EP3456878B1 - Verfahren zur überwachung des verdichtungsprozesses im strassenbau und strassenwalze - Google Patents

Verfahren zur überwachung des verdichtungsprozesses im strassenbau und strassenwalze Download PDF

Info

Publication number
EP3456878B1
EP3456878B1 EP18000716.3A EP18000716A EP3456878B1 EP 3456878 B1 EP3456878 B1 EP 3456878B1 EP 18000716 A EP18000716 A EP 18000716A EP 3456878 B1 EP3456878 B1 EP 3456878B1
Authority
EP
European Patent Office
Prior art keywords
road
asphalt layer
roller
width
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18000716.3A
Other languages
English (en)
French (fr)
Other versions
EP3456878A1 (de
Inventor
Niels Laugwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bomag GmbH and Co OHG
Original Assignee
Bomag GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bomag GmbH and Co OHG filed Critical Bomag GmbH and Co OHG
Publication of EP3456878A1 publication Critical patent/EP3456878A1/de
Application granted granted Critical
Publication of EP3456878B1 publication Critical patent/EP3456878B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/288Vibrated rollers or rollers subjected to impacts, e.g. hammering blows adapted for monitoring characteristics of the material being compacted, e.g. indicating resonant frequency, measuring degree of compaction, by measuring values, detectable on the roller; using detected values to control operation of the roller, e.g. automatic adjustment of vibration responsive to such measurements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil

Definitions

  • the invention relates to a method for monitoring the compaction process of an asphalt layer to be compacted in road construction. Moreover, the invention relates to a road roller, in particular tandem roller, compactor or rubber wheel, for carrying out the method.
  • hot asphalt is usually distributed by a paver across the width of a planned course of the road, smoothly drawn off and precompressed, for example with a tamper strip and / or a screed.
  • the new road surface is usually further compacted by road pavers following road rollers, which are for example designed as tandem rollers, compactors or rubber wheeled rollers. Only at an optimal degree of compaction do roads reach their maximum service life. Both too low and too strong compaction lead to a reduced durability of the road surface and thus to a reduced quality of the road created.
  • the operators of the road rollers are usually set to the width of the asphalt layer to be compacted rolling schemes with history and number of crossings to be performed for each road construction project. How evenly the compaction of the entire road surface actually succeeds depends crucially on how consistently the operators of the road rollers adhere to the intended rolling schedule.
  • the aim of these rolling schemes is to compress the road surface in its width and length as evenly as possible.
  • a disadvantage of the systems of the prior art is that they require a high technical complexity and are associated with increased acquisition costs and sometimes running costs.
  • a deviation from the planned rolling schedule due to the temperature profile of the asphalt layer carries the risk that different areas are compressed to different degrees.
  • the solution thus succeeds with a method for monitoring the compaction process of an asphalt layer to be compacted in road construction, comprising the steps of: detecting edges bordering the hot asphalt layer perpendicular to the road by means of a temperature sensor arranged on a road roller compacting the asphalt layer, and subdividing the detected asphalt layer in at least two width segments across the street.
  • the width segments are defined by their distance from the edges of the asphalt layer.
  • the invention now provides that the position of the road roller on the asphalt layer across the road is determined from the measurement of the temperature sensor and assigned to one of the width segments, that the working operation of the road roller on the respective width segment is quantified and stored by an operating parameter, and that in particular to the operator of the road roller, for at least one past working interval the quantified work operation is displayed for each latitude segment.
  • the essential basic idea of the invention is to provide a simple system which gives the operator of the road roller an overview of whether he has distributed the preceding operations uniformly over the entire width of the asphalt layer to be compacted, or whether he in relation to the width of to be compacted asphalt layer has more or less densified in one area than in other areas.
  • the longitudinal direction of the course of the road designates the longitudinal extent of the road surface to be compacted by the roller in the working and travel direction of the paver.
  • the roller is generally moved reversely in and counter to this working and traveling direction for compacting purposes over the road surface.
  • more than one roller pass is sought to obtain a desired compaction result.
  • a paver moves the asphalt layer to be compacted more or less continuously forward in its working direction.
  • the road rollers following the road paver then run over the freshly laid asphalt and, with frequent reversing runs, follow the set rolling schedule in the best possible way.
  • the working area of the road rollers also shifts substantially continuously forward, i.
  • the road rollers travel with the considerably slow moving paver in the installation process.
  • it is now detected by means of the temperature sensor in which width segment of the asphalt layer the road roller just compresses the asphalt. This data is stored and evaluated statistically over at least one working interval, so that the operator can be shown what proportion of the compaction work within the working interval has dropped to which latitude segment.
  • the invention makes use of the fact that asphalt is installed by road pavers when hot. This always results in a strong difference in temperature between the built-in and to be compacted asphalt layer and lying next to the asphalt layer ground, which is significantly colder than the asphalt.
  • This can be used by the temperature sensor according to the invention, which is in particular a non-contact temperature sensor, the position of the edges of the hot asphalt layer, ie the position of the transition between hot asphalt layer and cold ground background next to the road, and the position of the roller in dependence on at least one Detected page margin calculated, in particular by means of a suitable control unit to determine.
  • the temperature sensor is designed such that it allows a temperature detection of the asphalt layer in a width which is wider than the rolling width the respective road roller is.
  • the asphalt layer can be computationally divided into width segments transversely to the roadway. Moreover, since the position of the temperature sensor on the road roller is known, from the continuous measurement of the temperature sensor, the current position of the road roller can be assigned to one of the width segments. In other words, the position of the road roller is determined with respect to the width of the asphalt layer to be compacted.
  • the invention thus utilizes that the position of the road roller can be determined transversely to the course of the road from the measurements of the temperature sensor. In this way, no, for example, GPS or laser-based, more complex and expensive systems are needed.
  • At least one detected edge area of the asphalt layer to be compacted is used to identify the position of the roller with respect to the width of the asphalt layer to be compacted.
  • the determination of the width segments in particular the definition of the position and the number of width segments on the asphalt strip, can be carried out as already described after the detection of the hot asphalt layer by the temperature sensor.
  • the division into width segments and the corresponding assignment of the specific position of the road roller to the respective width segments for example, also only in a downstream evaluation step, for example, during the statistical evaluation of the quantified work operation done. It is therefore not according to the invention explicitly on the above-described sequence of process steps.
  • width segment the road roller has yielded much compaction power relative to a past working interval.
  • the working operation of the road roller is quantified on the respective width segment by an operating parameter, as will be explained in more detail below.
  • the distribution of the compaction power or the working operation of the road roller on the width segments is displayed to the operator, so that he can take care to make the distribution as evenly as possible and thus to achieve a uniform compaction of the asphalt layer.
  • a temperature sensor that can determine the temperature at a single point. By pivoting or moving the temperature sensor can determine the temperature on a line across the road. In this case, the temperature sensor detects a temperature jump when its measuring point is an edge of Crossed asphalt layer. On the basis of the movement or pivoting direction of the temperature sensor and the sign of the temperature change can be determined whether it is the right or the left edge of the asphalt strip. In such a temperature sensor, it is preferable that detection of the edges bordering the hot asphalt layer on the roadway by the temperature sensor is performed periodically in succession.
  • the measurement is repeated periodically and continuously during operation, so that at any time the position of the edges or at least one edge of the asphalt layer to be compacted are known and thus the position of the road roller with respect to the width segments can be determined.
  • both edges are detected simultaneously by the temperature sensor.
  • the temperature sensor has several measuring points.
  • the temperature sensor may be formed as a thermal image or infrared camera with a resolution of several pixels.
  • the temperature sensor or the thermal imager is arranged on the road roller so that it can absorb the entire width of the asphalt strip in an image setting.
  • thermal imaging cameras are inexpensive and are therefore particularly suitable for the invention.
  • the measuring width of the temperature sensor at least corresponds to or preferably is greater than the width of the asphalt layer to be compacted.
  • the position of the roller with respect to the width of the asphalt surface to be compacted can be determined at any time. This succeeds when ideally always an edge of the two edges of the asphalt layer is in the detection range or within the measuring width of the temperature sensor.
  • the measuring width of the temperature sensor is preferably at least as large as the width of the asphalt layer to be compacted.
  • the roller works in the edge region of the asphalt layer to be compacted, it may be that only this edge is detected by the temperature sensor, since the detection range is no longer sufficient to detect the farther edge region.
  • the previously determined total width of the asphalt layer can be used as a substitute, since in the majority of cases the pave width of the road finisher only changes insignificantly.
  • the at favorable roller position was determined, it is sufficient if the measuring width of the temperature sensor is slightly larger than the width of the hot asphalt layer.
  • the operating parameter a time span, a number of passages, a number of reversing runs, a covered distance, a background stiffness and / or a vibration intensity of a roller drum of the road roller.
  • the vibration intensity can be described by a variety of parameters. For example, based on the vibration amplitude, vibration acceleration, number of oscillations per distance traveled or centrifugal force.
  • All these parameters are suitable for quantitatively detecting the working operation of the road roller on the respective latitude segment.
  • it can be determined how much time the road roller spends on the respective width segment, how often it passes over the respective width segment or how often it changes the direction of travel on the respective width segments, what distance the road roller traveled on the respective width segment or with what intensity a vibration exciter is operated, which puts the roller drum of the road roller in vibration or oscillations to enhance the compaction performance.
  • the corresponding parameters may be used as absolute values added over time. Thus, for example, it would be possible to display how much time of the preceding work interval the road roller has spent on which width segments or how far the road roller traveled on the corresponding width segments.
  • a relation of the individual width segments could be displayed among each other. For example, it could be displayed what percentage of the compaction work or the work of the road roller was performed in the past working interval in the respective latitude segment.
  • Substrate stiffness used to assess the compaction performed by the roller are additionally determined in the respective width segments.
  • the past working interval relates to a past section of the working operation.
  • the same operating parameters as for the quantification of the work operation and / or another parameter are used to establish limits of the past work interval.
  • the past working interval includes, for example, a certain period of time, a certain number of crossings, a certain number of reversing operations and / or a certain distance traveled.
  • the past working interval could thus refer to a period of 10 minutes of the working operation of the road roller.
  • the operator is then then, following a recording phase within the first 10 minutes after the start of work displayed to what extent he has the working operation of the road roller within these temporally past 10 minutes on the respective width segments absolutely or relatively distributed.
  • the past working interval refers to the same or the same parameters as the quantification of the working operation. For example, the operator could thus be shown what percentage of the last 10 minutes of the work operation has spent the road roller on the respective width segments.
  • different parameters are used to quantify the work operation and to determine the past work interval.
  • the quantification of the work operation can be done via the number of passes, while the past work interval is related to the elapsed time. For example, the operator would then be shown what percentage of the crossings of the last 10 minutes of the last work interval to which width segments omitted.
  • the mentioned parameters conceivable.
  • successive working intervals could each be statistically evaluated separately and the respective results displayed to the operator of the road roller, for example separately and successively, in each case when a working interval has been completed.
  • the operator is made aware, in retrospect, of any irregularities in the compaction process.
  • the parameter or parameters used for quantifying the operating mode is / are stored within the working interval, wherein in the operating mode those data which lie further than the working interval are replaced by newly recorded data.
  • both the recording of the data and their statistical evaluation is carried out continuously.
  • the past working interval is therefore always close to the present and includes, depending on the parameters, for example, the last 10 minutes of operation.
  • the position in which the road roller is transverse to the road, in real time in the statistical evaluation, while data that is more than the predetermined working interval, are removed from the statistics.
  • the operator of the road roller can thus also observe the development of the statistics in real time and thus sees in advance when there is a shift in the working performance of the road roller or an inequality between the individual width segments. In this way, the driver always has an up-to-date feedback on his current workflow and always has the uniformity of the compression in view, without having to concentrate on strict compliance with the rolling schedule. Imminent inequalities can be counteracted at an early stage.
  • the classification of the detected asphalt layer in width segments can be done differently depending on the application.
  • the aim of the invention is to determine in which lane on the asphalt layer the road roller is currently located.
  • the definition of the lane or of the latitude segment takes place via the distance from the cold roadway edge, which is detected by the temperature sensor.
  • a higher accuracy is achieved when dividing the asphalt layer into many width segments across the road.
  • the accuracy of the system is also limited by the accuracy of the temperature sensor, for example by the number of pixels of the thermal imager.
  • the aim of the invention is not a millimeter accurate mapping of the asphalt layer, but an orientation guide for the operator of the road roller. An exact evaluation with high accuracy is not necessary for this purpose.
  • the detected asphalt layer is divided at least into the three width segments "left side", “middle” and “right side” across the road. In this way, it is possible to prevent the side edge areas of the asphalt layer from being compacted less strongly than the areas in the middle of the asphalt layer.
  • the exact number of width segments may also, for example, be fixed to the total width of the asphalt layer to be compacted with respect to the width of the road roller, in particular the width of its roller bandage.
  • the asphalt layer can be subdivided into a number of width segments equal to the number of times the roller drum of the road roller fits next to each other in the asphalt layer, possibly also taking into account a typical overlap of approximately 10 cm between the individual lanes. As already mentioned, however, the exact determination of the overlap width is not required.
  • the width segments in particular all width segments, are the same across the road.
  • the working operation of the road roller in the respective width segments for all areas of the asphalt layer is considered equally strong.
  • those width segments that lie at the edges of the detected asphalt layer are transverse to the road less broad than width segments that lie in the middle of the detected asphalt layer. In this way, a higher resolution of the monitoring according to the invention is achieved especially at the edges of the asphalt layer. This is particularly advantageous when too low compression at the edges of the asphalt layer is to be feared, since then only an actual working operation of the road roller is counted in this area for the width segments at the edges of the asphalt layer.
