EP3304216A1 - Temperature-compensated timepiece resonator and method for producing such a resonator - Google Patents

Temperature-compensated timepiece resonator and method for producing such a resonator

Info

Publication number
EP3304216A1
EP3304216A1 EP16728737.4A EP16728737A EP3304216A1 EP 3304216 A1 EP3304216 A1 EP 3304216A1 EP 16728737 A EP16728737 A EP 16728737A EP 3304216 A1 EP3304216 A1 EP 3304216A1
Authority
EP
European Patent Office
Prior art keywords
resonator
modified portion
modified
resonator according
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16728737.4A
Other languages
German (de)
French (fr)
Other versions
EP3304216B1 (en
Inventor
Susana del Carmen TOBENAS BORRON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Publication of EP3304216A1 publication Critical patent/EP3304216A1/en
Application granted granted Critical
Publication of EP3304216B1 publication Critical patent/EP3304216B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/227Compensation of mechanisms for stabilising frequency for the effect of variations of temperature composition and manufacture of the material used

Definitions

  • the invention relates to a thermocompensated resonator for equipping a regulating member of a timepiece and a method of manufacturing said resonator.
  • the invention also relates to a resonator whose adjusted Young's modulus value and / or stiffness is adjusted.
  • the time base of a timepiece uses a resonator whose oscillations must be maintained.
  • a resonator with a given resonant frequency usually fulfills this function. It is known, in particular, resonators such as the pendulum (which involves gravity), quartz (piezoelectricity), the tuning fork (vibrating blades) or the return springs of more diverse shapes, depending on whether they are designed for oscillate on large or small amplitudes.
  • the regulating member is constituted by the pendulum / spiral assembly.
  • the spiral spring is in this case fixed by one end on the balance shaft and the other end on a bridge in which pivots the axis of the balance. In this way, the spring contracts and relaxes alternately around its center during pendulum oscillations. Since its creation, a few hundred years back, and until today, the spiral springs are mainly made from a metal blade of rectangular section wound on itself in the form of spiral Archimedes.
  • thermoelastic coefficient of the modulus of elasticity of this material is however too important to ensure the frequency accuracy of such a resonator.
  • Research on the subject led to the addition of a layer of a material whose thermoelastic coefficient is opposite to that of silicon.
  • Berry and Pritchet IBM Technical Disclosure Bulletin # 1237, Vol 14, No. 4, 1971
  • amorphous silica SiO 2
  • the document EP1422436 discloses a spiral spring from the cutting of a plate ⁇ 001 ⁇ Silicon. This invention aims to overcome the disadvantages described above proposing a spiral whose sensitivity to temperature variations and magnetic fields is minimized. In addition the precision manufacturing technology (Ion Etching) proposed for the shaping of these spirals, combined with a
  • thermocompensated resonator comprising a ceramic spring whose surface is coated with at least one second material whose CTE (thermoelastic coefficient) is of opposite sign to the CTE of the material used for the spring core.
  • Concentric spring (arming and disarming) can result in the breakage of the coating or in its delamination, resulting in a significant change in the frequency of oscillation.
  • patent EP1958031 which reports a thermal compensation by modifying the thermoelastic properties of a so-called photostructurable glass following exposure to a UV source.
  • This technique has several limitations inherent in the choice of material and process. The material is on the one hand limited to a particular category of so-called "photostructurable" glasses, which are doped glasses in particular with a photoactive element such as cerium and with a photoactive agent.
  • a resonator for equipping a regulator member, or resonator, of a timepiece, the resonator comprising a body used in deformation and being made of a vitreous material having a first thermoelastic coefficient (CTE), said vitreous material having a modified portion so that said modified portion has a second CTE different from the first CTE, so that the resonator is thermally compensated.
  • CTE thermoelastic coefficient
  • the present invention also relates to a method of manufacturing the resonator, comprising the steps of machining a piece of vitreous material having a first CTE to form the body used in deformation of the resonator; and locally modifying the vitreous material to form said modified portion having a second CTE different from the first CTE.
  • the local modification is carried out using an irradiation method such as a laser treatment.
  • the irradiation process may involve multiphoton absorption in the vitreous material.
  • the modified portion is adjusted so that its physical properties compensate for the physical properties of the rest of the vitreous material (unmodified portion).
  • the resonator is thermocompensated, and its stiffness can also be adjusted.
  • the resonator thus obtained is non-magnetic and thermocompensated while avoiding the use of coatings.
  • the invention also relates to a spiral spring made of a material which is not necessarily vitreous but which is transparent to the wavelengths of a laser (femtosecond type).
  • the present invention relates to a spiral spring made of a partially or even entirely crystalline material, especially comprising glasses, silicon (monocrystalline, polycrystalline), glass-ceramics, ceramics, etc.
  • a timepiece comprises a body used in deformation, the body being made of a material transparent to the wavelengths of a laser and having a first Young's modulus; said material having a portion locally modified so that said modified portion has a second Young's modulus which differs from the first Young's modulus of the unmodified portion of the material.
  • the material may also comprise a portion locally modified so that said modified portion has a second stiffness which differs from the first stiffness of the unmodified material.
  • the invention also relates to a method of manufacturing the resonator, comprising the steps of:
  • the material may also be modified locally so as to form said modified portion having a second stiffness different from the first stiffness of the unmodified material.
  • the method comprises adjusting the frequency of the spiral spring. This adjustment can be made before the assembly of the spiral spring with a balance.
  • the frequency of the spiral spring is adjusted so as to match the spiral spring with the balance.
  • Figures 1 to 6 show a sectional view of a leaf of a spiral spring, according to one embodiment
  • Figure 7 shows a top view of a spiral spring 1 according to one embodiment
  • Figure 8 shows a detail of a section of the spiral spring of Figure 7;
  • FIG. 9 shows a wafer made of glassy material in which a plurality of spiral springs is produced, according to one embodiment
  • Fig. 10 is a sectional view of the wafer of Fig. 9 during an irradiation process, according to one embodiment.
  • Figure 11 illustrates the sectional view of Figure 9 after a machining step, according to one embodiment.
  • a spiral spring intended to equip a spiral balance-type resonator of a mechanical watch is made of a vitreous material.
  • the term "vitreous material” includes in particular pseudo-amorphous (that is to say non-crystalline) materials having the glass transition phenomenon.
  • the glass transition is a reversible transition between the hard form and the "melted” or rubbery form of an amorphous material.
  • the temperature of Glass transition of an amorphous material is always lower than the melting point of its crystalline form.
  • the term “vitreous material” is also understood to mean a material that is partially vitreous (therefore at least
  • the vitreous material may comprise any glass as defined above.
  • the vitreous material has a low coefficient of thermal expansion, that is to say less than 1 ppm / ° C.
  • the vitreous material is silica-based (amorphous aSiO 2) having a coefficient of thermal expansion of about 0.5 ppm / ° C.
  • the vitreous material may comprise a pure amorphous silica, a borosilicate, an aluminosilicate, or a silica-based glass with a controlled impurity level.
  • the spiral spring 1 comprises a vitreous material having a first ⁇ .
  • the vitreous material is locally modified so as to produce a modified portion 3 of the same vitreous material, the modified portion 3 of the vitreous material having a second CTE ⁇ 2 different from the first CTE ⁇ .
  • the modified portion comprises said vitreous material having undergone, locally, modifications
  • the spiral spring 1 is characterized by an effective CTE ⁇ ⁇ which is defined by the combination of the first CTE ⁇ and the second CTE ⁇ 2.
  • the presence of the modified portion minimizes the thermal drift of the resonator formed by the spiral spring and the balance.
  • the vitreous material also has a first coefficient
  • the spiral spring 1 is therefore also characterized by an effective coefficient of thermal expansion a e ff which is defined by the combination of the first and second coefficients
  • FIGS. 1 to 6 show a section of the blade of a spiral spring 1 comprising a matrix in an at least partially vitreous material 2 and a modified portion 3. Said modified portion may
  • the exposed areas 3 may have varied geometries and distributions, an asymmetry of these areas may also be chosen to overcome different compressive and tensile stresses compared to the neutral fiber of the blade. These different geometries can be, if necessary, combined on portions distributed along the blade to respect the isotropy of the material or to meet other needs.
  • the exposed areas 3 can be anywhere in the blade, preferably without contact with the surface thereof.
  • the configuration of the modified portion 3 may also vary along the spiral spring 1.
  • this variation may comprise the geometric configuration of the modified portion 3 which varies along the spiral spring 1, but also a variation the value of the second CTE ⁇ 2, and possibly also the second thermal expansion coefficient OC2 and the second Young's modulus E2, in the various modified portions 3, along the spiral spring 1.
  • the modified portion 3 can be arranged from so as to extend in the longitudinal direction of the spiral spring 1 in a continuous manner (such as continuous fibers) or discontinuously. In the same way, elongate geometries of the modified portion 3 may be oriented in any direction, preferably in the longitudinal direction of the spiral spring 1.
  • the geometry of the spiral spring 1 may advantageously incorporate fastening means at both ends, as they are known in the art. the person skilled in the art, with rigid mounting means or, preferably, elastic. For various identification purposes (pairing, etc.), identification references may be micro-engraved on the spiral spring
  • the thermal drift of the resonator relates to the relative variations of the oscillation frequency of the regulating organ following temperature changes in the range of 8 to 38 ° C.
  • the relative frequency variations with the temperature mainly depend on the effective coefficient of thermal expansion oc e ff and the effective CTE e ff spiral spring 1.
  • the oscillation frequency can be written according to:
  • Eeff is the effective Young's modulus of the spiral spring
  • h is the spiral spring height
  • e is the spring-spiral thickness
  • L is the spring-spiral length
  • thermo compensation is obtained through the growth of an amorphous S1O2 layer around the spring-spring core.
  • Amorphous S1O2 is one of the few materials with a positive CTE, of the order of 200 ppm / C.
  • the thickness of the S1O2 layer for the thermocompensation of the spiral spring is predicted according to the dimensions of the spiral spring blade as described in EP1422436.
  • the CTE of the spiral spring is in this case an effective CTE p e ff comprising the contribution of the monocrystalline silicon core of the spiral spring and the contribution of the outer layer of amorphous S1O2.
