thickness of the layer of ductile material deposited being chosen so that the ratio of ductile material area / area of the NbTi alloy for a given wire section is less than 1, preferably less to 0.5, and more preferably between 0.01 and 0.4.
  • Such a manufacturing process makes it possible to facilitate the shaping in wire form of the NbTi alloy blank, and more specifically to facilitate the drawing, drawing and rolling.
  • the document WO 2005/045532 in the name of Seiko describes a clockwork spring for ensuring high precision and stable operation of precision mechanisms such as clocks, which may be a clockwork spring, a mainspring, or a hairspring.
  • This spring is formed of a special titanium alloy and has an S-shape when it is freely deployed, in which the inflection point at which the direction of curvature of the freely deployed form changes is formed more inside than the middle of an inner end to the winding side end and an outer end to the opposite end to the inner end.
  • the titanium alloy has a high tensile stress and a low average Young's modulus, making it possible to increase the mechanical energy stored in the mainspring.
  • This alloy may be a titanium alloy with an element from the vanadium group, with in particular a proportion by weight of element from the vanadium group of 20 to 80%, and more particularly of 30 to 60%.
  • the proportion by mass of constituents other than titanium can exceed 50%.
  • no more precise composition of the alloy is disclosed for the spring described.
  • the document WO2015 / 189278 in the name of Cartier describes a spiral spring in a titanium alloy containing: a titanium base, from 10 to 40 atomic% of at least one element among Nb, Ta or V, from 0 to 3 atomic% of oxygen, of 0 to 6 atomic% zirconium; and from 0 to 5 atomic% hafnium.
  • This hairspring is less sensitive to temperature, and has a lower density than a conventional hairspring.
  • the document WO2018 / 172164 in the name of united de Lorraine describes a metastable ⁇ titanium alloy comprising, in percentage by mass, between 24 and 45% niobium, between 0 and 20% of zirconium, between 0 and 10% of tantalum and / or between 0 and 1.5% silicon and / or less than 2% oxygen.
  • This alloy has a crystallographic structure which comprises a mixture of austenitic phase and alpha phase, and the presence of omega phase precipitates, the volume fraction of which is less than 10%.
  • This document also describes a clockwork spring made on the basis of such an alloy, and a method of manufacturing such a spring.
  • the document EP2993531 in the name of Précision Engineering AG describes a method of shaping a mechanical spring, in particular a spiral spring, comprising the steps of preparing a spring, in particular a spiral spring, comprising at least one curved section intended for reshaping with at least one deformable section, then performing a local heating step of at least the deformable section to a first temperature, which is within a semi-hot formation temperature range of the material of the deformable section , then in imparting a movement of the deformable section to obtain a predetermined shape of curve in the deformable section, this movement being carried out, either after or during the heating step and in a semi-hot state, or well before the heating step.
  • a press bulletin H. Moser & Cie and Précision Engineering of 22.11.2016 describes a hairspring for a watch regulating member made of niobium-titanium alloy, the composition of which is not disclosed.
  • the document EP 1 083 243 describes a beta titanium alloy wire and a process for its manufacture.
  • the document JP 04279212 discloses a process for manufacturing fine wire of titanium alloys comprising the steps of coating titanium wire with copper and repeated drawing and annealing.
  • the invention relates to a method of manufacturing a spiral spring intended to equip a balance of a clockwork movement and made of a binary type alloy comprising niobium and titanium.
  • the titanium content in ⁇ form in the alloy of the blank is preferably less than or equal to 2.5% by volume, or even close to or equal to 0.
  • the alloy used in the present invention comprises between 40 and 49% by weight of titanium, preferably between 44 and 49% by weight of titanium, and more preferably between 46% and 48% by weight of titanium , and preferably said alloy comprises more than 46.5% by weight of titanium and said alloy comprises less than 47.5% by weight of titanium.
  • the titanium content is greater than or equal to 46.5% by weight relative to the total of the composition.
  • the titanium content is less than or equal to 47.5% by weight relative to the total of the composition.
  • the NbTi alloy used in the present invention does not comprise other elements except for possible and inevitable traces. This prevents the formation of fragile phases.
  • the oxygen content is less than or equal to 0.10% by weight of the total, or even less than or equal to 0.085% by weight of the total.
  • the tantalum content is less than or equal to 0.10% by weight of the total.
  • the carbon content is less than or equal to 0.04% by weight of the total, in particular less than or equal to 0.020% by weight of the total, or even less than or equal to 0.0175% by weight of the total.
  • the iron content is less than or equal to 0.03% by weight of the total, in particular less than or equal to 0.025% by weight of the total, or even less than or equal to 0.020% by weight of the total.
  • the nitrogen content is less than or equal to 0.02% by weight of the total, in particular less than or equal to 0.015% by weight of the total, or even less than or equal to 0.0075% by weight of the total.
  • the hydrogen content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.0035% by weight of the total, or even less than or equal to 0.0005% by weight of the total.
  • the silicon content is less than or equal to 0.01% by weight of the total.
