EP3492631B1 - Elektrolytische elektrode und herstellungsverfahren dafür - Google Patents
Elektrolytische elektrode und herstellungsverfahren dafür Download PDFInfo
- Publication number
- EP3492631B1 EP3492631B1 EP18843984.8A EP18843984A EP3492631B1 EP 3492631 B1 EP3492631 B1 EP 3492631B1 EP 18843984 A EP18843984 A EP 18843984A EP 3492631 B1 EP3492631 B1 EP 3492631B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electrode
- electrolysis
- metal precursor
- coating solution
- amine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title description 4
- 239000002243 precursor Substances 0.000 claims description 51
- 229910052751 metal Inorganic materials 0.000 claims description 49
- 239000002184 metal Substances 0.000 claims description 49
- 238000005868 electrolysis reaction Methods 0.000 claims description 41
- 238000000576 coating method Methods 0.000 claims description 37
- 239000011248 coating agent Substances 0.000 claims description 36
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 31
- 150000001412 amines Chemical class 0.000 claims description 29
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 26
- 150000002910 rare earth metals Chemical class 0.000 claims description 26
- 239000003054 catalyst Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 20
- 238000002360 preparation method Methods 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims description 12
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 10
- 239000012046 mixed solvent Substances 0.000 claims description 10
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 9
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 claims description 7
- 229910019891 RuCl3 Inorganic materials 0.000 claims description 7
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims description 7
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 7
- 229910004664 Cerium(III) chloride Inorganic materials 0.000 claims description 6
- 229910002651 NO3 Inorganic materials 0.000 claims description 6
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 claims description 6
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 claims description 6
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 6
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 5
- BIXNGBXQRRXPLM-UHFFFAOYSA-K ruthenium(3+);trichloride;hydrate Chemical compound O.Cl[Ru](Cl)Cl BIXNGBXQRRXPLM-UHFFFAOYSA-K 0.000 claims description 4
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 claims description 3
- 229910002493 Ce2(CO3)3 Inorganic materials 0.000 claims description 3
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 claims description 3
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 claims description 3
- 229910009440 Y2(CO3)3 Inorganic materials 0.000 claims description 3
- NOWPEMKUZKNSGG-UHFFFAOYSA-N azane;platinum(2+) Chemical compound N.N.N.N.[Pt+2] NOWPEMKUZKNSGG-UHFFFAOYSA-N 0.000 claims description 3
- KHSBAWXKALEJFR-UHFFFAOYSA-H cerium(3+);tricarbonate;hydrate Chemical compound O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O KHSBAWXKALEJFR-UHFFFAOYSA-H 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 claims description 3
- QKLCKVVKVHCMIC-UHFFFAOYSA-N rhodium(3+);trinitrate;hydrate Chemical compound O.[Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QKLCKVVKVHCMIC-UHFFFAOYSA-N 0.000 claims description 3
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 claims description 3
- MJRFDVWKTFJAPF-UHFFFAOYSA-K trichloroiridium;hydrate Chemical compound O.Cl[Ir](Cl)Cl MJRFDVWKTFJAPF-UHFFFAOYSA-K 0.000 claims description 3
- QVOIJBIQBYRBCF-UHFFFAOYSA-H yttrium(3+);tricarbonate Chemical compound [Y+3].[Y+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O QVOIJBIQBYRBCF-UHFFFAOYSA-H 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 36
- 239000010410 layer Substances 0.000 description 25
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 230000002441 reversible effect Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- 230000006872 improvement Effects 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910052707 ruthenium Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000005456 alcohol based solvent Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000003843 chloralkali process Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000004210 ether based solvent Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- -1 ruthenium (Ru) Chemical compound 0.000 description 3
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 238000004502 linear sweep voltammetry Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- HCGFUIQPSOCUHI-UHFFFAOYSA-N 2-propan-2-yloxyethanol Chemical compound CC(C)OCCO HCGFUIQPSOCUHI-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 208000008763 Mercury poisoning Diseases 0.000 description 1
- 206010027439 Metal poisoning Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
- C25B1/46—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
Definitions
- the present disclosure relates to an electrode for electrolysis and a preparation method of the same according to claims 1 and 6. More particularly, the present disclosure relates to an electrode for electrolysis that is capable of stabilizing an overvoltage value of the electrode for electrolysis and improving durability by increasing a needle-like structure, and a preparation method of the same.