  • a method of manufacturing the resonator comprises the steps of:
  • the machining step may be performed by a chemical etching process, a physical etching process or a combination of both methods.
  • the step of forming said modified portion 3 can be performed before, during or after the machining step.
  • the method may further comprise another step of forming the modified portion, after the machining step.
  • the step of locally modifying the vitreous material comprises a laser treatment.
  • the laser is operated in non-ablative mode. That is, no material is removed in the area where the laser is focused.
  • the laser uses durations
  • ultrashort pulses that is to say pulse durations between a few femtoseconds to a few nanoseconds
  • Ultra-short laser pulse durations induce structural modifications resulting from complex nonlinear phenomena which also give rise to a local modification of the CTE of the modulus of elasticity as well as the modulus of elasticity itself.
  • the use of pulse durations between a few femtoseconds and a few picoseconds promote
  • Pulse times between a few femtoseconds and a few nanoseconds can be obtained with several types of lasers of very different wavelengths, for example, and preferably a Ti: Sapphire laser (650 to 1100 nm) , a Yb laser (1030 nm) or a laser in the mid-infrared (mid infrared, 1050 nm).
  • the precise nature of the laser-material interaction will be different.
  • the first CTE ⁇ of the vitreous matrix will be modified, at least locally so as to obtain the modified portion 3 having the second CTE ⁇ 2.
  • the same reasoning also applies to obtain the modified portion 3 having the second coefficient of thermal expansion 0C2 different from the first thermal expansion i and having a second Young's modulus E2 different from the first Young's modulus E L
  • Such a laser treatment would change the effective CTE e ff hairspring 1, to modify the coefficient of thermal expansion oceff effective and / or adjust the value of the effective Young's modulus E eff of said spring 1
  • the fine adjustment of the effective Young's modulus E f e of spring 1 makes it possible to adjust its stiffness (and thus the frequency of the resonator) without having to modify either the height nor the thickness of the vibrating body (1). This facilitates for example the spiral-balance balancing operations at the same time as allowing a significant increase in the efficiency of these operations.
  • FIG. 7 shows a top view of a spiral spring 1 according to one embodiment.
  • the spiral spring 1 comprises an inner end curve 4 and an outer end curve 5.
  • a detail of a section 6 of the spiral spring 1 is shown in FIG. 8.
  • the modified portion 3 comprises a portion 3 'extending in the direction
  • the structure of a solid material having the glass transition phenomenon (in other words, its specific volume or density) can be set according to the thermal cycle (heating-cooling ramp) to which it is subjected. It is therefore possible, depending on the thermal cycle, to freeze the structure of a material having the
  • vitreous transition phenomenon either in a particular vitreous state or even in a crystalline state.
  • a glass it is possible to freeze its structure by subjecting it to a thermal cycle which does not include a passage in the liquid state of the material. That said, by remaining in the solid vitreous zone of the material, it is possible to change its structure by subjecting it to a particular thermal cycle.
  • Silica-based glasses are densified following an increment of their fictitious temperature.
  • the fictional temperature of a glass is the
  • the local modification of the vitreous material by a focused laser treatment using ultrashort laser pulse durations makes it possible to obtain a modified portion by means of phenomena of a thermal nature such as those described above.
  • the phenomena of thermal nature leading to a local change in the structure of the glassy material can be adjustable, in particular by playing with the repetition rate of the laser.
  • the modified portion 3 has a density that differs from the density of the vitreous material.
  • the different density of the modified portion 3 may comprise the creation of a crystalline polymorph of an amorphous silica (such as, for example, alpha or beta quartz, stishovite, tridymite, chalcedony or cristobalite), or the formation metal clusters according to the presence or absence of impurities or the formation of a densified region following a local increment of the fictitious temperature of the silica, or the formation of zones
  • an amorphous silica such as, for example, alpha or beta quartz, stishovite, tridymite, chalcedony or cristobalite
  • the laser is focused at the nanoscale or micrometer scale.
  • Such a laser allows the generation of the modified portion whose modulus of elasticity CTE and stiffness can be modified, and this in proportions that are not necessarily constant or linear.
  • the formation of the modified portion having a second CTE different from the first CTE ⁇ makes it possible to adjust, on a case by case basis, the value of the effective CTE e ff of the resonator.
  • the method of the invention offers the advantage of being able to accurately and individually adjust the thermomechanical properties of each resonator for the purpose of a fine adjustment of the temperature behavior of the oscillator.
  • FIG. 9 shows a wafer 7 made of vitreous material in which a plurality of spiral springs 1 are manufactured.
  • FIG. 10 shows a sectional view of the wafer of FIG. 9 during the local modification step making it possible to form the modified portion 3, for example, by irradiation with a focused laser 8.
  • the laser beam 8 can move, for example x, y, z, so as to carry out the local modification in a more specific form. or less complex, here an "annular" shape in the body body of the spiral spring 1.
  • the parts indicated by the numeral "9" correspond to the vitreous material which is machined in the machining step.
  • FIG. 11 illustrates the sectional view of FIG. 9 after the machining step during which the parts 9 have been eliminated by machining, releasing the spiral springs 1 comprising the modified portion 3.
  • FIG. 9 also shows parts 7a, 7b, 7c of the wafer 7 for which the spiral springs 1 have undergone a different irradiation treatment according to the part 7a, 7b, 7c of the wafer in which the springs are located.
  • Spirals 1 Therefore, the spiral springs 1 in one of the different parts 7a, 7b, 7c may have a modified portion 3 whose physical properties differ from those of the modified portion 3 of the spiral springs 1 in the other parts 7a, 7b, 7c of the wafer 7.
  • the step of locally modifying the vitreous material may therefore be performed locally not only at the scale of the body used in deformation (spiral spring) 1 but also at the scale of the wafer 7.
  • the method also has the advantage of being applicable to a broad category of glasses including those called “non-photostructurables”. Therefore, the vitreous material processing process takes place directly without the need for additional steps such as
  • thermoelastic properties of the vitreous material without any restriction as to the location of the modified portion in the volume of the vitreous material.
  • the invention is not limited to a resonator-balance spring type but also applies to any type of resonator adapted to a watch application, such as a tuning fork-type resonator, whose body used in deformation, that is to say the spiral spring in the case of a balance spring resonator or the vibrating blades in the case of a tuning fork resonator, is made of a vitreous material having a first thermoelastic coefficient, and so as to include a modified portion 3 having a second CTE different from the first CTE ⁇ .
  • a tuning fork-type resonator whose body used in deformation, that is to say the spiral spring in the case of a balance spring resonator or the vibrating blades in the case of a tuning fork resonator, is made of a vitreous material having a first thermoelastic coefficient, and so as to include a modified portion 3 having a second CTE different from the first CTE ⁇ .
  • the discussion has concerned a spiral spring made of a vitreous material, as defined above.
  • the present invention also relates to a spiral spring made of any material transparent to the wavelengths of a laser (for example of the femtosecond type).
  • the present invention relates to a spiral spring made of a partially or even entirely crystalline material, especially comprising glasses, silicon (monocrystalline, polycrystalline), glass-ceramics, ceramics, etc.
  • the material is locally modified (for example using a laser, preferably femtosecond type) so as to produce a modified portion 3 having a second Young's modulus E2 which differs from a first module of Young E1 of the unmodified portion of the material.
  • the stiffness of the spiral spring 1 depends on its Young's modulus (its rigidity) but also the ratio of its section to its length. It can be assumed, however, that the ratio of the section to the length of the spiral spring will not be changed by the local modification.
  • the material has a first stiffness K1 and the modified portion has a second stiffness K2 which may be different from the first stiffness K1.
  • the adjustment of the effective Young's modulus E e ff of the hairspring 1 thus makes it possible to adjust a value of the effective stiffness K e ff of the hairspring 1, without having to modify either the height or the thickness of the spring -spiral 1.
  • the effective stiffness K e ff spiral spring 1 is defined by the combination of the first and the second stiffness K1, K2.
  • the local modification of the stiffness of the spiral spring 1 can be used for adjusting the frequency of the spiral spring 1, for example before assembly with a pendulum. This facilitates for example the spiral-balance balance pairing operations, or even pairing of the regulating organ as a whole with respect to the movement, while at the same time as allowing a significant increase in the efficiency of this operation.
  • modified portion 3 may comprise a portion 3 'extending in the longitudinal direction of the spiral spring 1 continuously and / or discontinuously.
  • the modification of the effective Young's modulus E e ff and / or of the effective stiffness K e ff in a specific portion of the spiral spring 1, as for example in the end curve of the spiral, makes it possible to optimize the concentricity of the its deployment relative to the axis of the balance. It is also possible to compensate for sagging effects due to gravity or other isochronous defects. According to another embodiment, the material is locally modified so as to adjust the internal stresses in the modified portion 3.
  • the local modification is carried out using a laser treatment, preferably using a laser using ultra-short pulse durations, that is to say durations of pulses between a few femtoseconds to a few nanoseconds, and
  • the modifications thus induced in the modified portion of the material may be of a continuous nature, the formation of (nano) self-organized structures, and / or the formation of empty nano.
  • These modifications can induce different types of anisotropy in the modified portion of the material, which can have significant effects on the chemical, optical, thermal and / or mechanical properties.
  • the change in the volume of the material resulting from the exposure induces stresses around the laser exposed areas, and thus changes in the internal stresses, which may be compressive or tensile stresses, in the modified portion.
  • the stress induced depends mainly on two parameters: polarization and pulsation energy.
  • the local modification can be performed so as not to influence the thermocompensation of the modified portion of the material, or at least not linearly.
  • the effective Young's modulus and the effective CTE can be controlled by the total amount of modified areas while the residual stresses can be controlled by the location of the affected areas relative to the realized component.

