EP3458257B1 - Vorrichtung und verfahren zum kompaktieren von hohlkörpern mittels stauchen - Google Patents

Vorrichtung und verfahren zum kompaktieren von hohlkörpern mittels stauchen Download PDF

Info

Publication number
EP3458257B1
EP3458257B1 EP18711528.2A EP18711528A EP3458257B1 EP 3458257 B1 EP3458257 B1 EP 3458257B1 EP 18711528 A EP18711528 A EP 18711528A EP 3458257 B1 EP3458257 B1 EP 3458257B1
Authority
EP
European Patent Office
Prior art keywords
hollow body
upsetting
pressing
roller
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18711528.2A
Other languages
English (en)
French (fr)
Other versions
EP3458257A1 (de
Inventor
Hermann Schwelling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3458257A1 publication Critical patent/EP3458257A1/de
Application granted granted Critical
Publication of EP3458257B1 publication Critical patent/EP3458257B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/32Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars
    • B30B9/321Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars for consolidating empty containers, e.g. cans
    • B30B9/325Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars for consolidating empty containers, e.g. cans between rotary pressing members, e.g. rollers, discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/30Presses specially adapted for particular purposes for baling; Compression boxes therefor
    • B30B9/3003Details
    • B30B9/301Feed means

Definitions

  • the invention relates to hollow bodies such as plastic bottles or metal cans. These are returned by the customer and the deposit usually paid for the hollow body is repaid to the customer and the hollow bodies are usually compacted at the return location in order to reduce the transport volume for transport to the recycling plant.
  • One method is to shred the containers into small particles that can then be processed as bulk material.
  • Another method is to press the containers together, hitherto mostly into plate-shaped, flattened containers, which are thus devalued in terms of the deposit claim.
  • This has the advantage that such flattened containers can also be compressed into bales and transported as strapped bales without further wrapping, which is not possible with shredded hollow bodies.
  • the present invention addresses the second method of squeezing the containers.
  • the containers are pressed together by being guided between two meshing pressing and cutting rollers, whereby the two opposing walls of the container are not only pressed against one another but are also cut through in sections by the cutting teeth of these pressing and cutting rollers, whereby the two adjacent walls of the collapsed container interlock and prevent subsequent springing back of the collapsed container from the sheet form to a thicker form due to the inherent resilience of the material of the container.
  • the incision also serves to allow the air contained in the container, which is often closed by means of a sealing cap, to escape when it is squeezed, and also to allow any residual liquid in the container to escape.
  • the density of a transport unit made from flat-pressed containers is lower than the density of a transport unit made from shredded containers, albeit dependent on the shape and size of the particles produced during shredding.
  • the US 201 5/033961 A1 discloses a device for compacting hollow bodies according to the preamble of claim 1 US 201 5/033960 A1 as well as the U.S. 2014/196616 A1 referred.
  • the respective hollow body is first flattened, in particular by applying force transversely to its greatest direction of extension.
  • the two layers can also be in contact with one another at least in certain areas, but usually not over the entire surface of the plate, ie the plate-shaped hollow body, due to the spring-back properties of the material.
  • both layers of the plate-shaped hollow body are severed with the same tool and at the same point when perforating or cutting in, primarily in order to achieve an interlocking of the cut edges of the two layers against one another and to minimize springback.
  • the cutting is only partial and the hollow body should not be cut into individual parts or even small particles.
  • the flattening preferably takes place in a continuous process, while the subsequently approximately plate-shaped hollow bodies are moved in the direction of throughput.
  • the now approximately plate-shaped hollow body i.e. the double-layer plate
  • the plate is compressed in one of the directions of the main plane of this plate, i.e. pushed together, so that the plate becomes shorter in this direction, but of course also thicker, because of the compression an accordion-shaped, upset hollow body is produced in which each of the walls - cut along the direction of upsetting - has a wavy or zigzag shape.
  • a lateral breaking out, ie bulging, of the accordion-shaped hollow body is avoided by lateral guides which run approximately in the compression direction and delimit a guide slot.
  • the upsetting preferably takes place with an upsetting direction in the direction of the greatest extent of the flattened hollow body, which preferably corresponds to the greatest extent of the original, undeformed hollow body.
  • the upsetting direction corresponds to the throughput direction during flattening or is directed in the opposite direction.
  • the upsetting is preferably terminated before stress whitening occurs, especially at the folds of the accordion, in a hollow body made of plastic, since this reduces the value of the upset hollow body.
  • the upsetting of the plate-shaped hollow body is preferably started before the previous flattening of the hollow body has ended. This facilitates the transition from the first to the second step, especially when flattening and/or upsetting is done in a continuous process, and reduces the risk of side chipping.
  • the upsetting of the plate-shaped hollow body is preferably ended at the latest when the flattening of the hollow body is also ended, especially when the upsetting of the hollow body is used as a counter bearing and stop during upsetting.
  • the hollow body is pressed flat by guiding it through a press slit between at least one rotatingly driven press roller and a counter-pressing element, be it a press sliding surface or a second press roller rotating in opposite directions, with the press slit preferably narrowing in the direction of travel, in particular up to to a thickness which corresponds approximately to the thickness of the plate-shaped hollow body produced thereby.