- the chlor-alkali process is a process to produce chlorine (Cl 2 ) and sodium hydroxide (NaOH) by electrolysis of salt water, which is industrially useful since it can mass-produce two materials that are widely used as basic materials in the petrochemical industry.
- the chlor-alkali process is carried out in a chlor-alkali membrane or in a diaphragm electrolytic cell having an electrode for electrolysis containing an electrolytic catalyst.
- an overvoltage must be applied to overcome various intrinsic resistances of a cell in addition to the theoretically required voltage. It is desirable to develop a method that minimizes the overvoltage requirement, since such overvoltage reduction will significantly save energy costs associated with cell operation.
- US7959774 discloses a cathode for hydrogen generation that was coated to have a catalytic layer thereon containing at least Pt, Ce and La, the ratio of rare earth to Pt is 1:1 in example 1.
- the coating is done using e.g. a solution of diamminedinitroplatinum, cerium nitrate and lanthanum nitrate in a solvent of e.g. alcohol.
- the coating solution is dried and baked at 500 °C for 10 minutes.
- an electrode material layer mainly composed of ruthenium oxide is formed on a metal substrate, and further a porous and low-active protective layer is formed on the surface thereof, thus improving the durability of the electrode.
- JP-A-11-229170 an electrodeposited nickel layer is provided in which ruthenium oxide is dispersed, and the surface of the layer is coated with a conductive oxide composed of titanium oxide, such that resistance to mercury poisoning is improved.
- the present disclosure provides an electrode for electrolysis having a low overvoltage and excellent durability.
- the present disclosure provides a preparation method of an electrode for electrolysis which can prepare an electrode exhibiting the above effects without introducing additional precursors or changing manufacturing facilities.
- the present disclosure provides an electrode for electrolysis including a metal substrate, and a catalyst layer formed on the metal substrate, wherein the catalyst layer includes nitrogen, a platinum group metal and a rare earth metal, and a nitrogen content of the catalyst layer is 20 to 60 mol% based on the platinum group metal.
- the catalyst layer caninclude a needle-like structure of the rare earth metal, and the needle-like structure can include at least two needle-shaped structures having a thickness of 50 to 300 nm and a length of 0.5 to 10 ⁇ m.
- the present disclosure provides a preparation method of an electrode for electrolysis, including the steps of:
- the platinum group metal precursor is at least one selected from the group consisting of ruthenium chloride hydrate (RuCl 3 • nH 2 O), tetraamine platinum(II) chloride hydrate (Pt(NH 3 ) 4 Cl 2 • H 2 O), rhodium chloride (RhCl 3 ), rhodium nitrate hydrate (Rh(NO 3 ) 3 • nH 2 O), iridium chloride hydrate (IrCl 3 • nH 2 O), and palladium nitrate (Pd(NO 3 ) 2 ).
- the rare earth metal precursor is at least one selected from the group consisting of cerium(III) nitrate (Ce(NO 3 ) 3 ), cerium(III) carbonate (Ce 2 (CO 3 ) 3 ), cerium(III) chloride (CeCl 3 ), yttrium oxide (Y 2 O 3 ), and yttrium carbonate (Y 2 (CO 3 ) 3 ).
- the organic solvent can be a mixed solvent comprising a C1 to C6 alcohol and a C4 to C8 glycol ether, and the ratio of the C1 to C6 alcohol to the C4 to C8 glycol ether can be 10:1 to 1:2.
- the amine-based solvent is at least one selected from the group consisting of octylamine, decylamine, dodecylamine, oleylamine, laurylamine, and hexadecylamine.
- the amine-based solvent is present in an amount of 3 to 40 vol% based on 100 vol% of the coating solution for preparing an electrode.
- the platinum group metal precursor and the rare earth metal precursor can be present in a molar ratio of 1:1 to 10:1.
- a concentration of the coating solution for preparing an electrode can be 50 to 150 g/L.