Abstract

The invention relates to a resonator that is intended for equipping a timepiece control member and comprises a body (1) that is used when deformed. The body (1) is made of a glass material having a first thermoelastic coefficient (β1). Said glass material comprises a portion (3) that is locally modified such that said modified portion (3) has a second thermoelastic coefficient (02) that is different from the first thermoelastic coefficient (01), such that the resonator is temperature-compensated. The present invention also relates to a method for manufacturing said resonator. The invention also relates to a balance spring made of a material that is not necessarily glass but that is transparent at laser wavelengths.

Description

Résonateur horloger thermocompensé et méthode pour réaliser un tel résonateur  Thermocompensated clock resonator and method for producing such a resonator
Domaine technique Technical area
[0001] L'invention se rapporte à un résonateur thermocompensé destiné à équiper un organe régulateur d'une pièce d'horlogerie ainsi qu'à une méthode de fabrication dudit résonateur. L'invention se rapporte également à un résonateur dont la valeur ajustée du module de Young et/ou de la raideur est ajustée. The invention relates to a thermocompensated resonator for equipping a regulating member of a timepiece and a method of manufacturing said resonator. The invention also relates to a resonator whose adjusted Young's modulus value and / or stiffness is adjusted.
Etat de la technique State of the art
[0002] La base de temps d'une pièce d'horlogerie fait appel à un résonateur dont les oscillations doivent être entretenues. Un résonateur avec une fréquence de résonance donnée remplit le plus souvent des cas cette fonction. Il est connu, notamment, des résonateurs tels que le pendule (qui fait intervenir la gravité), le quartz (piézoélectricité), le diapason (lames vibrantes) ou encore les ressorts de rappel de formes plus diverses, selon qu'ils sont conçus pour osciller sur de grandes ou de petites amplitudes. The time base of a timepiece uses a resonator whose oscillations must be maintained. A resonator with a given resonant frequency usually fulfills this function. It is known, in particular, resonators such as the pendulum (which involves gravity), quartz (piezoelectricity), the tuning fork (vibrating blades) or the return springs of more diverse shapes, depending on whether they are designed for oscillate on large or small amplitudes.
[0003] En particulier, dans la plupart des montres mécaniques, l'organe réglant est constitué par l'ensemble balancier/spiral. Le ressort-spiral est dans ce cas fixé par une extrémité sur l'axe de balancier et par l'autre extrémité sur un pont dans lequel pivote l'axe du balancier. De cette manière, le ressort se contracte et se détend de manière alternative autour de son centre durant les oscillations du balancier. Depuis sa création, quelques centaines d'années en arrière, et jusqu'à nos jours, les ressorts spiraux sont principalement fabriqués à partir d'une lame métallique de section rectangulaire enroulée sur elle-même sous forme de spiral d'Archimède. In particular, in most mechanical watches, the regulating member is constituted by the pendulum / spiral assembly. The spiral spring is in this case fixed by one end on the balance shaft and the other end on a bridge in which pivots the axis of the balance. In this way, the spring contracts and relaxes alternately around its center during pendulum oscillations. Since its creation, a few hundred years back, and until today, the spiral springs are mainly made from a metal blade of rectangular section wound on itself in the form of spiral Archimedes.
[0004] Les ressorts-spiraux métalliques actuels sont principalement réalisés à base de FeNiCr (communément appelé élinvar) ou de NbZr, ce dernier ayant en plus du premier une susceptibilité magnétique réduite. Le choix de ces matériaux est principalement dicté par le besoin d'avoir un résonateur dont les propriétés mécaniques et géométriques varient le moins possible lors de changements de température auxquels peut être exposée la montre, à savoir une plage pouvant aller jusqu'à une [0004] Current metal coil springs are mainly made from FeNiCr (commonly known as élinvar) or NbZr, last having in addition to the first a reduced magnetic susceptibility. The choice of these materials is mainly dictated by the need to have a resonator whose mechanical and geometric properties vary as little as possible during changes in temperature to which the watch may be exposed, namely a range of up to
soixantaine de degrés, plus spécifiquement dans une plage de 8 à 38 °C pour les montres certifiées devant répondre aux critères régissant la certification « chronomètre ». 60 degrees, more specifically in the range of 8 to 38 ° C for certified watches that meet the criteria for "chronometer" certification.
[0005] Ces résonateurs sont difficiles à fabriquer. Il s'agit de garantir la maîtrise et la répétabilité des procédés de fabrication métallurgiques complexes ayant un impact définitif dans les propriétés mécaniques intrinsèques du ressort-spiral. De faibles variations de composition chimique de l'alliage, de traitements thermiques, de taux d'écrouissage de la matière lors de sa transformation d'un lingot à un fil fin, ou encore des imprécisions géométriques des fils produits sont à l'origine de grandes variations dans les propriétés mécaniques des spiraux produits. Des opérations de retouche du ressort-spiral lors du réglage de la montre sont effectuées afin de pallier en partie à ces inconvénients. These resonators are difficult to manufacture. The aim is to guarantee the control and repeatability of complex metallurgical manufacturing processes that have a definitive impact on the intrinsic mechanical properties of the spiral spring. Slight variations in the chemical composition of the alloy, heat treatments, hardening rate of the material during its transformation of an ingot to a fine wire, or geometrical inaccuracies of the son produced are at the origin of large variations in the mechanical properties of the spirals produced. The spiral spring retouching operations during the adjustment of the watch are performed in order to partially overcome these disadvantages.
[0006] De plus, l'amplitude élevée du balancier et un couple faible d'entretien de ses oscillations ont favorisé le développement d'un ressort en forme de spiral pour équiper l'organe réglant des montres mécaniques. Cette forme géométrique présente cependant des inconvénients, comme par exemple l'action de la gravité. En effet, les faibles déformations dues au propre poids du spiral peuvent induire des défauts dans le In addition, the high amplitude of the balance and a low maintenance torque of its oscillations have favored the development of a spiral-shaped spring to equip the regulating organ mechanical watches. This geometric shape, however, has disadvantages, such as the action of gravity. Indeed, the small deformations due to the own weight of the hairspring can induce defects in the
développement concentrique du spiral autour de l'axe du balancier et donc affecter la précision de la montre. concentric development of the spiral around the axis of the balance and thus affect the accuracy of the watch.
[0007] D'autre part, certains alliages métalliques très répandus dans la fabrication de spiraux, comme ceux à base de FeNiCr, sont sensibles à l'action d'un champ magnétique. [0008] Une alternative aux résonateurs métalliques a été proposée sur la base de silicium. Ce matériau arbore un certain nombre d'avantages, comme des propriétés mécaniques stables, une insensibilité aux champs magnétiques, des procédés de microfabrication (DRIE notamment) permettant une grande précision et reproductibilité des géométries, une densité faible, donc des perturbations dues à la gravité réduites, et un facteur de qualité élevé. Le brevet JPH06117470 (Yokogawa, 1992) mentionne notamment un ressort-spiral réalisé dans un tel matériau. On the other hand, some metal alloys widely used in the manufacture of spirals, such as those based on FeNiCr are sensitive to the action of a magnetic field. An alternative to metal resonators has been proposed on the basis of silicon. This material has a number of advantages, such as stable mechanical properties, insensitivity to magnetic fields, microfabrication processes (especially DRIE) allowing a high accuracy and reproducibility of geometries, a low density, therefore reduced disturbances due to gravity, and a high quality factor. Patent JPH06117470 (Yokogawa, 1992) mentions in particular a spiral spring made of such a material.
[0009] Le coefficient thermoélastique négatif du module d'élasticité de ce matériau est cependant trop important pour garantir la précision de fréquence d'un tel résonateur. Des recherches sur le sujet ont mené à l'ajout d'une couche d'un matériau dont le coefficient thermoélastique est opposé à celui du silicium. Ainsi, Berry et Pritchet (IBM Technical Disclosure Bulletin #1237, Vol. 14, No. 4, 1971) ont montré que la silice amorphe (Si02) répondait avantageusement à cette condition. C'est ce que Shen et al. The negative thermoelastic coefficient of the modulus of elasticity of this material is however too important to ensure the frequency accuracy of such a resonator. Research on the subject led to the addition of a layer of a material whose thermoelastic coefficient is opposite to that of silicon. For example, Berry and Pritchet (IBM Technical Disclosure Bulletin # 1237, Vol 14, No. 4, 1971) have shown that amorphous silica (SiO 2 ) has a favorable response to this condition. This is what Shen et al.
(Sensors & Actuators A 95, 2001) ont vérifié, exposant les calculs permettant d'optimiser l'épaisseur de cette couche pour une épaisseur donnée du barreau d'un résonateur en silicium monocristallin ou polycristallin, indiquant que la même démarche peut être utilisée pour tout autre matériau de résonateur. (Sensors & Actuators A 95, 2001) have verified, exposing the calculations to optimize the thickness of this layer for a given thickness of the bar of a monocrystalline or polycrystalline silicon resonator, indicating that the same approach can be used to any other resonator material.
[0010] Le document EP1422436 divulgue un ressort spiral issu du découpage d'une plaque {001} en Silicium. Cette invention a pour but de pallier les inconvénients décrits ci-dessus proposant un spiral dont la sensibilité aux variations de température et aux champs magnétiques est minimisée. De plus la technologie de fabrication de précision (Ion Etching) proposée pour la mise en forme de ces spiraux, combinée à une The document EP1422436 discloses a spiral spring from the cutting of a plate {001} Silicon. This invention aims to overcome the disadvantages described above proposing a spiral whose sensitivity to temperature variations and magnetic fields is minimized. In addition the precision manufacturing technology (Ion Etching) proposed for the shaping of these spirals, combined with a
modélisation et une compensation de l'anisotropie due à l'orientation cristalline du matériau, permet de réduire les retouches de l'organe réglant et d'améliorer la reproductibilité du procédé. modeling and compensation of the anisotropy due to the crystalline orientation of the material makes it possible to reduce the retouches of the regulating organ and to improve the reproducibility of the process.
[0011] Cependant, la dérive de la fréquence des résonateurs fabriqués en silicium monocristallin peut nécessiter des corrections complexes selon les applications. Ceci vient du caractère anisotrope des grandeurs physiques comme le module de Young et le coefficient de dilatation thermique de ce matériau. [0012] Le but de l'invention décrite dans le document EP2590325 est de pallier au moins en partie à l'inconvénient cité précédemment. Ce document divulgue un résonateur thermocompensé comportant un ressort en céramique dont la surface est revêtue avec au moins un deuxième matériau dont le CTE (coefficient thermoélastique) est de signe opposé au CTE du matériau utilisé pour l'âme du ressort. However, the frequency drift of resonators made of monocrystalline silicon may require complex corrections depending on the application. This is due to the anisotropic nature of physical quantities such as the Young's modulus and the coefficient of thermal expansion of this material. The purpose of the invention described in EP2590325 is to overcome at least in part the disadvantage mentioned above. This document discloses a thermocompensated resonator comprising a ceramic spring whose surface is coated with at least one second material whose CTE (thermoelastic coefficient) is of opposite sign to the CTE of the material used for the spring core.
[0013] L'utilisation de revêtements dans les résonateurs de montres compromet leur robustesse mécanique. Les revêtements déposés sur les ressorts doivent supporter des contraintes très importantes. Typiquement ces contraintes se concentrent à proximité de l'interface revêtement- substrat. La répétition des déformations lors du développement The use of coatings in the watch resonators compromises their mechanical robustness. The coatings deposited on the springs must bear very important constraints. Typically these constraints are concentrated near the coating-substrate interface. The repetition of deformations during development
concentrique du ressort (armage et désarmage) peut donc résulter dans la cassure du revêtement ou dans sa délamination, ceci entraînant un changement sensible de la fréquence d'oscillation. [0014] Nous mentionnons enfin le brevet EP1958031 qui fait état d'une compensation thermique par modification des propriétés thermoélastiques d'un verre dit photostructurable suite à l'exposition à une source UV. Cette technique présente plusieurs limitations inhérentes au choix du matériau et du procédé. Le matériau est d'une part limité à une catégorie particulière de verres dits « photostructurables », qui sont des verres dopés notamment avec un élément photoactif comme le cérium et avec un agent de Concentric spring (arming and disarming) can result in the breakage of the coating or in its delamination, resulting in a significant change in the frequency of oscillation. Finally we mention the patent EP1958031 which reports a thermal compensation by modifying the thermoelastic properties of a so-called photostructurable glass following exposure to a UV source. This technique has several limitations inherent in the choice of material and process. The material is on the one hand limited to a particular category of so-called "photostructurable" glasses, which are doped glasses in particular with a photoactive element such as cerium and with a photoactive agent.