  • the nickel content is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.16% by weight of the total.
  • the content of ductile material, such as copper, in the alloy is less than or equal to 0.01% by weight of the total, in particular less than or equal to 0.005% by weight of the total.
  • the aluminum content is less than or equal to 0.01% by weight of the total.
  • the spiral spring produced according to the invention has an elastic limit greater than or equal to 600 MPa.
  • this spiral spring has a modulus of elasticity less than or equal to 100 GPa, and preferably between 60 GPa and 80 GPa.
  • the spiral spring produced according to the invention has a thermoelastic coefficient, also called CTE, allowing it to guarantee the maintenance of chronometric performance despite the variation in the temperatures of use of a watch incorporating such a spiral spring.
  • the CTE of the alloy must be close to zero ( ⁇ 10 ppm / ° C) to obtain a thermal coefficient of the oscillator equal to ⁇ 0.6 s / d / ° C.
  • E is the Young's modulus of the hairspring, and, in this formula, E, ⁇ and ⁇ are expressed in ° C -1 .
  • CT is the thermal coefficient of the oscillator
  • (1 / E. DE / dT) is the CTE of the balance spring alloy
  • is the expansion coefficient of the balance and ⁇ that of the balance spring.
  • Such a thickness of ductile material, and in particular copper, makes it possible to easily stretch, draw and roll the Cu / NbTi composite material.
  • the ductile material preferably copper, is thus deposited at a given time to facilitate the shaping of the wire by drawing and drawing, so that a thickness thereof remains preferably between 1 and 500 micrometers on the wire has a total diameter of 0.2 to 1 millimeter.
  • the supply of ductile material in particular copper, can be galvanic, PVD or CVD, or else mechanical, it is then a jacket or a tube of ductile material such as copper which is fitted to a bar of niobium alloy. titanium to a large diameter, then which is thinned during the step (s) of deformation of the composite bar.
  • the method of the invention can comprise, after the deformation step, a step of eliminating said surface layer of ductile material.
  • the ductile material is removed once all the deformation treatment operations have been carried out, that is to say after the last rolling, before the stretching.
  • the wire is freed from its layer of ductile material, such as copper, in particular by chemical attack, with a solution based on cyanides or based on acids, for example nitric acid.
  • the surface layer of ductile material is retained on the spiral spring, the thermoelastic coefficient of the niobium and titanium alloy being adapted accordingly so as to compensate for the effect of the ductile material.
  • the thermoelastic coefficient of the niobium titanium alloy can be easily adjusted by choosing the appropriate strain rate and heat treatments.
  • the surface layer of ductile material retained makes it possible to obtain a perfectly regular final wire section.
  • the ductile material can here be copper or gold, deposited by galvanic route, PVD or CVD.
  • the method of the invention may further comprise a step of depositing, on the surface layer of retained ductile material, a final layer of a material chosen from the group comprising Al 2 O 3 , TiO 2 , SiO 2 and AIO , by PVD or CVD. It is also possible to provide a final layer of gold deposited by galvanic gold flash if the gold has not already been used as a ductile material for the surface layer. You can also use copper, nickel, cupro-nickel, cupro-manganese, silver, nickel-phosphorus Ni-P and nickel-boron Ni-B for the final layer, provided that the material of the final layer is different from the ductile material of the surface layer.
  • This final layer has a thickness of 0.1 ⁇ m to 1 ⁇ m and makes it possible to color the hairspring or to obtain insensitivity to climatic aging (temperature and humidity).
  • the ⁇ quenching step is a solution treatment, with a duration of between 5 minutes and 2 hours at a temperature between 700 ° C and 1000 ° C, under vacuum, followed by gas cooling.
  • this beta quenching is a solution treatment, between 5 minutes and 1 hour at 800 ° C. under vacuum, followed by cooling under gas.
  • the heat treatment is carried out for a period of between 1 hour and 80 hours, or even more, preferably between 1 hour and 15 hours at a temperature of between 350 ° C and 700 ° C. More preferably, the heat treatment is carried out for a period of between 5 hours and 10 hours at a temperature of between 350 ° C and 600 ° C. Even more preferably, the heat treatment is carried out for a period of between 3 hours and 6 hours at a temperature of between 400 ° C and 500 ° C.
  • a deformation step generally designates one or more deformation treatments, which may include wire drawing and / or rolling.
  • Wire drawing may require the use of one or more dies during the same deformation step or during different deformation steps if necessary.
  • Wire drawing is carried out until a wire of round section is obtained.
  • Rolling can be done in the same deformation step as wire drawing or in another subsequent deformation step.
  • the last deformation treatment applied to the alloy is rolling, preferably with a rectangular profile compatible with the entry section of a stranding spindle.
  • the total deformation rate, the number of heat treatments as well as the heat treatment parameters are chosen to obtain a spiral spring having a thermoelastic coefficient as close as possible to 0. Moreover, depending on the rate of total deformation, the number of heat treatments and the heat treatment parameters, a single-phase or two-phase NbTi alloy is obtained.
  • the number of heat treatment and deformation steps is limited so that the alloy of niobium and titanium of the spiral spring obtained retains a structure in which the titanium of said alloy is essentially in the form of solid solution with niobium in ⁇ phase (centered cubic structure), the titanium content in ⁇ phase being less than or equal to 10% by volume, preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% in volume.
