EP3492655B1 - Gummiradwalze zur verdichtung eines bodens und verfahren zur steuerung einer berieselungsanlage einer gummiradwalze - Google Patents

Gummiradwalze zur verdichtung eines bodens und verfahren zur steuerung einer berieselungsanlage einer gummiradwalze Download PDF

Info

Publication number
EP3492655B1
EP3492655B1 EP18000923.5A EP18000923A EP3492655B1 EP 3492655 B1 EP3492655 B1 EP 3492655B1 EP 18000923 A EP18000923 A EP 18000923A EP 3492655 B1 EP3492655 B1 EP 3492655B1
Authority
EP
European Patent Office
Prior art keywords
temperature
temperature sensor
tire
rubber
tires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18000923.5A
Other languages
English (en)
French (fr)
Other versions
EP3492655A1 (de
Inventor
Niels Laugwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP3492655A1 publication Critical patent/EP3492655A1/de
Application granted granted Critical
Publication of EP3492655B1 publication Critical patent/EP3492655B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/238Wetting, cleaning or heating rolling elements, e.g. oiling, wiping, scraping
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/26Rollers therefor; Such rollers usable also for compacting soil self-propelled or fitted to road vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/27Rollers therefor; Such rollers usable also for compacting soil with elastically-deformable rolling elements, e.g. pneumatic tyres
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces

Definitions

  • the invention relates to a pneumatic tire roller for compacting a soil, in particular for compacting asphalt.
  • the invention also relates to a method for controlling a sprinkler system for a pneumatic tire roller.
  • Generic rubber-tyred rollers are typically used for soil compaction and, in particular, in road construction for asphalt compaction. These are self-propelled construction machines, which usually have a machine frame, a drive motor and a chassis driven by the drive motor with a front chassis part and a rear chassis part. Typically, at least one chassis part comprises at least two wheels with treads arranged next to one another.
  • the wheels are usually made of an elastic material such as a rubber material. When driving over the ground, the elastic properties of the wheels result in a kneading or flexing effect, which results in a particularly good pore closure on the surface of the layer to be compacted when using generic rubber-tyred rollers.
  • the operator of the pneumatic tire roller must assess or observe when the asphalt material no longer threatens to adhere to the wheels. As soon as the wheels are sufficiently heated, the sprinkler system can then be switched off. If this is done too early, there is a risk of damaging the asphalt layer by loosening pieces adhering to the wheels. However, if the operator switches off the sprinkler system too late, too much release agent is used unnecessarily.
  • it is known in the prior art to determine the temperature of the floor for example from the EP 3 181 753 A1 known. In this way, the operator can better estimate how long he will have to work the ground before the wheels have warmed up sufficiently. Even with the measurement of the ground temperature, the operator's decision to switch off the sprinkler system is still very subjective, so that on the one hand there is a risk of damage to the asphalt layer and on the other hand too much release agent is used.
  • the solution should be as inexpensive as possible.
  • the solution is achieved in a rubber-tyred roller mentioned at the outset in that there is an optical temperature sensor with a measuring field with at least two measuring points, which is designed and arranged in such a way that it determines the temperature of at least one wheel, in particular the tread of the wheel, and the floor .
  • a basic idea of the present invention is therefore to directly determine the temperature of the wheel and, in particular, of the contact surface of the wheel with the ground, i.e. the tread. This means that the temperature is now determined directly at the point where the asphalt material threatens to stick.
  • Contactless optical temperature sensors are particularly suitable for use with the invention.
  • the arrangement does not have to be in the immediate vicinity of the wheel; it is only important that the temperature sensor is arranged in such a way that the wheel to be measured is in its measurement field. In other words, at least one measuring point of the temperature sensor must be on the wheel, in particular on the running surface of the wheel.
  • the temperature of the tread of the wheel is a variable that is more directly related to the adhesion of asphalt material than just the temperature of the ground, since the latter does not provide any information about the heating state of the rubber wheel itself.
  • the measured temperature of the wheel in particular of the tread of the wheel, can be displayed to the operator of the rubber-tyred roller, which means that the operator can estimate with greater precision whether or not asphalt material is currently still likely to stick.
  • the operator can therefore adapt the switching on and / or off of the sprinkling system much more precisely to the actual need for sprinkling, which saves release agent overall.
  • the sprinkler system is controlled fully automatically by a control unit which uses the temperature value of at least the temperature sensor to control the sprinkler system, in particular to switch the sprinkler on and / or off.
  • the temperature sensor is an optical temperature sensor with a measuring field.
  • the temperature sensor can be designed as a thermal imaging or infrared camera.
  • the temperature sensor comprises an infrared sensor array, or the temperature sensor is designed as an infrared sensor array.
  • An infrared sensor array is a measuring device with which the temperature of several measuring points can be determined at the same time.
  • An infrared sensor array can be viewed, for example, as an infrared camera with only a few image points or pixels that represent the measurement points.
  • an infrared sensor array can have 16 ⁇ 4 pixels or measuring points.
  • a temperature scanner can also be used. This essentially has only a single measuring point, but directs it alternately to at least two points on a rubber wheel and / or at least one point in each case on at least two rubber wheels.
  • Rubber-tyred rollers usually have several wheels arranged next to one another.
  • the wheels can have different temperatures.
  • the rubber-tyred roller can drive partly on an asphalt strip that has already cooled down and partly on a still hot asphalt strip, so that the wheels that come into contact with the hot or cold asphalt have different temperatures.
  • the optical temperature sensor is designed and arranged such that the measuring field comprises at least one measuring point on at least two wheels, in particular on the tread of the respective wheel.
  • the at least two wheels can, for example, be arranged next to one another.
  • it can be, for example, two wheels lying next to one another which are arranged transversely to the working direction of the rubber-tyred roller on the left or right outer side of the chassis part.
  • the wheels arranged on the very outside transversely to the working direction often have a different temperature than the wheels arranged further inside next to the outer wheels. This is because the wheels further inside are already shielded from the environment by the outer wheels. A temperature difference must therefore be expected, especially between these wheels.
  • the optical temperature sensor is designed and arranged in such a way that the measuring field comprises at least one measuring point on each wheel of the respective chassis part, in particular on the running surface of the respective wheel.
  • the temperature of each individual wheel of the chassis part is determined by the temperature sensor.
  • An infrared sensor array can be arranged on the rubber tire roller, for example in the wheel arch of the chassis part or on a thermal apron provided for this chassis part or its holder, so that the temperature of each individual wheel of the chassis part can be measured by the temperature sensor. At least one pixel of the measurement field is therefore on each of the wheels. In this way, the temperature of all the wheels of the chassis part can be determined with just a single temperature sensor.
  • the solution according to the invention is therefore particularly cost-effective since, for example, a separate temperature sensor does not have to be used for each individual wheel to be measured.
  • the invention can also be used advantageously in rubber-tyred rollers in which both the front chassis part and the rear chassis part have wheels.
  • a total of two optical temperature sensors are present, one optical temperature sensor determining the temperature of at least one wheel of the front chassis part and the other optical temperature sensor determining the temperature of at least one wheel of the rear chassis part.
  • the two temperature sensors each determine the temperature of all the wheels arranged in the respective chassis part.
  • a display device is present by means of which the temperatures of the wheels, which are determined by the temperature sensor, can be displayed to the operator.
  • the operator can therefore decide on the basis of the wheel temperature whether sprinkling with release agent by the sprinkling system is necessary in order to prevent asphalt from sticking to the wheels.
  • the control unit is designed to independently control the sprinkler system based on the measured values of the temperature sensor, in particular to at least activate and / or deactivate it. This can be done in addition to or as an alternative to the presence of a display device.
  • control unit automatically controls the sprinkling system directly on the basis of the temperatures of the wheels measured by the temperature sensor or the temperature sensors, without the operator having to take any additional action.
  • the control unit activates the sprinkler system when the temperature of the at least one wheel is below a predetermined threshold value.
  • control unit can deactivate the sprinkler system if the temperature of the wheel is above or above a predetermined threshold value. Depending on the asphalt material used, different threshold values can be preset here.
  • Typical threshold values are, for example, in the range from 60 ° C to 110 ° C, in particular at 80 ° C.
  • the specific suitable threshold value depends on the softening point of the bitumen type used in the asphalt mix. It is further preferably provided here that the rubber-tyred roller or the above-mentioned control unit can optionally be switched into a "rolling mode” and / or “sprinkling mode", in particular to prevent the normal driving operation outside of the rolling operation, ie when the ground and the The wheels are cold, the sprinkler system is automatically activated by the control unit.
  • the temperature of more than one wheel within a chassis part is determined by the temperature sensor, it is preferred that this additional information is then also used to control the sprinkler system.
  • the control unit is designed to separate the irrigation of the wheels arranged transversely to a working direction separately from the one or those between them Wheels to control lying wheels.
  • the sprinkling system is expediently designed in such a way that it can sprinkle the wheels arranged on the outside transversely to the working direction independently of the other wheels of a chassis part.
  • the wheels of a chassis part that are on the outside transversely to the working direction are colder than those that are between these wheels. This is due to the fact that the wheels arranged on the outside are cooled to a greater extent from the outside environment. While the inner wheels have already reached the necessary temperature so that irrigation of these wheels can be dispensed with, this must be continued with the outer wheels. So that the already hot inner wheels are not sprinkled in vain, the control unit provides the sprinkler the wheels on the inside, while the wheels of the undercarriage part lying on the outside transversely to the working direction continue to be sprinkled until they too have reached the required temperature.
  • the control unit is designed in such a way that it controls the irrigation of each individual wheel independently of the remaining wheels.
  • the sprinkling system is of course also designed in such a way that the sprinkling of each individual wheel can be activated or deactivated independently of the other wheels.
  • the sprinkler system has a spray bar which has its own spray nozzle for each wheel, each spray nozzle having its own valve which can be individually controlled by the control unit. In this way, the control unit can respond individually to any asymmetry in the temperatures of the wheels.
  • the control unit activates the irrigation of those wheels whose temperature is below a predetermined threshold value, while the control unit deactivates the irrigation of those wheels whose temperature is above a predetermined threshold value.
  • the threshold values already mentioned above can also be used here. Because the sprinkling of each individual wheel is controlled independently of the other wheels, the sprinkling with release agent is actually only carried out on those wheels and in that temperature range in which the asphalt material can adhere to the wheels. The release agent is used particularly efficiently and the consumption of the release agent is greatly reduced.
  • the asphalt material adheres to the wheels when the hot asphalt material is cooled by the cold wheels and the viscosity is thus increased.
  • An essential factor for the adhesion of the asphalt material is therefore the temperature difference between the ground or the asphalt material and the wheels of the rubber-tyred roller.
  • the temperature sensor is therefore designed and arranged in such a way that, in addition to the temperature of the at least one wheel, the temperature of the floor can also be determined. In other words, at least one measuring point of the measuring field of the temperature sensor lies on the floor, so that its temperature can be measured by the temperature sensor.
  • an infrared sensor array that has sufficient pixels or measuring points to cover all the wheels of a chassis part as well as the ground and the to determine the respective temperatures. It is particularly preferred if, in addition to the temperature of each wheel, the temperature of that floor section is also determined over which this wheel is traveling. For each wheel of the rubber-tyred roller, two temperatures are measured, which correspond to the tread of the wheel and to the ground surface that comes into contact with this tread.
  • the temperature of the ground can then also be taken into account by the control unit when controlling the sprinkler system.
  • the control unit is designed to activate sprinkling by the sprinkler system when the temperature of the ground is above a threshold value, and to deactivate the sprinkler system when the temperature difference between the ground and the wheel falls below a predetermined threshold value.
  • This procedure is preferably carried out hierarchically, specifically in such a way that only when the sprinkler system is activated, ie "warm floor", which would trigger an activation of the sprinkler system in terms of temperature, the determined temperature difference for deactivation due to the determined temperature of the soil above a threshold value is being used.
  • the threshold value for the temperature of the ground or the asphalt layer, above which the sprinkler system is activated by the control unit is between 40 ° C. and 80 ° C., for example 55 ° C.
  • the temperature difference between the ground or asphalt layer and the wheel, below which the irrigation is deactivated by the control unit is between 10 ° C and 50 ° C, for example 20 ° C.
  • the automatic activation and deactivation of the sprinkler system in particular for each individual wheel and taking into account the temperature of that section of the ground over which this wheel drives, prevents the sprinkler from being switched on too late and asphalt material from adhering to the wheels is.
  • irrigation emulsion is prevented from being used unnecessarily, although there is no risk of adhesion.
  • a device for, in particular optical, detection of the outer surface of at least one rubber wheel for example a digital camera
  • control unit is designed to automatically switch off the previously activated sprinkler system by the sprinkler system when the determined temperature of the soil is below a threshold value. If the asphalt material has already cooled down to such an extent that there is no longer any risk of sticking to the wheels of the rubber-tyred roller, the previously activated sprinkler system is automatically deactivated, thus preventing unnecessary consumption of release agent.
  • This switch-off also preferably relates to the irrigation of each individual wheel individually on the basis of the temperature of that floor section over which the corresponding wheel is traveling.
  • control unit is designed to switch off the sprinkling by the activated sprinkling system when the temperature difference between the ground and the wheel falls below a predetermined threshold value. In this way, too, release agent is saved if there is no longer any risk of the asphalt material sticking to the wheel due to the material cooling down due to contact with the wheel.
  • the above-described control of the sprinkling system takes place for each individual wheel of the rubber-tyred roller individually and independently of the other wheels or of the sprinkling of the other wheels of the rubber-tyred roller.
  • the irrigation of a wheel depends only on the temperature of this wheel and the temperature of the floor, in particular that floor section over which this wheel travels, as well as the temperature difference between the wheel and the floor or this floor section.
  • the decision as to whether a wheel is to be sprinkled with release agent is made by the control unit based on the measured values of the temperature sensor, which measures the temperature of the wheel concerned.
  • the operator of the rubber-tyred roller does not have to issue any control commands for this.
  • the sprinkling is therefore automatically controlled by the control unit depending on the objectively determined need of the individual wheel.
  • the temperature sensor must be arranged in such a way that at least the wheels to be measured and the floor are in its measuring field.
  • the temperature sensor can be arranged in the wheel arch of the rubber tire roller.
  • the temperature sensor should be arranged in such a way that it is affected by the rough Working conditions within the wheel arch is spared as much as possible. It is therefore preferred that the temperature sensor is arranged in the upper half, preferably in the upper third, particularly preferably in the upper quarter, very particularly preferably in the upper fifth and at best at the upper vertex of a wheel arch.
  • thermosensor set back in a shaft or a sensor viewing shaft which opens into the wheel arch and from which the temperature sensor has a clear field of view of the wheels to be measured and possibly the floor.
  • a blowing-out device can be provided as a support, which prevents the temperature sensor, in particular the infrared temperature sensor, from becoming soiled.
  • the object set at the beginning is also achieved with a method for controlling the sprinkling system of a rubber-tyred roller described above, comprising the steps of: determining the temperature of at least one wheel, in particular the tread of the wheel, and determining the temperature of the ground by a temperature sensor and controlling the sprinkling of the at least one wheel by the sprinkler system based on the measured values of the temperature sensor by a control unit.
  • the method comprises at least one of the following steps: determining the temperature of at least two wheels, in particular the tread of the respective wheel, by means of a temperature sensor; Determining the temperature of all wheels of the respective chassis part, in particular the running surface of the respective wheel, by means of a temperature sensor; Determining the temperature of all the wheels of the front and rear undercarriage parts, in particular the tread of the respective wheel, by means of a temperature sensor for the front undercarriage part and the rear undercarriage part; Controlling the sprinkling of wheels arranged outside transversely to a working direction separately from the wheel or wheels lying between these wheels; Controlling the irrigation of each individual wheel independently of the remaining wheels; Activating the sprinkling by the sprinkler system when the temperature of the ground is above a threshold value and / or the temperature difference between the ground and the wheel exceeds a predetermined threshold value; and deactivating sprinkling by the sprinkler system when the temperature of the soil is below a threshold value; and / or deactivating the
  • the Figures 1 and 2 show a pneumatic tire roller 1.
  • Figure 1 shows the pneumatic tire roller 1 in side view and Figure 2 in front view.
  • the rubber-tyred roller 1 comprises a driver's cab 2 and a machine frame 3, which is supported by a chassis with a front chassis part 5 and a rear chassis part 6.
  • the chassis parts 5, 6 each have wheels 7 arranged in wheel housings 9, with which the rubber-tyred roller 1 travels over the soil 8 to be compacted.
  • the energy required for this is provided by a drive motor 4, for example a diesel internal combustion engine.
  • the forward direction of travel of the rubber-tyred roller 1 is referred to as the working direction a, although the rubber-tyred roller 1 can also compact the soil 8 while driving backwards.
  • FIG. 1 and 2 One temperature sensor 11 each arranged on the front chassis part 5 and the rear chassis part 6, the measuring field of which - as will be explained in more detail below - the wheels 7, in particular their running surfaces 16 ( Figure 2 ), and the bottom 8 includes.
  • the sprinkler systems 10 are controlled by the control unit 12 on the basis of the measured values from the temperature sensors 11.
  • FIG 3 shows the components of the pneumatic tire roller 1 that are essential to the invention in a plan view.
  • the rubber-tyred roller 1 of the exemplary embodiment has four wheels 7 arranged next to one another in the front chassis part 5 and also four wheels 7 in the rear chassis part 6, each of which is arranged in a wheel arch 9.
  • the wheels 7 of the front chassis part 5 are offset transversely to the working direction a with respect to the wheels 7 of the rear chassis part 6 in order to ensure uniform compaction of the soil 8 when the rubber-tyred roller 1 is passed over.
  • Both the front chassis 5 and the rear chassis 6 have a sprinkler system 10.
  • the sprinkler system 10 comprises a spray bar 25 which extends transversely to the working direction a and on which at least one sprinkler nozzle 14 is arranged for each wheel 7. Via the sprinkler nozzles 14, as in the Figure 3 indicated, a liquid release agent, applied to the running surface 16 of the respective wheel 7.
  • a tank 17 is provided on the rubber-tyred roller 1, which is connected to the sprinkler system 10 and supplies it with release agent.
  • the connection of the sprinkler system 10 to the tank 17 is shown in FIG Figure 3 illustrated only for the sprinkler system 10 of the rear chassis part 6.
  • the sprinkling system 10 of the front chassis part 5 is, however, connected to a tank 17 for separating agent. This can be the same tank 17, which is also connected to the sprinkler system 10 of the rear chassis part 6, or a separate tank 17.
  • the control unit 12 is provided to control the sprinkling of the running surfaces 16 of the wheels 7 by the individual sprinkler nozzles 14.
  • the control unit 12 is connected to the sprinkler system 10 in terms of control technology, as in FIG Figure 3 indicated.
  • each sprinkling nozzle 14 of the spray bar 25 has its own controllable valve which can be opened or closed by the control unit 12.
  • Each individual valve of a sprinkling nozzle 14 can be activated and opened or closed individually and individually, that is to say independently of all other valves, by the control unit 12.
  • the control unit 12 therefore decides for each individual wheel 7 whether this wheel 7 has to be sprinkled with release agent in the current working mode or not.
  • the control unit 12 uses the measurement results of the temperature sensors 11. As in Figure 3 As shown, a temperature sensor 11 is located on the front chassis part 5 and a further temperature sensor 11 is located on the rear chassis part 6. Both temperature sensors 11 are connected to the control unit 12 in terms of control technology.
  • the temperature sensor 11 for the front chassis part 5 is arranged in the wheel arch 9 of the front chassis part 5. He can be arranged either on the machine frame 3 or on a holder for a thermal apron of the chassis part (not shown) or on the thermal apron itself.
  • the temperature sensor 11 of the rear chassis part 6 is offset towards the inside of the rubber-tyred roller 1, as seen from the wheel housing 9.
  • the temperature sensor 11 is arranged in a shaft 26 which is designed to be optically open to the rear chassis part 6. This means in particular that the temperature sensor 11 has a clear field of vision out of the shaft 26, in particular in the infrared range, onto the wheels 7 of the chassis part and the floor 8.
  • the offset of the temperature sensor 11 towards the center of the machine ensures, on the one hand, that the measurement angle that is required to span a sufficiently large measurement field 13 of the temperature sensor 11 becomes smaller.
  • the temperature sensor 11 is protected by the shaft 26 and is not damaged, for example, by chunks of asphalt possibly thrown around in the wheel arch 9.
  • the arrangement of the temperature sensors 11 in Figure 3 is only exemplary. Thus, both temperature sensors 11 can also be arranged in the wheel arch 9 or in a shaft 26, as indicated by way of example for the two chassis parts 5, 6.
  • the measuring field 13 of the temperature sensor 11 comprises a plurality of measuring points 15 or pixels.
  • the temperature sensor 11, which is designed as an infrared sensor array has a measuring field 13 of 16 ⁇ 4 measuring points 15. Similar to a thermal imaging camera, the temperature sensor 11 thus determines or measures the temperature of an object on which the respective measuring point 15 is located.
  • the measurement field 13 is, so to speak, the field of view of the temperature sensor 11.
  • the temperature sensor 11 is designed and arranged in such a way that the measuring field 13 detects all the wheels 7 of the respective chassis part 5, 6.
  • at least one measuring point 15 lies completely on the running surface 16 of each individual wheel 7 of this chassis part 5, 6.
  • the measuring field 13 of the temperature sensor 11 thus extends transversely to the working direction a at least over all the running surfaces 16 of the wheels 7. This ensures that the temperature sensor 11 can assign the respective wheel 7 to at least one measuring point 15, so that the temperature of each wheel 7 can be determined.
  • Figure 4 shows a side view of a wheel 7 of the front chassis part 5. Also shown are the temperature sensor 11 and the extent of the measurement field seen from this perspective 13th Figure 4 illustrates that the measuring field 13 of the temperature sensor 11 includes both the wheel 7 and the floor 8.
  • the temperature sensor 11 is designed and arranged in such a way that within its measuring field 13 at least one measuring point 15 is completely on the running surface 16 of at least one individual wheel 7 and in particular each individual wheel 7 of the corresponding chassis part 5, 6 (in Figure 4 for example the front chassis part 5), as well as at least one measuring point 15 lies completely on the ground 8, i.e. on the asphalt layer to be compacted.
  • the temperatures of all the wheels 7 of the rubber-tyred roller 1 and of the floor 8 can be determined via the two temperature sensors 11.
  • the temperature sensor 11 determines the temperature of the floor 8 for each wheel 7 individually.
  • each measuring point 15 located on a wheel 7, in particular on the running surface 16 of the wheel 7, can be assigned a measuring point 15 on the floor 8, the measuring point 15 for the floor 8 and the measuring point 15 for the wheel 7 lie in a common vertical plane which is aligned parallel to the working direction a.
  • the temperature sensor 11 determines both the temperature of the wheel 7 and the temperature of the floor 8 or that floor section over which this wheel 7 travels.
  • a temperature difference to the ground 8 can be measured or determined individually for each wheel 7. It is therefore optimal if the temperature sensor 11 for each wheel 7 determines both the temperature of the wheel 7 itself and the temperature of the floor 8 or floor section over which this wheel 7 travels.
  • step 19 of method 18 the wheel temperatures are determined.
  • the temperature of all the wheels 7 of the rubber-tyred roller 1 is determined via a single temperature sensor 11 for each chassis part 5, 6.
  • the temperature of the floor 8 is also determined by at least one of the temperature sensors 11.
  • each temperature of a wheel 7 measured by the temperature sensor 11 can be assigned a temperature of the floor 8 over which this wheel 7 is traveling.
  • the sprinkler system 10 is then controlled by the control unit 12.
  • the control can include different control commands.
  • the control unit 12 activates the sprinkling of this wheel 7 via the sprinkler nozzle 14 according to step 22.
  • the control unit 12 deactivates the sprinkler system 10, and in particular the sprinkling of that wheel 7 that is driving over that section of the ground whose temperature is below the threshold value, according to step 23. Even if it is determined that that the temperature difference between floor 8 and wheel 7 falls below a predetermined threshold value, for example a threshold value of 10 ° C, the irrigation is deactivated according to step 24, in particular the irrigation of that wheel 7 that no longer has a sufficient temperature difference to that soil section that is run over by this wheel 7.
  • a predetermined threshold value for example below 5 ° C