nucléation comme l'argent. Lors de l'exposition de l'élément photoactif à la radiation ultraviolette ce dernier est photoionisé, ceci donnant lieu à un électron. Ces électrons seront donc piégés par la suite par les agents de nucléation ce qui permettra la formation de centres de nucléation ou des clusters à l'origine du processus de formation de nano ou de microcristaux dans la matrice vitreuse. Le processus décrit précédemment est très dépendant de la température, raison pour laquelle des traitements thermiques conséquents (T > 500°C) sont requis afin de compléter (figer ?)le processus de photostructuration de ce type de matériaux. nucleation like money. When the photoactive element is exposed to ultraviolet radiation, the latter is photoionized, giving rise to an electron. These electrons will be trapped later by the nucleating agents which will allow the formation of nucleation centers or clusters at the origin of the process of formation of nano or microcrystals in the vitreous matrix. The process described above is very dependent on the temperature, which is why substantial thermal treatments (T> 500 ° C) are required in order to complete (freeze?) The photostructuring process of this type of material.
[0015] D'autre part le procédé de photostructuration décrit dans le brevet EP1958031 nécessite l'utilisation de masques afin de cacher quelques zones de la matière photostructurable de l'exposition au rayonnement UV. Il n'est donc pas possible par ce procédé de réaliser des modifications locales de la matière photostructurable sans que la partie de la couche extérieure du substrat située entre les zones modifiées et la source lumineuse ne soit elle aussi modifiée. Enfin, ce procédé se limite aux longueurs d'onde UV de la lumière et à l'utilisation des outillages spécifiques. On the other hand the photostructuring process described in patent EP1958031 requires the use of masks to hide some areas of the photostructurable material from exposure to UV radiation. It is therefore not possible by this method to make local modifications of the photostructurable material without the portion of the outer layer of the substrate between the modified areas and the light source is also changed. Finally, this process is limited to UV wavelengths of light and the use of specific tools.
Bref résumé de l'invention Brief summary of the invention
[0016] Dans le cadre de la présente invention, on propose de palier à ces inconvénients en proposant un résonateur destiné à équiper un organe régulateur, ou résonateur, d'une pièce d'horlogerie, le résonateur comportant un corps utilisé en déformation et étant réalisé dans un matériau vitreux ayant un premier coefficient thermoélastique (CTE), ledit matériau vitreux comportant une portion modifiée de manière à ce que ladite portion modifiée ait un second CTE différent du premier CTE, de sorte à que le résonateur soit thermocompensé. In the context of the present invention, it is proposed to overcome these drawbacks by proposing a resonator for equipping a regulator member, or resonator, of a timepiece, the resonator comprising a body used in deformation and being made of a vitreous material having a first thermoelastic coefficient (CTE), said vitreous material having a modified portion so that said modified portion has a second CTE different from the first CTE, so that the resonator is thermally compensated.
[0017] La présente invention se rapporte également à une méthode de fabrication du résonateur, comprenant les étapes d'usiner une pièce de matériau vitreux ayant un premier CTE afin de former le corps utilisé en déformation du résonateur; et de modifier localement le matériau vitreux de manière à former ladite portion modifiée ayant un second CTE différent du premier CTE. The present invention also relates to a method of manufacturing the resonator, comprising the steps of machining a piece of vitreous material having a first CTE to form the body used in deformation of the resonator; and locally modifying the vitreous material to form said modified portion having a second CTE different from the first CTE.
[0018] Dans un mode de réalisation, la modification locale est réalisée à l'aide d'un procédé d'irradiation tel qu'un traitement laser. Le procédé d'irradiation peut faire intervenir une absorption multiphotonique dans le matériau vitreux. In one embodiment, the local modification is carried out using an irradiation method such as a laser treatment. The irradiation process may involve multiphoton absorption in the vitreous material.
[0019] La portion modifiée est ajustée de manière à ce que ses propriétés physiques compensent les propriétés physiques du reste du matériau vitreux (portion non modifiée). De la sorte, le résonateur est thermocompensé, et sa raideur peut elle aussi être ajustée. [0020] Le résonateur ainsi obtenu est amagnétique et thermocompensé tout en évitant l'utilisation de revêtements. The modified portion is adjusted so that its physical properties compensate for the physical properties of the rest of the vitreous material (unmodified portion). In this way, the resonator is thermocompensated, and its stiffness can also be adjusted. The resonator thus obtained is non-magnetic and thermocompensated while avoiding the use of coatings.
[0021] L'invention concerne également un ressort-spiral réalisé dans un matériau qui n'est pas nécessairement vitreux mais qui est transparent aux longueurs d'ondes d'un laser (de type femtoseconde). Par exemple, la présente invention concerne un ressort-spiral réalisé dans un matériau partiellement, voire entièrement cristallin, comprenant notamment des verres, du silicium (monocristallin, polycristallin), des vitrocéramiques, des céramiques, etc. [0022] Selon un mode de réalisation, une pièce d'horlogerie comporte un corps utilisé en déformation, le corps étant réalisé dans un matériau transparent aux longueurs d'ondes d'un laser et ayant un premier module de Young; ledit matériau comportant une portion localement modifiée de manière à ce que ladite portion modifiée ait un second module de Young qui diffère du premier module de Young de la portion non modifiée du matériau. The invention also relates to a spiral spring made of a material which is not necessarily vitreous but which is transparent to the wavelengths of a laser (femtosecond type). For example, the present invention relates to a spiral spring made of a partially or even entirely crystalline material, especially comprising glasses, silicon (monocrystalline, polycrystalline), glass-ceramics, ceramics, etc. According to one embodiment, a timepiece comprises a body used in deformation, the body being made of a material transparent to the wavelengths of a laser and having a first Young's modulus; said material having a portion locally modified so that said modified portion has a second Young's modulus which differs from the first Young's modulus of the unmodified portion of the material.
[0023] Le matériau peut également comporter une portion localement modifiée de manière à ce que ladite portion modifiée ait une seconde raideur qui diffère de la première raideur du matériau non modifié. [0024] L'invention concerne également une méthode de fabrication du résonateur, comprenant les étapes: The material may also comprise a portion locally modified so that said modified portion has a second stiffness which differs from the first stiffness of the unmodified material. The invention also relates to a method of manufacturing the resonator, comprising the steps of:
d'usiner une pièce de matériau ayant un premier module de Young afin de former le corps utilisé en déformation du résonateur; et de modifier localement le matériau de manière à former ladite portion modifiée ayant un second module de Young différent du premier module de Young.  machining a piece of material having a first Young's modulus to form the body used in deformation of the resonator; and locally modifying the material to form said modified portion having a second Young's modulus different from the first Young's modulus.
[0025] Le matériau peut également être modifié localement de manière à former ladite portion modifiée ayant une second raideur différente de la premier raideur du matériau non modifié. [0026] Selon une forme d'exécution, la méthode comprend l'ajustement de la fréquence du ressort-spiral. Cet ajustement peut être réalisé avant est l'assemblage du ressort-spiral avec un balancier. The material may also be modified locally so as to form said modified portion having a second stiffness different from the first stiffness of the unmodified material. According to one embodiment, the method comprises adjusting the frequency of the spiral spring. This adjustment can be made before the assembly of the spiral spring with a balance.
[0027] Encore selon une forme d'exécution, la fréquence du ressort- spiral est ajusté de manière à appairer le ressort-spiral avec le balancier. According to one embodiment, the frequency of the spiral spring is adjusted so as to match the spiral spring with the balance.
Brève description des figures Brief description of the figures
[0028] Des exemples de mise en œuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles : Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
les figures 1 à 6 représentent une vue en coupe d'une lame d'un ressort-spiral, selon un mode de réalisation;  Figures 1 to 6 show a sectional view of a leaf of a spiral spring, according to one embodiment;
la figure 7 montre une vue de dessus d'un ressort-spiral 1 selon un mode de réalisation;  Figure 7 shows a top view of a spiral spring 1 according to one embodiment;
la figure 8 montre un détail d'une section du ressort-spiral de la figure 7;  Figure 8 shows a detail of a section of the spiral spring of Figure 7;
la figure 9 montre un wafer en matériau vitreux dans lequel est fabriquée une pluralité de ressorts-spiraux, selon un mode de réalisation;  FIG. 9 shows a wafer made of glassy material in which a plurality of spiral springs is produced, according to one embodiment;
la figure 10 est une vue en coupe du wafer de la figure 9 pendant un procédé d'irradiation, selon un mode de réalisation; et  Fig. 10 is a sectional view of the wafer of Fig. 9 during an irradiation process, according to one embodiment; and
la figure 11 illustre la vue en coupe de la figure 9 après une étape d'usinage, selon un mode de réalisation.  Figure 11 illustrates the sectional view of Figure 9 after a machining step, according to one embodiment.
Exemple(s) de mode de réalisation de l'invention [0029] Selon un mode de réalisation, un ressort-spiral destiné à équiper un résonateur de type balancier-spiral d'une montre mécanique est réalisé dans un matériau vitreux. Ici, l'expression "matériau vitreux" comprend notamment des matériaux pseudo-amorphes (c'est-à-dire non cristallins) présentant le phénomène de transition vitreuse. La transition vitreuse est un phénomène réversible de transition entre la forme dure et la forme « fondue » ou caoutchouteuse d'un matériau amorphe. La température de transition vitreuse d'un matériau amorphe est toujours plus basse que le point de fusion de sa forme cristalline. On entend également par " matériau vitreux" un matériau étant partiellement vitreux (donc au moins Example (s) of Embodiment of the Invention According to one embodiment, a spiral spring intended to equip a spiral balance-type resonator of a mechanical watch is made of a vitreous material. Here, the term "vitreous material" includes in particular pseudo-amorphous (that is to say non-crystalline) materials having the glass transition phenomenon. The glass transition is a reversible transition between the hard form and the "melted" or rubbery form of an amorphous material. The temperature of Glass transition of an amorphous material is always lower than the melting point of its crystalline form. The term "vitreous material" is also understood to mean a material that is partially vitreous (therefore at least
partiellement amorphe). [0030] Le matériau vitreux peut comprendre n'importe quel verre tel que défini ci-dessus. De manière préférée, le matériau vitreux possède un faible coefficient de dilatation thermique, c'est-à-dire inférieur à 1 ppm/°C. Par exemple, le matériau vitreux est à base de silice (aSi02 amorphe) ayant un coefficient de dilatation thermique d'environ 0.5 ppm/°C. Par exemple, le matériau vitreux peut comprendre une silice amorphe pure, un borosilicate, un aluminosilicate, ou un verre à base de silice avec un taux d'impuretés contrôlé. partially amorphous). The vitreous material may comprise any glass as defined above. Preferably, the vitreous material has a low coefficient of thermal expansion, that is to say less than 1 ppm / ° C. For example, the vitreous material is silica-based (amorphous aSiO 2) having a coefficient of thermal expansion of about 0.5 ppm / ° C. For example, the vitreous material may comprise a pure amorphous silica, a borosilicate, an aluminosilicate, or a silica-based glass with a controlled impurity level.
[0031 ] Selon le mode de réalisation, le ressort-spiral 1 comprend un matériau vitreux ayant un premier βι. Le matériau vitreux est localement modifié de sorte à produire une portion modifiée 3 à même le matériau vitreux, la portion modifiée 3 du matériau vitreux ayant un second CTE β2 différent du premier CTE βι. Autrement dit, la portion modifiée comprend ledit matériau vitreux ayant subi, localement, des modifications According to the embodiment, the spiral spring 1 comprises a vitreous material having a first βι. The vitreous material is locally modified so as to produce a modified portion 3 of the same vitreous material, the modified portion 3 of the vitreous material having a second CTE β2 different from the first CTE βι. In other words, the modified portion comprises said vitreous material having undergone, locally, modifications
structurelles. De la sorte, le ressort-spiral 1 est caractérisé par un CTE effectif ββ qui est défini par la combinaison du premier CTE βι et du second CTE β2. La présence de la portion modifiée permet de minimiser la dérive thermique du résonateur formé par le ressort-spiral et le balancier. structural. In this way, the spiral spring 1 is characterized by an effective CTE β β which is defined by the combination of the first CTE βι and the second CTE β2. The presence of the modified portion minimizes the thermal drift of the resonator formed by the spiral spring and the balance.
[0032] Le matériau vitreux a également un premier coefficient The vitreous material also has a first coefficient