  • a press slit between at least one rotatingly driven press roller and a counter-pressing element, be it a press sliding surface or a second press roller rotating in opposite directions, with the press slit preferably narrowing in the direction of travel, in particular up to to a thickness which corresponds approximately to the thickness of the plate-shaped hollow body produced thereby.
  • the teeth of one press roller which are spaced apart in the axial direction, mesh with the teeth of the other press roller by immersing into the axial spaces between the teeth thereof, thereby achieving a corrugated board-like, flattened hollow body.
  • the press slot in this context does not necessarily mean that, viewed in the axial direction of the at least one press roller, there is a free passage and view between the press roller and the press counter-element, for example the second press roller: Because due to the mutual immersion of the teeth of a press roller in the circumferential grooves between the teeth of the other press roller is the press slot - viewed in the plan on through the two axes of rotation level defined by the intermeshing press rollers - on the one hand, it is often cranked and is also usually interrupted at several points in the axial direction, namely where mutually adjacent teeth of the two press rollers are arranged in close contact with one another in the axial direction, in order to prevent incision and penetration at this point at least one of the two walls of the hollow body to be flattened, which are closely adjacent to one another in the flattened state.
  • the hollow body to be machined is preferably fed to the press slot in a direction that corresponds to the greatest longitudinal extent of the hollow body, as a result of which the press rollers only require a relatively small axial length.
  • the hollow body is grasped by means of teeth, preferably hook-shaped teeth, protruding radially from at least one of the press rollers, and is pulled into the press slot, with scrapers arranged between the teeth at the exit of the press slot preventing the teeth from gripped wall of the hollow body pull along in the circumferential direction after the end of the press slot.
  • teeth preferably hook-shaped teeth
  • the hollow body is preferably pressed into the press slot by a feed device upstream of the latter in the direction of passage through the press slot in order to facilitate and reliably carry out the gripping of the hollow body by the at least one, preferably both, press rollers.
  • the flattening can also be carried out by two press dies which are movable relative to one another and between which the hollow body is positioned and which can press the hollow body together, the area of the press dies preferably being chosen so large that the entire hollow body does not fit between the two press dies protrudes laterally beyond this.
  • the upsetting can be carried out by braking the front end of the flattened hollow body in the throughput direction, so that the front end of the already flattened hollow body advances slower than the rear end, and the front end of the flattened hollow body may even come to a standstill downstream of the die before flattening in the die is finished.
  • Braking can be achieved by the end of the plate-shaped hollow body that is at the front in the direction of passage coming into contact with a stop as a compression element, which can be designed to be stationary or movable in the direction of passage. Braking can also be implemented by guiding the plate-shaped hollow body downstream of the compression slot through a compression slot whose throughput speed through the compression slot is lower than the throughput speed through the compression slot.
  • the throughput speed through the compression slot is preferably less than half, preferably less than one third, of the throughput speed of the same hollow body through the compression slot.
  • the width of the compression slot is smaller in at least one direction than the flattened hollow body to be guided through, preferably smaller than its thickness in the transverse direction to the main plane of the flattened hollow body.
  • the hollow body which has already been flattened and compressed in the direction of passage, is compressed again transversely to its direction of passage, in particular transversely to the main plane of the hollow body, which is still plate-shaped but compressed in one of the main planes of the plate, which causes further compaction.
  • the boundary surfaces of the compression slot represent the compression element, either by means of correspondingly high sliding friction in the case of a smooth boundary surface of the compression slot running in the direction of passage, or by positive locking if the boundary surface is at least partially aligned transversely to the direction of passage through the compression slot.
  • the transverse direction - without further reference - with regard to the hollow body is understood to mean the perpendicular to the greatest direction of extension of a still undeformed hollow body, or later the perpendicular to the main plane of the flattened, plate-shaped hollow body.
  • the transverse direction is that direction which is, on the one hand, perpendicular to the direction of passage and, on the other hand, perpendicular to the axial direction of the rollers.
  • the movement through the press slot is effected by the flattened hollow body being gripped by at least one, preferably driven, rotating upset roller laterally delimiting the upset slot and being pulled through the upset slot.
  • the peripheral surface of the at least one upset roller is then a boundary surface of the upset slot.
  • two juxtaposed compression rollers are preferably driven in opposite directions, which are so close together that when a plate-shaped hollow body is inserted between them, they contact it with such a great frictional force that it is pushed through the compression slot, but not with a greater one Throughput speed than it corresponds to the peripheral speed of one or both edging rollers, since preferably no slippage, or if it is then only as small as possible, should occur between the plate-shaped hollow body and the two edging rollers.
  • At least one compression roller preferably both Compression rollers with teeth, between which the plate-shaped hollow body has to move, so that the surface of the teeth are also part of the boundary surface of the compression slot, but which are partially transverse to the direction of passage, and thus a relative movement between the flattened hollow body and the compression element in prevent the shape of the edging roll.