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Description

  • Die Erfindung betrifft eine Gummiradwalze zur Verdichtung eines Bodens, insbesondere zur Asphaltverdichtung. Darüber hinaus betrifft die Erfindung ein Verfahren zur Steuerung einer Berieselungsanlage einer Gummiradwalze.
  • Gattungsgemäße Gummiradwalzen werden typischerweise zur Bodenverdichtung und insbesondere im Straßenbau zur Asphaltverdichtung eingesetzt. Es handelt sich um selbstfahrende Baumaschinen, die üblicherweise einen Maschinenrahmen, einen Antriebsmotor und ein vom Antriebsmotor angetriebenes Fahrwerk mit einem vorderen Fahrwerksteil und einem hinteren Fahrwerksteil aufweisen. Typischerweise umfasst wenigstens ein Fahrwerksteil wenigstens zwei nebeneinander angeordnete Räder mit Laufflächen. Die Räder sind normalerweise aus einem elastischen Material, beispielsweise einem Gummimaterial, hergestellt. Während des Überfahrens des Bodens ergibt sich durch die elastischen Eigenschaften der Räder ein Knet- beziehungsweise Walkeffekt, durch den es beim Einsatz von gattungsgemäßen Gummiradwalzen zu einem besonders guten Porenschluss an der Oberfläche der zu verdichtenden Schicht kommt.
  • Insbesondere im Straßenbau ist es üblich, das zu verdichtende Asphaltmaterial mit den Gummiradwalzen zu überfahren, während das Asphaltmaterial noch heiß ist. Aufgrund der erhöhten Temperatur ist die Viskosität der Bindemittelanteile der Asphaltschicht, beispielsweise des Bitumens, noch niedrig genug, so dass eine ausreichende Verdichtung erzielt werden kann. Mit abnehmender Temperatur des Asphalts wird dieser dagegen viskoser und damit schlechter verdichtbar. Ein bekanntes Problem bei der Asphaltverdichtung mit Gummiradwalzen ist, dass das heiße Asphaltmaterial aufgrund der vorstehend beschriebenen Eigenschaft an kalten Rädern der Gummiradwalzen haftet. Insbesondere zu Beginn der Arbeiten, wenn die Räder noch deutlich kälter sind als das Asphaltmaterial, kommt es daher immer wieder dazu, dass Asphaltmaterial an den Gummirädern hängenbleibt, wodurch Unebenheiten in der fertigen Asphaltschicht entstehen können. Im Laufe der Arbeiten erwärmen sich dann die Räder, bis der Temperaturunterschied zwischen den Rädern und dem Asphaltmaterial so klein ist, dass das Material nicht mehr an den Rädern hängenbleibt.
  • Um dem Anhaften von Asphaltmaterial an den Rädern entgegenzuwirken, ist es zum einen bekannt, Abstreifer an den Gummirädern vorzusehen, die anhaftendes Asphaltmaterial mechanisch entfernen. Darüber hinaus ist es bekannt, eine Berieselungsanlage für die Räder einzusetzen, die dazu ausgebildet ist, ein flüssiges Trennmittel, beispielsweise lösemittelfreies, wasserverdünnbares Trennmittel, auf die Laufflächen der Räder auszubringen. Typischerweise ist ebenfalls eine Steuereinheit zur Steuerung der Berieselungsanlage vorhanden. Solche Berieselungsanlagen sind beispielsweise aus der EP 3 181 753 A1 und der nachveröffentlichten EP 3 258 013 A1 bekannt. Durch das Benetzen der Räder mit dem Trennmittel kann ein Anhaften des Asphaltmaterials von vorneherein verhindert werden. Hierfür müssen allerdings große Mengen des Trennmittels auf der Gummiradwalze mitgeführt werden. Darüber hinaus muss das Trennmittel nachgefüllt werden, sobald der auf der Gummiradwalze mitgeführte Vorrat verbraucht ist. Es wird daher versucht, das Trennmittel möglichst sparsam und nur dann auf die Laufflächen der Räder auszubringen, wenn dies tatsächlich notwendig ist.
  • Um den Verbrauch an Trennmittel in der Praxis zu minimieren, muss der Bediener der Gummiradwalze also abschätzen oder beobachten, wann das Asphaltmaterial nicht mehr an den Rädern zu haften droht. Sobald die Räder ausreichend erwärmt sind, kann dann die Berieselungsanlage abgeschaltet werden. Erfolgt dies zu früh, so besteht die Gefahr, die Asphaltschicht durch das Herauslösen von an den Rädern haftenden Stücken zu beschädigen. Schaltet der Bediener die Berieselungsanlage allerdings zu spät ab, so wird unnötig zu viel Trennmittel verbraucht. Um dem Bediener einen Anhaltspunkt zur Steuerung der Berieselungsanlage zu geben, ist es im Stand der Technik bekannt, die Temperatur des Bodens zu bestimmen, wie beispielsweise aus der EP 3 181 753 A1 bekannt. Auf diese Weise kann der Bediener besser abschätzen, wie lange er den Boden bearbeiten muss, bis sich die Räder ausreichend erwärmt haben. Auch mit der Messung der Bodentemperatur ist die Entscheidung des Bedieners, die Berieselungsanlage abzuschalten, allerdings weiterhin sehr subjektiv, so dass zum einen Beschädigungen an der Asphaltschicht drohen und zum anderen zu viel Trennmittel verbraucht wird.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, den Verbrauch an Trennmittel zu reduzieren und gleichzeitig die Gefahr einer Beschädigung der zu verdichtenden Bodenschicht zu verringern. Insbesondere ist es die Aufgabe der Erfindung, eine Möglichkeit anzugeben, wie die Entscheidung darüber, eine Berieselungsanlage im Arbeitsbetrieb an- oder abzuschalten, objektiver getroffen werden kann. Gleichzeitig soll die Lösung möglichst kostengünstig sein.
  • Die Lösung dieser Aufgabe gelingt mit der Gummiradwalze und dem Verfahren gemäß den unabhängigen Ansprüchen. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Konkret gelingt die Lösung bei einer eingangs genannten Gummiradwalze dadurch, dass ein optischer Temperatursensor mit einem Messfeld mit wenigstens zwei Messpunkten vorhanden ist, der derart ausgebildet und angeordnet ist, dass er die Temperatur wenigstens eines Rades, insbesondere der Lauffläche des Rades, und des Bodens bestimmt. Ein Grundgedanke der vorliegenden Erfindung ist es also, direkt die Temperatur des Rades und insbesondere der Kontaktfläche des Rades zum Boden, sprich der Lauffläche, zu bestimmen. Damit wird die Temperatur nunmehr direkt an der Stelle ermittelt, an der ein Anhaften des Asphaltmaterials droht. Zum Einsatz mit der Erfindung eignen sich vor allem kontaktlose optische Temperatursensoren. Diese können in der Nähe der Räder, beispielsweise im Radkasten der Gummiradwalze, angeordnet sein und von dort auf die Lauffläche des Rades ausgerichtet werden. Dabei muss die Anordnung nicht in unmittelbarer Nähe zum Rad erfolgen, sondern es ist lediglich wichtig, dass der Temperatursensor so angeordnet ist, dass sich das zu messende Rad in seinem Messfeld befindet. Mit anderen Worten muss mindestens ein Messpunkt des Temperatursensors auf dem Rad, insbesondere auf der Lauffläche des Rades, liegen. Die Temperatur der Lauffläche des Rades ist eine Größe, die direkter mit dem Anhaften von Asphaltmaterial zusammenhängt als lediglich die Temperatur des Bodens, da letztere keine Information über den Erwärmungszustand des Gummirades selbst zur Verfügung stellt. Die gemessene Temperatur des Rades, insbesondere der Lauffläche des Rades, kann dem Bediener der Gummiradwalze angezeigt werden, wodurch dieser deutlich genauer abschätzen kann, ob derzeit noch ein Anhaften von Asphaltmaterial zu befürchten ist oder nicht. Der Bediener kann daher das Ein- und/oder Ausschalten der Berieselungsanlage deutlich genauer an den tatsächlichen Bedarf einer Berieselung anpassen, wodurch insgesamt Trennmittel eingespart wird. Genauso denkbar und vom Umfang der Erfindung mit umfasst ist es, dass ergänzend oder alternativ die Berieselungsanlage vollautomatisch von einer Steuereinheit gesteuert wird, die auf den Temperaturwert wenigstens des Temperatursensors zur Steuerung der Berieselungsanlage zurückgreift, insbesondere zum An- und/oder Abschalten der Berieselung.
  • Erfindungsgemäß ist der Temperatursensor ein optischer Temperatursensor mit einem Messfeld . Beispielsweise kann der Temperatursensor also als Wärmebild- beziehungsweise Infrarotkamera ausgebildet sein. In einer besonders bevorzugten Ausführungsform umfasst der Temperatursensor ein Infrarot-Sensor-Array, beziehungsweise ist der Temperatursensor als Infrarot-Sensor-Array ausgebildet. Ein Infrarot-Sensor-Array ist ein Messgerät, mit dem gleichzeitig die Temperatur mehrerer Messpunkte bestimmt werden kann. Ein Infrarot-Sensor-Array kann beispielsweise als Infrarotkamera mit nur wenigen Bildpunkten beziehungsweise Pixeln betrachtet werden, die die Messpunkte darstellen. Beispielsweise kann ein Infrarot-Sensor-Array 16x4 Pixel beziehungsweise Messpunkte aufweisen. Andere Auflösungen sind allerdings auch möglich und erfindungsgemäß einsetzbar. Ergänzend oder alternativ kann auch auf einen Temperaturscanner zurückgegriffen werden. Dieser weist im Wesentlichen nur einen einzigen Messpunkt auf, richtet diesen aber alternierend auf wenigstens zwei Stellen eines Gummirades und/oder wenigstens jeweils eine Stelle an wenigstens zwei Gummirädern.
  • Gummiradwalzen weisen üblicherweise mehrere nebeneinander angeordnete Räder auf. Je nach Betriebssituation der Gummiradwalze können die Räder unterschiedliche Temperaturen aufweisen. Beispielsweise kann die Gummiradwalze teilweise auf einem bereits erkalteten Asphaltstreifen und teilweise auf einem noch heißen Asphaltstreifen fahren, wodurch die jeweils mit dem heißen beziehungsweise kalten Asphalt in Kontakt tretenden Räder unterschiedliche Temperaturen aufweisen. Um auch über derartige unterschiedliche Temperaturverhältnisse Informationen zu erhalten, ist es bevorzugt, dass der optische Temperatursensor derart ausgebildet und angeordnet ist, dass das Messfeld jeweils zumindest einen Messpunkt auf wenigstens zwei Rädern, insbesondere auf der Lauffläche des jeweiligen Rades, umfasst. Die wenigstens zwei Räder können beispielsweise nebeneinander angeordnet sein. Darüber hinaus kann es sich beispielsweise um zwei nebeneinanderliegende Räder handeln, die quer zur Arbeitsrichtung der Gummiradwalze auf der linken oder der rechten äußeren Seite des Fahrwerksteiles angeordnet sind. Insbesondere die quer zur Arbeitsrichtung ganz außen angeordneten Räder weisen oftmals eine unterschiedliche Temperatur zu den weiter innen neben den äußeren Rädern angeordneten Rädern auf. Dies liegt daran, dass die weiter innen liegenden Räder bereits durch die äußeren Räder von der Umgebung abgeschirmt werden. Es ist daher besonders zwischen diesen Rädern mit einem Temperaturunterschied zu rechnen.