  • the road roller In order to determine the position of the road roller on the asphalt layer across the road as accurately as possible, it is advantageous to additionally use various aspects of the arrangement of the temperature sensor and the working situation of the road roller. For example, it is preferred that when determining the position of the road roller on the asphalt layer, in particular transversely to the road, from the measurement of the temperature sensor, a measuring angle of the temperature sensor and / or a direction of travel and / or a steering angle and / or a steering mode, such as crab, the road roller is taken into account.
  • the arrangement and thus the position of the temperature sensor on the road roller or the position of its measuring range relative to the other road roller are known.
  • the measuring angle of the temperature sensor which can be either adjustable or constant, can thus be determined where the measuring range of the temperature sensor is, in particular in relation to the road roller itself.
  • the measuring angle of the temperature sensor leads to the asphalt layer, that the thermal image of the thermal camera is trapezoidal distorted.
  • care must therefore be taken that each pixel in the thermal image of the temperature sensor is assigned the correct real location on the asphalt layer or on the adjacent floor.
  • each pixel of the thermal image is assigned a coordinate across and along the direction of travel or to the course of the road.
  • the trapezoidal perspective distortion of the thermal image is taken into account taking into account the measuring angle and the arrangement of the temperature sensor on the road roller to close the real position of the asphalt layer.
  • road rollers can be operated in different types of steering.
  • the steering mode known as crabbing for example, the road roller travels with roll collars offset parallel to one another, so that the working width of the road roller is increased.
  • the road roller then, for example, simultaneously processes two or even more width segments of the asphalt layer, depending on how finely divided the asphalt layer is divided into width segments.
  • the current steering mode of the road roller should also be included in the evaluation.
  • the respective effective working width of the roller has an effect on the optimum rolling pattern, so that preferably a division of the asphalt layer into width segments takes place, which ensures optimum covering of the rolling tracks.
  • the number of necessary rolling tracks is displayed according to the installation width of the paver and the working width of the roller. Therefore, the method described above can also be used such that at least the total width of the surface to be compacted, the distance of the roller from at least one edge of the surface to be compacted and the working width of the roller is determined. From these values, the rollover of the area to be compacted is statistically recorded and later assigned to a certain number of rolling tracks.
  • the practical implementation of the method according to the invention is preferably carried out by means of a suitable control unit, in particular by means of a suitable control software, which carries out the necessary arithmetic operations for carrying out the individual method steps according to the invention.
  • the solution of the aforementioned object also succeeds with a road roller, in particular tandem roller, compactor or rubber wheel, for compaction of an asphalt layer in road construction, with a machine frame, a drive motor, a driver's cab, at least one roller drum and / or a wheel, a temperature sensor, and a Control unit, wherein the control unit for carrying out the method according to the invention described above is trained.
  • All the above-mentioned features, effects and advantages of the method according to the invention also apply in a figurative sense to the road roller according to the invention. To avoid repetition, reference is therefore made to the above statements.
  • the control unit is designed as a central processing unit and integrated, for example, in the on-board computer of the road roller. It is equipped with appropriate software to perform the method according to the invention.
  • the control unit comprises a rolling memory which stores the quantified operating mode for each width segment within the past working interval.
  • a rolling memory is characterized in that it stores data up to a certain limit, in particular temporal and / or space-dependent limit, and then deletes the oldest stored data continuously or rolling to record new data. In this way, the rolling memory continuously accepts current data and deletes the oldest data. As a result, the stored data always refer to the past working interval, which reaches to the present.
  • the statistically evaluated data from the rolling memory therefore always represent the desired working interval.
  • the size of the rolling memory is of course adapted to the desired size of the working interval.
  • the temperature sensor comprises a thermal imaging camera.
  • the invention makes no special demands on the corresponding thermal imaging cameras, so that particularly cost-effective models with comparatively low resolution can also be used. It is preferred if the thermal imaging camera has at least one resolution of two, in particular at least four pixels, transversely to the forward direction.
  • FIG. 1 and 2 each show a road roller 1 with a driver's station 2 and a machine frame 3.
  • the road rollers 1 to a drive motor 4, which is for example a diesel engine.
  • FIG. 1 shows a tandem roller, which moves in working mode with its two roller bandages 5 on the bottom to be compacted 7.
  • FIG. 2 shows a compactor, which has a wheat bandage 5 and additional wheels 6, with which the compactor moves over the bottom 7 to be compacted.
  • the road rollers perform 1 frequent Reversierfahrten so that they compress the ground 7 both in forward drive and in reverse.
  • the forward drive is indicated as indicated in the figures as working direction a, even if the road rollers 1 can also work in the opposite direction.
  • the road rollers 1 have a temperature sensor 8, which is arranged at the substantially highest point of the road rollers 1. In the exemplary embodiment shown, this is the roof of the driver's station 2.
  • the temperature sensors 8 are, for example, thermal imaging cameras or infrared cameras. As shown by the dashed arrow, the temperature sensors 8 are aligned so that they receive the area in the working direction a in front of the road roller 1. Other arrangements and orientations of the temperature sensors 8, for example, an alignment of the measuring range against the working direction a, are possible.
  • the angle a in which the temperature sensor 8 is aligned in the working direction to the ground or against a perpendicular, is known.
  • the temperature sensor 8 is connected to a control unit 9, which is located in particular in the driver's station 2 of the road roller 1.
  • the control unit 9 is part the on-board computer of the road roller 1 and serves both for metrological and for statistical evaluation of the data collected by the temperature sensor 8.
  • the control unit 9 is connected to a display device 10, via which the operator of the road roller 1, the statistical evaluation of the distribution of the quantified work operation on the width segments of the asphalt strip can be displayed.
  • the control unit 9 transmits the evaluated data by cable or wirelessly to another terminal, for example a smartphone or a tablet computer, wherein the further terminal at least takes over the display of the data for the operator. Calculation steps to obtain this display of the data from the obtained measurement results could theoretically be taken over by the terminal, for example using a suitable app.
  • FIGS. 3 and 4 illustrate the detection of the asphalt layer and the determination of the position of the road roller 1 across the road using a thermal imaging camera as a temperature sensor 8.
  • FIGS. 3 and 4 illustrate the influence of the perspective of the temperature sensor 8 on the measurement and how can be concluded from this measurement on the course and the position of the asphalt layer 11 and thus also on the position of the road roller 1 on the asphalt layer 11 across the road.
  • FIG. 3 shows a side view, similar to the views FIGS. 1 and 2 , Out FIG. 3 it is clear that the measuring range of the temperature sensor 8 has a sensor depth 15 in the working direction a or parallel to the road.
  • FIG. 4 shows a perspective view of the recorded by the temperature sensor 8 thermal image 13.
  • the recorded by the temperature sensor 8 thermal image 13 has a sensor width 16 and a sensor depth 15, of which a total of the thermal image 13 is limited.
  • the thermal image 13 is altogether composed of sensor segments 14, wherein each sensor segment 14 is, for example, a pixel of the resolution of the thermal imaging camera as a temperature sensor 8. In the exemplary embodiment shown, the thermal image 13 consists of 16 ⁇ 4 pixels.
  • the thermal image 13 of the temperature sensor 8 is distorted perspective or trapezoidal due to its sensor perspective depending on the mounting location of the temperature sensor 8 on the road roller 1 and the measuring angle. This distortion must be taken into account in order to determine the actual course of the asphalt layer 11 to be compacted in FIG. 4 is shown as a comparison to the perspective thermal image 13 in plan view, to calculate from the measurement data of the temperature sensor 8.
  • the asphalt layer 11 having a road width 17 and a road section length 18 is shown.
  • the asphalt layer 11 is divided into a plurality of width segments 12, in the embodiment shown in thirteen approximately 1 m wide width segments 12, respectively.
  • the position of the width segments 12 becomes defined by their distance either to the left edge 26 or the right edge 27 of the asphalt layer 11.
  • All sensor segments 14 of the thermal image 13, which image a part of the asphalt layer 11 and thus measure its temperature, show a significantly higher temperature than those sensor segments 14 of the thermal image 13, which image the lying next to the asphalt layer 11, much colder soil.
  • the width segments 12 can be defined by their respective distance from the edges 26, 27.
  • FIG. 4 As can be seen from the thermal image 13 of the temperature sensor 8, as soon as the edges 26, 27 of the asphalt layer 11 are known, it can be determined on which width segments 12 or on which width segment 12 the road roller 1 is currently located. In FIG. 4 are those width segments 12 on which the road roller 1 must be due to the illustrated thermal image 13, designated 28. In this way it is possible to statistically detect in which width segments 12 the road roller 1 has done what proportion of its work.
  • the aim of the present invention is to provide the operator of the road roller 1 with an aid to obtain a statistical overview of the distribution of his work across the asphalt layer across the road.
  • This guidance does not have to be particularly exact, so simplifications and approximations are applicable.
  • a slip occurring on the roller bandages 5 or wheels 6 can be statistically neglected overall.
  • It can also be simplified assuming that the installation width of the paver does not change by and large.
  • the operator of the road roller 1 is informed by the present invention with sufficient accuracy about the distribution of the compression on the individual width segments. The operator is thus significantly relieved and can concentrate more on the actual control of the road roller 1, instead of having to spend too much effort on strict compliance with the rolling schedule.
  • the present invention can also be used in the use of several road rollers 1. Driving the road rollers 1 in a row, the invention can be easily used individually in each road roller 1, without changing anything to the previously described circumstances. If the road rollers 1 side by side, so the system can be used easily without change, the corresponding of the respective road roller 1 not edited width segments 12 are then displayed as not edited. Alternatively, the measured data of the rollers involved in the compaction process are interchanged so that an overall distribution of the compaction work performed and the proportion of the respective roller are represented. Another possibility is that the operator limits the width of the asphalt layer 11 to be processed via an input possibility so that the width of the asphalt layer 11 is only up to a certain value of the distance of either the left edge 26 or the right edge 27 in the statistical Evaluation is recorded and displayed.
  • FIG. 5 is shown for a more detailed explanation of the course of a compression process.
  • the asphalt layer 11 to be compacted extends between the top and bottom dotted lines.
  • the position of the road roller 1 is indicated by the circles marked with Roman numerals, on each of which the rolling width of the road roller 1 and thus the rolling track is indicated.
  • the roller moves from position I to position II, from position III to position XIV, reversing at positions V and X.
  • the road roller 1 travels here with two roll bandages 5 flush behind each other, so that the entire width of the roller width of the road roller 1 substantially corresponds to the width of one of the roll bandages 5.
  • the road roller 1 then switches to the crab, so that the rolling width of the road roller 1, as indicated by the dashed lines widened.
  • the crabbing is also shown between the positions XIII and XIV by the roll bandages 5, offset parallel to one another outwards, indicated by the double arrows.
  • the asphalt layer 11 has been divided into five width segments 12 transverse to the longitudinal direction.
  • the position of the road roller 1 is now determined transversely to the longitudinal direction of the asphalt layer 11.
  • the performance of the road roller 1 is then quantified as described above. For example, the distance covered is determined by means of odometry or the number of oscillations of a roller bandage 5 triggered by a vibration exciter, so-called compression strokes, are counted.
  • the correspondingly determined work output is then assigned to this width segment 12 on the basis of the position of the road roller 1 on one of the width segments 12.
  • the waypoints I-III would be assigned to the upper latitude segment 12, the waypoints IV and V to the second latitude segment 12 from above, the third latitude segment 12 from above to the waypoints VI-X and the fourth latitude segment from above to the waypoints XI-XIV.
  • the lowest latitude segment 12 no work would be registered.
  • the rolling width of the road roller 1 can be used in the statistical evaluation. For example, on the basis of the known rolling width of the road roller 1 and its position, it can be determined which portion of which roller bandage 5 is compacting the asphalt layer 11 on each width segment 12. The corresponding components can then be assigned to the respective width segments 12.
  • the crab position with an overall wider roller width of the road roller 1 can also be taken into account.
  • the set roller width of the road roller 1 could be stored, for example, to each waypoint.
  • the respective position of each roller bandage 5 of the road roller 1 could be logged or stored.
  • FIGS. 6 and 7 Illustrate, by way of example, various displays 29, which present the registered data and its statistical evaluation to the operator of the road roller 1 in order to give him assistance in working operation.
  • the displays 29 are designed here as bar graphs, for example.
  • Each bar 31 represents a width segment 12 of the asphalt layer 11.
  • the asphalt layer 11 has been divided into three width segments 12, wherein the central width segment 12 is wider than the lying at the edge of the asphalt layer 11 width segments 12.
  • the height of the bars 31 represents the quantified operating mode which has been registered and evaluated for the respective width segment 12.
  • a position indication 30 indicates the current position of the road roller 1 across the asphalt layer 11.
  • two road rollers 1 are in use in order to compact the asphalt layer 11 together. Both road rollers 1 perform the method according to the invention and are connected to each other via a radio link. In particular, the statistical evaluations of the two road rollers 1 are interchanged. In this way, it is possible for the operator of the road roller 1, as in FIG. 7 shown with the dashed bars 31, and the statistical evaluation of the working operation of the other road roller 1 is displayed.
  • each bar 31 may represent additional information such as temperatures or the like by colors or faded in numbers.
  • the FIG. 8 1 shows a flow chart of the method 19 according to the invention.
  • the method 19 begins in step 20 with the detection of the edges 26, 27 bordering the hot asphalt layer 11 by means of the temperature sensor 8.
  • the step 21 then divides the detected asphalt layer 11 into at least two Broad segments 12 across the street.
  • step 22 the position of the road roller 1 on the asphalt layer 11 across the road from the measurement of the temperature sensor 8 is determined and assigned to one of the width segments 12.
  • the working operation of the road roller 1 on the respective width segment 12 is quantified in step 23 by an operating parameter as described above and stored in step 24, for example in a rolling storage system of the control unit 9.
  • step 25 the operator of the road roller 1 for a past working interval quantified work operation is displayed for each latitude segment 12.