d'expansion thermique i et la portion modifiée a un second coefficient d'expansion thermique 0C2 qui peut être différent du premier d'expansion thermique ai. Le matériau vitreux a également un premier module de Young Ei et la portion modifiée a un second module de Young E2 qui peut être différent du premier module de Young E L Le ressort-spiral 1 est donc également caractérisé par un coefficient d'expansion thermique effectif aeff qui est défini par la combinaison du premier et second coefficient thermal expansion i and the modified portion has a second coefficient of thermal expansion 0C2 which may be different from the first thermal expansion ai. The vitreous material also has a first Young's modulus Ei and the modified portion has a second Young's modulus E2 which may be different from the first Young's modulus EL The spiral spring 1 is therefore also characterized by an effective coefficient of thermal expansion a e ff which is defined by the combination of the first and second coefficients
d'expansion thermique ai, 0C2 et par un module de Young effectif Eeff qui est défini par la combinaison du premier et second module de Young E1, E2. [0033] Les figures 1 à 6 représentent une section de la lame d'un ressort- spiral 1 comprenant une matrice dans un matériau au moins partiellement vitreux 2 et une portion modifiée 3. Ladite portion modifiée peut of thermal expansion ai, 0C2 and an effective Young's modulus E e ff which is defined by the combination of the first and second Young's modulus E1, E2. Figures 1 to 6 show a section of the blade of a spiral spring 1 comprising a matrix in an at least partially vitreous material 2 and a modified portion 3. Said modified portion may
comprendre une zone modifiée centrale 3 (figures 1 et 4), deux zones modifiées surfaciques 3 (figures 2 et 3), ou encore une pluralité de zones modifiées 3 distribuées dans la matrice de matériau vitreux (figures 5 et 6). Sans être limitatif aux variantes illustrées, les zones exposées 3 pourront avoir des géométries et des répartitions variées, une asymétrie de ces zones pouvant aussi être choisie pour pallier à des contraintes de compression et de traction différentes par rapport à la fibre neutre de la lame. Ces différentes géométries peuvent être, si nécessaire, combinées sur des portions réparties le long de la lame pour respecter l'isotropie du matériau ou pour répondre à d'autres besoins. Les zones exposées 3 peuvent se trouver en n'importe quel endroit de la lame, de préférence sans contact avec la surface de celle-ci. comprise a central modified zone 3 (FIGS. 1 and 4), two modified surface zones 3 (FIGS. 2 and 3), or a plurality of modified zones 3 distributed in the vitreous material matrix (FIGS. 5 and 6). Without being limiting to the illustrated variants, the exposed areas 3 may have varied geometries and distributions, an asymmetry of these areas may also be chosen to overcome different compressive and tensile stresses compared to the neutral fiber of the blade. These different geometries can be, if necessary, combined on portions distributed along the blade to respect the isotropy of the material or to meet other needs. The exposed areas 3 can be anywhere in the blade, preferably without contact with the surface thereof.
[0034] La configuration de la portion modifiée 3 peut également varier le long du ressort-spiral 1. En particulier, cette variation peut comprendre la configuration géométrique de la portion modifiée 3 qui varie le long du ressort-spiral 1, mais aussi une variation de la valeur du second CTE β2, et possiblement également du second coefficient d'expansion thermique 0C2 et du second module de Young E2,dans les différentes portions modifiées 3, le long du ressort-spiral 1. La portion modifiée 3 peut être arrangée de manière à s'étendre dans la direction longitudinale du ressort-spiral 1 de manière continue (telle des fibres continues) ou de manière discontinue. De la même manière, des géométries allongées de la portion modifiée 3 pourront être orientées dans n'importe quelle direction, de préférence dans la direction longitudinale du ressort-spiral 1. The configuration of the modified portion 3 may also vary along the spiral spring 1. In particular, this variation may comprise the geometric configuration of the modified portion 3 which varies along the spiral spring 1, but also a variation the value of the second CTE β2, and possibly also the second thermal expansion coefficient OC2 and the second Young's modulus E2, in the various modified portions 3, along the spiral spring 1. The modified portion 3 can be arranged from so as to extend in the longitudinal direction of the spiral spring 1 in a continuous manner (such as continuous fibers) or discontinuously. In the same way, elongate geometries of the modified portion 3 may be oriented in any direction, preferably in the longitudinal direction of the spiral spring 1.
[0035] Afin de profiter de la haute précision et répétabilité des procédés de microfabrication et du procédé de thermocompensation proposé, la géométrie du ressort-spiral 1 pourra de manière avantageuse intégrer des moyens d'attache à ses deux extrémités, comme ils sont connus de l'homme du métier, avec des moyens de montage rigides ou, de préférence, élastiques. Pour des besoins d'identification divers (appairage, etc.), des références d'identification pourront être micro-gravés sur le ressort-spiral In order to take advantage of the high precision and repeatability of the microfabrication processes and the proposed thermocompensation process, the geometry of the spiral spring 1 may advantageously incorporate fastening means at both ends, as they are known in the art. the person skilled in the art, with rigid mounting means or, preferably, elastic. For various identification purposes (pairing, etc.), identification references may be micro-engraved on the spiral spring
[0036] La dérive thermique du résonateur concerne les variations relatives de la fréquence d'oscillation de l'organe réglant suite à des changements de température dans la plage de 8 à 38°C. Les variations relatives de fréquence avec la température dépendent principalement du coefficient d'expansion thermique effectif oceff et du CTE effectif eff du ressort-spiral 1. The thermal drift of the resonator relates to the relative variations of the oscillation frequency of the regulating organ following temperature changes in the range of 8 to 38 ° C. The relative frequency variations with the temperature mainly depend on the effective coefficient of thermal expansion oc e ff and the effective CTE e ff spiral spring 1.
[0037] Dans le cas particulier du résonateur, la fréquence d'oscillati peut être écrite selon: In the particular case of the resonator, the oscillation frequency can be written according to:
où K est la raideur du ressort-spiral et / le moment d'inertie du balancier. Ce dernier est décrit par l'équation (2): where K is the stiffness of the spiral spring and / the moment of inertia of the balance. The latter is described by equation (2):
/ = mr2 (2) où m est la masse du balancier et r est le rayon de giration du balancier, et K est décrit par l'équation (3): / = mr 2 (2) where m is the mass of the pendulum and r is the radius of gyration of the pendulum, and K is described by equation (3):
K = Hîl (3) K = H1l (3)
12L  12L
où Eeff est le module de Young effectif du ressort-spiral, h la hauteur ressort-spiral, e l'épaisseur ressort-spiral et L la longueur ressort-spiral. [0038] En première approximation la variation relative de la fréquence en fonction de la température peut être formulée selon: where Eeff is the effective Young's modulus of the spiral spring, h is the spiral spring height, e is the spring-spiral thickness and L is the spring-spiral length. As a first approximation, the relative variation of the frequency as a function of the temperature can be formulated according to:
où A est une constante, eff le coefficient thermoélastique effectif du ressort-spiral, oceff le coefficient d'expansion thermique effectif du ressort- spiral, b le coefficient expansion thermique du balancier. [0039] Si l'on cherche à minimiser la dérive thermique de la fréquence du résonateur, il faudrait satisfaire la relation suivante: where A is a constant, e ff the effective thermoelastic coefficient of the spiral spring, oc e ff the coefficient of effective thermal expansion of the spiral spring, b the coefficient thermal expansion of the balance. If one seeks to minimize the thermal drift of the frequency of the resonator, it should satisfy the following relationship:
[0040] Comme le CTE de la plupart de métaux est très négatif, de l'ordre de 1000 ppm/C, et le coefficient d'expansion thermique est plutôt de l'ordre de 10 ppm/C, des alliages complexes comme le Nivarox CT® ou le Parachrom® ont dû être développés afin de satisfaire l'équation As the CTE of most metals is very negative, of the order of 1000 ppm / C, and the coefficient of thermal expansion is rather of the order of 10 ppm / C, complex alloys such as Nivarox CT® or Parachrom® had to be developed to satisfy the equation
précédente. previous.
[0041] Dans le cas de l'utilisation du silicium monocristallin (CTE ~ -60 ppm/C), on obtient la thermo compensation grâce à la croissance d'une couche de S1O2 amorphe autour de l'âme du ressort-ressort. Le S1O2 amorphe est une des rares matières présentant un CTE positif, de l'ordre de 200 ppm/C. L'épaisseur de la couche de S1O2 pour la thermocompensation du ressort-spiral est prédite en fonction des dimensions de la lame du ressort-spiral comme décrit dans le document EP1422436. Le CTE du ressort- spiral est dans ce cas un CTE effectif peff comprenant la contribution de l'âme en silicium monocristallin du ressort-spiral et la contribution de la couche extérieure en S1O2 amorphe. Ce CTE effectif peff satisfait l'équation (6) pour autant que le b soit connu et que le a du ressort-spiral ne diffère pas significativement du a de l'âme: ββΠ = 2ab - 3a (6). In the case of the use of monocrystalline silicon (CTE ~ -60 ppm / C), the thermo compensation is obtained through the growth of an amorphous S1O2 layer around the spring-spring core. Amorphous S1O2 is one of the few materials with a positive CTE, of the order of 200 ppm / C. The thickness of the S1O2 layer for the thermocompensation of the spiral spring is predicted according to the dimensions of the spiral spring blade as described in EP1422436. The CTE of the spiral spring is in this case an effective CTE p e ff comprising the contribution of the monocrystalline silicon core of the spiral spring and the contribution of the outer layer of amorphous S1O2. This effective CTE p e ff satisfies equation (6) as long as the b is known and the a of the spiral spring does not differ significantly from the a of the core: β βΠ = 2a b - 3a (6).
[0042] Dans la présente invention, lesdites modifications structurelles du matériau vitreux résultent dans un second CTE β2 du matériau vitreux localement modifié (portion modifiée) qui diffère du premier CTE βι du matériau vitreux non-modifié. Le ressort-spiral a donc un CTE effectif peff qui diffère de celui qu'il aurait en absence de la portion modifiée (qui correspondrait alors au premier CTE βι). L'équation (6) peut donc être satisfaite pour le résonateur à l'aide des contributions du premier CTE βι et du second CTE β2 au CTE effectif peff . [0043] Un avantage de la solution proposée est qu'il n'est pas nécessaire d'ajouter ni de faire croître une matière différente à celle formant le ressort-spiral pour modifier le CTE effectif peff du ressort-spiral. De plus, le second CTE β2 peut être modulé de façon contrôlée. [0044] Selon un mode de réalisation, un procédé de fabrication du résonateur, comprend les étapes: In the present invention, said structural modifications of the vitreous material result in a second CTE β2 of the locally modified vitreous material (modified portion) which differs from the first CTE βι of the unmodified vitreous material. The balance spring is thus an effective CTE p eff which differs from that it would have in the absence of the modified portion (which would correspond to the first βι CTE). Equation (6) can therefore be satisfied for the resonator using the contributions of the first CTE βι and the second CTE β2 to the effective CTE p e ff. An advantage of the proposed solution is that it is not necessary to add or grow a different material to that forming the spiral spring to modify the effective CTE e ff spiral spring. In addition, the second CTE β2 can be modulated in a controlled manner. According to one embodiment, a method of manufacturing the resonator, comprises the steps of:
d'usiner une pièce d'un matériau vitreux ayant un premier CTE βι afin de former le résonateur; et  machining a piece of vitreous material having a first CTE βι to form the resonator; and
de modifier localement le matériau vitreux de manière à former ladite portion modifiée 3 ayant un second CTE β2 différent du premier CTE βι-  locally modifying the vitreous material so as to form said modified portion 3 having a second CTE β2 different from the first CTE βι-
[0045] L'étape d'usinage peut être réalisée par un procédé de gravure chimique, par un procédé de gravure physique ou par une combinaison des deux procédés. [0046] L'étape de former ladite portion modifiée 3 peut être réalisée avant, au cours de ou après l'étape d'usinage. Dans le cas où la formation de la portion modifiée 3 est réalisée avant l'étape d'usinage, le procédé peut en outre comprendre une autre étape de formation de la portion modifiée, après l'étape d'usinage. [0047] Dans un mode de réalisation, l'étape de modifier localement le matériau vitreux comprend un traitement laser. The machining step may be performed by a chemical etching process, a physical etching process or a combination of both methods. The step of forming said modified portion 3 can be performed before, during or after the machining step. In the case where the formation of the modified portion 3 is performed before the machining step, the method may further comprise another step of forming the modified portion, after the machining step. In one embodiment, the step of locally modifying the vitreous material comprises a laser treatment.
[0048] Dans une variante, le laser est opéré en régime non ablatif. C'est- à-dire qu'on n'enlève pas de la matière dans la zone où le laser est focalisé. In a variant, the laser is operated in non-ablative mode. That is, no material is removed in the area where the laser is focused.
[0049] Selon un mode de réalisation, le laser utilise des durées According to one embodiment, the laser uses durations
d'impulsions ultracourtes, c'est-à-dire des durées d'impulsions comprises entre quelques femtosecondes à quelques nanosecondes, et ultrashort pulses, that is to say pulse durations between a few femtoseconds to a few nanoseconds, and