  • Ganz besonders bevorzugt ist es, wenn der optische Temperatursensor derart ausgebildet und angeordnet ist, dass das Messfeld zumindest einen Messpunkt auf jedem Rad des jeweiligen Fahrwerksteiles, insbesondere auf der Lauffläche des jeweiligen Rades, umfasst. Auf diese Weise wird die Temperatur jedes einzelnen Rades des Fahrwerksteiles vom Temperatursensor bestimmt. Diese Informationen können dann beispielsweise dem Bediener angezeigt oder direkt zur Steuerung der Berieselungsanlage eingesetzt werden, wie nachstehend noch näher beschrieben wird. Sind die Temperaturdaten zu jedem einzelnen Rad bekannt, so kann besonders effizient entschieden werden, ob die Berieselungsanlage aktiviert oder deaktiviert werden muss, je nachdem, welches Rad mit welcher Temperatur auf dem heißen Asphaltmaterial fährt. Bei dieser Ausführungsform kommt ebenfalls der Vorteil des Einsatzes eines Infrarot-Sensor-Arrays besonders zum Tragen. Ein Infrarot-Sensor-Array kann derart an der Gummiradwalze angeordnet werden, beispielsweise im Radkasten des Fahrwerksteiles oder an einer für diesen Fahrwerksteil vorgesehenen thermischen Schürze oder deren Halterung, dass die Temperatur jedes einzelnen Rades des Fahrwerksteiles vom Temperatursensor messbar ist. Zumindest ein Pixel des Messfeldes liegt daher auf jedem einzelnen der Räder. Auf diese Weise kann mit nur einem einzigen Temperatursensor die Temperatur sämtlicher Räder des Fahrwerksteils bestimmt werden. Die erfindungsgemäße Lösung ist daher besonders kostengünstig, da nicht beispielsweise für jedes einzelne zu messende Rad ein eigener Temperatursensor eingesetzt werden muss.
  • Die Erfindung kann auch vorteilhaft bei Gummiradwalzen eingesetzt werden, bei denen sowohl der vordere Fahrwerksteil als auch der hintere Fahrwerksteil Räder aufweist. In diesem Fall ist es bevorzugt, dass insgesamt zwei optische Temperatursensoren vorhanden sind, wobei ein optischer Temperatursensor die Temperatur wenigstens eines Rades des vorderen Fahrwerksteils bestimmt und der andere optische Temperatursensor die Temperatur wenigstens eines Rades des hinteren Fahrwerksteils bestimmt. Insbesondere bestimmen die beiden Temperatursensoren jeweils die Temperatur sämtlicher im jeweiligen Fahrwerksteil angeordneter Räder. Insgesamt wird somit durch den Einsatz von nur zwei Temperatursensoren an der Gummiradwalze erreicht, dass die Temperatur von sämtlichen Rädern bestimmbar ist. Diese Informationen kann der Bediener der Gummiradwalze, dem die entsprechenden Messergebnisse angezeigt werden, nutzen, um eine besonders effiziente Steuerung der Berieselungsanlage zu realisieren. Beide Temperatursensoren sind dabei besonders bevorzugt jeweils als Infrarot-Sensor-Array oder Temperaturscanner ausgebildet.
  • Wie schon angedeutet kann es vorgesehen sein, dass eine Anzeigeeinrichtung vorhanden ist, über die dem Bediener die Temperaturen der Räder, die vom Temperatursensor bestimmt werden, anzeigbar sind. Der Bediener kann daher aufgrund der Radtemperatur entscheiden, ob eine Berieselung mit Trennmittel durch die Berieselungsanlage notwendig ist um ein Anhaften von Asphalt an den Rädern zu verhindern. Gemäß einer bevorzugten Ausführungsform ist es allerdings vorgesehen, dass die Steuereinheit dazu ausgebildet ist, die Berieselungsanlage anhand der Messwerte des Temperatursensors selbstständig zu steuern, insbesondere zumindest zu aktivieren und/oder zu deaktivieren. Dies kann ergänzend oder alternativ zu dem Vorhandensein einer Anzeigeeinrichtung erfolgen. Es ist also vorgesehen, dass die Steuereinheit direkt die Berieselungsanlage automatisch anhand der von dem Temperatursensor beziehungsweise den Temperatursensoren gemessenen Temperaturen der Räder steuert, ohne dass der Bediener hierzu zusätzlich tätig werden muss. Auf diese Weise wird der letzte subjektive Einfluss bei der Steuerung der Berieselungsanlage eliminiert und gleichzeitig der Bediener der Gummiradwalze entlastet, so dass er sich auf andere Tätigkeiten des Verdichtungsprozesses konzentrieren kann. Beispielsweise aktiviert die Steuereinheit die Berieselungsanlage, wenn die Temperatur des wenigstens einen Rades unter einem vorbestimmten Schwellenwert liegt. Darüber hinaus kann die Steuereinheit die Berieselungsanlage deaktivieren, wenn die Temperatur des Rades über einem oder dem vorgegebenen Schwellenwert liegt. Je nach verwendetem Asphaltmaterial können hier unterschiedliche Schwellenwerte voreingestellt werden. Typische Schwellenwerte liegen beispielsweise im Bereich von 60 °C bis 110 °C, insbesondere bei 80 °C. Der konkrete geeignete Schwellenwert ist vom Erweichungspunkt der im Asphaltmischgut verwendeten Bitumensorte abhängig. Weiter bevorzugt ist es hier vorgesehen, dass die Gummiradwalze bzw. die vorstehend genannte Steuereinheit wahlweise in einen "Walzmodus" und/oder "Berieselungsmodus" schaltbar ist, insbesondere um zu verhindern, dass im normalen Fahrbetrieb außerhalb des Walzbetriebs, d.h. wenn der Boden und die Räder kalt sind, die Berieselungsanlage automatisch von der Steuereinheit aktiviert wird.
  • Insbesondere dann, wenn die Temperatur von mehr als einem Rad innerhalb eines Fahrwerksteiles vom Temperatursensor bestimmt wird, ist es bevorzugt, dass dann diese zusätzliche Information ebenfalls zur Steuerung der Berieselungsanlage genutzt wird. So ist es beispielsweise bevorzugt, dass mehr als zwei nebeneinander angeordnete Räder im vorderen Fahrwerksteil und/oder im hinteren Fahrwerksteil angeordnet sind, und dass die Steuereinheit dazu ausgebildet ist, die Berieselung der quer zu einer Arbeitsrichtung außen angeordneten Räder getrennt von dem oder den zwischen diesen Rädern liegenden Rädern zu steuern. Zweckmäßigerweise ist gleichzeitig die Berieselungsanlage derart ausgebildet, dass sie die quer zur Arbeitsrichtung außen angeordneten Räder unabhängig von den anderen Rädern eines Fahrwerksteiles berieseln kann. Wie bereits angedeutet, kommt es vor, dass die quer zur Arbeitsrichtung außen liegenden Räder eines Fahrwerksteiles kälter sind als diejenigen, die zwischen diesen Rädern liegen. Dies liegt daran, dass die außen angeordneten Räder von der Außenumgebung stärker abgekühlt werden. Während die innenliegenden Räder daher bereits die notwendige Temperatur erreicht haben, so dass auf eine Berieselung dieser Räder verzichtet werden kann, muss diese bei den äußeren Rädern fortgesetzt werden. Damit die bereits heißen inneren Räder allerdings nicht umsonst berieselt werden, stellt die Steuereinheit die Berieselung der innen liegenden Räder ab, während die quer zur Arbeitsrichtung außen liegenden Räder des Fahrwerksteils weiter berieselt werden, bis auch diese die notwendige Temperatur erreicht haben.
  • Insbesondere in dem Fall, in dem über den oder die Temperatursensoren die Temperaturen sämtlicher Räder der Gummiradwalze bestimmt werden, ist es bevorzugt, dass die Steuereinheit derart ausgebildet, dass sie die Berieselung jedes einzelnen Rades unabhängig von den restlichen Rädern steuert. Entsprechend ist selbstverständlich auch die Berieselungsanlage derart ausgebildet, dass die Berieselung jedes einzelnen Rades unabhängig von den anderen Rädern aktivierbar oder deaktivierbar ist. Beispielsweise weist die Berieselungsanlage einen Sprühbalken auf, der für jedes Rad eine eigene Sprühdüse aufweist, wobei jede Sprühdüse ein eigenes Ventil aufweist, welches von der Steuereinheit einzeln ansteuerbar ist. Auf diese Weise kann die Steuereinheit auf jegliche Asymmetrie in den Temperaturen der Räder individuell eingehen. Egal wie die Temperatur der Räder untereinander verteilt ist, aktiviert die Steuereinheit die Berieselung jeweils bei denjenigen Rädern, deren Temperatur unter einem vorbestimmten Schwellenwert liegt, während die Steuereinheit die Berieselung derjeniger Räder deaktiviert, deren Temperatur oberhalb eines vorbestimmten Schwellenwertes liegt. Auch hier können die bereits vorstehend genannten Schwellenwerte zum Einsatz kommen. Aufgrund der Steuerung der Berieselung jedes einzelnen Rades unabhängig von den anderen Rädern wird die Berieselung mit Trennmittel tatsächlich nur bei denjenigen Rädern und in demjenigen Temperaturbereich durchgeführt, in dem ein Anhaften des Asphaltmaterials an den Rädern möglich ist. Das Trennmittel wird dadurch besonders effizient genutzt und der Verbrauch des Trennmittels stark reduziert.
  • Grundsätzlich ist es bereits aufgrund der gemessenen Temperatur der Räder möglich, die Genauigkeit der Steuerung der Berieselungsanlage und damit die Effizienz des Trennmittelverbrauches zu erhöhen. Wie eingangs erläutert, haftet das Asphaltmaterial dann an den Rädern an, wenn das heiße Asphaltmaterial durch die kalten Räder abgekühlt und damit die Viskosität erhöht wird. Ein wesentlicher Faktor für das Anhaften des Asphaltmaterials besteht also in der Temperaturdifferenz zwischen dem Boden beziehungsweise dem Asphaltmaterial und den Rädern der Gummiradwalze. Der Temperatursensor ist daher derart ausgebildet und angeordnet, dass neben der Temperatur des wenigstens einen Rades ebenfalls die Temperatur des Bodens bestimmbar ist. Mit anderen Worten liegt mindestens ein Messpunkt des Messfeldes des Temperatursensors auf dem Boden, so dass dessen Temperatur vom Temperatursensor messbar ist. Auch dies lässt sich beispielsweise vorteilhaft mittels eines Infrarot-Sensor-Arrays erreichen, das ausreichend Pixel beziehungsweise Messpunkte aufweist, um sowohl sämtliche Räder eines Fahrwerksteiles als auch den Boden abzudecken und die jeweiligen Temperaturen zu bestimmen. Besonders bevorzugt ist es, wenn zusätzlich zur Temperatur eines jeden Rades ebenfalls die Temperatur desjenigen Bodenabschnittes bestimmt wird, über den dieses Rad fährt. Für jedes Rad der Gummiradwalze werden also zwei Temperaturen gemessen, die einmal der Lauffläche des Rades und einmal der mit dieser Lauffläche in Kontakt tretenden Bodenfläche entsprechen.