  • the total deformation rate is between 1 and 5, preferably between 2 and 5.
  • a blank is used, the dimensions of which are as close as possible to the desired final dimensions so as to limit the number of heat treatment and deformation steps and to maintain an essentially single-phase structure ⁇ of the NbTi alloy.
  • the final structure of the NbTi alloy of the spiral spring may be different from the initial structure of the blank, for example the titanium content in ⁇ form may have varied, the main thing being that the final structure of the NbTi alloy of the spiral spring is essentially single-phase, the titanium of said alloy being essentially in the form of a solid solution with niobium in ⁇ phase, the titanium content in ⁇ phase being less than or equal to 10% by volume, preferably less than or equal to 5% in volume, more preferably less than or equal to 2.5% by volume.
  • the titanium content in the ⁇ phase is preferably less than or equal to 5% by volume, more preferably less than or equal to 2.5% by volume, or even close to or equal to 0.
  • a spiral spring is obtained made of an NbTi alloy having an essentially single-phase structure in the form of a solid ⁇ -Nb-Ti solution, the titanium content in the ⁇ form being less than or equal to 10% by volume.
  • the method comprises a single deformation step with a deformation rate of between 1 and 5, preferably between 2 and 5.
  • a particularly preferred method of the invention comprises, after the quenching step ⁇ , the step of depositing, on the alloy blank, the surface layer of ductile material, a deformation step including drawing by means of several dies followed by rolling, a stretching step then a final heat treatment step (called fixing).
  • the method of the invention may further comprise at least one intermediate heat treatment step, so that the method comprises for example after the hardening step ⁇ , the step of depositing, on the alloy blank, the surface layer of ductile material, a first deformation step, an intermediate heat treatment step, a second deformation step, the slitting step then a last heat treatment step.
  • a succession of sequences of a deformation step alternating with a heat treatment step is applied, until an alloy of niobium and titanium with a two-phase structure comprising a solid solution of niobium with titanium in ⁇ phase (centered cubic structure) and a solid solution of niobium with titanium in ⁇ phase (compact hexagonal structure), the content of titanium in ⁇ phase being greater than 10% by volume.
  • heat treatments it is necessary to precipitate part of the ⁇ phase by heat treatments, according to the parameters indicated above, with a strong deformation between the heat treatments.
  • heat treatments longer than those used to obtain a single-phase spring alloy are applied, for example heat treatments carried out for a period of between 15 hours and 75 hours at a temperature of between 350 ° C and 500 ° C. .
  • heat treatments are applied from 75h to 400h at 350 ° C, from 25h to 400 ° C or from 18h to 480 ° C.
  • a blank is used which has, after hardening ⁇ , a much larger diameter than that of the blank prepared for the first “single-phase” variant.
  • a blank with a diameter of 30 mm is used, for example, after the hardening ⁇
  • a blank with a diameter of 0.2 to 2.0 mm is used after the hardening ⁇ .
  • each strain is carried out with a strain rate of between 1 and 5, the global accumulation of strains over the whole of said succession of sequences bringing a total strain rate of between 1 and 14.
  • the strain rate corresponds to the classic formula 2ln (d0 / d), where d0 is the diameter of the last beta hardening or that of a deformation step, and d is the diameter of the hardened wire obtained in the step of next deformation.
  • the method comprises in this second variant between three and five coupled sequences of deformation-heat treatment.
  • the first coupled strain-heat treatment sequence comprises a first strain with at least 30% reduction in section.
  • each coupled sequence of heat-treatment-strain comprises a strain between two heat treatments with at least 25% reduction in section.
  • the hardened ⁇ phase alloy exhibits a strongly positive CT, and the precipitation of the ⁇ phase which has a strongly negative CT, makes it possible to bring the two-phase alloy to a CTE close to zero, which is particularly important. favorable.
  • the method of the invention allows the production, and more particularly the shaping, of a balance spring for a balance in a niobium-titanium type alloy, typically containing 47% by weight of titanium (40-60%), exhibiting a Substantially single-phase microstructure of ⁇ -Nb-Ti in which the titanium is in the form of a solid solution with the niobium in the ⁇ phase or a very fine two-phase lamellar microstructure comprising a solid solution of niobium with titanium in the ⁇ phase and a solid solution of niobium with titanium in phase a.
  • This alloy has high mechanical properties, by combining a very high elastic limit, greater than 600 MPa, and a very low modulus of elasticity, of the order of 60 Gpa to 80 GPa. This combination of properties is well suited for a spiral spring.
  • Such an alloy is known and used for the manufacture of superconductors, such as magnetic resonance imaging devices, or particle accelerators, but is not used in watchmaking.
  • a binary type alloy comprising niobium and titanium, of the type selected above for the implementation of the invention also exhibits an effect similar to that of “Elinvar”, with a thermoelastic coefficient practically zero. within the temperature range of usual use of watches, and suitable for the manufacture of self-compensating balance springs.
  • such an alloy is paramagnetic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Springs (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (18)