- the drying step can be carried out at a temperature of 70 to 200 °C, and the heat-treating step can be carried out at a temperature of 300 to 600 °C.
- the present disclosure provides an electrode for electrolysis prepared by the method described herein.
- the electrode for electrolysis according to the present disclosure has an improved needle-like structure of a rare earth metal compared to conventional electrodes, and thus detachment of catalytic materials from the electrode is reduced, so that the electrode is excellent in durability such as exhibiting stable performance even in a reverse current flow. Further, since the electrode for electrolysis of the present disclosure has a low overvoltage value, an overvoltage required amount of the electrolytic cell can be remarkably reduced. In addition, according to the preparation method of the present disclosure, an electrode for electrolysis having the above effects can be prepared without introducing additional precursors or changing manufacturing facilities.
- any metal substrate having electrical conductivity commonly used in the art can be used without limitation.
- the type of the metal substrate is not particularly limited.
- a porous substrate such as a mesh, a nonwoven metal fabric, a metal foam, a porous punching plate, a braided metal, an expanded metal, or the like can be used.
- the material of the metal substrate can be nickel, a nickel alloy, stainless steel, copper, cobalt, iron, steel, or an alloy thereof. Nickel or a nickel alloy is preferable in terms of electrical conductivity and durability.
- the platinum group metal refers to a transition metal of Group 8 to Group 10 that is similar in properties to platinum, including ruthenium (Ru), platinum (Pt), rhodium (Rh), iridium (Ir), osmium (Os), and palladium (Pd).
- the platinum group metal has catalytic activity, and can lower the overvoltage and improve life characteristics by being included in the electrode for electrolysis.
- the platinum group metal can be ruthenium.
- the rare earth metal refers to cerium (Ce), yttrium (Y), lanthanum (La), scandium (Sc), or the like. According to one embodiment of the present disclosure, the rare earth metal can be cerium.
- the present disclosure provides a preparation method of an electrode for electrolysis, including the steps of:
- the electrode for electrolysis prepared according to the present disclosure significantly improves the overvoltage and exhibits an effect of increasing the needle-like structure of the rare earth metal on the surface of the electrode during cell operation. Accordingly, the electrode has remarkably improved durability, so that stable overvoltage efficiency can be ensured even after a reverse current phenomenon occurs.
- the coating solution for preparing an electrode contains at least one platinum group metal precursor and at least one rare earth metal precursor.
- the platinum group metal precursor is at least one selected from the group consisting of ruthenium chloride hydrate (RuCl 3 • nH 2 O), tetraamine platinum(II) chloride hydrate (Pt(NH 3 ) 4 Cl 2 . H 2 O), rhodium chloride (RhCl 3 ), rhodium nitrate hydrate (Rh(NO 3 ) 3 • nH 2 O), iridium chloride hydrate (IrCl 3 • nH 2 O), and palladium nitrate (Pd(NO 3 ) 2 ).
- the platinum group metal precursor is calcined in the heat-treating step and converted into catalytically active particles, that is, metal or compound particles that are catalytically active for the reduction of water.
- catalytically active particles that is, metal or compound particles that are catalytically active for the reduction of water.
- the rare earth metal precursor is at least one selected from the group consisting of cerium(III) nitrate (Ce(NO 3 ) 3 ), cerium(III) carbonate (Ce 2 (CO 3 ) 3 ), cerium(III) chloride (CeCl 3 ), yttrium oxide (Y 2 O 3 ), and yttrium carbonate (Y 2 (CO 3 ) 3 ).
- the rare earth metal precursor is calcined in the heat-treating step and converted into a rare earth metal oxide.
- the rare earth metal oxide has insufficient hydrogen-generating activity, but changes from a granular form to a needle-like form under an environment in which hydrogen is generated. This needle-like form supports the catalyst layer of the platinum group compound and has an effect of reducing the detachment of the catalyst layer.
- the electrode for electrolysis of the present disclosure exhibits excellent durability such as stably maintaining the electrode performance even after a reverse current occurs.
- the rare earth metal precursor includes at least one cerium (Ce) salt or oxide.