  • Auch die Temperatur des Bodens kann sodann von der Steuereinheit bei der Steuerung der Berieselungsanlage berücksichtigt werden. So ist es beispielsweise bevorzugt, dass die Steuereinheit dazu ausgebildet ist, die Berieselung durch die Berieselungsanlage zu aktivieren, wenn die Temperatur des Bodens oberhalb eines Schwellenwertes liegt, und die Berieselungsanlage zu deaktivieren, wenn die Temperaturdifferenz zwischen Boden und Rad einen vorgegebenen Schwellenwert unterschreitet. Diese Vorgehensweise erfolgt bevorzugt hierarchisch, konkret derart, dass nur bei vorher aktivierter Berieselungsanlage, d.h. "warmen Boden", der für sich von der Temperatur her eine Aktivierung der Berieselungsanlage auslösen würde, aufgrund der ermittelten Temperatur des Bodens oberhalb eines Schwellenwertes die ermittelte Temperaturdifferenz zur Deaktivierung genutzt wird. Der Schwellenwert für die Temperatur des Bodens beziehungsweise der Asphaltschicht, oberhalb dessen die Berieselungsanlage von der Steuereinheit aktiviert wird, liegt beispielsweise zwischen 40 °C und 80 °C, beispielsweise bei 55 °C. Die Temperaturdifferenz zwischen Boden beziehungsweise Asphaltschicht und Rad, bei deren Unterschreiten die Berieselung durch die Steuereinheit deaktiviert wird, liegt beispielsweise zwischen 10 °C und 50 °C, beispielsweise bei 20 °C. Auch diese Werte können je nach verwendetem Asphaltmaterial variieren und hängen von der vorliegenden Bodentemperatur ab. Bei einer Temperatur, die nur knapp über der Einschalttemperatur der Berieselungsanlage liegt, darf die Reifentemperatur nicht wesentlich niedriger als die Bodentemperatur sein. Bei sehr hohen Asphalttemperaturen z.B. 130 °C genügt unter Umständen bereits eine Reifentemperatur von 80 °C, um Anhaftungen zu vermeiden. Durch die automatische Aktivierung und Deaktivierung der Berieselungsanlage, insbesondere für jedes einzelne Rad und unter Berücksichtigung der Temperatur desjenigen Bodenabschnittes, über den dieses Rad fährt, wird verhindert, dass die Berieselung zu spät angeschaltet wird und es bereits zu einem Anhaften von Asphaltmaterial an den Rädern gekommen ist. Zusätzlich wird verhindert, dass unnötig Berieselungsemulsion verwendet wird, obwohl keine Gefahr von Anhaftungen besteht.
  • Ergänzend oder alternativ kann es auch vorgesehen sein, dass eine Einrichtung zur, insbesondere optischen, Erfassung der Außenoberfläche wenigstens eines Gummirades, beispielsweise eine Digitalkamera, vorgesehen ist. Mit dieser kann mithilfe einer geeigneten Bildverarbeitungssoftware zusätzliche ermittelt werden, ob tatsächlich Anhaftungen auftreten oder nicht. Auch diese Information kann dem Bediener der Gummiradwalze angezeigt und/oder zur Steuerung der Steuereinheit der Berieselungsanlage genutzt werden, beispielsweise bei einer manuellen Festlegung wenigstens eines Schwellenwertes durch den Fahrer.
  • Um die Steuerung der Berieselungsanlage weiter zu verbessern, ist es bevorzugt, dass die Steuereinheit dazu ausgebildet ist, die vorher aktivierte Berieselung durch die Berieselungsanlage selbsttätig dann abzustellen, wenn die ermittelte Temperatur des Bodens unterhalb eines Schwellenwertes liegt. Ist das Asphaltmaterial also bereits so weit abgekühlt, dass kein Anhaften an den Rädern der Gummiradwalze mehr zu befürchten ist, so wird automatisch die vormals aktivierte Berieselungsanlage deaktiviert und damit unnötiger Verbrauch von Trennmittel verhindert. Auch dieses Abschalten bezieht sich bevorzugt auf die Berieselung jedes einzelnen Rades individuell anhand der Temperatur desjenigen Bodenabschnittes, über das das entsprechende Rad fährt.
  • Darüber hinaus kann ebenfalls vorgesehen sein, dass die Steuereinheit dazu ausgebildet ist, die Berieselung durch die aktivierte Berieselungsanlage dann abzustellen, wenn die Temperaturdifferenz zwischen Boden und Rad einen vorgegebenen Schwellenwert unterschreitet. Auch auf diese Weise wird Trennmittel eingespart, wenn ein Anhaften des Asphaltmaterials am Rad aufgrund eines Abkühlens des Materials durch die Berührung des Rades nicht mehr zu befürchten ist.
  • Insbesondere erfolgt die vorstehend beschriebene Steuerung der Berieselungsanlage für jedes einzelne Rad der Gummiradwalze individuell und unabhängig von den anderen Rädern beziehungsweise von der Berieselung der anderen Räder der Gummiradwalze. Die Berieselung eines Rades hängt also lediglich von der Temperatur dieses Rades und der Temperatur des Bodens, insbesondere desjenigen Bodenabschnittes, über den dieses Rad fährt, sowie der Temperaturdifferenz zwischen dem Rad und dem Boden beziehungsweise dieses Bodenabschnittes ab. Die Entscheidung darüber, ob ein Rad mit Trennmittel berieselt wird, wird von der Steuereinheit anhand der Messwerte des Temperatursensors, der die Temperatur des Betroffenen Rades misst, getroffen. Hierfür muss der Bediener der Gummiradwalze überhaupt keine Steuerbefehle mehr abgeben. Die Berieselung wird daher je nach objektiv festgestelltem Bedarf des einzelnen Rades automatisch von der Steuereinheit gesteuert.
  • Wie schon erwähnt, muss der Temperatursensor derart angeordnet sein, dass sich zumindest die zu messenden Räder und der Boden in seinem Messfeld befinden. Beispielsweise kann der Temperatursensor im Radkasten der Gummiradwalze angeordnet sein. Darüber hinaus muss allerdings beachtet werden, dass der Temperatursensor derart angeordnet sein sollte, dass er von den rauen Arbeitsbedingungen innerhalb des Radkastens möglichst verschont bleibt. Es ist daher bevorzugt, dass der Temperatursensor in der oberen Hälfte, bevorzugt im oberen Drittel, besonders bevorzugt im oberen Viertel, ganz besonders bevorzugt im oberen Fünftel und bestenfalls am oberen Scheitelpunkt eines Radkastens angeordnet ist. Darüber hinaus ist es beispielsweise ebenfalls möglich, den Temperatursensor zurückgesetzt in einem Schacht bzw. einen Sensorsichtschacht anzuordnen, der in den Radkasten mündet und von dem aus der Temperatursensor ein freies Blickfeld auf die zu messenden Räder und gegebenenfalls den Boden hat. Durch den Versatz des Temperatursensors in einen Schacht wird dieser zusätzlich vor negativen Umwelteinflüssen geschützt. Unterstützend kann eine Freiblasvorrichtung vorgesehen sein, die verhindert, dass der Temperatursensor, insbesondere Infrarot-Temperatursensor, verschmutzt.
  • Die Lösung der eingangs gestellten Aufgabe gelingt ebenfalls mit einem Verfahren zur Steuerung der Berieselungsanlage einer vorstehend beschriebenen Gummiradwalze, umfassend die Schritte: Bestimmen der Temperatur wenigstens eines Rades, insbesondere der Lauffläche des Rades, und Bestimmen der Temperatur des Bodens durch einen Temperatursensor und Steuern der Berieselung des wenigstens einen Rades durch die Berieselungsanlage anhand der Messwerte des Temperatursensors durch eine Steuereinheit. Sämtliche vorstehend zur Gummiradwalze ausgeführten Merkmale, Vorteile und Wirkungen gelten ebenfalls im übertragenen Sinne für das erfindungsgemäße Verfahren. Auch die entsprechenden Schwellenwerte entsprechen den vorstehend genannten Werten. Es wird daher lediglich zur Vermeidung von Wiederholungen auf die vorstehenden Ausführungen Bezug genommen.
  • Insbesondere umfasst das Verfahren wenigstens einen der folgenden Schritte: Bestimmen der Temperatur von wenigstens zwei Rädern, insbesondere der Lauffläche des jeweiligen Rades, durch einen Temperatursensor; Bestimmen der Temperatur von allen Rädern des jeweiligen Fahrwerksteils, insbesondere der Lauffläche des jeweiligen Rades, durch einen Temperatursensor; Bestimmen der Temperatur von allen Rädern des vorderen und des hinteren Fahrwerksteils, insbesondere der Lauffläche des jeweiligen Rades, durch jeweils einen Temperatursensor für den vorderen Fahrwerksteil und den hinteren Fahrwerksteil; Steuern der Berieselung von quer zu einer Arbeitsrichtung außen angeordneten Rädern getrennt von dem oder den zwischen diesen Rädern liegenden Rädern; Steuern der Berieselung jedes einzelnen Rades unabhängig von den restlichen Rädern; Aktivieren der Berieselung durch die Berieselungsanlage, wenn die Temperatur des Bodens oberhalb eines Schwellenwertes liegt und/oder die Temperaturdifferenz zwischen Boden und Rad einen vorgegebenen Schwellenwert überschreitet; und Deaktivieren der Berieselung durch die Berieselungsanlage, wenn die Temperatur des Bodens unterhalb eines Schwellenwertes liegt; und/oder Deaktivieren der Berieselung durch die Berieselungsanlage, wenn die Temperaturdifferenz zwischen Boden und Rad einen vorgegebenen Schwellenwert unterschreitet.
  • Die Erfindung wird nun anhand der in den Figuren gezeigten Ausführungsbeispiele näher erläutert. Es zeigen schematisch:
  • Figur 1:
    eine Seitenansicht einer Gummiradwalze;
    Figur 2:
    eine Frontansicht einer Gummiradwalze;
    Figur 3:
    eine Draufsicht auf Teile des Maschinenrahmens, des Fahrwerks und der Berieselungsanlage;
    Figur 4:
    eine Seitenansicht eines Rades mit Berieselungsanlage und Temperatursensor;
    Figur 5:
    einen Temperatursensor und dessen Messfeld; und
    Figur 6:
    ein Ablaufdiagramm des Verfahrens.
  • Gleiche beziehungsweise gleich wirkende Bauteile sind mit den gleichen Bezugszeichen beziffert. Sich wiederholende Bauteile sind nicht in allen Figuren gesondert bezeichnet.
  • Die Figuren 1 und 2 zeigen eine Gummiradwalze 1. Figur 1 zeigt die Gummiradwalze 1 in Seitenansicht und Figur 2 in Frontansicht. Die Gummiradwalze 1 umfasst einen Fahrerstand 2 und einen Maschinenrahmen 3, der von einem Fahrwerk mit einem vorderen Fahrwerksteil 5 und einem hinteren Fahrwerksteil 6 getragen wird. Die Fahrwerksteile 5, 6 weisen jeweils in Radkästen 9 angeordnete Räder 7 auf, mit denen die Gummiradwalze 1 über den zu verdichtenden Boden 8 fährt. Die hierfür notwendige Energie wird von einem Antriebsmotor 4, beispielsweise einem Dieselverbrennungsmotor, bereitgestellt. Als Arbeitsrichtung a wird vorliegend die Vorwärtsfahrtrichtung der Gummiradwalze 1 bezeichnet, obwohl die Gummiradwalze 1 im Arbeitsbetrieb ebenfalls rückwärtsfahrend den Boden 8 verdichten kann. Darüber hinaus zeigen die Figuren 1 und 2 jeweils einen am vorderen Fahrwerksteil 5 und am hinteren Fahrwerksteil 6 angeordneten Temperatursensor 11, dessen Messfeld - wie später noch näher erläutert - die Räder 7, insbesondere deren Laufflächen 16 (Figur 2), und den Boden 8 umfasst. Ebenfalls befindet sich jeweils am vorderen Fahrwerksteil 5 und am hinteren Fahrwerksteil 6 eine Berieselungsanlage 10 mit einem Sprühbalken 25, der sich quer zur Arbeitsrichtung a erstreckt und derart ausgebildet ist, dass sämtliche Räder 7 des jeweiligen Fahrwerkteils 5, 6 mit einem Trennmittel besprühbar sind. Die Steuerung der Berieselungsanlagen 10 erfolgt durch die Steuereinheit 12 aufgrund der Messwerte der Temperatursensoren 11.