  1. Verfahren zum Herstellen einer Spiralfeder zur Ausstattung einer Unruh eines Uhrwerks, umfassend:
    einen Schritt zum Ausarbeiten eines Rohlings aus einer Legierung aus Niob und Titan, die gebildet ist aus:
    - Niob: Differenz auf 100 Gew.-%,
    - Titan: zwischen 40 und 60 Gew.-%,
    - Spuren von Elementen, die aus der Gruppe ausgewählt sind, die aus O, H, C, Fe, Ta, N, Ni, Si, Cu und Al gebildet ist, wobei jedes der Elemente in einer Menge im Bereich von 0 bis 1600 Gew.-ppm vorhanden ist, wobei die Gesamtmenge, die durch alle diese Elemente gebildet ist, im Bereich von 0 bis 0,3 Gew.-% liegt,
    - einen Typ-β-Härtungsschritt des Rohlings mit einem bestimmten Durchmesser, derart, dass das Titan der Legierung im Wesentlichen als solide Lösung mit Niob in der β-Phase vorliegt, wobei der Gehalt an Titan in der α-Phase kleiner oder gleich 5 Vol.-% ist,
    - mindestens einen Schritt des Verformens der Legierung im Wechsel mit mindestens einem Schritt einer Wärmebehandlung, derart, dass die erhaltene Legierung aus Niob und Titan eine Elastizitätsgrenze größer oder gleich 600 MPa und einen Elastizitätsmodul kleiner oder gleich 100 GPa aufweist, wobei vor dem letzten Wärmebehandlungsschritt ein Federwindungsschritt zum Bilden der Spiralfeder durchgeführt wird,
    wobei das Verfahren vor dem Verformungsschritt einen Schritt des Ablagerns einer Oberflächenschicht auf dem Legierungsrohling aus einem duktilen Material umfasst, das aus der Gruppe ausgewählt ist, die Kupfer, Nickel, Kupfernickel, Kupfermangan, Gold, Silber, Nickelphosphor Ni-P und Nickelbor Ni-B enthält, um die Drahtformung zu erleichtern, wobei die Dicke der abgelagerten Schicht aus duktilem Material so gewählt ist, dass das Flächenverhältnis aus duktilem Material zu der Oberfläche der NbTi-Legierung für einen bestimmten Drahtquerschnitt kleiner als 1, vorzugsweise kleiner als 0,5 ist und besonders bevorzugt im Bereich von 0,01 bis 0,4 liegt.
  2. Herstellungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass es nach dem Verformungsschritt einen Schritt zum Entfernen der Oberflächenschicht aus duktilem Material umfasst.
  3. Herstellungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Oberflächenschicht aus duktilem Material beibehalten wird, wobei der thermoelastische Koeffizient der Legierung aus Niob und Titan entsprechend angepasst wird.
  4. Herstellungsverfahren nach Anspruch 3, dadurch gekennzeichnet, dass es einen Schritt zum Ablagern auf der beibehaltenen Oberflächenschicht aus duktilem Material einer Abschlussschicht aus einem Material umfasst, das aus der Gruppe ausgewählt ist, die Kupfer, Nickel, Kupfernickel, Kupfermangan, Silber, Nickelphosphor Ni-P, Nickelbor Ni-B, Gold, die anders als für das duktile Material der Oberflächenschicht ausgewählt werden, Al2O3, TiO2, SiO2 und AlO enthält.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Verformungsschritt Drahtziehen und/oder Walzen umfasst.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die letzte auf die Legierung angewendete Verformungsverarbeitung das Walzen ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ausmaß der Gesamtverformung, die Anzahl von Wärmbehandlungen sowie die Parameter der Wärmebehandlungen so gewählt werden, dass man eine Spiralfeder mit einem thermoelastischen Koeffizienten möglichst nahe 0 erhält.
  8. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der β-Härtungsschritt eine Behandlung ist zum Einbringen in Lösung für eine Dauer von 5 Minuten bis 2 Stunden bei einer Temperatur zwischen 700 °C und 1000 °C unter Vakuum, gefolgt von einer Abkühlung unter Gas.
  9. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmebehandlung für eine Dauer von 1 Stunde bis 80 Stunden bei einer Temperatur zwischen 350 °C und 700 °C ausgeführt wird.
  10. Herstellungsverfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl der Wärmbehandlungs- und Verformungsschritte begrenzt ist, so dass die Legierung aus Niob und Titan der erhaltenen Spiralfeder eine Struktur beibehält, in der das Titan der Legierung im Wesentlichen in Form einer soliden Lösung mit Niob in der β-Phase vorliegt, wobei der Gehalt an Titan in der α-Phase kleiner oder gleich 10 Vol.-% ist.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass es einen einzigen Verformungsschritt mit einem Verformungsausmaß im Bereich von 1 bis 5, vorzugsweise von 2 bis 5, umfasst.
  12. Verfahren nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, dass es nach dem β-Härtungsschritt einen Verformungsschritt, einen Federwindungsschritt und einen Wärmebehandlungsschritt umfasst.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass es einen Zwischenschritt zur Wärmebehandlung umfasst.
  14. Herstellungsverfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Wärmebehandlung für eine Dauer von 5 Stunden bis 10 Stunden bei einer Temperatur zwischen 350 °C und 600 °C ausgeführt wird.
  15. Herstellungsverfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Wärmebehandlung für eine Dauer von 3 Stunden bis 6 Stunden bei einer Temperatur zwischen 400 °C und 500 °C ausgeführt wird.
  16. Herstellungsverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass eine Folge von Sequenzen eines Verformungsschrittes im Wechsel mit einem Wärmebehandlungsschritt bis zum Erhalt einer Legierung aus Niob und Titan mit einer zweiphasigen Struktur angewendet wird, die eine solide Lösung aus Niob mit Titan in der β-Phase und eine solide Lösung aus Niob mit Titan in der α-Phase enthält, wobei der Gehalt an Titan in der α-Phase größer als 10 Vol.- % ist.
  17. Herstellungsverfahren nach Anspruch 16, dadurch gekennzeichnet, dass jede Verformung mit einem Verformungsausmaß im Bereich von 1 bis 5 ausgeführt wird, wobei die Gesamtsumme von Verformungen über die gesamte Folge von Sequenzen zu einer Gesamtverformungsrate im Bereich von 1 bis 14 führt.
  18. Herstellungsverfahren nach einem der Ansprüche 16 bis 17, dadurch gekennzeichnet, dass die Wärmebehandlung für eine Dauer von 15 Stunden bis 75 Stunden bei einer Temperatur zwischen 350 °C und 500 °C ausgeführt wird.
EP17209686.9A 2017-12-21 2017-12-21 Herstellungsverfahren einer spiralfeder für uhrwerk Active EP3502288B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17209686.9A EP3502288B1 (de) 2017-12-21 2017-12-21 Herstellungsverfahren einer spiralfeder für uhrwerk
US16/211,289 US20190196406A1 (en) 2017-12-21 2018-12-06 Method for manufacturing a balance spring for a timepiece movement
JP2018234274A JP6751749B2 (ja) 2017-12-21 2018-12-14 時計器ムーブメント用のヒゲゼンマイを製造するための方法
RU2018145229A RU2696809C1 (ru) 2017-12-21 2018-12-20 Способ изготовления волоска для часового механизма
CN201811562272.5A CN110007582B (zh) 2017-12-21 2018-12-20 制造钟表机芯的游丝的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17209686.9A EP3502288B1 (de) 2017-12-21 2017-12-21 Herstellungsverfahren einer spiralfeder für uhrwerk