- Ce cerium nitrate hexahydrate
- RuCl 3 • nH 2 O ruthenium chloride hydrate
- a ratio of the platinum group metal precursor and the rare earth metal precursor is not particularly limited, and can be appropriately adjusted depending on the kind of the precursor.
- the platinum group metal precursor and the rare earth metal precursor can be used in a molar ratio of 1:1 to 10:1, or 3:1 to 10:1 in order to optimize catalytic activity of the finally prepared electrode for electrolysis.
- the solvent used in the coating solution for preparing an electrode is an organic solvent capable of dissolving the platinum group metal precursor and the rare earth metal precursor, and is preferably a solvent capable of volatilizing at least 95 % in the drying and heat-treating steps.
- the organic solvent can be an organic polar solvent such as an alcohol-based solvent, a glycol ether-based solvent, an ester-based solvent, or a ketone-based solvent, and any of these can be used alone or in combination.
- the organic solvent can be an alcohol-based solvent, a glycol ether-based solvent, or a combination thereof.
- the alcohol-based solvent is preferably a C1 to C6 alcohol, and specifically, at least one selected from the group consisting of methanol, ethanol, propanol, isopropyl alcohol, butanol, ethylene glycol, and propylene glycol, can be used, but the present disclosure is not limited thereto.
- the glycol ether-based solvent is preferably a C4 to C8 glycol ether, and specifically, at least one selected from the group consisting of 2-ethoxyethanol, 2-propoxyethanol, 2-isopropoxyethanol, 2-butoxyethanol, and 2-(2-methoxyethoxy) ethanol, any of which can be used, but the present disclosure is not limited thereto.
- the organic solvent can be a mixed solvent of a C1 to C6 alcohol and a C4 to C8 glycol ether.
- the mixed solvent when used, there is an effect of significantly reducing peeling and cracking of the prepared electrode as compared with an electrode prepared using only a single alcohol-based solvent. Further, since the drying time is prolonged in a large-area coating, more uniform coating can be performed, which is preferable.
- the ratio of the C1 to C6 alcohol and the C4 to C8 glycol ether is preferably in the range of 10:1 to 1:2, more preferably in the range of 4:1 to 1:1.
- a 1:1 mixed solvent of isopropyl alcohol and 2-butoxyethanol, or a 1:1 mixed solvent of ethanol and 2-butoxyethanol is used as the organic solvent, but the present disclosure is not limited thereto.
- the coating solution for preparing an electrode further contains an amine-based solvent as a stabilizer in addition to the organic solvent.
- the amine-based solvent is included in the coating solution, the finally prepared electrode has the increased needle-like structure of the rare earth metal on the surface during cell operation, thereby improving durability of the electrode and further reducing the overvoltage of the electrode.
- the amine-based solvent is at least one selected from the group consisting of octylamine, decylamine, dodecylamine, oleylamine, laurylamine, and hexadecylamine can be used.
- the amine-based solvent can be octylamine, oleylamine, or a combination thereof.
- the amine-based solvent is present in an amount of 3 to 40 vol%, or 5 to 30 vol%, based on 100 vol% of the coating solution for preparing an electrode. If the amount of the amine-based solvent is less than 3 vol%, the durability-improving effect and the overvoltage-reducing effect of the electrode cannot be achieved. If it exceeds 40 vol%, it is difficult to dissolve the metal precursors, and a coating solution for preparing an electrode in which the precursors are uniformly dispersed cannot be obtained.
- the preparation method of the coating solution for preparing an electrode is not particularly limited.
- a method in which a platinum group metal precursor and a rare earth metal precursor are added and dissolved in a mixed solvent obtained by mixing an organic solvent and an amine-based solvent can be used.
- the coating solution can be prepared by completely dissolving the metal precursors in an organic solvent and then adding an amine-based solvent with mixing.
- the final concentration of the coating solution for preparing an electrode may be 50 to 150 g/L, or 80 to 120 g/L.
- concentration is within these ranges, the content of the metal precursors in the coating solution becomes sufficient to ensure the electrode performance and durability, and the coating solution can be coated on the substrate with an appropriate thickness, thereby maximizing the process efficiency.