  • Figur 3 zeigt die erfindungswesentlichen Anteile der Gummiradwalze 1 in einer Draufsicht. Aus Übersichtlichkeitsgründen sind Teile des Maschinenrahmens 3, des Fahrerstandes 2 und der Antriebsmotor 4 sowie weitere Komponenten der Gummiradwalze 1 nicht dargestellt. Die Gummiradwalze 1 des Ausführungsbeispiels weist vier nebeneinander angeordnete Räder 7 im vorderen Fahrwerksteil 5 und ebenfalls vier Räder 7 im hinteren Fahrwerksteil 6 auf, die jeweils in einem Radkasten 9 angeordnet sind. Die Räder 7 des vorderen Fahrwerksteils 5 sind quer zur Arbeitsrichtung a gegenüber den Rädern 7 des hinteren Fahrwerksteils 6 versetzt angeordnet, um eine einheitliche Verdichtung des Bodens 8 bei einer Überfahrt der Gummiradwalze 1 sicherzustellen. Sowohl das vordere Fahrwerk 5 als auch das hintere Fahrwerk 6 weist eine Berieselungsanlage 10 auf. Die Berieselungsanlage 10 umfasst einen Sprühbalken 25, der sich quer zur Arbeitsrichtung a erstreckt und an dem für jedes Rad 7 zumindest eine Berieselungsdüse 14 angeordnet ist. Über die Berieselungsdüsen 14 kann, wie in der Figur 3 angedeutet, ein flüssiges Trennmittel, auf die Lauffläche 16 des jeweiligen Rades 7 ausgebracht werden. Zur Bevorratung des Trennmittels ist an der Gummiradwalze 1 ein Tank 17 vorgesehen, der mit der Berieselungsanlage 10 verbunden ist und diese mit Trennmittel versorgt. Die Verbindung der Berieselungsanlage 10 zum Tank 17 ist in Figur 3 lediglich für die Berieselungsanlage 10 des hinteren Fahrwerksteils 6 veranschaulicht. Auch die Berieselungsanlage 10 das vorderen Fahrwerksteiles 5 ist allerdings mit einem Tank 17 für Trennmittel verbunden. Hierbei kann es sich um denselben Tank 17 handeln, der ebenfalls mit der Berieselungsanlage 10 des hinteren Fahrwerksteils 6 in Verbindung steht, oder um einen separaten Tank 17.
  • Wichtig an der Berieselungsanlage 10 ist, dass die Steuereinheit 12 dafür vorgesehen ist, die Berieselung der Laufflächen 16 der Räder 7 durch die einzelnen Berieselungsdüsen 14 zu steuern. Dafür ist zum einen die Steuereinheit 12 mit der Berieselungsanlage 10 steuerungstechnisch verbunden, wie in Figur 3 angedeutet. Darüber hinaus weist jede Berieselungsdüse 14 des Sprühbalkens 25 ein eigenes steuerbares Ventil auf, das von der Steuereinheit 12 geöffnet oder geschlossen werden kann. Jedes einzelne Ventil einer Berieselungsdüse 14 kann einzelnen und individuell, also unabhängig von sämtlichen anderen Ventilen, von der Steuereinheit 12 angesteuert und geöffnet beziehungsweise geschlossen werden. Die Steuereinheit 12 entscheidet also für jedes einzelne Rad 7, ob dieses Rad 7 im aktuellen Arbeitsbetrieb mit Trennmittel berieselt werden muss oder nicht. Um diese Entscheidung zu treffen, zieht die Steuereinheit 12 die Messergebnisse der Temperatursensoren 11 heran. Wie in Figur 3 gezeigt, befindet sich ein Temperatursensor 11 am vorderen Fahrwerksteil 5 und ein weiterer Temperatursensor 11 am hinteren Fahrwerksteil 6. Beide Temperatursensoren 11 sind steuerungstechnisch mit der Steuereinheit 12 verbunden. Der Temperatursensor 11 für den vorderen Fahrwerksteil 5 ist im Radkasten 9 des vorderen Fahrwerksteiles 5 angeordnet. Er kann entweder am Maschinenrahmen 3 oder an einer Halterung für eine thermische Schürze des Fahrwerksteiles (nichtdargestellt) oder an der thermischen Schürze selbst angeordnet sein. Der Temperatursensor 11 des hinteren Fahrwerksteils 6 ist vom Radkasten 9 aus gesehen zum Inneren der Gummiradwalze 1 hin versetzt. Insbesondere ist der Temperatursensor 11 in einem Schacht 26 angeordnet, der optisch zum hinteren Fahrwerksteil 6 geöffnet ausgebildet ist. Dies bedeutet insbesondere, dass der Temperatursensor 11 aus dem Schacht 26 heraus ein freies Sichtfeld, insbesondere im Infrarotbereich, auf die Räder 7 des Fahrwerkteils und den Boden 8 hat. Der Versatz des Temperatursensors 11 zur Maschinenmitte hin sorgt zum einen dafür, dass der Messwinkel, der benötigt wird, um ein ausreichend großes Messfeld 13 des Temperatursensors 11 aufzuspannen, kleiner wird. Zum anderen ist der Temperatursensor 11 durch den Schacht 26 geschützt und wird beispielsweise nicht durch eventuell im Radkasten 9 herumgeschleuderte Asphaltbrocken beschädigt. Die Anordnung der Temperatursensoren 11 in Figur 3 ist lediglich beispielhaft. So können auch beide Temperatursensoren 11 im Radkasten 9 oder in einem Schacht 26 angeordnet sein, wie jeweils beispielhaft für die beiden Fahrwerksteile 5, 6 angedeutet.
  • Die Funktion der Temperatursensoren 11 und die Form des Messfeldes 13 beziehungsweise Sichtfeldes der Temperatursensoren 11, das ebenfalls bereits in Figur 3 angedeutet ist, geht insbesondere aus einer zusätzlichen Betrachtung der Figuren 4 und 5 vor. Wie insbesondere in Figur 5 gezeigt, umfasst das Messfeld 13 des Temperatursensors 11 mehrere Messpunkte 15 beziehungsweise Pixel. Im gezeigten Ausführungsbeispiel der Figur 5 weist der Temperatursensor 11, der als Infrarot-Sensor-Array ausgebildet ist, ein Messfeld 13 von 16x4 Messpunkten 15 auf. Ähnlich wie bei einer Wärmebildkamera bestimmt beziehungsweise misst der Temperatursensor 11 also die Temperatur eines Objektes, auf dem sich der jeweilige Messpunkt 15 befindet. Beim Messfeld 13 handelt es sich also sozusagen um das Sichtfeld des Temperatursensors 11. Die Erstreckung des Messfeldes 13 geht insbesondere aus einer Zusammenschau der Figuren 3 und 4 hervor. Wie aus Figur 3 hervorgeht, ist der Temperatursensor 11 derart ausgebildet und angeordnet, dass das Messfeld 13 sämtliche Räder 7 des jeweiligen Fahrwerksteiles 5, 6 erfasst. Insbesondere liegt mindestens ein Messpunkt 15 vollständig auf der Lauffläche 16 jeden einzelnen Rades 7 dieses Fahrwerksteiles 5, 6. Das Messfeld 13 des Temperatursensors 11 erstreckt sich also quer zur Arbeitsrichtung a zumindest über sämtliche Laufflächen 16 der Räder 7. Auf diese Weise wird sichergestellt, dass der Temperatursensor 11 zumindest einem Messpunkt 15 das jeweilige Rad 7 zuordnen kann, so dass die Temperatur jedes Rades 7 bestimmbar ist.
  • Figur 4 zeigt eine Seitenansicht auf ein Rad 7 des vorderen Fahrwerksteiles 5. Ebenfalls gezeigt sind der Temperatursensor 11 und die aus dieser Perspektive gesehene Ausdehnung des Messfeldes 13. Figur 4 illustriert, dass das Messfeld 13 des Temperatursensors 11 sowohl das Rad 7 als auch den Boden 8 umfasst. Mit anderen Worten ist der Temperatursensor 11 so ausgebildet und angeordnet, dass innerhalb seines Messfeldes 13 sowohl wenigstens ein Messpunkt 15 vollständig auf der Lauffläche 16 mindestens eines einzelnen Rades 7 und insbesondere jedes einzelnen Rades 7 des entsprechenden Fahrwerksteiles 5, 6 (in Figur 4 beispielhaft des vorderen Fahrwerksteiles 5), als auch wenigstens ein Messpunkt 15 vollständig auf dem Boden 8, sprich auf der zu verdichtenden Asphaltschicht, liegt. Insgesamt können über die beiden Temperatursensoren 11 also die Temperaturen sämtlicher Räder 7 der Gummiradwalze 1 und des Bodens 8 bestimmt werden. Darüber hinaus ist es aufgrund der Form des Messfeldes 13 gemäß Figur 5 möglich, dass der Temperatursensor 11 die Temperatur des Bodens 8 für jedes Rad 7 einzeln bestimmt. Beispielsweise kann jedem Messpunkt 15, der sich auf einem Rad 7, insbesondere auf der Lauffläche 16 des Rades 7, befindet, ein Messpunkt 15 auf dem Boden 8 zugeordnet werden, wobei der Messpunkt 15 für den Boden 8 und der Messpunkt 15 für das Rad 7 in einer gemeinsamen Vertikalebene liegen, die parallel zur Arbeitsrichtung a ausgerichtet ist. Mit anderen Worten bestimmt der Temperatursensor 11 sowohl die Temperatur des Rades 7 als auch die Temperatur des Bodens 8 beziehungsweise desjenigen Bodenabschnittes, über den dieses Rad 7 fährt. Auf diese Weise kann für jedes Rad 7 einzeln eine Temperaturdifferenz zum Boden 8 gemessen beziehungsweise bestimmt werden. Optimal ist es also, wenn der Temperatursensor 11 zu jedem Rad 7 sowohl die Temperatur des Rades 7 selbst als auch die Temperatur des von diesem Rad 7 überfahrenen Bodens 8 beziehungsweise Bodenabschnitts bestimmt.
  • Diese Informationen werden von der Steuereinheit 12 genutzt, um die Berieselungsanlagen 10 zu steuern. Insbesondere ist die Steuereinheit 12 zur Durchführung des Verfahrens 18 ausgebildet, dessen Ablaufdiagramm in Figur 6 dargestellt ist. Im Schritt 19 des Verfahrens 18 erfolgt das Bestimmen der Radtemperaturen. Insbesondere wird die Temperatur von sämtlichen Rädern 7 der Gummiradwalze 1 über je einen einzigen Temperatursensor 11 pro Fahrwerksteil 5, 6 bestimmt. Zusätzlich wird im Schritt 21 zumindest von einem der Temperatursensoren 11 ebenfalls die Temperatur des Bodens 8 bestimmt. Darüber hinaus kann jeder vom Temperatursensor 11 gemessenen Temperatur eines Rades 7 eine Temperatur des Bodens 8 zugeordnet werden, über den dieses Rad 7 fährt. Im Schritt 20 erfolgt sodann ein Steuern der Berieselungsanlage 10 durch die Steuereinheit 12. Das Steuern kann dabei unterschiedliche Steuerbefehle umfassen. Wird beispielsweise festgestellt, dass die Temperatur des Bodens 8 oberhalb eines vorher bestimmten Schwellenwertes liegt, beispielsweise oberhalb von 55 °C, und wird beispielsweise festgestellt, dass die Temperaturdifferenz zwischen Boden 8 und Rad 7, insbesondere desjenigen Bodenabschnittes, über den das Rad 7 fährt, und diesem Rad 7 selbst, einen vorgegebenen Schwellenwert überschreitet, beispielsweise einen Schwellenwert von 10 °C, so aktiviert die Steuereinheit 12 die Berieselung dieses Rades 7 über die Berieselungsdüse 14 gemäß Schritt 22. Wird dagegen beispielsweise festgestellt, dass die Temperatur des Bodens 8 unterhalb eines vorbestimmten Schwellenwertes liegt, beispielsweise unterhalb von 5 °C, so deaktiviert die Steuereinheit 12 die Berieselungsanlage 10, und insbesondere die Berieselung desjenigen Rades 7, das über denjenigen Bodenabschnitt fährt, dessen Temperatur unterhalb des Schwellenwertes liegt, gemäß Schritt 23. Auch wenn festgestellt wird, dass die Temperaturdifferenz zwischen Boden 8 und Rad 7 einen vorgegebenen Schwellenwert unterschreitet, beispielsweise einen Schwellenwert von 10 °C, wird die Berieselung gemäß Schritt 24 deaktiviert,, und zwar insbesondere die Berieselung desjenigen Rades 7, das keine ausreichende Temperaturdifferenz mehr zu demjenigen Bodenabschnitt aufweist, der von diesem Rad 7 überfahren wird.
  • Alles in allem wird auf diese Weise eine effiziente und objektive Steuerung der Berieselungsanlagen 10 durch die Steuereinheit 12 anhand der Messwerte der Temperatursensoren 11 bereitgestellt, die sämtliche subjektiven Einflüsse aus der Steuerung der Berieselungsanlagen 10 entfernt. Die Erfindung führt daher zu einer besonders exakten Steuerung der Berieselungsanlage 10, die zum einen garantiert, dass die zu verdichtenden Bodenschichten nicht durch das Anhaften von Material an den Rädern 7 der Gummiradwalze 1 beschädigt werden, und zum anderen zu einem besonders sparsamen und effektiven Einsatz des Trennmittels führt. Es wird daher insgesamt weniger Trennmitteln verbraucht, wodurch beispielsweise weniger Zeit aufgewendet werden muss, um den Vorratsbehälter für Trennmitteln nachzufüllen. Die Erfindung erhöht daher insgesamt die Wirtschaftlichkeit der Gummiradwalze 1.