  • these steps 20-25 run continuously in succession, so that the operator of the road roller 1 is always a current statistical evaluation of the past working interval is displayed. In this way, the operator can not only retroactively adjust his operation, but also already do so, as soon as he determines that an uneven processing of the asphalt layer 11 could result if he simply continues to work without adjustment. All in all Thus, the quality of the road support layer can be improved, which increases their service life. At the same time, the operator of the road roller 1 is relieved in a simple and cost-effective manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Überwachung des Verdichtungsprozesses einer zu verdichtenden Asphaltschicht im Straßenbau. Darüber hinaus betrifft die Erfindung eine Straßenwalze, insbesondere Tandemwalze, Walzenzug oder Gummiradwalze, zur Durchführung des Verfahrens.
  • Im Straßenbau wird üblicherweise heißer Asphalt von einem Straßenfertiger quer über die Breite eines geplanten Straßenverlaufs verteilt, glatt abgezogen und vorverdichtet, beispielsweise mit einer Stampferleiste und/oder einer Einbaubohle. Solange das Asphaltmaterial noch heiß und verformbar ist, wird die neue Straßendecke ferner üblicherweise von dem Straßenfertiger nachfolgenden Straßenwalzen, die beispielsweise als Tandemwalzen, Walzenzüge oder Gummiradwalzen ausgebildet sind, weiter verdichtet. Nur bei einem optimalen Verdichtungsgrad erreichen Straßen ihre maximale Lebensdauer. Sowohl eine zu geringe als auch eine zu starke Verdichtung führen zu einer verringerten Haltbarkeit des Straßenbelages und damit zu einer verringerten Qualität der erstellten Straße. Um eine möglichst gleichmäßige Verdichtung der Asphaltschicht zu erreichen, werden von den Bedienern der Straßenwalzen üblicherweise an die Breite der zu verdichtenden Asphaltschicht angepasste Walzschemata mit Verlauf sowie Anzahl der durchzuführenden Überfahrten für das jeweilige Straßenbauprojekt festgelegt. Wie gleichmäßig die Verdichtung der gesamten Straßendecke am Ende tatsächlich gelingt, hängt maßgeblich davon ab, wie konsequent sich die Bediener der Straßenwalzen an das vorgesehene Walzschema halten. Ziel dieser Walzschemata ist es, den Straßenbelag in seiner Breite und Länge möglichst gleichmäßig zu verdichten.
  • Dabei ist das Einhalten des Walzschemas allerdings nicht der einzige Aspekt, auf den die Bediener der Straßenwalzen achten müssen. So müssen sie sich beispielsweise ebenfalls mit weiteren Walzen koordinieren und den Fortschritt des Straßenfertigers im Auge behalten. Darüber hinaus müssen die Walzen insbesondere im Randbereich der Asphaltschicht besonders präzise gesteuert werden, da sie beispielsweise ebenfalls mit seitlich an den Straßenwalzen angebrachten Andrückrollen eine gerade, scharfe Kante der Straße schaffen sollen. Es kann daher sein, dass im Arbeitsbetrieb bestimmte Regionen der zu verdichtenden Asphaltschicht stärker verdichtet werden als andere. Häufig kommt es beispielsweise vor, dass die Randbereiche der Asphaltschicht von den Bedienern der Straßenwalzen weniger oft überfahren werden als mittlere Bereiche. Das Resultat ist eine ungleichmäßige Verdichtung der Straße und damit eine verminderte Qualität der fertigen Deckschicht.
  • Im Stand der Technik sind mehrere Strategien bekannt, um eine optimale Verdichtung der Asphaltschichten zu gewährleisten. Beispielsweise sind Systeme bekannt, in denen mittels GPS (global positioning system) möglichst exakt nachverfolgt werden kann, an welchen Stellen der Asphaltschicht die Straßenwalzen bereits verdichtet haben und an welchen Stellen noch weiter zu verdichten ist. Es sind Systeme bekannt, bei denen die gesamte Baustelle in dieser Art kartiert und dem Bediener der Straßenwalze als dreidimensionale Topographie mit unterschiedlichen Farben zur Kennzeichnung der unterschiedlich stark verdichteten Gebiete angezeigt wird. Um hier hinreichend genaue Positionsbestimmungen der Straßenwalze zu ermöglichen, ist ein nicht unbeträchtlicher apparativer und finanzieller Aufwand erforderlich. Aus der US 6,749,364 B1 ist ein System bekannt, in dem die Straßenwalzen mit einer Wärmebildkamera ausgestattet werden, die ein Wärmeprofil der vom Straßenfertiger verlegten Asphaltschicht erstellt und dem Bediener der Straßenwalze anzeigt, so dass dieser weiß, wo die Asphaltschicht im Moment die optimale Temperatur für die Verdichtung aufweist. Hier wird also das Walzschema an die tatsächlichen Begebenheiten bezüglich der jeweils aktuellen Temperatur der Asphaltschicht angepasst. Auch in der US 6,749,364 B1 wird die Position der Walze mittels GPS oder laserbasierten Systemen, beispielsweise mithilfe eingemessener Totalstationen, bestimmt, Als weiterer Stand der Technik wird die DE 10 2016 002064 A1 genannt, die ebenfalls eine Verfahren zum Überwachen eines Verdichtungsprozesses zeigt.
  • Nachteilig an den Systemen des Standes der Technik ist, dass diese einen hohen technischen Aufwand erfordern und mit erhöhten Anschaffungskosten und teilweise auch laufenden Kosten verbunden sind. Darüber hinaus birgt ein Abweichen vom geplanten Walzschema aufgrund des Temperaturprofils der Asphaltschicht das Risiko, dass unterschiedliche Gebiete unterschiedlich stark verdichtet werden.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Straßenwalze anzugeben, mit der eine Überwachung des Verdichtungsprozesses einer zu verdichtenden Asphaltschicht im Straßenbau gelingt, so dass insgesamt die Verdichtungsqualität verbessert werden kann. Gleichzeitig soll der Bediener der Straßenwalze von der exakten Überwachung der Einhaltung des Walzschemas entlastet werden, so dass dieser sich auf das Steuern der Straßenwalze konzentrieren kann. Ein weiteres Ziel der vorliegenden Erfindung ist es, dass die Überwachung des Verdichtungsprozesses mit möglichst geringem technischen Aufwand und daher besonders kostengünstig gelingen soll.
  • Die Lösung dieser Aufgabe gelingt mit dem Verfahren und der Straßenwalze gemäß den unabhängigen Ansprüchen. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
  • Konkret gelingt die Lösung also mit einem Verfahren zur Überwachung des Verdichtungsprozesses einer zu verdichtenden Asphaltschicht im Straßenbau, umfassend die Schritte: Detektieren der die heiße Asphaltschicht quer zum Straßenverlauf begrenzenden Ränder mittels eines Temperatursensors, der an einer die Asphaltschicht verdichtenden Straßenwalze angeordnet ist, und Einteilen der detektierten Asphaltschicht in mindestens zwei Breitensegmente quer zum Straßenverlauf. Die Breitensegmente werden durch ihren jeweiligen Abstand zu den Rändern der Asphaltschicht definiert. Die Erfindung sieht nun vor, dass die Position der Straßenwalze auf der Asphaltschicht quer zum Straßenverlauf aus der Messung des Temperatursensors bestimmt und einem der Breitensegmente zugeordnet wird, dass der Arbeitsbetrieb der Straßenwalze auf dem jeweiligen Breitensegment durch einen Betriebsparameter quantifiziert und gespeichert wird, und dass, insbesondere dem Bediener der Straßenwalze, für mindestens ein vergangenes Arbeitsintervall der quantifizierte Arbeitsbetrieb für jedes Breitensegment angezeigt wird. Die wesentliche Grundidee der Erfindung liegt darin, ein einfaches System zu schaffen, welches dem Bediener der Straßenwalze einen Überblick darüber liefert, ob er die vorhergehenden Arbeitsschritte gleichmäßig über die gesamte Breite der zu verdichtenden Asphaltschicht verteilt hat, oder ob er in Bezug auf die Breite der zu verdichtenden Asphaltschicht in einem Bereich stärker oder weniger stark verdichtet hat als in anderen Bereichen. Dazu soll allerdings nicht wie im Stand der Technik eine komplizierte und kostenaufwändige Kartierung des gesamten Arbeitsgebietes vorgenommen werden. Es soll vielmehr lediglich festgestellt und dem Bediener der Straßenwalze angezeigt werden, wie gleichmäßig die Arbeit der Straßenwalze auf die gesamte Breite der zu verdichtenden Asphaltschicht in einem gerade abgeschlossenen Arbeitsintervall verteilt wurde, so dass der Bediener seine Arbeitsweise eventuell anpassen kann, wenn sich herausstellt, dass die Asphaltschicht ansonsten ungleichmäßig verdichtet würde. Letztlich wird somit gezählt, wie lange und/oder wie häufig sich die Walze in einem der festgelegten Breitensegmente befindet. Entsprechend muss die aktuelle Position der Straßenwalze auch nur in Bezug auf die Breite der zu verdichtenden Asphaltschicht bekannt sein und dokumentiert werden. Es ist dagegen nicht notwendig, die Position der Straßenwalze auch in Längsrichtung des Straßenverlaufes zu kennen. Die Längsrichtung des Straßenverlaufs bezeichnet dabei die Längserstreckung des von der Walze zu verdichtenden Straßenbelages in Arbeits- und Fortbewegungsrichtung des Straßenfertigers. Die Walze wird dagegen in der Regel reversierend in und entgegen dieser Arbeits- und Fortbewegungsrichtung zu Verdichtungszwecken über den Straßenbelag bewegt. Erstrebt werden üblicherweise mehr als eine Walzenüberfahrt, um ein gewünschtes Verdichtungsergebnis zu erhalten.
  • In der Praxis verlegt ein Straßenfertiger die zu verdichtende Asphaltschicht mehr oder weniger kontinuierlich in seiner Arbeitsrichtung nach vorne. Die dem Straßenfertiger nachfolgenden Straßenwalzen überfahren dann den frisch verlegten Asphalt und folgen mit häufigen Reversierfahrten bestmöglich dem festgelegten Walzschema. Dabei verschiebt sich das Arbeitsgebiet der Straßenwalzen ebenfalls im Wesentlichen kontinuierlich nach vorne, d.h. die Straßenwalzen wandern mit dem erheblich langsam fahrenden Straßenfertiger im Einbauprozess mit. Erfindungsgemäß wird nun mittels des Temperatursensors detektiert, in welchem Breitensegment der Asphaltschicht die Straßenwalze gerade den Asphalt verdichtet. Diese Daten werden mindestens über ein Arbeitsintervall hinweg gespeichert und statistisch ausgewertet, sodass dem Bediener angezeigt werden kann, welcher Anteil der Verdichtungsarbeit innerhalb des Arbeitsintervalls auf welches Breitensegment abgefallen ist. Falls der Bediener der Straßenwalze sich exakt an das Walzschema hält, sollten sämtliche Breitensegmente der Asphaltschicht gleichmäßig verdichtet worden sein. Eine Abweichung von der gleichmäßigen Verteilung, beispielsweise weil die Straßenwalze in einem Breitensegment öfter die Asphaltschicht überfahren hat als in einem anderen Breitensegment, würde dem Bediener also durch eine ungleichmäßige Verteilung der Verdichtungsarbeit auf die Breitensegmente angezeigt, sodass dieser seine Arbeitsweise anpassen kann, um eine ungleichmäßige Verdichtung im weiteren Arbeitsbetrieb zu vermeiden.
  • Die Erfindung macht sich zunutze, dass Asphalt von Straßenfertigern im heißen Zustand eingebaut wird. Dadurch ergibt sich stets ein starker Temperaturunterschied zwischen der eingebauten und zu verdichtenden Asphaltschicht und dem neben der Asphaltschicht liegenden Boden, der deutlich kälter ist als der Asphalt. Dies kann vom erfindungsgemäßen Temperatursensor, der insbesondere ein berührungsloser Temperatursensor ist, genutzt werden, um die Lage der Ränder der heißen Asphaltschicht, sprich die Position des Überganges zwischen heißer Asphaltschicht und kaltem Bodenuntergrund neben dem Straßenverlauf, sowie die Position der Walze in Abhängigkeit von wenigstens einem detektierten Seitenrand rechnerisch, insbesondere mittels einer geeigneten Steuereinheit, zu ermitteln. Entsprechend erfindungsgemäß ist der Temperatursensor derart ausgebildet, dass er eine Temperaturerfassung der Asphaltschicht in einer Breite ermöglicht, die breiter als die Walzbreite der jeweiligen Straßenwalze ist. Hat der Temperatursensor die Ränder der Asphaltschicht ermittelt, die parallel zur Längserstreckung der Straße verlaufen, so kann die Asphaltschicht quer zum Straßenverlauf rechnerisch in Breitensegmente eingeteilt werden. Da darüber hinaus die Position des Temperatursensors an der Straßenwalze bekannt ist, kann aus der kontinuierlichen Messung des Temperatursensors die aktuelle Position der Straßenwalze einem der Breitensegmente zugeordnet werden. Mit anderen Worten wird die Position der Straßenwalze in Bezug auf die Breite der zu verdichtenden Asphaltschicht bestimmt. Die Erfindung nutzt also aus, dass die Position der Straßenwalze quer zum Straßenverlauf aus den Messungen des Temperatursensors bestimmbar ist. Auf diese Weise werden keine, beispielsweise GPS- oder laserbasierten, komplexeren und teureren Systeme benötigt. Letztlich wird wenigstens ein detektierter Randbereich der zu verdichtenden Asphaltschicht zur Identifikation der Position der Walze in Bezug auf die Breite der zu verdichtenden Asphaltschicht genutzt. Die Festlegung der Breitensegmente, insbesondere die Festlegung der Lage und die Anzahl der Breitensegmente auf dem Asphaltstreifen, kann wie bereits beschrieben nach der Detektion der heißen Asphaltschicht durch den Temperatursensor erfolgen. Es ist allerdings ebenfalls möglich, dass durch die Messung des Temperatursensors vorerst nur die Position der Straßenwalze auf der Asphaltschicht bestimmt wird, ohne diese Position gleich einem Breitensegment zuzuordnen. Die Einteilung in Breitensegmente und die entsprechende Zuordnung der bestimmten Position der Straßenwalze zu den jeweiligen Breitensegmenten kann beispielsweise ebenfalls erst in einem nachgelagerten Auswerteschritt, beispielsweise während der statistischen Auswertung des quantifizierten Arbeitsbetriebes, erfolgen. Es kommt daher erfindungsgemäß ausdrücklich nicht auf die vorstehend beschriebene Reihenfolge der Verfahrensschritte an.
  • Um dem Bediener der Straßenwalze eine Hilfestellung zur Überwachung des Ablaufs des Verdichtungsprozesses zu geben, wird erfindungsgemäß registriert, in welchem Breitensegment die Straßenwalze bezogen auf ein vergangenes Arbeitsintervall wie viel Verdichtungsleistung erbracht hat. Dabei wird der Arbeitsbetrieb der Straßenwalze auf dem jeweiligen Breitensegment durch einen Betriebsparameter quantifiziert, wie nachstehend noch näher erläutert wird. Die Verteilung der Verdichtungsleistung beziehungsweise des Arbeitsbetriebes der Straßenwalze auf die Breitensegmente wird dem Bediener angezeigt, sodass dieser darauf achten kann, die Verteilung möglichst gleichmä-ßig zu gestalten und so zu einer gleichmäßigen Verdichtung der Asphaltschicht zu gelangen.
  • Grundsätzlich ist es ausreichend, einen Temperatursensor einzusetzen, der die Temperatur an einem einzelnen Punkt bestimmen kann. Durch ein Verschwenken oder Bewegen des Temperatursensors kann dieser die Temperatur auf einer Linie quer zum Straßenverlauf bestimmen. Hierbei detektiert der Temperatursensor einen Temperatursprung, wenn sein Messpunkt einen Rand der Asphaltschicht überquert. Anhand der Bewegungs- beziehungsweise Schwenkrichtung des Temperatursensors und des Vorzeichens der Temperaturänderung kann festgestellt werden, ob es sich jeweils um den rechten oder den linken Rand des Asphaltstreifens handelt. Bei einem derartigen Temperatursensor ist es bevorzugt, dass das Detektieren der die heiße Asphaltschicht quer zum Straßenverlauf begrenzenden Ränder mittels des Temperatursensors periodisch nacheinander erfolgt. Mit anderen Worten wird die Messung während des Arbeitsbetriebes periodisch und durchgehend wiederholt, damit zu jedem Zeitpunkt die Position der Ränder bzw. wenigstens eines Randes der zu verdichtenden Asphaltschicht bekannt sind und damit auch die Position der Straßenwalze in Bezug auf die Breitensegmente bestimmbar ist. Alternativ dazu ist es allerdings bevorzugt, dass beide Ränder gleichzeitig vom Temperatursensor erfasst werden. Hierfür ist es notwendig, dass der Temperatursensor über mehrere Messpunkte verfügt. Beispielsweise kann der Temperatursensor als Wärmebildbeziehungsweise Infrarotkamera mit einer Auflösung von mehreren Pixeln ausgebildet sein. In diesem Fall ist es bevorzugt, dass der Temperatursensor beziehungsweise die Wärmebildkamera derart an der Straßenwalze angeordnet ist, dass sie die gesamte Breite des Asphaltstreifens in einer Bildeinstellung aufnehmen kann. Auf diese Weise ist es ebenfalls besonders einfach, aus dem Bild der Wärmekamera, aus dem die Ränder des Asphaltstreifens hervorgehen, zu ermitteln, in welchem Breitensegment sich die Straßenwalze aktuell befindet. Dies ist beispielsweise bei Wärmebildkameras, die lediglich 16x4 Pixel aufweisen, bereits mit einer Genauigkeit von ungefähr 1 m möglich. Derartige Wärmebildkameras sind kostengünstig und eignen sich daher besonders für die Erfindung.
  • Unabhängig davon, wie der verwendete Temperatursensor konkret aufgebaut ist, ist es bevorzugt, wenn die Messbreite des Temperatursensors wenigstens der Breite der zu verdichtenden Asphaltschicht entspricht oder bevorzugt größer als diese ist. Für die zuverlässige Durchführung des erfindungsgemäßen Verfahrens ist es vorteilhaft, wenn die Position der Walze in Bezug auf die Breite der zu verdichtenden Asphaltdecke zu jedem Zeitpunkt ermittelbar ist. Dies gelingt dann, wenn idealerweise stets ein Rand der beiden Ränder der Asphaltschicht im Detektionsbereich bzw. innerhalb der Messbreite des Temperatursensors liegt. Um dies unabhängig von der Position der Walze in der Breite ermöglichen zu können, ist die Messbreite des Temperatursensors bevorzugt wenigstens so groß wie die Breite der zu verdichtenden Asphaltschicht. Sollte die Walze im Randbereich der zu verdichtenden Asphaltschicht arbeiten, kann es sein, dass nur dieser Rand durch den Temperatursensor erfasst wird, da der Detektionsbereich nicht mehr ausreicht, den weiter entfernten Randbereich zu erkennen. In diesem Fall kann ersatzweise die zuvor bereits ermittelte Gesamtbreite der Asphaltschicht weiterverwendet werden, da sich in der Mehrzahl der Fälle die Einbaubreite des Stra-ßenfertigers nur unwesentlich ändert. Durch die ersatzweise Verwendung der Einbaubreite, die bei günstiger Walzenposition ermittelt wurde, genügt es, wenn die Messbreite des Temperatursensors geringfügig größer ist als die Breite der heißen Asphaltschicht.