- the coating solution for preparing an electrode is applied on a metal substrate to form a catalyst layer, which is then dried and heat-treated to prepare an electrode for electrolysis.
- the metal substrate can be subjected to a cleaning treatment such as degreasing and blasting, or a surface-roughening treatment before forming the catalyst layer to further improve adhesion to the catalyst layer.
- the applying, drying, and heat-treating steps of the coating solution can be repeated several times.
- the method of applying the coating solution for preparing an electrode is not particularly limited, and coating methods known in the art such as spray coating, paint brushing, doctor blade, dip-drawing, spin coating, and the like can be used.
- the drying step is carried out to remove the solvent contained in the catalyst layer.
- the drying condition is not particularly limited, and can be appropriately adjusted depending on the type of the solvent and the thickness of the catalyst layer.
- the drying step can be carried out at a temperature of 70 to 200 °C for 5 to 15 minutes.
- pyrolysis of the platinum group metal precursor and the rare earth metal precursor in the catalyst layer takes place, thereby converting into a platinum group metal, a compound thereof, and a rare earth metal oxide having catalytic activity.
- the heat-treating condition can vary depending on the kind of the metal precursors, but specifically, the heat-treating temperature can be 300 to 600 °C or 400 to 550 °C, and the heat-treating can be performed for 10 minutes to 2 hours.
- the heat-treating step performed after the applying and drying steps is shortened to 5 to 15 minutes, and the final heat-treating step performed after the last drying step can be carried out for a sufficient time of 30 minutes or more, or 1 to 2 hours.
- the final heat-treating step is performed for a long time, the metal precursors can be completely pyrolyzed, and the interface between the catalyst layers can be minimized, thereby improving the electrode performance.
- the thickness of the catalyst layer in the electrode for electrolysis prepared by the above method is not particularly limited, but can be in the range of 0.5 to 5 ⁇ m, or 1 to 3 ⁇ m.
- the electrode for electrolysis prepared according to the preparation method of the present disclosure can be applied to various electrolytic cells for industrial electrolysis, and can be suitably used as a cathode of a chlor-alkali cell.
- a precursor solution was prepared by dissolving a metal precursor containing RuCl 3 • nH 2 O and Ce(NO 3 ) 2 • 6H 2 O in a molar ratio of 6:1 in a mixed solvent of isopropyl alcohol (IPA) and 2-butoxy ethanol in a volume ratio of 1:1. Subsequently, the precursor solution and an amine-based solvent (oleylamine) were mixed in a volume ratio of 2:1 to prepare a coating solution for preparing an electrode at a concentration of 100 g/L. The coating solution was brush-coated on a nickel mesh, dried at 200 °C for 10 minutes, and heat-treated at 500 °C for 10 minutes. This process was repeated ten times in total, and then it was heat-treated at 500 °C for 1 hour to obtain an electrode for electrolysis.
- IPA isopropyl alcohol
- 2-butoxy ethanol 2-butoxy ethanol
- An electrode for electrolysis was prepared in the same manner as in Example 1, except that octylamine was used instead of oleylamine as an amine-based solvent.
- a coating solution with a concentration of 100 g/L was prepared by dissolving a metal precursor containing RuCl 3 • nH 2 O and Ce(NO 3 ) 2 • 6H 2 O in a molar ratio of 6:1 in a mixed solvent of isopropyl alcohol (IPA) and 2-butoxy ethanol in a volume ratio of 1:1.
- the coating solution was brush-coated on a nickel mesh, dried at 200 °C for 10 minutes, and heat-treated at 500 °C for 10 minutes. This process was repeated ten times in total, and then it was heat-treated at 500 °C for 1 hour to obtain an electrode for electrolysis.
- a precursor solution was prepared by dissolving a metal precursor containing RuCl 3 • nH 2 O and Ce(NO 3 ) 2 • 6H 2 O in a molar ratio of 6:1 in a mixed solvent of isopropyl alcohol (IPA) and 2-butoxy ethanol in a volume ratio of 1:1. Subsequently, oxalic acid was added thereto as an additional additive so that a molar ratio of oxalic acid to ruthenium was 0.5 times, and dissolved to prepare a coating solution with a concentration of 100 g/L. The coating solution was brush-coated on a nickel mesh, dried at 200 °C for 10 minutes, and heat-treated at 500 °C for 10 minutes. This process was repeated ten times in total, and then it was heat-treated at 500 °C for 1 hour to obtain an electrode for electrolysis.