préférablement entre quelques femtosecondes à quelques picosecondes. [0050] Des durées d'impulsions laser ultracourtes induisent des modifications structurelles issues de phénomènes non linéaires complexes qui donnent lieu aussi à une modification locale du CTE du module d'élasticité ainsi que du module d'élasticité lui-même. [0051] En particulier, l'utilisation de durées d'impulsion comprises entre quelques femtosecondes et quelques picosecondes favorisent des preferably between a few femtoseconds to a few picoseconds. Ultra-short laser pulse durations induce structural modifications resulting from complex nonlinear phenomena which also give rise to a local modification of the CTE of the modulus of elasticity as well as the modulus of elasticity itself. In particular, the use of pulse durations between a few femtoseconds and a few picoseconds promote
mécanismes d'interaction radiation-matière basés sur l'absorption radiation-matter interaction mechanisms based on absorption
multiphotonique. multiphoton.
[0052] Des durées d'impulsion comprises entre quelques femtosecondes et quelques nanosecondes peuvent être obtenues avec plusieurs types de lasers de longueurs d'onde très diverses comme par exemple, et de préférence, un laser Ti :Sapphire (650 à 1 100 nm), un laser Yb (1030 nm) ou encore un laser dans l'infrarouge moyen (mid infrared, 1050 nm). Pulse times between a few femtoseconds and a few nanoseconds can be obtained with several types of lasers of very different wavelengths, for example, and preferably a Ti: Sapphire laser (650 to 1100 nm) , a Yb laser (1030 nm) or a laser in the mid-infrared (mid infrared, 1050 nm).
[0053] En fonction de la combinaison des paramètres d'opération du laser, notamment de la durée de pulsation, de la puissance et du taux de répétition, la nature précise de l'interaction laser-matière sera différente. Cependant, pour autant qu'une modification structurelle puisse avoir lieu, le premier CTE βι de la matrice vitreuse sera modifié, au moins localement de sorte à obtenir la portion modifiée 3 ayant le second CTE β2. Le même raisonnement s'applique également pour obtenir la portion modifiée 3 ayant le second coefficient d'expansion thermique 0C2 différent du premier d'expansion thermique i et ayant un second module de Young E2 différent du premier module de Young E L As a function of the combination of the laser operating parameters, in particular the pulsation duration, the power and the repetition rate, the precise nature of the laser-material interaction will be different. However, provided that a structural modification can take place, the first CTE βι of the vitreous matrix will be modified, at least locally so as to obtain the modified portion 3 having the second CTE β2. The same reasoning also applies to obtain the modified portion 3 having the second coefficient of thermal expansion 0C2 different from the first thermal expansion i and having a second Young's modulus E2 different from the first Young's modulus E L
[0054] Un tel traitement laser permettrait de modifier le CTE effectif eff du ressort-spiral 1, de modifier le coefficient d'expansion thermique effectif oceff et/ou d'ajuster la valeur du module de Young effectif Eeff dudit ressort 1. Combiné avec la possibilité de travailler au « cas par cas », l'ajustement fin du module de Young effectif Eeff du ressort 1 permet d'ajuster sa raideur (et donc la fréquence du résonateur) sans avoir besoin de modifier ni la hauteur ni l'épaisseur du corps vibrant (1). Ceci facilite par exemple les opérations d'appairage spiral-balancier en même temps que de permettre une augmentation significative du rendement de ces opérations. [0054] Such a laser treatment would change the effective CTE e ff hairspring 1, to modify the coefficient of thermal expansion oceff effective and / or adjust the value of the effective Young's modulus E eff of said spring 1 Combined with the possibility of working on a "case-by-case" basis, the fine adjustment of the effective Young's modulus E f e of spring 1 makes it possible to adjust its stiffness (and thus the frequency of the resonator) without having to modify either the height nor the thickness of the vibrating body (1). This facilitates for example the spiral-balance balancing operations at the same time as allowing a significant increase in the efficiency of these operations.
[0055] La figure 7 montre une vue de dessus d'un ressort-spiral 1 selon un mode de réalisation. Le ressort-spiral 1 comprend une courbe terminale intérieure 4 et une courbe terminale extérieure 5. Un détail d'une section 6 du ressort-spiral 1 est montré à la figure 8. Dans la section 6, la portion modifiée 3 comprend une portion 3' s'étendant dans la direction Figure 7 shows a top view of a spiral spring 1 according to one embodiment. The spiral spring 1 comprises an inner end curve 4 and an outer end curve 5. A detail of a section 6 of the spiral spring 1 is shown in FIG. 8. In section 6, the modified portion 3 comprises a portion 3 'extending in the direction
longitudinale du ressort-spiral 1 de manière continue et de manière discontinue. [0056] La modification du module de Young effectif Eeff dans une portion spécifique du ressort-spiral 1, comme par exemple dans la courbe terminale du spiral, permet d'optimiser la concentricité de son déploiement par rapport à l'axe du balancier. Il est également possible de compenser des effets de d'affaissement dus à la gravité ou encore autres défauts longitudinal spiral spring 1 continuously and discontinuously. The modification of the effective Young's modulus E e ff in a specific portion of the spiral spring 1, as for example in the end curve of the spiral, makes it possible to optimize the concentricity of its deployment with respect to the axis of the balance. . It is also possible to compensate for sagging effects due to gravity or other defects
d'isochronisme. isochronism.
[0057] La structure d'un matériau solide présentant le phénomène de transition vitreuse (autrement dit, son volume spécifique ou sa densité) peut être figée en fonction du cycle thermique (rampe d'échauffement- refroidissement) auquel il est soumis. Il est donc possible, en fonction du cycle thermique, de figer la structure d'un matériau présentant le The structure of a solid material having the glass transition phenomenon (in other words, its specific volume or density) can be set according to the thermal cycle (heating-cooling ramp) to which it is subjected. It is therefore possible, depending on the thermal cycle, to freeze the structure of a material having the
phénomène de transition vitreuse, soit dans un état vitreux particulier ou même dans un état cristallin. Dans le cas particulier d'un verre il est possible de figer sa structure en le faisant subir un cycle thermique qui ne comporte pas de passage dans l'état liquide du matériau. Cela dit, en restant dans la zone vitreuse solide du matériau, il est possible de changer sa structure en le soumettant à un cycle thermique particulier. vitreous transition phenomenon, either in a particular vitreous state or even in a crystalline state. In the particular case of a glass it is possible to freeze its structure by subjecting it to a thermal cycle which does not include a passage in the liquid state of the material. That said, by remaining in the solid vitreous zone of the material, it is possible to change its structure by subjecting it to a particular thermal cycle.
[0058] Les verres à base de silice se densifient suite à un incrément de leur température fictive. La température fictive d'un verre est la Silica-based glasses are densified following an increment of their fictitious temperature. The fictional temperature of a glass is the
température à laquelle sa structure (arrangement atomique) est figée. La température fictive dépend de la vitesse de refroidissement lors d'un cycle thermique. Pour un verre ordinaire, plus élevée est sa température fictive (plus rapidement il est refroidi), plus grand sera son volume spécifique. Dans le cas particulier de la silice, une tendance opposée est observée. En effet, à plus grande température fictive on trouvera des volumes temperature at which its structure (atomic arrangement) is frozen. The dummy temperature depends on the cooling rate during a thermal cycle. For ordinary glass, higher is its fictitious temperature (The faster it is cooled), the greater will be its specific volume. In the particular case of silica, an opposite tendency is observed. In fact, at higher fictitious temperature we will find volumes
spécifiques plus petits. [0059] La modification locale du matériau vitreux par un traitement laser focalisé en utilisant des durées d'impulsions laser ultracourtes permet d'obtenir une portion modifiée grâce à des phénomènes de nature thermique comme ceux décrits ci-dessus. Les phénomènes de nature thermique menant à un changement local de la structure du matériau vitreux peuvent être modulables, notamment en jouant avec le taux de répétition du laser. smaller specific ones. The local modification of the vitreous material by a focused laser treatment using ultrashort laser pulse durations makes it possible to obtain a modified portion by means of phenomena of a thermal nature such as those described above. The phenomena of thermal nature leading to a local change in the structure of the glassy material can be adjustable, in particular by playing with the repetition rate of the laser.
[0060] Il est également connu que l'absorption multiphotonique dans le matériau vitreux peut mener à des phénomènes de nature plus complexe que les phénomènes de nature thermique, par exemple la photoionisation et même la création de nano espaces vides. En effet des modifications locales de la densité d'une matrice vitreuse à base de silice issues de l'interaction avec un laser à durée d'impulsion ultracourte ont été rapportés et ceci sans pour autant que ces phénomènes non linéaires soient totalement compris. [0061] Dans un mode de réalisation, la portion modifiée 3 a une densité qui diffère de la densité du matériau vitreux. La densité différente de la portion modifiée 3 peut comprendre la création d'un polymorphe cristallin d'une silice amorphe (comme par exemple le alpha ou le beta quartz, la stishovite, la tridymite, la calcédoine ou encore la cristobalite), ou la formation de clusters métalliques selon la présence ou pas d'impuretés ou la formation d'une région densifiée suite à un incrément local de la température fictive de la silice, ou encore la formation de zones It is also known that multiphoton absorption in the vitreous material can lead to phenomena of a more complex nature than phenomena of a thermal nature, for example photoionization and even the creation of nano empty spaces. Indeed, local modifications of the density of a vitreous silica-based matrix resulting from the interaction with an ultrashort pulse duration laser have been reported, without this non-linear phenomena being fully understood. In one embodiment, the modified portion 3 has a density that differs from the density of the vitreous material. The different density of the modified portion 3 may comprise the creation of a crystalline polymorph of an amorphous silica (such as, for example, alpha or beta quartz, stishovite, tridymite, chalcedony or cristobalite), or the formation metal clusters according to the presence or absence of impurities or the formation of a densified region following a local increment of the fictitious temperature of the silica, or the formation of zones
structurellement modifiés due à n'importe quel mécanisme d'absorption non linaire. [0062] De manière avantageuse, le laser est focalisé à l'échelle nano ou micrométrique. Un tel laser permet la génération de la portion modifiée dont le CTE du module d'élasticité et la raideur peuvent être modifiés, et ceci dans des proportions qui ne sont pas nécessairement constantes ou linéaires. structurally modified due to any non-linear absorption mechanism. Advantageously, the laser is focused at the nanoscale or micrometer scale. Such a laser allows the generation of the modified portion whose modulus of elasticity CTE and stiffness can be modified, and this in proportions that are not necessarily constant or linear.
[0063] La formation de la portion modifiée ayant un second CTE différent du premier CTE βι permet d'ajuster, au cas par cas, la valeur du CTE effectif peff du résonateur. The formation of the modified portion having a second CTE different from the first CTE βι makes it possible to adjust, on a case by case basis, the value of the effective CTE e ff of the resonator.
[0064] La méthode de l'invention offre l'avantage de pouvoir régler de manière précise et individuelle les propriétés thermomécaniques de chaque résonateur dans le but d'un réglage fin du comportement en température de l'oscillateur. The method of the invention offers the advantage of being able to accurately and individually adjust the thermomechanical properties of each resonator for the purpose of a fine adjustment of the temperature behavior of the oscillator.
[0065] La figure 9 montre un wafer 7 en matériau vitreux dans lequel est fabriquée une pluralité de ressorts-spiraux 1. La figure 10 montre une vue en coupe du wafer de la figure 9 pendant l'étape de modification locale permettant de former la portion modifiée 3, par exemple, par irradiation avec un laser focalisé 8. Comme suggéré dans la figure 10, le faisceau laser 8 peut se déplacer, par exemple en x, y, z, de manière à réaliser la modification locale selon une forme plus ou moins complexe, ici une forme "annulaire" dans la masse du corps du ressort-spiral 1. Dans la figure 10 les parties indiquées par le chiffre "9" correspondent au matériau vitreux qui est usiné dans l'étape d'usinage. La figure 11 illustre la vue en coupe de la figure 9 après l'étape d'usinage pendant laquelle les parties 9 ont été éliminées par l'usinage libérant les ressorts-spiraux 1 comportant la portion modifiée 3. FIG. 9 shows a wafer 7 made of vitreous material in which a plurality of spiral springs 1 are manufactured. FIG. 10 shows a sectional view of the wafer of FIG. 9 during the local modification step making it possible to form the modified portion 3, for example, by irradiation with a focused laser 8. As suggested in FIG. 10, the laser beam 8 can move, for example x, y, z, so as to carry out the local modification in a more specific form. or less complex, here an "annular" shape in the body body of the spiral spring 1. In Fig. 10 the parts indicated by the numeral "9" correspond to the vitreous material which is machined in the machining step. FIG. 11 illustrates the sectional view of FIG. 9 after the machining step during which the parts 9 have been eliminated by machining, releasing the spiral springs 1 comprising the modified portion 3.