  • Grundsätzlich kann über viele verschiedene Parameter, die alle proportional zur Verdichtungsleistung beziehungsweise zur Verdichtungsarbeit der Straßenwalze sind, festgestellt werden, wie stark die Straßenwalze die Asphaltschicht, insbesondere statistisch, in einem Breitensegment verdichtet hat. Bevorzugt wird als Betriebsparameter wenigsten einer der folgenden Parameter eingesetzt: eine Zeitspanne, eine Anzahl an Überfahrten, eine Anzahl an Reversierfahrten, eine zurückgelegte Strecke, eine Untergrundsteifigkeit und/oder eine Vibrationsintensität einer Walzenbandage der Straßenwalze. Wobei die Vibrationsintensität durch eine Vielzahl von Kenngrößen beschrieben werden kann. Beispielsweise anhand der Schwingamplitude, Schwingbeschleunigung, Anzahl der Schwingungen pro zurückgelegter Fahrstrecke oder Fliehkraft. Sämtliche genannten Parameter sind geeignet, den Arbeitsbetrieb der Straßenwalze auf dem jeweiligen Breitensegment quantitativ zu erfassen. So kann beispielsweise bestimmt werden, wie viel Zeit die Straßenwalze auf dem jeweiligen Breitensegment verbringt, wie oft sie das jeweilige Breitensegment überfährt beziehungsweise wie oft sie die Fahrtrichtung auf dem jeweiligen Breitensegmente ändert, welche Strecke die Straßenwalze auf dem jeweiligen Breitensegment zurückgelegt hat oder mit welcher Intensität ein Vibrationserreger betrieben wird, der zur Verstärkung der Verdichtungsleistung die Walzenbandage der Straßenwalze in Vibrationen beziehungsweise Oszillationen versetzt. Für die Anzeige für den Bediener können beispielsweise die entsprechenden Parameter als über die Zeit aufaddierte Absolutwerte eingesetzt werden. So könnte also beispielsweise angezeigt werden, wie viel Zeit des vorangegangenen Arbeitsintervalls die Straßenwalze auf welchen Breitensegmenten verbracht hat oder welche Strecke die Straßenwalze auf den entsprechenden Breitensegmenten zurückgelegt hat. Darüber hinaus könnte allerdings auch eine Relation der einzelnen Breitensegmente untereinander angezeigt werden. Beispielsweise könnte angezeigt werden, wie viel Prozent der Verdichtungsarbeit beziehungsweise der Arbeitsleistung der Straßenwalze im vergangenen Arbeitsintervall im jeweiligen Breitensegment geleistet wurde. Selbstverständlich ist es ebenfalls denkbar, die Quantifizierung des Arbeitsbetriebs über eine Kombination von zwei oder mehr der genannten Parameter durchzuführen. Beispielsweise bietet es sich an, die genutzte Vibrationsintensität der Walzenbandage, die die Verdichtung verstärkt, mit einem der weiteren Parameter zu kombinieren. Auf diese Weise kann die Verdichtungsleistung der Straßenwalze in den einzelnen Breitensegmenten durch die jeweilige Vibrationsintensität gewichtet werden und zu einem genaueren Bild der Gleichmäßigkeit der durch die Straßenwalze erreichten Verdichtung führen. Alternativ kann zusätzlich die in den jeweiligen Breitensegmenten ermittelte Untergrundsteifigkeit zur Bewertung der von der Walze geleisteten Verdichtung herangezogen werden.
  • Das vergangene Arbeitsintervall bezieht sich erfindungsgemäß auf einen vergangenen Abschnitt des Arbeitsbetriebes. Bevorzugt werden zur Festlegung von Grenzen des vergangenen Arbeitsintervalls derselbe Betriebsparameter wie zur Quantifizierung des Arbeitsbetriebes und/oder ein anderer Parameter eingesetzt. Das heißt, dass das vergangene Arbeitsintervall beispielsweise eine bestimmte Zeitspanne, eine bestimmte Anzahl an Überfahrten, eine bestimmte Anzahl an Reversiervorgängen und/oder eine bestimmte zurückgelegte Strecke umfasst. Auch hier sind selbstverständlich Kombinationen der einzelnen Parameter möglich. Beispielsweise könnte sich das vergangene Arbeitsintervall also auf eine Zeitspanne von 10 Minuten des Arbeitsbetriebes der Straßenwalze beziehen. Erfindungsgemäß wird dem Bediener dann also im Anschluss an eine Aufzeichnungsphase innerhalb der ersten 10 Minuten nach Arbeitsbeginn angezeigt, inwiefern er den Arbeitsbetrieb der Straßenwalze innerhalb dieser zeitlich zurückliegenden 10 Minuten auf die jeweiligen Breitensegmente absolut oder relativ verteilt hat. Dabei kann es vorgesehen sein, dass sich das vergangene Arbeitsintervall auf den- oder dieselben Parameter bezieht wie die Quantifizierung des Arbeitsbetriebes. Beispielsweise könnte dem Bediener also angezeigt werden, wie viel Prozent der letzten 10 Minuten des Arbeitsbetriebes die Straßenwalze auf den jeweiligen Breitensegmenten verbracht hat. Es ist allerdings ebenfalls möglich, dass unterschiedliche Parameter zur Quantifizierung des Arbeitsbetriebes und zur Festlegung des vergangenen Arbeitsintervalls eingesetzt werden. So kann beispielsweise die Quantifizierung des Arbeitsbetriebes über die Anzahl an Überfahrten erfolgen, während das vergangene Arbeitsintervall auf die verstrichene Zeit bezogen ist. Beispielsweise würde dem Bediener dann angezeigt, welcher Prozentsatz der Überfahrten der letzten 10 Minuten des vergangenen Arbeitsintervalls auf welche Breitensegmente entfallen sind. Hier sind sämtliche Kombinationen der genannten Parameter denkbar.
  • Grundsätzlich könnten aufeinanderfolgende Arbeitsintervalle jeweils separat für sich statistisch ausgewertet und die jeweiligen Ergebnisse dem Bediener der Straßenwalze angezeigt werden, beispielsweise getrennt voneinander und nacheinander, jeweils, wenn ein Arbeitsintervall abgeschlossen ist. Hierdurch wird der Bediener allerdings rein rückblickend auf eventuelle ungleichmäßigeren im Verdichtungsprozess aufmerksam gemacht. Es ist daher bevorzugt, dass der beziehungsweise die zur Quantifizierung des Arbeitsbetriebs eingesetzten Parameter innerhalb des Arbeitsintervalls gespeichert wird beziehungsweise werden, wobei im Arbeitsbetrieb diejenigen Daten, die weiter als das Arbeitsintervall zurückliegen, durch neu aufgenommene Daten ersetzt werden. Mit anderen Worten erfolgt sowohl die Aufnahme der Daten als auch deren statistische Auswertung kontinuierlich. Das vergangene Arbeitsintervall reicht daher immer bis zur Gegenwart heran und umfasst, je nach Parameter, beispielsweise die letzten 10 Minuten des Arbeitsbetriebes. Die Position, in der sich die Straßenwalze quer zum Straßenverlauf befindet, fließt in Echtzeit in die statistische Auswertung ein, während Daten, die mehr als das vorgegebene Arbeitsintervall zurückliegen, aus der Statistik entfernt werden. Der Bediener der Straßenwalze kann dadurch die Entwicklung der Statistik ebenfalls in Echtzeit beobachten und sieht so frühzeitig, wenn sich eine Verschiebung der Arbeitsleistung der Straßenwalze beziehungsweise eine Ungleichheit zwischen den einzelnen Breitensegmenten zeigt. Auf diese Weise hat der Fahrer immer eine aktuelle Rückmeldung zu seinem jetzigen Arbeitsablauf und hat die Gleichmäßigkeit der Verdichtung immer im Blick, ohne sich auf die strikte Einhaltung des Walzschemas konzentrieren zu müssen. Sich anbahnenden Ungleichmäßigkeiten kann so frühzeitig entgegengewirkt werden.
  • Die Einteilung der detektierten Asphaltschicht in Breitensegmente kann je nach Anwendungsfall unterschiedlich erfolgen. Ziel ist es erfindungsgemäß, zu bestimmen, in welcher Fahrspur auf der Asphaltschicht sich die Straßenwalze aktuell befindet. Die Definition der Fahrspur beziehungsweise des Breitensegmentes erfolgt über den Abstand vom kalten Fahrbahnrand, der vom Temperatursensor detektiert wird. Prinzipiell gilt, dass bei einer Einteilung der Asphaltschicht in viele Breitensegmente quer zum Straßenverlauf eine höhere Genauigkeit erreicht wird. Auf der anderen Seite ist die Genauigkeit des Systems ebenfalls durch die Genauigkeit des Temperatursensors, beispielsweise durch die Anzahl an Pixeln der Wärmebildkamera, begrenzt. Ziel der Erfindung ist auch keine millimetergenaue Kartierung der Asphaltschicht, sondern eine Orientierungshilfe für den Bediener der Straßenwalze. Eine exakte Auswertung mit hoher Genauigkeit ist hierzu nicht notwendig. So ist es beispielsweise bevorzugt, dass die detektierte Asphaltschicht mindestens in die drei Breitensegmente "linke Seite", "Mitte" und "rechte Seite" quer zum Straßenverlauf eingeteilt wird. Auf diese Weise kann verhindert werden, dass die Seitenrandbereiche der Asphaltschicht weniger stark verdichtet werden als die Bereiche in der Mitte der Asphaltschicht. Die genaue Anzahl der Breitensegmente kann beispielsweise ebenfalls an der Gesamtbreite der zu verdichtenden Asphaltschicht in Bezug auf die Breite der Straßenwalze, insbesondere die Breite deren Walzenbandage, festgemacht werden. Beispielsweise kann die Asphaltschicht in eine Anzahl von Breitensegmenten unterteilt werden, die der Anzahl entspricht, wie oft die Walzenbandage der Straßenwalze nebeneinander in die Asphaltschicht hineinpasst, gegebenenfalls ebenfalls unter Berücksichtigung eines typischen Überlappungsmaßes von ca. 10 cm zwischen den einzelnen Fahrspuren. Wie schon angeführt, ist allerdings die genaue Ermittlung der Überlappungsbreite nicht erforderlich.
  • Gemäß einer bevorzugten Ausführungsform ist vorgesehen, dass die Breitensegmente, insbesondere sämtliche Breitensegmente, quer zum Straßenverlauf gleich groß sind. Auf diese Weise wird der Arbeitsbetrieb der Straßenwalze in den jeweiligen Breitensegmenten für alle Bereiche der Asphaltschicht gleich stark berücksichtigt. Alternativ ist es ebenfalls möglich, dass diejenigen Breitensegmente, die an den Rändern der detektierten Asphaltschicht liegen, quer zum Straßenverlauf weniger breit sind als Breitensegmente, die in der Mitte der detektierten Asphaltschicht liegen. Auf diese Weise wird insbesondere an den Rändern der Asphaltschicht eine höhere Auflösung der erfindungsgemäßen Überwachung erreicht. Dies ist insbesondere dann von Vorteil, wenn eine zu geringe Verdichtung an den Rändern der Asphaltschicht zu befürchten ist, da dann für die Breitensegmente an den Rändern der Asphaltschicht auch nur ein tatsächlicher Arbeitsbetrieb der Straßenwalze in diesem Bereich gezählt wird.
  • Um die Position der Straßenwalze auf der Asphaltschicht quer zum Straßenverlauf möglichst exakt bestimmen zu können, ist es vorteilhaft, verschiedene Aspekte der Anordnung des Temperatursensors und der Arbeitssituation der Straßenwalze zusätzlich heranzuziehen. So ist beispielsweise bevorzugt, dass bei der Bestimmung der Position der Straßenwalze auf der Asphaltschicht, insbesondere quer zum Straßenverlauf, aus der Messung des Temperatursensors ein Messwinkel des Temperatursensors und/oder eine Fahrtrichtung und/oder ein Lenkeinschlag und/oder ein Lenkmodus, beispielsweise Hundegang, der Straßenwalze mit berücksichtigt wird. Die Anordnung und damit die Position des Temperatursensors an der Straßenwalze bzw. die Lage von dessen Messbereich relativ zur übrigen Straßenwalze sind bekannt. Aus dem Messwinkel des Temperatursensors, der entweder verstellbar oder konstant sein kann, kann somit bestimmt werden, wo sich der Messbereich des Temperatursensors befindet, insbesondere in Relation zur Straßenwalze selbst. Insbesondere bei der Verwendung einer Wärmebildkamera führt der Messwinkel des Temperatursensors gegenüber der Asphaltschicht dazu, dass das Wärmebild der Wärmekamera trapezartig verzerrt ist. Bei der Auswertung des Wärmebildes muss also darauf geachtet werden, dass jedem Pixel im Wärmebild des Temperatursensors der richtige reale Ort auf der Asphaltschicht oder auf dem daneben liegenden Boden zugeordnet wird. Hierfür wird jedem Pixel des Wärmebildes eine Koordinate quer und längs zur Fahrtrichtung beziehungsweise zum Straßenverlauf zugewiesen. Die trapezartige perspektivische Verzerrung des Wärmebildes wird unter Berücksichtigung des Messwinkels und der Anordnung des Temperatursensors an der Straßenwalze mit einberechnet um auf die reale Lage der Asphaltschicht zu schließen. Derartige Berechnungen sind aus der Bilderkennung bekannt, sodass hier nicht näher darauf eingegangen wird. Oftmals werden Straßenwalzen eingesetzt, die nur an einer Seite über ein zusätzliches Gerät, beispielsweise eine Kantenandrückrolle, verfügen. Um diese an beiden Rändern der Asphaltschicht einsetzen zu können, wird die Straßenwalze daher im Betrieb oftmals um 180° gedreht und umgekehrt entlang der Asphaltschicht verfahren. Damit in dieser Situation nicht die Zuordnung der Seiten, also von rechts und links, verwechselt wird, muss ebenfalls die Fahrtrichtung berücksichtigt werden, beispielsweise durch Einsatz eines digitalen Kompasses, der die aktuelle Fahrtrichtung der Straßenwalze erkennt. Durch die zusätzliche Berücksichtigung des Lenkeinschlages wird erreicht, dass in Kombination mit den Daten des Temperatursensors ein Wechsel der Straßenwalze von einem Breitensegment in ein anderes absehbar wird. Ein entsprechender Spurwechsel kann also vorhergesagt und damit genauer erfasst werden als rein rückblickend aus den Messdaten des Temperatursensors. Darüber hinaus können Straßenwalzen in verschiedenen Lenkarten betrieben werden. In dem als Hundegang bekannten Lenkmodus beispielsweise fährt die Straßenwalze mit parallel zueinander versetzten Walzenbandagen, sodass die Arbeitsbreite der Straßenwalze vergrößert ist. Auf diese Weise kann es passieren, dass die Straßenwalze dann beispielsweise gleichzeitig zwei oder noch mehr Breitensegmente der Asphaltschicht bearbeitet, je nachdem, wie kleinteilig die Asphaltschicht in Breitensegmente eingeteilt wird. Um dies entsprechend in der Statistik zu berücksichtigen, sollte ebenfalls der aktuelle Lenkmodus der Straßenwalze in die Auswertung mit einfließen. Die jeweils wirksame Arbeitsbreite der Walze wirkt sich auf das optimale Walzschema aus, so dass vorzugsweise eine Aufteilung der Asphaltschicht in Breitensegmente erfolgt, die eine optimale Überdeckung der Walzspuren gewährleistet. Für eine bestmögliche Unterstützung des Walzenfahrers ist es daher vorteilhaft, wenn die Anzahl der notwendigen Walzspuren entsprechend der Einbaubreite des Fertigers und der Arbeitsbreite der Walze dargestellt wird. Es kann daher das oben beschriebene Verfahren auch derart angewendet werden, dass mindestens die Gesamtbreite der zu verdichtenden Fläche, der Abstand der Walze von zumindest einem Rand der zu verdichtenden Fläche und die Arbeitsbreite der Walze bestimmt wird. Aus diesen Werten wird die Überrollung der zu verdichtenden Fläche statistisch erfasst und später einer bestimmten Anzahl Walzspuren zugeordnet.
  • Die praktische Umsetzung des erfindungsgemäßen Verfahrens erfolgt bevorzugt mithilfe einer geeigneten Steuereinheit, insbesondere mittels einer geeigneten Steuersoftware, die die erforderlichen Rechenoperationen zur Durchführung der einzelnen erfindungsgemäßen Verfahrensschritte ausführt.
  • Die Lösung der eingangs genannten Aufgabe gelingt ebenfalls mit einer Straßenwalze, insbesondere Tandemwalze, Walzenzug oder Gummiradwalze, zur Verdichtung einer Asphaltschicht im Straßenbau, mit einem Maschinenrahmen, einem Antriebsmotor, einem Fahrerstand, wenigstens einer Walzenbandage und/oder einem Rad, einem Temperatursensor, und einer Steuereinheit, wobei die Steuereinheit zur Durchführung des vorstehend beschriebenen erfindungsgemäßen Verfahrens ausgebildet ist. Sämtliche vorstehend genannten Merkmale, Wirkungen und Vorteile des erfindungsgemäßen Verfahrens gelten im übertragenen Sinne ebenfalls für die erfindungsgemäße Straßenwalze. Zur Vermeidung von Wiederholungen wird daher auf die vorstehenden Ausführungen Bezug genommen. Die Steuereinheit ist als zentrale Recheneinheit ausgebildet und beispielsweise in den Bordcomputer der Straßenwalze integriert. Sie ist mit einer entsprechenden Software ausgestattet, um das erfindungsgemäße Verfahren durchzuführen.
  • Wie vorstehend bereits beschrieben, ist es bevorzugt, dass die Position der Straßenwalze quer zum Straßenverlauf kontinuierlich detektiert und die Auswertungsstatistik über den auf die Breitensegmente verteilten quantifizierten Arbeitsbetrieb kontinuierlich und in Echtzeit aktualisiert wird, sodass das vergangene Arbeitsintervall zu jedem Zeitpunkt bis zum aktuellen Moment der Gegenwart heranreicht und der Bediener immer einen Überblick über das von diesem Zeitpunkt zurückliegende vergangene Arbeitsintervall hat. Zur technischen Umsetzung ist es hierzu bevorzugt, dass die Steuereinheit einen rollierenden Speicher umfasst, der den quantifizierten Arbeitsbetrieb für jedes Breitensegment innerhalb des vergangenen Arbeitsintervalls speichert. Ein rollierender Speicher zeichnet sich dadurch aus, dass er Daten bis zu einer gewissen Grenze, insbesondere zeitlichen und/oder speicherplatzabhängigen Grenze, speichert und dann zur Aufnahme neuer Daten die ältesten gespeicherten Daten laufend bzw. rollierend löscht. Auf diese Weise nimmt der rollierende Speicher kontinuierlich aktuelle Daten auf und löscht die ältesten Daten. Dadurch beziehen sich die gespeicherten Daten stets auf das bis an die Gegenwart heranreichende, vergangene Arbeitsintervall. Die statistisch ausgewerteten Daten aus dem rollierenden Speicher repräsentieren daher immer das gewünschte Arbeitsintervall. Die Größe des rollierenden Speichers ist selbstverständlich an die gewünschte Größe des Arbeitsintervalls angepasst.
  • Obwohl unterschiedliche Ausbildungen des Temperatursensors zur Durchführung der Erfindung eingesetzt werden können, ist es bevorzugt, wenn der Temperatursensor eine Wärmebildkamera umfasst. An die entsprechenden Wärmebildkameras werden von der Erfindung keine besonderen Anforderungen gestellt, so dass auch besonders kostengünstige Modelle mit vergleichsweise niedriger Auflösung eingesetzt werden können. Bevorzugt ist, wenn die Wärmebildkamera quer zur Vorwärtsrichtung wenigstens eine Auflösung von zwei, insbesondere wenigstens von vier Pixeln aufweist.
  • Die Erfindung wird nun anhand der in den Figuren gezeigten Ausführungsbeispiele näher erläutert. Es zeigen schematisch:
  • Figur 1:
    eine Seitenansicht einer Tandemwalze;
    Figur 2:
    eine Seitenansicht eines Walzenzuges;
    Figur 3:
    eine seitliche Darstellung der Detektion der Asphaltschicht durch den Temperatursensor;
    Figur 4:
    eine prinzipielle Darstellung zur Umrechnung der Perspektive des Temperatursensors;
    Figur 5:
    ein Walzschema und dessen Registrierung;
    Figur 6:
    eine mögliche Anzeige der statistischen Auswertung;
    Figur 7:
    eine weitere mögliche Anzeige der statistischen Auswertung; und
    Figur 8:
    ein Ablaufdiagramm des Verfahrens.
  • Gleiche beziehungsweise gleichwirkende Bauteile sind in den Figuren mit gleichen Bezugszeichen beziffert. Sich wiederholende Bauteile sind nicht in jeder Figur gesondert bezeichnet.
  • Die Figuren 1 und 2 zeigen jeweils eine Straßenwalze 1 mit einem Fahrerstand 2 und einem Maschinenrahmen 3. Darüber hinaus weisen die Straßenwalzen 1 einen Antriebsmotor 4 auf, der beispielsweise ein Dieselmotor ist. Figur 1 zeigt eine Tandemwalze, die sich im Arbeitsbetrieb mit ihren beiden Walzenbandagen 5 über den zu verdichtenden Boden 7 bewegt. Figur 2 zeigt einen Walzenzug, der eine Weizenbandage 5 und zusätzliche Räder 6 aufweist, mit denen sich der Walzenzug über den zu verdichtenden Boden 7 bewegt. Im Arbeitsbetrieb führen die Straßenwalzen 1 häufige Reversierfahrten aus, sodass sie sowohl in Vorwärtsfahrt als auch in Rückwärtsfahrt den Boden 7 verdichten. Allein zur Verdeutlichung der Beschreibung wird die Vorwärtsfahrt wie in den Figuren angedeutet als Arbeitsrichtung a bezeichnet, auch wenn die Straßenwalzen 1 ebenfalls in entgegengesetzte Richtung arbeiten können.
  • Die Straßenwalzen 1 weisen einen Temperatursensor 8 auf, der am im Wesentlichen höchsten Punkt der Straßenwalzen 1 angeordnet ist. Im gezeigten Ausführungsbeispiel ist dies das Dach des Fahrerstandes 2. Bei den Temperatursensoren 8 handelt es sich beispielsweise um Wärmebildkameras beziehungsweise Infrarotkameras. Wie durch den gestrichelten Pfeil dargestellt, sind die Temperatursensoren 8 derart ausgerichtet, dass sie den Bereich in Arbeitsrichtung a vor der Straßenwalze 1 aufnehmen. Andere Anordnungen und Ausrichtungen der Temperatursensoren 8, beispielsweise eine Ausrichtung des Messbereichs entgegen der Arbeitsrichtung a, sind möglich. Der Winkel a, in dem der Temperatursensor 8 in Arbeitsrichtung zum Bodenuntergrund bzw. gegenüber einer Lotrechten ausgerichtet ist, ist bekannt. Der Temperatursensor 8 ist mit einer Steuereinheit 9, die sich insbesondere im Fahrerstand 2 der Straßenwalze 1 befindet, verbunden. Die Steuereinheit 9 ist Teil des Bordcomputers der Straßenwalze 1 und dient sowohl zur messtechnischen als auch zur statistischen Auswertung der vom Temperatursensor 8 gesammelten Daten. Darüber hinaus ist die Steuereinheit 9 mit einer Anzeigevorrichtung 10 verbunden, über die dem Bediener der Straßenwalze 1 die statistische Auswertung der Verteilung des quantifizierten Arbeitsbetriebes über die Breitensegmente des Asphaltstreifens anzeigbar ist. Selbstverständlich kann auch vorgesehen sein, dass die Steuereinheit 9 die ausgewerteten Daten kabelgebunden oder kabellos an ein weiteres Endgerät, beispielsweise ein Smartphone oder einen Tablet-Computer überträgt, wobei das weitere Endgerät zumindest die Anzeige der Daten für den Bediener übernimmt. Auch Berechnungsschritte, um diese Anzeige der Daten aus den gewonnenen Messergebnissen zu erhalten, könnten theoretisch vom Endgerät übernommen werden, beispielsweise unter Einsatz einer geeigneten App.
  • Die Figuren 3 und 4 verdeutlichen die Detektion der Asphaltschicht und die Bestimmung der Position der Straßenwalze 1 quer zum Straßenverlauf unter Verwendung einer Wärmebildkamera als Temperatursensor 8. Insbesondere verdeutlichen die Figuren 3 und 4 den Einfluss der Perspektive des Temperatursensors 8 auf dessen Messung und wie aus dieser Messung auf den Verlauf und die Position der Asphaltschicht 11 und damit auch auf die Position der Straßenwalze 1 auf der Asphaltschicht 11 quer zum Straßenverlauf geschlossen werden kann. Figur 3 zeigt eine seitliche Darstellung, ähnlich der Ansichten aus Figur 1 und 2. Aus Figur 3 wird klar, dass der Messbereich des Temperatursensors 8 eine Sensortiefe 15 in Arbeitsrichtung a beziehungsweise parallel zum Straßenverlauf aufweist. Figur 4 zeigt eine perspektivische Ansicht des vom Temperatursensor 8 aufgenommenen Wärmebildes 13. Das vom Temperatursensor 8 aufgenommene Wärmebild 13 besitzt eine Sensorbreite 16 und eine Sensortiefe 15, von denen insgesamt das Wärmebild 13 begrenzt wird. Das Wärmebild 13 wird insgesamt aus Sensorsegmenten 14 zusammengesetzt, wobei jedes Sensorsegment 14 beispielsweise ein Pixel der Auflösung der Wärmebildkamera als Temperatursensor 8 ist. Im gezeigten Ausführungsbeispiel besteht das Wärmebild 13 aus 16x4 Pixeln.
  • Wie ebenfalls aus Figur 4 hervorgeht, ist das Wärmebild 13 des Temperatursensors 8 aufgrund dessen Sensorperspektive in Abhängigkeit vom Anbringungsort des Temperatursensors 8 an der Straßenwalze 1 und dem Messwinkel perspektivisch beziehungsweise trapezartig verzerrt. Diese Verzerrung muss berücksichtigt werden, um den tatsächlichen Verlauf der zu verdichtenden Asphaltschicht 11, die in Figur 4 als Vergleich zum perspektivischen Wärmebild 13 in Draufsicht gezeigt ist, aus den Messdaten des Temperatursensors 8 zu berechnen. Insbesondere ist in Figur 4 die Asphaltschicht 11 mit einer Straßenbreite 17 und einer Straßenabschnittslänge 18 gezeigt. Die Asphaltschicht 11 ist in eine Mehrzahl von Breitensegmenten 12, im gezeigten Ausführungsbeispiel in dreizehn jeweils ca. 1 m breite Breitensegmente 12, eingeteilt. Die Position der Breitensegmente 12 wird über deren Abstand entweder zum linken Rand 26 oder zum rechten Rand 27 der Asphaltschicht 11 definiert. Wie der Verlauf der Asphaltschicht 11 aus dem Wärmebild 13 des Temperatursensors 8 bestimmt wird, geht insbesondere aus der Überlagerung der Asphaltschicht 11 mit dem Wärmebild 13 aus Figur 4 hervor. Sämtliche Sensorsegmente 14 des Wärmebildes 13, die einen Teil der Asphaltschicht 11 abbilden und damit deren Temperatur messen, zeigen einen deutlich höhere Temperatur als diejenigen Sensorsegmente 14 des Wärmebildes 13, die den neben der Asphaltschicht 11 liegenden, deutlich kälteren Boden abbilden. Insbesondere durch diese Übergänge von der warmen beziehungsweise heißen Asphaltschicht 11 zum kalten Boden wird der linke Rand 26 und der rechte Rand 27 der Asphaltschicht 11 bestimmt. Sobald die Ränder 26, 27 bestimmt wurden, können die Breitensegmente 12 durch ihren jeweiligen Abstand von den Rändern 26, 27 festgelegt werden. Wie ebenfalls aus Figur 4 hervorgeht, lässt sich aus dem Wärmebild 13 des Temperatursensors 8, sobald die Ränder 26, 27 der Asphaltschicht 11 bekannt sind, bestimmen, auf welchen Breitensegmenten 12 beziehungsweise auf welchem Breitensegment 12 die Straßenwalze 1 sich aktuell befindet. In Figur 4 sind diejenigen Breitensegmente 12, auf der sich die Straßenwalze 1 aufgrund des gezeigten Wärmebildes 13 befinden muss, mit 28 bezeichnet. Auf diese Weise wird es ermöglicht, statistisch zu erfassen, in welchen Breitensegmenten 12 die Straßenwalze 1 welchen Anteil ihrer Arbeit verrichtet hat.
  • Das Ziel der vorliegenden Erfindung ist es, dem Bediener der Straßenwalze 1 eine Hilfe zu geben, mit der dieser einen statistischen Überblick über die Verteilung seiner Arbeit über die Asphaltschicht quer zum Straßenverlauf erhält. Diese Orientierungshilfe muss keine besondere Exaktheit besitzen, so dass Vereinfachungen und Näherungen anwendbar sind. So kann beispielsweise ein an den Walzenbandagen 5 beziehungsweise Rädern 6 auftretender Schlupf statistisch insgesamt vernachlässigt werden. Auch kann vereinfachend davon ausgegangen werden, dass die Einbaubreite des Fertigers sich im Großen und Ganzen nicht ändert. Trotz dieser Annahmen wird der Bediener der Straßenwalze 1 durch die vorliegende Erfindung mit ausreichender Genauigkeit über die Verteilung der Verdichtung auf die einzelnen Breitensegmente informiert. Der Bediener wird dadurch deutlich entlastet und kann sich verstärkt auf die tatsächliche Steuerung der Straßenwalze 1 konzentrieren, anstatt übermäßigen Aufwand auf die strikte Einhaltung des Walzschemas verwenden zu müssen. Die vorliegende Erfindung kann dabei ebenfalls beim Einsatz von mehreren Straßenwalzen 1 eingesetzt werden. Fahren die Straßenwalzen 1 hintereinander, so kann die Erfindung einfach individuell bei jeder Straßenwalze 1 eingesetzt werden, ohne dass sich an den bisher geschilderten Gegebenheiten etwas ändert. Fahren die Straßenwalzen 1 nebeneinander, so kann das System einfach ohne Veränderung weiter verwendet werden, die entsprechenden von der jeweiligen Straßenwalze 1 nicht bearbeiteten Breitensegmente 12 werden dann eben als nicht bearbeitet angezeigt. Alternativ werden die Messdaten der am Verdichtungsprozess beteiligten Walzen untereinander ausgetauscht, so dass eine Gesamtverteilung der geleisteten Verdichtungsarbeit sowie der Anteil der jeweiligen Walze dargestellt werden. Eine weitere Möglichkeit besteht darin, dass der Bediener über eine Eingabemöglichkeit die zu bearbeitende Breite der Asphaltschicht 11 begrenzt, so dass die Breite der Asphaltschicht 11 nur bis zu einem bestimmten Wert des Abstands von entweder dem linken Rand 26 oder dem rechten Rand 27 in der statistischen Auswertung erfasst und angezeigt wird.
  • In Figur 5 ist zur näheren Erläuterung der Ablauf eines Verdichtungsvorganges gezeigt. Die zu verdichtende Asphaltschicht 11 erstreckt sich zwischen der obersten und der untersten gepunkteten Linie. Die Position der Straßenwalze 1 ist über die mit römischen Ziffern gekennzeichneten Kreise angegeben, an denen jeweils die Walzbreite der Straßenwalze 1 und damit deren Walzspur angedeutet ist. Die Walze bewegt sich von Position I beginnend zur Position II, von dieser zur Position III usw. bis zur Position XIV. Dabei reversiert sie an den Positionen V und X. Wie durch die Doppelpfeile zwischen den Positionen I und II angedeutet, fährt die Straßenwalze 1 hier mit beiden Walzenbandagen 5 bündig hintereinander, so dass die gesamte Walzbreite der Straßenwalze 1 im Wesentlichen der Breite einer der Walzenbandagen 5 entspricht. Ab Position XII schaltet die Straßenwalze 1 dann in den Hundegang, so dass sich die Walzbreite der Straßenwalze 1, wie durch die strichpunktierten Linien angedeutet wird, verbreitert. Der Hundegang ist ebenfalls zwischen den Positionen XIII und XIV durch die parallel zueinander nach außen versetzten Walzenbandagen 5, angedeutet durch die Doppelpfeile, dargestellt.
  • Wie durch die gepunkteten Linien in Figur 5 angedeutet, ist die Asphaltschicht 11 in fünf Breitensegmente 12 quer zur Längsrichtung unterteilt worden. Über den Temperatursensor 8 wird nun die Position der Straßenwalze 1 quer zur Längsrichtung der Asphaltschicht 11 bestimmt. Die Arbeitsleistung der Straßenwalze 1 wird sodann wie vorstehend beschrieben quantifiziert. Beispielsweise wird die zurückgelegte Strecke mittels Odometrie bestimmt oder die Anzahl an von einem Vibrationserreger ausgelösten Schwingungen einer Walzenbandage 5, sogenannte Verdichtungsschläge, gezählt. Die entsprechend festgestellte Arbeitsleistung wird dann anhand der Position der Straßenwalze 1 auf einem der Breitensegmente 12 diesem Breitensegment 12 zugeordnet. Hierfür kann in einer einfachen Ausführungsform beispielsweise der Mittelpunkt der Straßenwalze 1, in Figur 5 angedeutet durch die Kreise an den jeweiligen Positionen, herangezogen werden. Im gezeigten Ausführungsbeispiel würden so beispielsweise dem obersten Breitensegment 12 die Wegpunkte I-III zugeordnet, dem zweiten Breitensegment 12 von oben die Wegpunkte IV und V, dem dritten Breitensegment 12 von oben die Wegpunkte VI-X und dem vierten Breitensegment von oben die Wegpunkte XI-XIV. Für das unterste Breitensegment 12 würde keine Arbeitsleistung registriert. Um die Genauigkeit zu erhöhen kann die Walzbreite der Straßenwalze 1 bei der statistischen Auswertung mit herangezogen werden. Beispielsweise kann aufgrund der bekannten Walzbreite der Straßenwalze 1 und deren Position bestimmt werden, welcher Anteil welcher Walzenbandage 5 auf jeweils welchem Breitensegment 12 die Asphaltschicht 11 verdichtet. Die entsprechenden Anteile können dann den jeweiligen Breitensegmenten 12 zugeordnet werden. Bei einem derartigen System kann ebenfalls die Hundegangstellung mit einer insgesamt breiteren Walzenbreite der Straßenwalze 1 berücksichtigt werden. Die eingestellte Walzenbreite der Straßenwalze 1 könnte beispielsweise zu jedem Wegpunkt abgespeichert werden. Darüber hinaus könnte auch die jeweilige Position jeder Walzenbandage 5 der Straßenwalze 1 protokolliert beziehungsweise gespeichert werden. Durch eine Berücksichtigung der tatsächlichen Walzenbreite und deren Überlappung auf den einzelnen Breitensegmenten 12 lässt sich die Genauigkeit des erfindungsgemäßen Verfahrens stark erhöhen. Wie schon erläutert kann auch erst lediglich die Position der Straßenwalze und die weiteren Parameter, wie beispielsweise die aktuelle Walzbreite, bestimmt werden, sodass die Einteilung der Asphaltschicht 11 in Breitensegmente 12 erst bei der statistischen Auswertung der Daten erfolgt.
  • Die Figuren 6 und 7 veranschaulichen beispielhaft verschiedene Anzeigen 29, die dem Bediener der Straßenwalze 1 die registrierten Daten und deren statistische Auswertung präsentieren, um diesem eine Hilfestellung im Arbeitsbetrieb zu geben. Die Anzeigen 29 sind hier beispielsweise als Balkendiagramme ausgebildet. Jeder Balken 31 repräsentiert ein Breitensegment 12 der Asphaltschicht 11. In Figur 6 beispielsweise wurde die Asphaltschicht 11 in drei Breitensegmente 12 aufgeteilt, wobei das mittlere Breitensegment 12 breiter ist als die am Rand der Asphaltschicht 11 liegenden Breitensegmente 12. Dies ist in der Anzeige 29 der Figur 6 durch verschieden breite Balken 31 angedeutet, wobei die Breite der Balken 31 proportional zur Breite der Breitensegmente 12 ist. Die Höhe der Balken 31 repräsentiert den quantifizierten Arbeitsbetrieb, der für das jeweilige Breitensegment 12 registriert und ausgewertet wurde. Im gezeigten Ausführungsbeispiel der Figur 6 wurde also das mittlere Breitensegment 12 stärker verdichtet beziehungsweise auf dieses Segment fiel eine höhere Verdichtungsleistung der Straßenwalze 1 ab als auf die beiden am Rand der Asphaltschicht 11 liegenden Breitensegmente 12. Im gezeigten Ausführungsbeispiel mit unterschiedlich breiten Balken 31 wird die Arbeitsleistung auf die von der Breite der Balken 31 jeweils repräsentierte Fläche der Asphaltschicht 11 umgerechnet, so dass auch hier gleich hohe Balken 31 eine gleichmäßige Verdichtung repräsentieren. Selbstverständlich ist es ebenfalls möglich, die Breitensegmente 12 jeweils gleich breit zu wählen. Zusätzlich zu den Balken 31 ist in der Anzeige 29 ebenfalls eine Positionsangabe 30 vorgesehen, die die aktuelle Position der Straßenwalze 1 beziehungsweise der Walzenbandage 5 quer zum Straßenverlauf angibt. Die Breite der Positionsangabe 30 kann ebenfalls genutzt werden, um die aktuelle Walzenbreite der Straßenwalze 1 anzugeben, sodass sich beispielsweise die Positionsangabe 30 verbreitert, wenn die Straßenwalze 1 in den Hundegang wechselt. In der Anzeige 29 gemäß Figur 7 wurde die Asphaltschicht 11 in fünf jeweils gleich breite Breitensegmente 12 eingeteilt. Wie vorstehend bereits beschrieben, zeigt eine Positionsangabe 30 die aktuelle Position der Straßenwalze 1 quer zur Asphaltschicht 11 an. Im in Figur 7 gezeigten Ausführungsbeispiel sind zwei Straßenwalzen 1 im Einsatz, um die Asphaltschicht 11 gemeinsam zu verdichten. Beide Straßenwalzen 1 führen das erfindungsgemäße Verfahren durch und sind über eine Funkverbindung miteinander verbunden. Insbesondere werden die statistischen Auswertungen der beiden Straßenwalzen 1 untereinander ausgetauscht. Auf diese Weise ist es möglich, dass dem Bediener der Straßenwalze 1, wie in Figur 7 mit den gestrichelten Balken 31 gezeigt, auch die statistische Auswertung des Arbeitsbetriebes der jeweils anderen Straßenwalze 1 angezeigt wird. Auf diese Weise hat der Bediener der Straßenwalze 1 immer einen kompletten Überblick darüber, wie die Verdichtung der gesamten Asphaltschicht 11 fortschreitet, auch wenn er selbst nur einen Teil dieser Asphaltschicht 11 bearbeitet. Falls notwendig kann jeder Balken 31 noch zusätzliche Informationen wie Temperaturen oder Ähnliches durch Farben oder eingeblendete Zahlen darstellen.
  • Die Figur 8 zeigt ein Ablaufdiagramm des erfindungsgemäßen Verfahrens 19. Das Verfahren 19 beginnt im Schritt 20 mit dem Detektieren der die heiße Asphaltschicht 11 quer zum Straßenverlauf begrenzenden Ränder 26, 27 mittels des Temperatursensors 8. Sodann erfolgt im Schritt 21 das Einteilen der detektierten Asphaltschicht 11 in mindestens zwei Breitensegmente 12 quer zum Straßenverlauf. Im Schritt 22 wird die Position der Straßenwalze 1 auf der Asphaltschicht 11 quer zum Straßenverlauf aus der Messung des Temperatursensors 8 bestimmt und einem der Breitensegmente 12 zugeordnet. Der Arbeitsbetrieb der Straßenwalze 1 auf dem jeweiligen Breitensegment 12 wird im Schritt 23 durch einen Betriebsparameter wie vorstehend beschrieben quantifiziert und im Schritt 24 gespeichert, beispielsweise in einem rollierenden Speichersystem der Steuereinheit 9. Im Schritt 25 wird dem Bediener der Straßenwalze 1 für ein vergangenes Arbeitsintervall der quantifizierte Arbeitsbetrieb für jedes Breitensegment 12 angezeigt. Wie ebenfalls in Figur5 gezeigt, laufen diese Schritte 20-25 kontinuierlich nacheinander ab, sodass dem Bediener der Straßenwalze 1 stets eine aktuelle statistische Auswertung des zurückliegenden Arbeitsintervalls angezeigt wird. Auf diese Weise kann der Bediener nicht nur rückwirkend seine Arbeitsweise anpassen, sondern dies auch schon bereits dann tun, sobald er feststellt, dass sich eine ungleichmäßige Bearbeitung der Asphaltschicht 11 ergeben könnte, wenn er einfach ohne Anpassung weiter arbeitet. Insgesamt kann so die Qualität der Tragschicht der Straße verbessert werden, was deren Lebensdauer erhöht. Gleichzeitig wird der Bediener der Straßenwalze 1 auf einfache und kostengünstige Weise entlastet.