- IPA isopropyl alcohol
- a half-cell having the electrode for electrolysis (10 mm ⁇ 10 mm) of the above examples or comparative examples as a cathode was prepared by the following method.
- the half-cell was prepared using the electrode of the examples or comparative examples as a cathode 32 wt% NaOH aqueous solution as an electrolyte, a Pt wire as a counter electrode, and a saturated calomel electrode (SCE) as a reference electrode.
- SCE saturated calomel electrode
- the voltage at a current density of 4.4 kA/m 2 was measured for each electrode for electrolysis by linear sweep voltammetry using the half-cell of the above preparation example.
- the above experiment was repeated 10 times, and an average value of the measured voltages was determined as an average value of overvoltage improvement.
- the degree of overvoltage improvement was calculated by comparing with the voltage of the commercial electrode (Asahi Kasei commercial cathode: ncz-2).
- Example 1 prepared by adding oleylamine as an amine-based solvent has the average degree of overvoltage improvement compared with the commercial electrode of -51 mV, which shows that Example 1 is superior to Comparative Example 1 prepared without addition of the amine-based solvent, and Comparative Example 2 prepared by adding oxalic acid instead of the amine-based solvent.
- the electrode of Example 2 prepared by adding octylamine as an amine-based solvent exhibited the degree of overvoltage improvement of -55 mV.
- the half-cell of the above preparation example was subjected to a reverse current test under the following test conditions to evaluate durability against the electrode of Example 1 and the commercial electrode (same as Experimental Example 1). The results are shown in Table 2 and FIG. 1 .
- the electrode prepared according to the present disclosure has an advantage in durability as compared with the commercial electrode even in reverse current flow.
- the cell in which the test of Experimental Example 1 was completed was disassembled and the surface states of the electrodes of Examples 1 and 2 and Comparative Example 1 were confirmed by SEM at 1000 times and 10,000 times, respectively ( FIG. 2 ).
- the thickness and length of the needle-like structure were measured by a length measurement tool of SEM.
- Examples 1 and 2 in which an amine-based solvent was added to the precursor solution for preparing an electrode had a needle-like structure of cerium clearly observed on the surface of the electrode after cell operation as compared to Comparative Example 1 in which no amine-based solvent was added.
- each needle-like structure was formed to have a thickness of 50 to 200 nm and a length of 0.5 to 5 ⁇ m, whereas in Comparative Example 1, the thickness was only 20 to 50 nm and the length was 0.2 to 0.5 ⁇ m. That is, it can be confirmed that the needle-like structure of cerium was increased by 2 to 4 times in the electrode to which amine was added.
- the preparation method of the present disclosure can increase the needle-like structure of the rare earth metal, thereby significantly improving durability of the electrode.
- Example 1 and 2 using an amine-based solvent in the preparation of the electrode for electrolysis, the molar ratio of nitrogen to ruthenium was as high as 35 to 50 %, whereas in Comparative Example 1 in which amine was not used had a molar ratio of nitrogen to ruthenium of 13 to 19 %.