Publications (2)

Publication Number Publication Date
EP3502288A1 EP3502288A1 (de) 2019-06-26
EP3502288B1 true EP3502288B1 (de) 2020-10-14

Family

ID=60811848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17209686.9A Active EP3502288B1 (de) 2017-12-21 2017-12-21 Herstellungsverfahren einer spiralfeder für uhrwerk

Country Status (5)

Country Link
US (1) US20190196406A1 (de)
EP (1) EP3502288B1 (de)
JP (1) JP6751749B2 (de)
CN (1) CN110007582B (de)
RU (1) RU2696809C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801078C1 (ru) * 2021-07-23 2023-08-01 Ниварокс-Фар С.А. Пружина баланса для механизма, относящегося к измерению времени

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422116B1 (de) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Spiralfeder eines uhrwerks
EP3796101A1 (de) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Spiralfeder für uhrwerk
EP3828642A1 (de) * 2019-11-29 2021-06-02 Nivarox-FAR S.A. Spiralfeder für uhrwerk und herstellungsverfahren dafür
EP4009114A1 (de) * 2019-12-31 2022-06-08 Nivarox-FAR S.A. Spiralfeder für uhrwerk und ihr herstellungsverfahren
EP3885842B1 (de) 2020-03-26 2024-03-20 Nivarox-FAR S.A. Nichtmagnetische uhrkomponente mit verbesserter verschleissfestigkeit
EP4060425A1 (de) 2021-03-16 2022-09-21 Nivarox-FAR S.A. Spiralfeder für uhrwerk
EP4060424A1 (de) 2021-03-16 2022-09-21 Nivarox-FAR S.A. Spiralfeder für uhrwerk