Claims (12)

  1. Verfahren (19) zur Überwachung des Verdichtungsprozesses einer zu verdichtenden Asphaltschicht (11) im Straßenbau, umfassend die Schritte:
    a) Detektieren (20) der die heiße Asphaltschicht (11) quer zum Straßenverlauf begrenzenden Ränder (26, 27) mittels eines Temperatursensors (8), der an einer die Asphaltschicht (11) verdichtenden Straßenwalze (1) angeordnet ist, und
    b) Einteilen (21) der detektierten Asphaltschicht (11) in mindestens zwei Breitensegmente (12) quer zum Straßenverlauf,
    d) wobei der Arbeitsbetrieb der Straßenwalze (1) auf dem jeweiligen Breitensegment (12) durch einen Betriebsparameter quantifiziert (23) und gespeichert (24) wird, und
    e) dass für mindestens ein vergangenes Arbeitsintervall der quantifizierte Arbeitsbetrieb für jedes Breitensegment (12) angezeigt wird (25),
    dadurch gekennzeichnet, dass die Position der Straßenwalze (1) auf der Asphaltschicht (11) quer zum Straßenverlauf aus der Messung des Temperatursensors (8) bestimmt und einem der Breitensegmente (12) zugeordnet wird.
  2. Verfahren (19) gemäß Anspruch 1,
    dadurch gekennzeichnet,
    dass das Detektieren (20) der die heiße Asphaltschicht (11) quer zum Straßenverlauf begrenzenden Ränder (26, 27) mittels des Temperatursensors (8) periodisch nacheinander erfolgt oder dass beide Ränder (26, 27) gleichzeitig vom Temperatursensor (8) erfasst werden.
  3. Verfahren (19) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass als Betriebsparameter wenigstens einer der folgenden Parameter eingesetzt wird:
    - eine Zeitspanne,
    - eine Anzahl an Überfahrten,
    - eine Anzahl an Reversiervorgängen,
    - eine zurückgelegte Strecke,
    - eine Untergrundsteifigkeit und/oder
    - eine Vibrationsintensität einer Walzenbandage (5) der Straßenwalze (1).
  4. Verfahren (19) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zur Festlegung von Grenzen des vergangenen Arbeitsintervalls derselbe Betriebsparameter wie zur Quantifizierung des Arbeitsbetriebs und/oder ein anderer Parameter eingesetzt wird.
  5. Verfahren (19) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der beziehungsweise die zur Quantifizierung des Arbeitsbetriebs eingesetzten Parameter innerhalb des Arbeitsintervalls gespeichert wird beziehungsweise werden, wobei im Arbeitsbetrieb diejenigen Daten, die weiter als das Arbeitsintervall zurückliegen, durch neu aufgenommene Daten ersetzt werden.
  6. Verfahren (19) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die detektierte Asphaltschicht (11) mindestens in die drei Breitensegmente (12) "linke Seite", "Mitte" und "rechte Seite" quer zum Straßenverlauf eingeteilt wird.
  7. Verfahren (19) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Breitensegmente (12) quer zum Straßenverlauf gleich groß sind.
  8. Verfahren (19) gemäß Anspruch 6,
    dadurch gekennzeichnet,
    dass diejenigen Breitensegmente (12), die an den Rändern der detektierten Asphaltschicht (11) liegen, quer zum Straßenverlauf weniger breit sind als Breitensegmente (12), die in der Mitte der detektierten Asphaltschicht (11) liegen.
  9. Verfahren (19) gemäß einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass bei der Bestimmung der Position der Straßenwalze (1) auf der Asphaltschicht (11) aus der Messung des Temperatursensors (8) ein Messwinkel des Temperatursensors (8) und/oder eine Fahrtrichtung und/oder ein Lenkeinschlag und/oder ein Lenkmodus, beispielsweise Hundegang, der Straßenwalze (1) mit berücksichtigt wird.
  10. Straßenwalze (1), insbesondere Tandemwalze, Walzenzug oder Gummiradwalze, zur Verdichtung einer Asphaltschicht (11) im Straßenbau, mit
    - einem Maschinenrahmen (3),
    - einem Antriebsmotor (4),
    - einem Fahrerstand (2),
    - wenigstens einer Walzenbandage (5) und/oder einem Rad (6),
    - einem Temperatursensor (8), und
    - einer Steuereinheit (9),
    dadurch gekennzeichnet,
    dass die Steuereinheit (9) zur Durchführung des Verfahrens (19) gemäß einem der vorhergehenden Ansprüche ausgebildet ist.
  11. Straßenwalze (1) gemäß Anspruch 10,
    dadurch gekennzeichnet,
    dass die Steuereinheit (9) einen rollierenden Speicher umfasst, der den quantifizierten Arbeitsbetrieb für jedes Breitensegment (12) innerhalb des vergangenen Arbeitsintervalls speichert.
  12. Straßenwalze (1) gemäß einem der Ansprüche 10 bis 11,
    dadurch gekennzeichnet,
    dass der Temperatursensor (8) eine Wärmebildkamera umfasst.
EP18000716.3A 2017-09-13 2018-09-05 Verfahren zur überwachung des verdichtungsprozesses im strassenbau und strassenwalze Active EP3456878B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017008602.8A DE102017008602A1 (de) 2017-09-13 2017-09-13 Verfahren zur Überwachung des Verdichtungsprozesses im Straßenbau und Straßenwalze