- the electrode prepared according to the method of the present disclosure exhibits a higher content of nitrogen, which is an amine component, even after the heat-treatment, than the electrode not containing an amine-based solvent during preparation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Claims (6)
- Herstellungsverfahren für eine Elektrode für Elektrolyse, umfassend die Schritte:Herstellen einer Beschichtungslösung zum Herstellen einer Elektrode, die einen Platingruppenmetallvorläufer, einen Seltenerdmetallvorläufer, ein organisches Lösungsmittel und ein Amin-basiertes Lösungsmittel umfasst;Aufbringen der Beschichtungslösung zum Herstellen einer Elektrode auf einen Metallträger, um eine Katalysatorschicht zu bilden;Trocknen der Katalysatorschicht; undWärmebehandeln der Katalysatorschicht;wobei der Platingruppenmetallvorläufer zumindest einer ist, ausgewählt aus der Gruppe, bestehend aus Rutheniumchloridhydrat (RuCl3 • nH2O), Tetraaminplatin(II)chloridhydrat (Pt(NH3)4Cl2 • H2O), Rhodiumchlorid (RhCl3), Rhodiumnitrathydrat (Rh(NO3)3 • nH2O), Iridiumchloridhydrat (IrCl3 • nH2O) und Palladiumnitrat (Pd(NO3)2);der Seltenerdmetallvorläufer zumindest einer ist, ausgewählt aus der Gruppe, bestehend aus Cer(III)nitrat (Ce(NO3)3), Cer(III)carbonat (Ce2(CO3)3), Cer(III ) chlorid (CeCl3), Yttriumoxid (Y2O3) und Yttriumcarbonat (Y2(CO3)3); und das Amin-basierte Lösungsmittel zumindest eines ist, ausgewählt aus der Gruppe, bestehend aus Octylamin, Decylamin, Dodecylamin, Oleylamin, Laurylamin und Hexadecylamin,das Amin-basierte Lösungsmittel in einer Menge von 3 bis 40 Vol.-%, bezogen auf 100 Vol.-% der Beschichtungslösung zum Herstellen einer Elektrode, vorhanden ist.
- Herstellungsverfahren einer Elektrode für die Elektrolyse nach Anspruch 1, wobei das organische Lösungsmittel ein gemischtes Lösungsmittel von einem C1-C6 Alkohol und einem C4-C8 Glycolether ist.
- Herstellungsverfahren einer Elektrode für die Elektrolyse nach Anspruch 2, wobei das Mischverhältnis des C1-C6 Alkohols und des C4-C8 Glycolethers 10:1 bis 1:2 ist.
- Herstellungsverfahren einer Elektrode für die Elektrolyse nach Anspruch 1, wobei der Platingruppenmetallvorläufer und der Seltenerdmetallvorläufer in einem molaren Verhältnis von 1:1 bis 10:1 vorhanden sind.
- Herstellungsverfahren einer Elektrode für die Elektrolyse nach Anspruch 1, wobei der Schritt des Wärmebehandelns bei einer Temperatur von 300 bis 6oo°C durchgeführt wird.
- Elektrode für die Elektrolyse, hergestellt durch das Verfahren nach einem der Ansprüche 1 bis 5.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170102524 | 2017-08-11 | ||
KR1020180087750A KR101950465B1 (ko) | 2017-08-11 | 2018-07-27 | 전해용 전극 및 이의 제조방법 |
PCT/KR2018/008645 WO2019031753A1 (ko) | 2017-08-11 | 2018-07-30 | 전해용 전극 및 이의 제조방법 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3492631A1 EP3492631A1 (de) | 2019-06-05 |
EP3492631A4 EP3492631A4 (de) | 2019-11-20 |
EP3492631B1 true EP3492631B1 (de) | 2021-03-03 |
Family
ID=65271720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18843984.8A Active EP3492631B1 (de) | 2017-08-11 | 2018-07-30 | Elektrolytische elektrode und herstellungsverfahren dafür |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3492631B1 (de) |
CN (1) | CN109790634B (de) |
WO (1) | WO2019031753A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102503553B1 (ko) * | 2019-02-22 | 2023-02-27 | 주식회사 엘지화학 | 전기분해용 전극 |
CN114008248B (zh) * | 2019-12-19 | 2024-09-27 | 株式会社Lg化学 | 用于电解的电极 |
WO2021141435A1 (ko) * | 2020-01-09 | 2021-07-15 | 주식회사 엘지화학 | 전기분해용 전극 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269763A (ja) * | 1995-03-28 | 1996-10-15 | Toyo Seikan Kaisha Ltd | 電極及びその製造方法 |