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1166701A (en) 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
US3682719A (en) 1969-03-11 1972-08-08 Takuya Suzuki Process for producing nb-ti super conducting material
US3974001A (en) 1966-04-22 1976-08-10 Institut Dr. Ing. Reinhard Straumann, A.G. Paramagnetic alloy
JPH04279212A (ja) 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk チタン又はチタン合金の細線の製造方法
EP0886195A1 (de) 1997-06-20 1998-12-23 Montres Rolex Sa Selbstkompensierende Spiralfeder für mechanische Uhrwerkunruhspiralfederoszillator und Verfahren zu deren Herstellung
US20070133355A1 (en) 2003-11-07 2007-06-14 Seik Epson Corporation Timepiece and spring thereof
WO2015189278A2 (fr) 2014-06-11 2015-12-17 Cartier Création Studio Sa Oscillateur pour un ensemble de balancier-spiral d'une pièce d'horlogerie
EP2993531A1 (de) * 2014-09-08 2016-03-09 Precision Engineering AG Verfahren zur umformung einer feder
EP3002638A2 (de) 2014-09-08 2016-04-06 Richemont International S.A. Herstellungsverfahren einer thermokompensierten spiralfeder
CH711913A2 (fr) 2015-12-02 2017-06-15 Nivarox Far Sa Procédé de fabrication d'un ressort-spiral d'horlogerie.
WO2018172164A1 (fr) * 2017-03-24 2018-09-27 Universite De Lorraine ALLIAGE DE TITANE ß METASTABLE, RESSORT D'HORLOGERIE A BASE D'UN TEL ALLIAGE ET SON PROCEDE DE FABRICATION
EP3502785B1 (de) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Spiralfeder für uhrwerk, und ihr herstellungsverfahren
EP3422116B1 (de) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Spiralfeder eines uhrwerks

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB503070A (en) * 1937-10-19 1939-03-30 British Thomson Houston Co Ltd Improvements in and relating to the manufacture of wire
JPS5246889B2 (de) * 1971-09-30 1977-11-29
JPS62270754A (ja) * 1986-05-16 1987-11-25 Hitachi Cable Ltd Nb−Ti合金系超電導線材の製造方法ならびにNb−Ti合金系超電導線材
DE69128692T2 (de) * 1990-11-09 1998-06-18 Toyoda Chuo Kenkyusho Kk Titanlegierung aus Sinterpulver und Verfahren zu deren Herstellung
DE69911913T2 (de) * 1999-03-26 2004-09-09 Rolex Sa Selbstkompensierende Spiralfeder für Uhrwerkspiralfederunruh und Verfahren zur Behandlung derselben
US6402859B1 (en) * 1999-09-10 2002-06-11 Terumo Corporation β-titanium alloy wire, method for its production and medical instruments made by said β-titanium alloy wire
US7275301B2 (en) * 2001-01-30 2007-10-02 Shahin Pourrahimi Method for reinforcing superconducting coils with high-strength materials
US6918974B2 (en) * 2002-08-26 2005-07-19 General Electric Company Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
JP2010187524A (ja) * 2009-01-14 2010-08-26 Seiko Epson Corp 圧電駆動装置および電子機器
EP2264553B1 (de) * 2009-06-19 2016-10-26 Nivarox-FAR S.A. Thermokompensierte Feder und ihr Herstellungsverfahren
CH703414A2 (fr) * 2010-07-09 2012-01-13 Montres Breguet Sa Spiral à centre de masse immobile.
US20120076686A1 (en) * 2010-09-23 2012-03-29 Ati Properties, Inc. High strength alpha/beta titanium alloy
JP6247813B2 (ja) * 2012-08-08 2017-12-13 株式会社神戸製鋼所 NbTi系超電導線材
CH708231B1 (fr) * 2013-06-27 2017-03-15 Nivarox Far Sa Ressort d'horlogerie en acier inoxydable austénitique.
RU2525003C1 (ru) * 2013-08-07 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "МАТИ-Российский государственный технологический университет имени К.Э. Циолковского" (МАТИ) Сплав на основе алюминида титана и способ обработки заготовок из него
EP2952972B1 (de) * 2014-06-03 2017-01-25 The Swatch Group Research and Development Ltd. Herstellungsverfahren einer Ausgleichsspiralfeder aus Verbundmaterial
CN104538543B (zh) * 2014-12-11 2017-06-20 西部超导材料科技股份有限公司 一种低温超导线材用NbTi棒的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974001A (en) 1966-04-22 1976-08-10 Institut Dr. Ing. Reinhard Straumann, A.G. Paramagnetic alloy
GB1166701A (en) 1966-06-08 1969-10-08 Vacuumschmelze Gmbh Improvements in or relating to Non-Ferromagnetic Alloys
US3682719A (en) 1969-03-11 1972-08-08 Takuya Suzuki Process for producing nb-ti super conducting material
JPH04279212A (ja) 1991-03-07 1992-10-05 Shinko Kosen Kogyo Kk チタン又はチタン合金の細線の製造方法
EP0886195A1 (de) 1997-06-20 1998-12-23 Montres Rolex Sa Selbstkompensierende Spiralfeder für mechanische Uhrwerkunruhspiralfederoszillator und Verfahren zu deren Herstellung
US20070133355A1 (en) 2003-11-07 2007-06-14 Seik Epson Corporation Timepiece and spring thereof
WO2015189278A2 (fr) 2014-06-11 2015-12-17 Cartier Création Studio Sa Oscillateur pour un ensemble de balancier-spiral d'une pièce d'horlogerie
EP2993531A1 (de) * 2014-09-08 2016-03-09 Precision Engineering AG Verfahren zur umformung einer feder
EP3002638A2 (de) 2014-09-08 2016-04-06 Richemont International S.A. Herstellungsverfahren einer thermokompensierten spiralfeder
CH711913A2 (fr) 2015-12-02 2017-06-15 Nivarox Far Sa Procédé de fabrication d'un ressort-spiral d'horlogerie.
WO2018172164A1 (fr) * 2017-03-24 2018-09-27 Universite De Lorraine ALLIAGE DE TITANE ß METASTABLE, RESSORT D'HORLOGERIE A BASE D'UN TEL ALLIAGE ET SON PROCEDE DE FABRICATION
EP3422116B1 (de) 2017-06-26 2020-11-04 Nivarox-FAR S.A. Spiralfeder eines uhrwerks
EP3502785B1 (de) 2017-12-21 2020-08-12 Nivarox-FAR S.A. Spiralfeder für uhrwerk, und ihr herstellungsverfahren