Publications (2)

Publication Number Publication Date
EP3456878A1 EP3456878A1 (de) 2019-03-20
EP3456878B1 true EP3456878B1 (de) 2019-09-18

Family

ID=63524024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18000716.3A Active EP3456878B1 (de) 2017-09-13 2018-09-05 Verfahren zur überwachung des verdichtungsprozesses im strassenbau und strassenwalze

Country Status (3)

Country Link
US (1) US10676879B2 (de)
EP (1) EP3456878B1 (de)
DE (1) DE102017008602A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3456880B1 (de) * 2017-09-13 2021-06-23 MOBA Mobile Automation AG Verfahren und vorrichtung zur kontrolle einer qualität eines strassenbelagmaterials
EP3660598B1 (de) * 2018-11-30 2021-10-20 MOBA Mobile Automation AG Automatische anwendung von lokaler spezifikation
CN110453573B (zh) * 2019-07-30 2024-02-09 阳光学院 电动智能振动压路机系统及其控制方法
CN110593064B (zh) * 2019-09-19 2021-07-30 长沙理工大学 一种施工压实过程中沥青混合料压实剪切特性检测装置
US11668606B2 (en) * 2020-01-10 2023-06-06 Caterpillar Paving Products Inc. Asphalt mat thermal profile verification method and system
US11573126B2 (en) * 2020-01-10 2023-02-07 Caterpillar Paving Products Inc. Method and system to trim asphalt thermal mapping data
CN113655798B (zh) * 2021-08-19 2024-04-19 山东交工建设集团有限公司 一种压路机多机作业的路径规划方法及系统
CN113564993B (zh) * 2021-08-31 2022-07-01 中交路桥北方工程有限公司 一种基于重载交通的高模量沥青路面施工装置及方法
US20230139560A1 (en) * 2021-11-01 2023-05-04 Caterpillar Paving Products Inc. Paving material segregation detection and monitoring
CN114855549B (zh) * 2022-04-13 2023-08-18 中国路桥工程有限责任公司 乳化沥青冷再生混合料及制备工艺
CN116008516B (zh) * 2023-02-21 2024-06-14 哈尔滨工业大学 一种基于智能集料的沥青路面压实临界阈值确定方法
CN116304583B (zh) * 2023-05-17 2023-08-11 中铁大桥局集团有限公司 一种路面平顺性检测评估方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE501234C2 (sv) * 1993-04-29 1994-12-12 Thurner Geodynamik Ab Förfarande och anordning för mätning och dokumentation av packningsresultat och styrning av en vält vid packning av ett utlagt underlag
US6749364B1 (en) 1999-05-19 2004-06-15 Blaw-Knox Construction Equipment Corporation Temperature sensing for controlling paving and compaction operations
EP1185738A4 (de) 1999-05-19 2004-03-03 Ingersoll Rand Co Temperaturmessung für die kontrolle von pflaster- und verdichtungsarbeiten
DE102006019841B3 (de) * 2006-04-28 2007-12-20 Moba-Mobile Automation Ag Vorrichtung und Verfahren zur Ermittlung der Position einer Straßenwalze relativ zu einem Straßenfertiger
US7731450B2 (en) * 2006-09-07 2010-06-08 Caterpillar Inc. Method of operating a compactor machine via path planning based on compaction state data and mapping information
DE102007019419A1 (de) 2007-04-23 2008-10-30 Hamm Ag Verfahren zur Bestimmung eines Verdichtungsgrades von Asphalten sowie System zur Bestimmung eines Verdichtungsgrades
US8116950B2 (en) * 2008-10-07 2012-02-14 Caterpillar Inc. Machine system and operating method for compacting a work area
DE102012208554A1 (de) * 2012-05-22 2013-11-28 Hamm Ag Verfahren zur Planung und Durchführung von Bodenverdichtungsvorgängen, insbesondere zurAsphaltverdichtung
US20150211199A1 (en) * 2014-01-24 2015-07-30 Caterpillar Inc. Device and process to measure ground stiffness from compactors
PL2982951T3 (pl) * 2014-08-05 2019-04-30 Voegele Ag J Moduł termograficzny dla układarki
EP2990531A1 (de) * 2014-08-27 2016-03-02 Joseph Vögele AG System für Straßenfertiger mit einer Temperaturmessvorrichtung, Verfahren zur Bestimmung eines Abkühlverhaltens und computerlesbares Speichermedium
US9476168B2 (en) * 2014-08-29 2016-10-25 Caterpillar Paving Products Inc. Asphalt paver temperature alert system for asphalt compactor operator
US20160076205A1 (en) * 2014-09-16 2016-03-17 Caterpillar Paving Products Inc. Device and Process for Controlling Compaction Based on Previously Mapped Data
US9759708B2 (en) * 2015-02-25 2017-09-12 Caterpillar Paving Products Inc. Device and method to determine, communicate, and display paving material temperature
US9587361B2 (en) * 2015-04-08 2017-03-07 Caterpillar Paving Products Inc. Temperature dependent auto adaptive compaction
US9903077B2 (en) * 2016-04-04 2018-02-27 Caterpillar Paving Products Inc. System and method for performing a compaction operation
DE102016207584B3 (de) * 2016-05-03 2017-06-01 Moba Mobile Automation Ag Vorrichtung und verfahren zur bestimmung der temperatur eines durch eine baumaschine aufgebrachten strassenbaumaterials sowie eine baumaschine mit einer derartigen vorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017008602A1 (de) 2019-03-14
EP3456878A1 (de) 2019-03-20
US10676879B2 (en) 2020-06-09
US20190078270A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
EP3456878B1 (de) Verfahren zur überwachung des verdichtungsprozesses im strassenbau und strassenwalze
EP2852707B1 (de) Verfahren zur planung und durchführung von bodenverdichtungsvorgängen, insbesondere zur asphaltverdichtung
DE69434631T2 (de) Verfahren und Vorrichtung zum Messen des Verdichtungsgrads einer Bodenfläche
EP3124698B1 (de) Strassenfertiger mit walzhinweisanzeigeeinrichtung
EP2982951B1 (de) Thermografiemodul für Straßenfertiger
EP3597826B1 (de) Verfahren und strassenfertiger zum erfassen von störobjekten bei der erstellung eines temperaturfelds der einbauschicht
EP1985761B1 (de) Verfahren zur Bestimmung eines Verdichtungsgrades von Asphalten und Verdichtungsmaschine sowie System zur Bestimmung eines Verdichtungsgrades
EP2514871B1 (de) Verfahren zum Einbauen und Verdichten einer Asphaltschicht
EP2990531A1 (de) System für Straßenfertiger mit einer Temperaturmessvorrichtung, Verfahren zur Bestimmung eines Abkühlverhaltens und computerlesbares Speichermedium
EP3480362B1 (de) Strassenwalze und verfahren zur bestimmung der einbauschichtdicke
DE102018132113A1 (de) System und Verfahren zum Verdichten einer Oberfläche einer Arbeitsstelle
EP2990534B1 (de) Selbstfahrende baumaschine und verfahren zur steuerung einer selbstfahrenden baumaschine
EP3498914B1 (de) Anpassung der nivellierzylindereinstellung bei einem strassenfertiger
DE112016004648T5 (de) Lastkraftwagenpositionskontrollsystem für fräsvorgänge
DE102019125045A1 (de) Baustellenplanung für autonome baufahrzeuge
DE102008023743A1 (de) Verfahren zum Betrieb einer selbstfahrenden Straßenfräse
EP2947206B1 (de) Nachbehandlungsmaschine sowie verfahren zum nachträglichen bearbeiten einer frisch gefertigten betonschicht
EP3835485B1 (de) Messsystem für eine baumaschine
EP1876297B1 (de) Vorrichtung und Verfahren zur Ermittlung der Position einer Straßenwalze relativ zu einem Straßenfertiger
EP4056758A1 (de) Verfahren zum fertigen eines strassenbelags und asphaltiersystem
EP2696173A1 (de) Baumaschine mit Sensoreinheit
EP3892777B1 (de) Strassenfertiger und verfahren mit querprofilsteuerung
EP3896223A1 (de) Verfahren zum fertigen eines strassenbelags und asphaltierungssystem
EP3872259B1 (de) Strassenfertiger mit einem projektor
DE102014010837A1 (de) Verfahren zur Herstellung eines Straßenbelags und Straßenfertiger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018000215

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: E01C0019230000

Ipc: E01C0019000000

17P Request for examination filed

Effective date: 20190424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/00 20060101AFI20190514BHEP

INTG Intention to grant announced

Effective date: 20190606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018000215

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1181447

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018000215

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200119

26N No opposition filed

Effective date: 20200619

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220905

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502018000215

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230824

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 6