JP2003277966A (ja) * | 2002-03-22 | 2003-10-02 | Asahi Kasei Corp | 低い過電圧と耐久性に優れた水素発生用陰極 |
CN101942673A (zh) * | 2003-10-08 | 2011-01-12 | 阿克佐诺贝尔公司 | 电极 |
CA2705819C (en) * | 2007-11-16 | 2016-12-13 | Akzo Nobel N.V. | An electrode substrate composition |
JP4927006B2 (ja) * | 2008-03-07 | 2012-05-09 | ペルメレック電極株式会社 | 水素発生用陰極 |
WO2011099350A1 (en) * | 2010-02-10 | 2011-08-18 | Permelec Electrode Ltd. | Activated cathode for hydrogen evolution |
JP2013166994A (ja) * | 2012-02-15 | 2013-08-29 | Asahi Kasei Chemicals Corp | 電解用電極、電解槽及び電解用電極の製造方法 |
JP5548296B1 (ja) * | 2013-09-06 | 2014-07-16 | ペルメレック電極株式会社 | 電解用電極の製造方法 |
JP6515509B2 (ja) * | 2013-12-26 | 2019-05-22 | 東ソー株式会社 | 水素発生用電極およびその製造方法並びにこれを用いた電気分解方法 |
-
2018
- 2018-07-30 CN CN201880003679.6A patent/CN109790634B/zh active Active
- 2018-07-30 EP EP18843984.8A patent/EP3492631B1/de active Active
- 2018-07-30 WO PCT/KR2018/008645 patent/WO2019031753A1/ko unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3492631A1 (de) | 2019-06-05 |
CN109790634B (zh) | 2021-02-23 |
EP3492631A4 (de) | 2019-11-20 |
CN109790634A (zh) | 2019-05-21 |
WO2019031753A1 (ko) | 2019-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11396709B2 (en) | Electrode for electrolysis and preparation method thereof | |
CN103255434B (zh) | 电解用电极、电解槽以及电解用电极的制造方法 | |
EP2292811B1 (de) | Kathode zur wasserstofferzeugung und herstellungsverfahren dafür | |
EP2704826B1 (de) | Elektrode für elektrolytische verfahren und herstellungsverfahren dafür | |
EP3492631B1 (de) | Elektrolytische elektrode und herstellungsverfahren dafür | |
DE102013202143A1 (de) | Katalysatorbeschichtung und Verfahren zu ihrer Herstellung | |
EP3971328B1 (de) | Elektrode für die elektrolyse | |
JP2023500091A (ja) | 水素の電気化学的発生のための電極 | |
CN113242915A (zh) | 用于电解的电极 | |
KR102505751B1 (ko) | 전해용 전극 및 이의 제조방법 | |
KR102404706B1 (ko) | 전기분해용 환원 전극의 활성층 조성물 및 이로 유래된 환원 전극 | |
KR102605336B1 (ko) | 전기 분해용 전극 및 이의 제조방법 | |
KR102251850B1 (ko) | 전기분해를 위한 촉매 코팅 전극, 촉매 페이스트 조성물 및 그들의 제조방법 | |
KR102663795B1 (ko) | 전해용 전극 및 이의 제조방법 | |
EP3971327B1 (de) | Elektrode für die elektrolyse | |
JP6878917B2 (ja) | 水素発生用電極及びその製造方法並びにこれを用いた電気分解方法 | |
KR20190037520A (ko) | 전기분해 음극용 코팅액 조성물 | |
KR102492777B1 (ko) | 전해용 전극 및 이의 제조방법 | |
JP7261318B2 (ja) | 電気分解用電極 | |
KR102664290B1 (ko) | 전기분해용 전극의 제조방법 | |
KR20190073914A (ko) | 염수 전기 분해용 애노드 전극의 제조방법 | |
KR102161672B1 (ko) | 염수 전기 분해용 음극의 제조방법 | |
EP3971326A1 (de) | Elektrode für die elektrolyse | |
KR20200142464A (ko) | 전기분해용 전극 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190228 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20191018 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25B 11/04 20060101AFI20191014BHEP Ipc: C25B 1/46 20060101ALI20191014BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201221 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1367285 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018013525 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210604 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210603 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1367285 Country of ref document: AT Kind code of ref document: T Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210705 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018013525 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
26N | No opposition filed |
Effective date: 20211206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210703 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210730 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240620 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240624 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240620 Year of fee payment: 7 |