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ALBERT HELMUT, IRMTRAUD PFEIFFER: "Über die Temperatureabhängigkeit des Elastizitätsmodulus von Niob-Titan- Legierungen", Z. METALLKDE, vol. 63, 1 January 1972 (1972-01-01), pages 126 - 131, XP055810627
ANONYMOUS: "7.1.5.4 Nb or Pb-based nonmagnetic Elinvar alloys", NUMERICAL DATA AND FUNCTIONAL RELATIONSHIP IN SCIENCE AND TECHNOLOGY, 1 January 1994 (1994-01-01), pages 231 - 234, XP055936577, [retrieved on 20220629]
ANONYMOUS: "IIIa. Nb-Ti Phase Diagram Phase Diagram", INTERNET ARCHIVE WAYBACK MACHINE, 18 December 2015 (2015-12-18), pages 1 - 13, XP055631656, Retrieved from the Internet <URL:https://web.archive.org/web/20151218115535if_/http://boulderschool.yale.edu/sites/default/files/files/larbalestier3.pdf> [retrieved on 20191014]
ANONYMOUS: "Precision Engineering and H.Moser & Cie. Present their Paramagnetic Hairspring", PRECISION ENGINEERING AG PRESS RELEASE, 22 November 2016 (2016-11-22), pages 1 - 3, XP055631693, Retrieved from the Internet <URL:http://media.h-moser.com/files/5015/0220/2389/peag_2016_press_release_venturer_small_seconds_xl_paramagnetic_20161122_english.pdf> [retrieved on 20191014]
ANONYMOUS: "Visite de la manufacture H.MOSER & CIE (1/2)", FAM - FORUM A MONTRES, 11 September 2015 (2015-09-11), XP055922964, Retrieved from the Internet <URL:http://forumamontres.forumactif.com/t184821-visite-de-la- manufacture-h-moser-cie-1-2> [retrieved on 20220519]
ANONYMOUS: "Wire drawing", WIKIPEDIA, THE FREE ENCYCLOPEDIA, 7 December 2016 (2016-12-07), XP055922967, Retrieved from the Internet <URL:https://en.wikipedia.org/wiki/Wire_drawing> [retrieved on 20220519]
CHEVENARD PIERRE, VACHé, X. & VILLACHON, A.: "Nouveaux alliages du type élinvar pour spiraux de chronomètres", ANNALES FRANCAISES DE CHRONOMETRIE, vol. 7, 1 January 1937 (1937-01-01), pages 259 - 294, XP055810602
FEDOTOV S G: "PECULIARITIES OF CHANGES IN ELASTIC PROPERTIES OF TITANIUM MARTENSITE", ZZ-WCTP1973, vol. 2, 1 January 1973 (1973-01-01), pages 871 - 881, XP055810628
FEDOTOV S.G., P.K. BELOUSOV: "Elastic constants of alloys of the system titanium-niobium", THE PHYSICS OF METALS AND METALLOGRAPHY, vol. 17, no. 5, 1 January 1964 (1964-01-01), pages 83 - 86, XP055810614
HOCHSTUHL P: "Gitterinstabilität und metastabile Phasen in Niob-Titan-Supraleitern", DIPLOMARBEIT KFK 3931, 1 July 1985 (1985-07-01), pages 1 - 85, XP055810538
KOCH, C.C. ; EASTON, D.S.: "A review of mechanical behaviour and stress effects in hard superconductors", CRYOGENICS., ELSEVIER, KIDLINGTON., GB, vol. 17, no. 7, 1 July 1977 (1977-07-01), GB , pages 391 - 413, XP024050971, ISSN: 0011-2275, DOI: 10.1016/0011-2275(77)90288-0
LARBALESTIER D.C., LEE P.J.: "New developments in niobium titanium superconductors", PROCEEDINGS OF THE 1995 PARTICLE ACCELERATOR CONFERENCE : PAPERS FROM THE SIXTEENTH BIENNIAL PARTICLE ACCELERATOR CONFERENCE, AN INTERNATIONAL FORUM ON ACCELERATOR SCIENCE AND TECHNOLOGY HELD MAY 1 - 5, 1995 IN DALLAS, TEXAS, IEEE, NEW YORK, US, vol. 2, 1 May 1995 (1995-05-01) - 5 May 1995 (1995-05-05), New York, US , pages 1276 - 1281, XP010165875, ISBN: 978-0-7803-2934-8, DOI: 10.1109/PAC.1995.505199
LEE P. J., MCKINNELL, J.C., LARBALESTIER, D.C.: "Restricted Novel Heat Treatments for Obtaining High Jc in Nb- 46.5 WT.%Ti: II. Prestrain Dependence", ADVANCES IN CRYOGENIC ENGINEERING, vol. 36, 1 January 1990 (1990-01-01), pages 287 - 294, XP055922958
LEE PETER J.: "Nb-Ti from beginnings to perfection", PHYSICAL REVIEW, 1 January 2011 (2011-01-01), pages 1 - 23, XP055936572
LEE PETER J: "ABRIDGED METALLURGY OF DUCTILE ALLOY SUPERCONDUCTORS", 1 January 1999 (1999-01-01), pages 1 - 14, XP055810630, Retrieved from the Internet <URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.7409&rep=rep1&type=pdf> [retrieved on 20210604]
OZAKI TOMOMICHI, MATSUMOTO HIROAKI, WATANABE SADAO, HANADA SHUJI: "Beta Ti Alloys with Low Young's Modulus", MATERIALS TRANSACTIONS, THE JAPANESE INSTITUTE OF METALS AND MATERIALS, JP, vol. 45, no. 8, 1 January 2004 (2004-01-01), JP , pages 2776 - 2779, XP055810610, ISSN: 1345-9678, DOI: 10.2320/matertrans.45.2776
PETER J LEE, LARBALESTIER DAVID C: "Niobium-Titanium Superconducting Wires: Nanostructures by Extrusion and Wire Drawing", WIRE JOURNAL INTERNATIONAL, 1 February 2003 (2003-02-01), pages 1 - 8, XP055631678, Retrieved from the Internet <URL:https://pdfs.semanticscholar.org/3b77/9b7295b2f5f6376fa1df8d741fe5cf49b894.pdf?_ga=2.11913649.408455947.1571043110-1369269946.1561712474> [retrieved on 20191014]
SCOTT KREILICK: "NIOBIUM-Titanium Superconductors", ASM HANDBOOK, vol. 2, 1 January 1990 (1990-01-01), pages 1 - 44, XP055936564