[0066] La figure 9 montre également des parties 7a, 7b, 7c du wafer 7 pour lesquelles les ressorts-spiraux 1 ont subi un traitement d'irradiation différent selon la partie 7a, 7b, 7c du wafer dans laquelle se trouvent les ressorts-spiraux 1. Par conséquent, les ressorts-spiraux 1 dans l'une des différentes parties 7a, 7b, 7c pourront avoir une portion modifiée 3 dont les propriétés physiques diffèrent de celles de la portion modifiée 3 des ressorts-spiraux 1 dans les autres parties 7a, 7b, 7c du wafer 7. [0067] L'étape de modifier localement le matériau vitreux peut donc être réalisée localement non seulement à l'échelle du corps utilisé en déformation (ressort- spiral) 1 mais également à l'échelle du wafer 7. FIG. 9 also shows parts 7a, 7b, 7c of the wafer 7 for which the spiral springs 1 have undergone a different irradiation treatment according to the part 7a, 7b, 7c of the wafer in which the springs are located. Spirals 1. Therefore, the spiral springs 1 in one of the different parts 7a, 7b, 7c may have a modified portion 3 whose physical properties differ from those of the modified portion 3 of the spiral springs 1 in the other parts 7a, 7b, 7c of the wafer 7. The step of locally modifying the vitreous material may therefore be performed locally not only at the scale of the body used in deformation (spiral spring) 1 but also at the scale of the wafer 7.
[0068] La méthode a également l'avantage d'être applicable à une vaste catégorie de verres notamment à ceux dits «non photostructurables». Par conséquent, le processus de transformation du matériau vitreux a lieu de manière directe sans besoin d'étapes supplémentaires comme les The method also has the advantage of being applicable to a broad category of glasses including those called "non-photostructurables". Therefore, the vitreous material processing process takes place directly without the need for additional steps such as
traitements thermiques requis dans le cas des verres dits heat treatments required in the case of so-called glasses
«photostructurables». De plus l'utilisation de mécanismes d'absorption multiphotoniques permet d'utiliser une gamme étendue de longueurs d'ondes allant de l'infrarouge à l'ultraviolette. Egalement, une telle méthode permet de modifier localement les propriétés thermoélastiques du matériau vitreux sans aucune restriction quant à la localisation de la portion modifiée dans le volume du matériau vitreux. [0069] Il va de soi que la présente invention n'est pas limitée au mode de réalisation qui vient d'être décrit et que diverses modifications et variantes simples peuvent être envisagées par l'homme de métier sans sortir du cadre de la présente invention. "Photostructurable". In addition, the use of multiphoton absorption mechanisms makes it possible to use a wide range of wavelengths from infrared to ultraviolet. Also, such a method makes it possible locally to modify the thermoelastic properties of the vitreous material without any restriction as to the location of the modified portion in the volume of the vitreous material. It goes without saying that the present invention is not limited to the embodiment which has just been described and that various modifications and simple variants can be envisaged by the skilled person without departing from the scope of the present invention. .
[0070] Par exemple, l'invention n'est pas limitée à un résonateur de type balancier-spiral mais s'applique également à tout type de résonateurs adaptés à une application horlogère, tels qu'un résonateur de type diapason, dont le corps utilisé en déformation, c'est-à-dire le ressort-spiral dans le cas d'un résonateur balancier-spiral ou les lames vibrantes dans le cas d'un résonateur diapason, est réalisé dans une matière vitreuse ayant un premier coefficient thermoélastique, et de sorte à comprendre une portion modifiée 3 ayant un second CTE différent du premier CTE βι. For example, the invention is not limited to a resonator-balance spring type but also applies to any type of resonator adapted to a watch application, such as a tuning fork-type resonator, whose body used in deformation, that is to say the spiral spring in the case of a balance spring resonator or the vibrating blades in the case of a tuning fork resonator, is made of a vitreous material having a first thermoelastic coefficient, and so as to include a modified portion 3 having a second CTE different from the first CTE βι.
[0071] Jusqu'à maintenant, la discussion a concerné un ressort-spiral réalisé dans un matériau vitreux, tel que défini plus haut. Cependant, la présente invention concerne également un ressort-spiral réalisé dans tout matériau transparent aux longueurs d'ondes d'un laser (par exemple de type femtoseconde). Par exemple, la présente invention concerne un ressort-spiral réalisé dans un matériau partiellement, voire entièrement cristallin, comprenant notamment des verres, du silicium (monocristallin, polycristallin), des vitrocéramiques, des céramiques, etc. So far, the discussion has concerned a spiral spring made of a vitreous material, as defined above. However, the present invention also relates to a spiral spring made of any material transparent to the wavelengths of a laser (for example of the femtosecond type). For example, the present invention relates to a spiral spring made of a partially or even entirely crystalline material, especially comprising glasses, silicon (monocrystalline, polycrystalline), glass-ceramics, ceramics, etc.
[0072] Selon un mode de réalisation, le matériau est localement modifié (par exemple en utilisant un laser, préférablement de type femtosecondes) de manière à produire une portion modifiée 3 ayant un second module de Young E2 qui diffère d'un premier module de Young E1 de la portion non modifiée du matériau. De la sorte, il est possible d'ajuster une valeur du module de Young effectif Eeff du ressort-spiral 1, définie par la combinaison du premier et du second module de Young E1, E2. According to one embodiment, the material is locally modified (for example using a laser, preferably femtosecond type) so as to produce a modified portion 3 having a second Young's modulus E2 which differs from a first module of Young E1 of the unmodified portion of the material. In this way, it is possible to adjust a value of the effective Young's modulus E e ff of the spiral spring 1, defined by the combination of the first and the second Young's modulus E1, E2.
[0073] La raideur du ressort-spiral 1 dépend de son module de Young (de sa rigidité) mais aussi du rapport de sa section à sa longueur. On peut cependant supposer que le rapport de la section à la longueur du ressort- spiral ne sera pas changé par la modification locale. Autrement dit, le matériau a une première raideur K1 et la portion modifiée a une seconde raideur K2 qui peut être différente de la première raideur K1. L'ajustement du module de Young effectif Eeff du ressort-spiral 1 permet donc d'ajuster une valeur de la raideur effective Keff du ressort-spiral 1, sans avoir besoin de modifier ni la hauteur ni l'épaisseur du ressort-spiral 1. La raideur effective Keff du ressort-spiral 1 est définie par la combinaison de la première et de la seconde raideur K1, K2. The stiffness of the spiral spring 1 depends on its Young's modulus (its rigidity) but also the ratio of its section to its length. It can be assumed, however, that the ratio of the section to the length of the spiral spring will not be changed by the local modification. In other words, the material has a first stiffness K1 and the modified portion has a second stiffness K2 which may be different from the first stiffness K1. The adjustment of the effective Young's modulus E e ff of the hairspring 1 thus makes it possible to adjust a value of the effective stiffness K e ff of the hairspring 1, without having to modify either the height or the thickness of the spring -spiral 1. The effective stiffness K e ff spiral spring 1 is defined by the combination of the first and the second stiffness K1, K2.
[0074] La modification locale de la raideur du ressort-spiral 1 peut être utilisée pour l'ajustement de la fréquence du ressort-spiral 1, par exemple avant son assemblage avec un balancier. Ceci facilite par exemple les opérations d'appairage spiral-balancier, voire d'appairage de l'organe réglant dans son ensemble par rapport au mouvement, en même temps que de permettre une augmentation significative du rendement de cette opération. The local modification of the stiffness of the spiral spring 1 can be used for adjusting the frequency of the spiral spring 1, for example before assembly with a pendulum. This facilitates for example the spiral-balance balance pairing operations, or even pairing of the regulating organ as a whole with respect to the movement, while at the same time as allowing a significant increase in the efficiency of this operation.
[0075] La modification locale du module de Young et de la raideur peut être appliquée à la courbe terminale extérieure 5 et/ou à la courbe terminale intérieure 4 du ressort-spiral 1, comme illustré à la figure 7. La portion modifiée 3 peut comprendre une portion 3' s'étendant dans la direction longitudinale du ressort-spiral 1 de manière continue et/ou de manière discontinue. The local modification of the Young's modulus and the stiffness can be applied to the outer terminal curve 5 and / or to the inner end curve 4 of the spiral spring 1, as illustrated in FIG. 7. modified portion 3 may comprise a portion 3 'extending in the longitudinal direction of the spiral spring 1 continuously and / or discontinuously.
[0076] La modification du module de Young effectif Eeff et/ou de la raideur effective Keff dans une portion spécifique du ressort-spiral 1, comme par exemple dans la courbe terminale du spiral, permet d'optimiser la concentricité de son déploiement par rapport à l'axe du balancier. Il est également possible de compenser des effets de d'affaissement dus à la gravité ou encore autres défauts d'isochronisme. [0077] Encore selon un mode de réalisation, le matériau est localement modifié de manière à ajuster les contraintes internes dans la portion modifiée 3. The modification of the effective Young's modulus E e ff and / or of the effective stiffness K e ff in a specific portion of the spiral spring 1, as for example in the end curve of the spiral, makes it possible to optimize the concentricity of the its deployment relative to the axis of the balance. It is also possible to compensate for sagging effects due to gravity or other isochronous defects. According to another embodiment, the material is locally modified so as to adjust the internal stresses in the modified portion 3.
[0078] Dans le cas où la modification locale est réalisée à l'aide d'un traitement laser, préférablement à l'aide d'un laser utilisant des durées d'impulsions ultracourtes, c'est-à-dire des durées d'impulsions comprises entre quelques femtosecondes à quelques nanosecondes, et In the case where the local modification is carried out using a laser treatment, preferably using a laser using ultra-short pulse durations, that is to say durations of pulses between a few femtoseconds to a few nanoseconds, and
préférablement entre quelques femtosecondes à quelques picosecondes. preferably between a few femtoseconds to a few picoseconds.
[0079] L'utilisation de tels lasers permet le contrôle précis de The use of such lasers allows the precise control of
modifications très localisées du matériau par les procédés d'absorption non- linéaires de l'énergie du laser. Les modifications ainsi induites dans la portion modifiée du matériau peuvent être de nature continue, formation de (nano) structures auto organisées, et/ou la formation de nano vides. Ces modifications peuvent induire différents types d'anisotropie dans la portion modifiée du matériau, qui peuvent avoir des effets importants sur les propriétés chimique, optiques, thermiques et/ou mécaniques. Notamment, le changement du volume de la matière résultant de l'exposition induit des contraintes autour des zones exposées par laser, et ainsi des modifications des contraintes internes, qui peuvent être des contraintes de compression ou de traction, dans la portion modifiée. La contrainte induite dépend principalement de deux paramètres : la polarisation et l'énergie par pulsation. [0080] La modification locale peut être réalisée de manière à ne pas influencer sur la thermocompensation de la portion modifiée du matériau, ou du moins pas de manière linéaire. En effet, le module d'Young effectif et le CTE effectif peuvent être contrôlés par la quantité totale de zones modifiées tandis que les contraintes résiduelles peuvent être contrôlées par la localisation des zones affectées par rapport au composant réalisé. very localized changes in the material by non-linear absorption processes of laser energy. The modifications thus induced in the modified portion of the material may be of a continuous nature, the formation of (nano) self-organized structures, and / or the formation of empty nano. These modifications can induce different types of anisotropy in the modified portion of the material, which can have significant effects on the chemical, optical, thermal and / or mechanical properties. In particular, the change in the volume of the material resulting from the exposure induces stresses around the laser exposed areas, and thus changes in the internal stresses, which may be compressive or tensile stresses, in the modified portion. The stress induced depends mainly on two parameters: polarization and pulsation energy. The local modification can be performed so as not to influence the thermocompensation of the modified portion of the material, or at least not linearly. Indeed, the effective Young's modulus and the effective CTE can be controlled by the total amount of modified areas while the residual stresses can be controlled by the location of the affected areas relative to the realized component.
Numéros de référence employés sur les figures Reference numbers used in the figures
1 ressort-spiral 1 spiral spring
2 matrice en matériau vitreux  2 matrix of vitreous material
3 portion modifiée  3 modified portion
4 courbe terminale intérieure  4 inner terminal curve
5 courbe terminale extérieure  5 outer terminal curve
6 section du spiral  6 section of the spiral
7 wafer  7 wafer
7a portion du wafer  7a portion of the wafer
8 irradiation laser  8 laser irradiation
9 parties usinées du wafer 9 machined parts of the wafer
i premier coefficient d'expansion thermique  i first coefficient of thermal expansion
a.2 second coefficient d'expansion thermique a.2 second coefficient of thermal expansion
OCeff coefficient d'expansion thermique effectif βι premier coefficient thermoélastique  OCeff coefficient of effective thermal expansion βι first thermoelastic coefficient
second coefficient thermoélastique second thermoelastic coefficient
eff coefficient thermoélastique effectif  eff effective thermoelastic coefficient
CTE coefficient thermoélastique  CTE thermoelastic coefficient
Ei premier module de Young  Ei Young's first module
E2 second module de Young E 2 second Young's module
Eeff module de Young effectif  Eeff effective Young's modulus
Ki première raideur  Ki first stiffness
K2 seconde raideur K 2 second stiffness
Keff raideur effective  Keff effective stiffness