Claims (15)

  1. Gummiradwalze (1) zur Verdichtung eines Bodens (8), insbesondere zur Asphaltverdichtung, mit
    - einem Maschinenrahmen (3),
    - einem Antriebsmotor (4),
    - einem vom Antriebsmotor (4) angetriebenen Fahrwerk mit einem vorderen Fahrwerksteil (5) und einem hinteren Fahrwerksteil (6), wobei wenigstens ein Fahrwerksteil (5, 6) wenigstens zwei nebeneinander angeordnete Räder (7) mit Laufflächen (16) umfasst,
    - wenigstens einer Berieselungsanlage (10) für die Räder (7) des Fahrwerksteils (5, 6), die dazu ausgebildet ist, ein flüssiges Trennmittel auf die Laufflächen der Räder (7) auszubringen, und
    - einer Steuereinheit (12) zur Steuerung der Berieselungsanlage (10),
    dadurch gekennzeichnet,
    dass ein optischer Temperatursensor (11) mit einem Messfeld (13) mit wenigstens zwei Messpunkten vorhanden ist, wobei der Temperatursensor (11) derart ausgebildet und angeordnet ist, dass ein Messpunkt (15) des Temperatursensors (11) auf wenigstens einem Rad (7) und ein Messpunkt (15) des Temperatursensors (11) auf dem Boden (8) liegt, so dass mithilfe des Temperatursensor (11) die Temperatur des wenigstens einen Rades (7) und die Temperatur des Bodens (8) bestimmbar ist.
  2. Gummiradwalze (1) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der optische Temperatursensor (11) ein Infrarot-Sensor-Array umfasst.
  3. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der optische Temperatursensor (11) derart ausgebildet und angeordnet ist, dass das Messfeld (13) jeweils zumindest einen Messpunkt (15) auf wenigstens zwei Rädern (7), insbesondere auf der Lauffläche (16) des jeweiligen Rades (7), umfasst.
  4. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der optische Temperatursensor (11) derart ausgebildet und angeordnet ist, dass das Messfeld (13) zumindest einen Messpunkt (15) auf jedem Rad (7) des jeweiligen Fahrwerksteils (5, 6), insbesondere auf der Lauffläche (16) des jeweiligen Rades (7), umfasst.
  5. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass sowohl der vordere Fahrwerksteil (5) als auch der hintere Fahrwerksteil (6) Räder (7) aufweist, und dass insgesamt zwei optische Temperatursensoren (11) vorhanden sind, wobei ein optischer Temperatursensor (11) die Temperatur wenigstens eines Rades (7) des vorderen Fahrwerksteils (5) bestimmt und der andere optische Temperatursensor (11) die Temperatur wenigstens eines Rades (7) des hinteren Fahrwerksteils (6) bestimmt.
  6. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuereinheit (12) dazu ausgebildet ist, die Berieselungsanlage (10) anhand der Messwerte des Temperatursensors (11) zu steuern.
  7. Gummiradwalze (1) nach Anspruch 6,
    dadurch gekennzeichnet,
    dass mehr als zwei nebeneinander angeordnete Räder (7) im vorderen Fahrwerksteil (5) und/oder im hinteren Fahrwerksteil (6) angeordnet sind, und dass die Steuereinheit (12) dazu ausgebildet ist, die Berieselung der quer zu einer Arbeitsrichtung (a) außen angeordneten Räder (7) getrennt von dem oder den zwischen diesen Rädern (7) liegenden Rädern (7) zu steuern.
  8. Gummiradwalze (1) nach einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet,
    dass die Steuereinheit (12) dazu ausgebildet ist, die Berieselung jedes einzelnen Rades (7) unabhängig von den restlichen Rädern (7) zu steuern.
  9. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuereinheit (12) dazu ausgebildet ist, die Berieselung durch die Berieselungsanlage (10) zu aktivieren, wenn die Temperatur des Bodens (8) oberhalb eines Schwellenwertes liegt und die Temperaturdifferenz zwischen Boden (8) und Rad (7) einen vorgegebenen Schwellenwert überschreitet, und/oder die Berieselung durch die Berieselungsanlage (10) abzustellen, wenn die Temperatur des Bodens (8) unterhalb eines Schwellenwertes liegt.
  10. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuereinheit (12) dazu ausgebildet ist, die Berieselung durch die Berieselungsanlage(10) abzustellen, wenn die Temperaturdifferenz zwischen Boden (8) und Rad (7) einen vorgegebenen Schwellenwert unterschreitet.
  11. Gummiradwalze (1) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Temperatursensor (11) in der oberen Hälfte, bevorzugt im oberen Drittel, besonders bevorzugt im oberen Viertel, ganz besonders bevorzugt im oberen Fünftel und bestenfalls am oberen Scheitelpunkt eines Radkastens (9) angeordnet ist.
  12. Verfahren (18) zur Steuerung der Berieselungsanlage (10) einer Gummiradwalze (1)gemäß einem der vorhergehenden Ansprüche, umfassend die Schritte:
    - Bestimmen (19) der Temperatur wenigstens eines Rades (7), insbesondere der Lauffläche (16) des Rades (7), durch den optischen Temperatursensor (11), und
    - Bestimmen (21) der Temperatur des Bodens (8) durch den optischen Temperatursensor (11), und
    - Steuern (20) der Berieselung des wenigstens einen Rades (7) durch die Berieselungsanlage (10) anhand der Messwerte des Temperatursensors (11) durch eine Steuereinheit (12).
  13. Verfahren (18) gemäß Anspruch 12,
    gekennzeichnet durch wenigstens einen der folgenden Schritte:
    - Bestimmen (19) der Temperatur von wenigstens zwei Rädern (7), insbesondere der Lauffläche (16) des jeweiligen Rades (7), durch einen Temperatursensor (11);
    - Bestimmen (19) der Temperatur von allen Rädern (7) des jeweiligen Fahrwerksteils (5, 6), insbesondere der Lauffläche (16) des jeweiligen Rades (7), durch einen Temperatursensor (11);
    - Bestimmen (19) der Temperatur von allen Rädern (7) des vorderen und des hinteren Fahrwerksteils (5, 6), insbesondere der Lauffläche (16) des jeweiligen Rades (7), durch jeweils einen Temperatursensor (11) für den vorderen Fahrwerksteil (5) und den hinteren Fahrwerksteil (6).
  14. Verfahren (18) gemäß Anspruch 12 oder 13,
    gekennzeichnet durch wenigstens einen der folgenden Schritte:
    - Steuern (20) der Berieselung von quer zu einer Arbeitsrichtung (a) außen angeordneten Rädern (7) getrennt von dem oder den zwischen diesen Rädern (7) liegenden Rädern (7);
    - Steuern (20) der Berieselung jedes einzelnen Rades (7) unabhängig von den restlichen Rädern (7).
  15. Verfahren (18) gemäß Anspruch einem der Ansprüche 12 bis 14,
    gekennzeichnet durch wenigstens einen der folgenden Schritte:
    - Aktivieren (22) der Berieselung durch die Berieselungsanlage (10), wenn die Temperatur des Bodens (8) oberhalb eines Schwellenwertes liegt und die Temperaturdifferenz zwischen Boden (8) und Rad (7) einen vorgegebenen Schwellenwert überschreitet;
    - Deaktivieren (23) der Berieselung durch die Berieselungsanlage (10), wenn die Temperatur des Bodens (8) unterhalb eines Schwellenwertes liegt; und/oder
    - Deaktivieren (24) der Berieselung durch die Berieselungsanlage (10), wenn die Temperaturdifferenz zwischen Boden (8) und Rad (7) einen vorgegebenen Schwellenwert unterschreitet.
EP18000923.5A 2017-12-01 2018-11-27 Gummiradwalze zur verdichtung eines bodens und verfahren zur steuerung einer berieselungsanlage einer gummiradwalze Active EP3492655B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017011146.4A DE102017011146A1 (de) 2017-12-01 2017-12-01 Gummiradwalze zur Verdichtung eines Bodens und Verfahren zur Steuerung einer Berieselungsanlage einer Gummiradwalze