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2801078C1 (ru) * 2021-07-23 2023-08-01 Ниварокс-Фар С.А. Пружина баланса для механизма, относящегося к измерению времени

Also Published As

Publication number Publication date
JP2019113549A (ja) 2019-07-11
EP3502288A1 (de) 2019-06-26
JP6751749B2 (ja) 2020-09-09
CN110007582A (zh) 2019-07-12
RU2696809C1 (ru) 2019-08-06
US20190196406A1 (en) 2019-06-27
CN110007582B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
EP3502288B1 (de) Herstellungsverfahren einer spiralfeder für uhrwerk
EP3502785B1 (de) Spiralfeder für uhrwerk, und ihr herstellungsverfahren
EP3422116B1 (de) Spiralfeder eines uhrwerks
EP3502289B1 (de) Herstellungsverfahren einer spiralfeder für uhrwerk
EP3601628B1 (de) Beta metastabile titan-legierung, uhr-feder daraus und verfahren zu dessen herstellung
EP3671359B1 (de) Herstellungsverfahren einer spiralfeder eines uhrwerks auf titanbasis
CH714492A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication.
EP3736639B1 (de) Herstellungsverfahren einer spiralfeder für uhrwerk
EP3422115B1 (de) Spiralfeder eines uhrwerks
EP3796101A1 (de) Spiralfeder für uhrwerk
CH714493A2 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie.
EP3845971B1 (de) Herstellungsverfahren für eine spiralfeder für ein uhrwerk
EP4060424A1 (de) Spiralfeder für uhrwerk
CH714494A2 (fr) Ressort spiralé d&#39;horlogerie, notamment un ressort de barillet ou un ressort-spiral.
CH716155A2 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie.
EP4060425A1 (de) Spiralfeder für uhrwerk
EP3736638B1 (de) Herstellungsverfahren einer spiralfeder für uhrwerk
CH716156A2 (fr) Procédé de fabrication d&#39;un ressort spiral pour mouvement d&#39;horlogerie.
CH717018A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication.
EP3828642A1 (de) Spiralfeder für uhrwerk und herstellungsverfahren dafür
CH716853A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication.
CH718454A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et procédé de fabrication de ce ressort spiral.
CH714491A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et son procédé de fabrication.
CH718455A2 (fr) Ressort spiral pour mouvement d&#39;horlogerie et procédé de fabrication de ce ressort spiral.
EP4123393A1 (de) Spiralfeder für uhrwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1323628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017025363

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1323628

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201014

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210215

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210114

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602017025363

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

26 Opposition filed

Opponent name: E-PATENT S.A.

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 602017025363

Country of ref document: DE

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20230117

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 7

Ref country code: DE

Payment date: 20231121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 7