Claims

Revendications claims
1. Résonateur destiné à équiper un organe régulateur d'une pièce d'horlogerie et comportant un corps utilisé en déformation (1), le corps (1) étant réalisé dans un matériau vitreux ayant un premier coefficient thermoélastique (βι), 1. Resonator intended to equip a regulating member of a timepiece and comprising a body used in deformation (1), the body (1) being made of a vitreous material having a first thermoelastic coefficient (βι),
caractérisé en ce que ledit matériau vitreux comporte une portion localement modifiée (3) de manière à ce que ladite portion modifiée (3) ait un second coefficient thermoélastique (β2) différent du premier coefficient thermoélastique (βι), de sorte à que le résonateur soit thermocompensé . characterized in that said vitreous material comprises a locally modified portion (3) so that said modified portion (3) has a second thermoelastic coefficient (β2) different from the first thermoelastic coefficient (βι), so that the resonator is thermocompensated.
2. Résonateur selon la revendication 1 Resonator according to claim 1
dans lequel ledit matériau vitreux est modifié par irradiation. wherein said vitreous material is modified by irradiation.
3. Résonateur selon la revendication 2 3. Resonator according to claim 2
dans lequel ladite irradiation est une irradiation laser. wherein said irradiation is laser irradiation.
4. Résonateur selon l'une des revendications 1 à 3 4. Resonator according to one of claims 1 to 3
dans lequel le matériau vitreux a un coefficient de dilatation thermique inférieur à 1 ppm/°C. wherein the vitreous material has a coefficient of thermal expansion of less than 1 ppm / ° C.
5. Résonateur selon la revendication 4 Resonator according to claim 4
dans lequel le matériau vitreux comprend une silice amorphe pure, un borosilicate, un aluminosilicate, ou un verre à base de silice avec un taux d'impuretés contrôlé. wherein the vitreous material comprises a pure amorphous silica, a borosilicate, an aluminosilicate, or a silica-based glass with a controlled impurity level.
6. Résonateur selon l'une des revendications 1 à 5 6. Resonator according to one of claims 1 to 5
dans lequel la portion modifiée (3) a une densité qui diffère de la densité matériau vitreux. wherein the modified portion (3) has a density which differs from the vitreous material density.
7. Résonateur selon la revendication 6 Resonator according to claim 6
dans lequel la portion modifiée (3) comprend une silice amorphe ayant été modifiée par la création d'un polymorphe cristallin. wherein the modified portion (3) comprises an amorphous silica having been modified by the creation of a crystalline polymorph.
8. Résonateur selon la revendication 7 8. Resonator according to claim 7
dans lequel le polymorphe cristallin comprend l'un de: quartz alpha, quartz beta, stishovite, tridymite, calcédoine ou cristobalite. wherein the crystalline polymorph comprises one of: alpha quartz, beta quartz, stishovite, tridymite, chalcedony or cristobalite.
9. Résonateur selon la revendication 6 Resonator according to claim 6
dans lequel la portion modifiée (3) comprend des clusters métalliques en présence ou pas d'impuretés. wherein the modified portion (3) comprises metal clusters in the presence or absence of impurities.
10. Résonateur selon la revendication 6 Resonator according to claim 6
dans lequel la portion modifiée (3) comprend une région densifiée par incrément local de la température fictive d'une silice ou une zone wherein the modified portion (3) comprises a densified region by local increment of the fictitious temperature of a silica or a zone
structurellement modifié par à un mécanisme d'absorption non linaire. structurally modified by a non-linear absorption mechanism.
11. Résonateur selon l'une des revendications 1 à 10 11. Resonator according to one of claims 1 to 10
dans lequel ledit matériau vitreux a également un premier coefficient d'expansion thermique (ai); et wherein said vitreous material also has a first coefficient of thermal expansion (ai); and
dans lequel la portion modifiée (3) a un second coefficient d'expansion thermique (002) différent du premier coefficient d'expansion thermique (ai). wherein the modified portion (3) has a second coefficient of thermal expansion (002) different from the first coefficient of thermal expansion (ai).
12. Résonateur selon l'une des revendications 1 à 11 Resonator according to one of Claims 1 to 11
dans lequel ledit matériau vitreux a également un premier module de Young (E1); et wherein said vitreous material also has a first Young's modulus (E1); and
dans lequel la portion modifiée (3) a un second module de Young (E2) différent du premier module de Young (E1). wherein the modified portion (3) has a second Young's modulus (E2) different from the first Young's modulus (E1).
13. Résonateur selon l'une des revendications 1 à 12 caractérisé en ce qu'il est un ressort-spiral (1). 13. Resonator according to one of claims 1 to 12 characterized in that it is a spiral spring (1).
14. Résonateur selon la revendication 13 Resonator according to claim 13
dans lequel la configuration géométrique et/ou de la valeur du second coefficient thermoélastique (β2) dans de la portion modifiée (3) varient le long du ressort-spiral (1). wherein the geometrical configuration and / or the value of the second thermoelastic coefficient (β2) in the modified portion (3) varies along the spiral spring (1).
15. Pièce d'horlogerie comprenant le résonateur selon l'une des revendications 1 à 14. 15. Timepiece comprising the resonator according to one of claims 1 to 14.
16. Méthode de fabrication du résonateur selon l'une des revendications 1 à 14, comprenant: 16. Method of manufacturing the resonator according to one of claims 1 to 14, comprising:
usiner une pièce de matériau vitreux ayant un premier CTE (βι) afin de former le corps utilisé en déformation (1) du résonateur; et  machining a piece of vitreous material having a first CTE (βι) to form the body used in deformation (1) of the resonator; and
modifier localement le matériau vitreux de manière à former ladite portion modifiée (3) ayant un second CTE (β2) différent du premier CTE (β .  locally modifying the vitreous material so as to form said modified portion (3) having a second CTE (β2) different from the first CTE (β.
17. Méthode selon la revendication 16, 17. The method of claim 16,
dans laquelle ladite modification locale est réalisée par irradiation. wherein said local modification is carried out by irradiation.
18. Méthode selon la revendication 17, 18. The method of claim 17,
dans laquelle ladite irradiation est un traitement laser. wherein said irradiation is a laser treatment.
19. Méthode selon la revendication 18, 19. The method of claim 18,
dans laquelle le laser est opéré en régime non-ablatif. wherein the laser is operated in non-ablative mode.
20. Méthode selon l'une des revendications 16 à 19, 20. Method according to one of claims 16 to 19,
dans laquelle ladite modification locale comprend une modification de la densité de la matière vitreuse. wherein said local modification comprises a change in the density of the vitreous material.
21. Méthode selon l'une des revendications 18 à 20, 21. Method according to one of claims 18 to 20,
dans laquelle le laser est un laser focalisé à l'échelle nanométrique ou micrométrique. wherein the laser is a focused laser at the nanoscale or micrometer scale.
22. Méthode selon l'une des revendications 18 à 21, 22. Method according to one of claims 18 to 21,
dans laquelle le laser utilise des impulsions ultracourtes comprises entre quelques femtosecondes à quelques nanosecondes. wherein the laser uses ultrashort pulses ranging from a few femtoseconds to a few nanoseconds.
23. Méthode selon l'une des revendications 16 à 22 23. Method according to one of claims 16 to 22
dans laquelle l'usinage peut être réalisé par un procédé de gravure chimique, par un procédé de gravure physique ou par une combinaison des deux procédés. wherein the machining can be performed by a chemical etching process, a physical etching process or a combination of both methods.
24. Méthode selon l'une des revendications 16 à 23 24. Method according to one of claims 16 to 23
dans laquelle l'étape de former ladite portion modifiée (3) est réalisée avant, simultanément ou après l'étape d'usinage. wherein the step of forming said modified portion (3) is performed before, simultaneously or after the machining step.
25. Résonateur destiné à équiper un organe régulateur d'une pièce d'horlogerie et comportant un corps utilisé en déformation (1), le corps (1) étant réalisé dans un matériau transparent aux longueurs d'ondes d'un laser et ayant un premier module de Young (Ei), 25. Resonator intended to equip a regulating member of a timepiece and comprising a body used in deformation (1), the body (1) being made of a material transparent to the wavelengths of a laser and having a first module of Young (Ei),
caractérisé en ce que characterized in that
ledit matériau comporte une portion localement modifiée (3) de manière à ce que ladite portion modifiée (3) ait un second module de Young (E2) qui diffère du premier module de Young (E1) de la portion non modifiée du matériau. said material comprises a locally modified portion (3) so that said modified portion (3) has a second Young's modulus (E2) which differs from the first Young's modulus (E1) of the unmodified portion of the material.
26. Résonateur selon la revendication 25 26. Resonator according to claim 25
dans lequel le matériau a une première raideur (K1) et ladite portion modifiée (3) a une seconde raideur (K2) qui diffère de la première raideur (Ki). wherein the material has a first stiffness (K1) and said modified portion (3) has a second stiffness (K2) which differs from the first stiffness (Ki).
27. Résonateur selon la revendication 25 ou 26 27. Resonator according to claim 25 or 26
dans lequel ladite portion modifiée (3) se trouve dans la courbe terminale extérieure (5) et/ou dans la courbe terminale intérieure (4) du ressort-spiral (1). wherein said modified portion (3) is in the outer terminal curve (5) and / or the inner end curve (4) of the spiral spring (1).
28. Résonateur selon l'une des revendications 25 à 27 28. Resonator according to one of claims 25 to 27
dans lequel ladite portion modifiée (3) comporte des contraintes internes qui diffèrent de celles de la portion non modifiée du matériau. wherein said modified portion (3) has internal stresses that differ from those of the unmodified portion of the material.
29. Méthode de fabrication du résonateur selon l'une des revendications 25 à 28, comprenant: 29. Method of manufacturing the resonator according to one of claims 25 to 28, comprising:
usiner une pièce de matériau ayant un premier module de Young (Ei) afin de former le corps utilisé en déformation (1) du résonateur; et modifier localement le matériau de manière à former ladite portion modifiée (3) ayant un second module de Young (E2) différent du premier module de Young (E1). machining a piece of material having a first Young's modulus (Ei) to form the body used in deformation (1) of the resonator; and locally modifying the material to form said modified portion (3) having a second Young's modulus (E2) different from the first Young's modulus (E1).
30. Méthode selon la revendication 29, 30. The method of claim 29,
dans laquelle le matériau a une première raideur (Ki) et ladite portion modifiée (3) est modifiée de manière à avoir une seconde raideur (K2) qui diffère de la première raideur (K1). wherein the material has a first stiffness (Ki) and said modified portion (3) is modified to have a second stiffness (K2) which differs from the first stiffness (K1).
31. Méthode selon la revendication 30, 31. The method of claim 30,
dans laquelle la seconde raideur (K2) de la portion modifiée (3) est modifiée de manière à ajuster la fréquence du ressort-spiral (1). wherein the second stiffness (K2) of the modified portion (3) is modified to adjust the frequency of the spiral spring (1).
32. Méthode selon la revendication 31, 32. The method of claim 31,
dans laquelle la fréquence du ressort-spiral (1) est ajustée avant son assemblage avec un balancier. wherein the frequency of the spiral spring (1) is adjusted before being assembled with a balance.
33. Méthode selon la revendication 31 ou 32, 33. The method of claim 31 or 32,
dans laquelle la fréquence du ressort-spiral (1) est ajustée de manière à appairer le ressort-spiral (1) avec un balancier. wherein the frequency of the hairspring (1) is adjusted to match the hairspring (1) with a pendulum.
34. Méthode selon l'une des revendications 29 à 33, 34. Method according to one of claims 29 to 33,
dans laquelle ladite irradiation est un traitement laser. wherein said irradiation is a laser treatment.
35. Méthode selon la revendication 34, 35. The method of claim 34,
dans laquelle ladite irradiation est un traitement laser femtosecondes. wherein said irradiation is a femtosecond laser treatment.
EP16728737.4A 2015-06-08 2016-06-08 Thermocompensated horology resonator and method for producing such a resonator Active EP3304216B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH8162015 2015-06-08
PCT/IB2016/053369 WO2016199039A1 (en) 2015-06-08 2016-06-08 Temperature-compensated timepiece resonator and method for producing such a resonator

Publications (2)

Publication Number Publication Date
EP3304216A1 true EP3304216A1 (en) 2018-04-11
EP3304216B1 EP3304216B1 (en) 2022-04-27

Family

ID=53397746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16728737.4A Active EP3304216B1 (en) 2015-06-08 2016-06-08 Thermocompensated horology resonator and method for producing such a resonator

Country Status (2)

Country Link
EP (1) EP3304216B1 (en)
WO (1) WO2016199039A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781968A1 (en) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Resonator that is less sensitive to climate variations
EP3839644A1 (en) * 2019-12-20 2021-06-23 Nivarox-FAR S.A. Flexible timepiece component, in particular for oscillator mechanism, and clockwork comprising such a component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117470A (en) 1992-10-07 1994-04-26 Yokogawa Electric Corp Spiral spring and electric indicating instrument
EP1422436B1 (en) 2002-11-25 2005-10-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Spiral watch spring and its method of production
EP1791039A1 (en) 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Hairspring made from athermic glass for a timepiece movement and its method of manufacture
EP2590325A1 (en) 2011-11-04 2013-05-08 The Swatch Group Research and Development Ltd. Thermally compensated ceramic resonator
EP2597536A1 (en) * 2011-11-25 2013-05-29 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Improved spiral spring and method for manufacturing said spiral spring

Also Published As

Publication number Publication date
EP3304216B1 (en) 2022-04-27
WO2016199039A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
EP2514094B1 (en) Resonator thermocompensated at least to the first and second orders
EP1958031B1 (en) Hairspring made from athermic glass for a timepiece movement and its method of manufacture
EP3181938B1 (en) Method for manufacturing a hairspring with a predetermined stiffness by removing material
EP3100120A1 (en) Thermally compensated hairspring made from ceramic comprising silicon in the composition of same and method for adjusting same
EP2774268A1 (en) Ceramic thermally-compensated resonator
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP3759554B1 (en) Method for manufacturing a hairspring
EP1519250B1 (en) Thermally compensated balance-hairspring resonator
EP3365734B1 (en) Oscilator for mechanical clockwork
CH707554A2 (en) Thermocompensated resonator for use in electronic quartz watch, has body whose portion is arranged with metal coating whose Young's modulus is changed based on temperature so as to enable resonator to have variable frequency
EP3304216B1 (en) Thermocompensated horology resonator and method for producing such a resonator
EP4031936A1 (en) Method for manufacturing a plurality of resonators in a wafer
EP2795411B1 (en) Method for manufacturing a resonator
EP3002638B1 (en) Method for manufacturing a thermocompensated hairspring
CH705945A2 (en) Method for manufacturing resonator e.g. hairspring resonator, for watch, involves modifying structure of zone of substrate to make zone more selective, and engraving zone to selectively manufacture resonator whose arm is formed with recess
EP3285124B1 (en) Mechanical resonator for timepiece and method for manufacturing such a resonator
EP3982205A1 (en) Method for manufacturing a timepiece spring with precise stiffness
EP4030241A1 (en) Method for manufacturing timepiece hairsprings
CH702353A2 (en) Thermocompensated resonator i.e. hairspring, for timepiece, has body comprising core with material, where body comprises two coatings allowing resonator having thermal coefficients of first and second orders to be zero
CH719361A2 (en) Process for limiting the deformation of a silicon timepiece during thermal oxidation.
EP4212965A1 (en) Method for limiting the deformation of a silicon timepiece
CH718081A2 (en) ELASTIC ELEMENT FOR A MICROMECHANICAL SYSTEM.
CH705725A2 (en) Thermo-compensated ceramic resonator i.e. microelectromechanical system resonator, for use in timepiece, has body whose portion comprises electrically-conductive coatings, which change in Young's modulus as function of temperature
CH712824A1 (en) Clockwork mechanical component and method for producing such a component.
CH711960B1 (en) A method of manufacturing a hairspring of predetermined stiffness with removal of material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211202

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20220225

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016071481

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1487411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1487411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220829

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602016071481

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

26N No opposition filed

Effective date: 20230130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220608

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220608

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220727

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160608