Publications (2)

Publication Number Publication Date
EP3492655A1 EP3492655A1 (de) 2019-06-05
EP3492655B1 true EP3492655B1 (de) 2021-04-14

Family

ID=64556639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000923.5A Active EP3492655B1 (de) 2017-12-01 2018-11-27 Gummiradwalze zur verdichtung eines bodens und verfahren zur steuerung einer berieselungsanlage einer gummiradwalze

Country Status (3)

Country Link
US (1) US10669676B2 (de)
EP (1) EP3492655B1 (de)
DE (1) DE102017011146A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019000966A1 (de) 2019-02-08 2020-08-13 Bomag Gmbh Auslassdüse, fahrbare Bodenbearbeitungsmaschine, insbesondere Bodenbearbeitungsmaschine oder Kehrmaschine, und Verfahren zum Betrieb einer Auslassdüse einer Berieselungsanlage einer fahrbaren Bodenbearbeitungsmaschine
US20210140126A1 (en) * 2019-11-08 2021-05-13 Caterpillar Paving Products Inc. Fluid spray system
DE102020003682A1 (de) * 2020-06-19 2021-12-23 Bomag Gmbh Bodenverdichtungsvorrichtung zur verdichtung einer untergrundbelagsschicht, asphaltwalze und verfahren zum betrieb einer bodenverdichtungsvorrichtung
CN111827041B (zh) * 2020-07-29 2021-12-31 重庆交通建设(集团)有限责任公司 一种环保型改性沥青的抑烟阻燃施工方法
US12059695B2 (en) * 2021-09-16 2024-08-13 Caterpillar Paving Products Inc. Fluid spray system timing control
CN114703721A (zh) * 2022-03-11 2022-07-05 江苏顺联工程建设有限公司 一种市政道路修补用小型压路机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430781A (en) * 1943-11-19 1947-11-11 William H Phalor Fluid distributing apparatus
US4157877A (en) * 1978-04-03 1979-06-12 B.R. Lee Industries, Inc. Apparatus for compacting subgrade and pavement materials
US5222828A (en) * 1991-10-30 1993-06-29 Ingersoll-Rand Company Device for cleaning and lubricating the exterior surface of asphalt compacting drums
US6827524B2 (en) * 2002-07-26 2004-12-07 Ingersoll-Rand Company Controller for a compacting vehicle wetting system
US20080292401A1 (en) * 2007-05-23 2008-11-27 Caterpillar Inc. Heated drum compactor machine and method
US8636443B2 (en) * 2012-02-29 2014-01-28 Caterpillar Paying Products Inc. Compactor having electronically controlled liquid dispensing mechanism, system, and method
US8500363B1 (en) * 2012-02-29 2013-08-06 Caterpillar Paving Products Inc. Compactor having controllable edge wheel spray system
US9611442B2 (en) * 2013-10-18 2017-04-04 International Flavors & Fragrances Inc. 3-(cyclohex-1-en-1-yl)propionates and their use in perfume compositions
US9139964B2 (en) * 2013-12-16 2015-09-22 Caterpillar Paving Products Inc. System for adjusting the pressure and temperature of a compacting member
DE102014216439A1 (de) * 2014-08-19 2016-02-25 Hamm Ag Bodenverdichter
DE102014216440A1 (de) * 2014-08-19 2016-02-25 Hamm Ag Bodenverdichter
DE102015122161A1 (de) * 2015-12-18 2017-06-22 Hamm Ag Bodenverdichter und Verfahren zum Verdichten von Untergrund
DE102016007170A1 (de) * 2016-06-13 2017-12-14 Bomag Gmbh Gummiradwalze
DE102016007166A1 (de) * 2016-06-13 2017-12-14 Bomag Gmbh Walze zur Asphaltverdichtung, insbesondere Gummiradwalze, und Verfahren zum Besprühen eines Gummirads einer Walze zur Asphaltverdichtung
US9931891B1 (en) * 2016-09-13 2018-04-03 Caterpillar Paving Products Inc. Suspension system for a pneumatic compactor
US10196791B1 (en) * 2017-11-27 2019-02-05 Caterpillar Paving Products Inc. Compacting machine and method of monitoring compacting member of compacting machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190211516A1 (en) 2019-07-11
US10669676B2 (en) 2020-06-02
EP3492655A1 (de) 2019-06-05
DE102017011146A1 (de) 2019-06-06

Similar Documents

Publication Publication Date Title
EP3492655B1 (de) Gummiradwalze zur verdichtung eines bodens und verfahren zur steuerung einer berieselungsanlage einer gummiradwalze
EP3181753B1 (de) Bodenverdichter und verfahren zum verdichten von untergrund
EP3456878B1 (de) Verfahren zur überwachung des verdichtungsprozesses im strassenbau und strassenwalze
EP1925736B1 (de) Verfahren zum Herstellen eines Sprühteppichs und Strassenfertiger mit einem Sprühsystem
EP3403488A1 (de) Verfahren und landwirtschaftliche arbeitsmaschine zur verteilung von erntegut
EP2840183B1 (de) Selbstfahrende Baumaschine und Verfahren zum Betreiben einer selbstfahrenden Baumaschine
EP3185680A1 (de) Landwirtschaftliche verteilmaschine mit einem system zur automatisierten ansteuerung von spritzprofilen
WO2015144864A1 (de) Verfahren und vorrichtung zum kontinuierlichen aufbringen einer flüssigkeit auf ein substrat
DE102012103574B4 (de) Reinigungsgerät und Reinigungsverfahren für ebene Reinigungsflächen
DE102017010919A1 (de) Verfahren zum Steuern einer Höhenverstellung eines Abstreifschildes einer Bodenfräsmaschine und Bodenfräsmaschine
EP2921050B1 (de) Verfahren zum ausbringen von pflanzenschutzmitteln
EP0779395A1 (de) Vorrichtung zum Einbauen von Belagschichten
DE102015008315A1 (de) Einbaubohle und Straßenfertiger
DE102015101982A1 (de) Landwirtschaftliche Feldspritze
DE4101417C2 (de) Selbstfahrender Deckenfertiger
DE202013011983U1 (de) Spritzgestänge einer landwirtschaftlichen Feldspritze
DE102009022269A1 (de) Abreinigungsverfahren und -vorrichtung
EP2689649B1 (de) Verfahren zur gleichmäßigen Verteilung von Streugut im Übergangsbereich zwischen den Feldfahrgassen und der Grenzfahrgasse eines Feldes sowie Zweischeibenstreuer zur Durchführung eines solchen Verfahrens
DE102011054610A1 (de) Verfahren und Vorrichtung zum Aufbringen von Frostschutzmittel auf einen Fahrdraht sowie mit einer solchen Vorrichtung ausgestattetes, elektrisch betriebenes Fahrzeug
EP1995384A2 (de) Mobile Dosieranlage
DE69119491T2 (de) Reinigungsfahrzeuge
DE69425354T2 (de) Linienmarkierungsvorrichtung
DE202014101461U1 (de) Vorrichtung zum kontinuierlichen Aufbringen einer Flüssigkeit auf ein Substrat
DE102017007323A1 (de) Straßenfertiger, Beschicker sowie Verfahren zum Reinigen eines Straßenfertigers oder eines Beschickers
DE102017100668A1 (de) Verfahren zur Ermittlung von Teilbreiten bei einem landwirtschaftlichen Schleuderstreuer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201203

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAUGWITZ, NIELS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004747

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1382492

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210816

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502018004747

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 6

Ref country code: CZ

Payment date: 20231115

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414