  • the teeth of the two edging rollers can overlap in the radial direction and thereby mesh like gear wheels—albeit preferably without contact—and/or be offset from one another in the axial direction and engage in one another alternately in the axial direction.
  • the edging slot preferably consists of a constant distance between the two edging rollers.
  • the circumferential speed of the at least one edging roller is therefore less than half, preferably less than a third, of the circumferential speed of the at least one press roller.
  • the hollow body to be processed can be pressed into the press slot by means of a feed device, in particular the vanes of a vane shaft whose axis of rotation is approximately parallel to the axes of rotation of the at least one press roller, if one is present.
  • the wing that comes into contact with the hollow body moves with its free end in the direction of the press slot or the pressing station, but the free end of the wing has a peripheral speed that is significantly greater than the peripheral speed of the at least one press roller when flattening is carried out by means of a press roller takes place.
  • a generic pressing device for flattening hollow bodies additionally has a compression device arranged downstream thereof for upsetting the approximately plate-shaped hollow body flattened in the pressing device in one of the directions of the main plane of this plate.
  • the pressing device and the upsetting device are arranged at a distance from one another such that they can still act simultaneously on the same hollow body to be processed, i.e. the upsetting device more in its front area and the pressing device then more in its rear area.
  • the device is preferably not manually operated, but has a drive device which drives the pressing device and/or the compression device and/or the feed device, in particular the impeller shaft, and preferably also a controller for controlling at least all moving parts of the device and in particular this drive device .
  • the controller can in particular be part of the controller of a higher-level unit in which the compacting device is installed, for example an automatic bottle return machine.
  • only one motor drives both the pressing device and the upsetting device and possibly also the feeding device.
  • the pressing device comprises at least one rotationally drivable pressing roller, the function of which is to grip the hollow body and pull it through a pressing slot formed between the pressing roller and a counter-pressing element, thereby reducing the thickness of the hollow body and flattening it.
  • the throughput direction on the one hand and the axial direction of the at least one press roller on the other hand define the throughput plane.
  • the width of the pressing slot is of course significantly less than the thickness of the undeformed hollow body and has a thickness approximately corresponding to the desired thickness of the plate-shaped hollow body to be produced thereby.
  • the counter-pressing element can be a stationary press guide surface running in the throughput direction and arranged approximately parallel to the outer circumference of the press roller drivable and preferably meshing with this second press roller.
  • the hollow body In order to grasp and also perforate the hollow body, it has at least one press roller, preferably both press rollers, teeth distributed and spaced apart over the circumference and/or in the axial direction, which are preferably designed like hooks and with a sharp cutting edge in order to grasp the hollow body well and in to be able to pull in the press slot and also to penetrate the wall of the hollow body and thereby allow the air and liquids contained therein to escape.
  • at least one press roller preferably both press rollers, teeth distributed and spaced apart over the circumference and/or in the axial direction, which are preferably designed like hooks and with a sharp cutting edge in order to grasp the hollow body well and in to be able to pull in the press slot and also to penetrate the wall of the hollow body and thereby allow the air and liquids contained therein to escape.
  • the teeth are arranged at an axial distance in toothed ring areas, which are preferably dimensioned in such a way that the toothed ring areas of one press roller can penetrate radially between the toothed ring areas of the adjacent press roller, with between the rollers, i.e. in the radial direction and in the axial direction there is a free space between the teeth and tooth-ring areas, which is sufficient to pass the hollow body between them, but nevertheless to press it flat.
  • the press slit preferably has the same width over its entire length running in the axial direction, which means that the widest point is at most 20%, better at most 10%, better at most 5% wider than the narrowest point.
  • the axes of rotation of the press rollers are preferably arranged parallel to one another, but could also be at an angle to one another if the press rollers were designed conically, for example.
  • the downstream upsetting device i.e. arranged downstream in the throughput direction
  • the stop can be stationary or move with the plate-shaped hollow body pressing against it in the throughput direction, but at a lower speed than the throughput speed of the same hollow body through the press slot.
  • the stop can also be moved out of the path of movement of the plate-shaped and later upset hollow body in order to facilitate its removal.
  • the stop can also be subjected to a force counter to the direction of passage, for example by means of a spring or a braking device, in order to define the upsetting force.
  • the upsetting device comprises at least one rotatingly driven first upsetting roller, which is used to grip and pull the flattened hollow body through an upsetting slot, but at a lower throughput speed than the throughput speed of the same object further upstream through the press slot, in which the rear part of the plate-shaped hollow body is still located while the front part is already being moved through the compression slit.
  • the upsetting device comprises not only an upsetting guide surface extending in the throughput direction and parallel to the first upsetting roller as an upsetting counter-element, but also a second upsetting roller rotating in the opposite direction to the first upsetting roller, which is also in contact with the plate-shaped and already upset hollow body passed between the upsetting rollers stands, whereby a sliding friction against a fixed guide surface is avoided.
  • the axial directions of the edging rollers can be parallel to the axial directions of the press roller, or—viewed in the throughput direction—crazy, ie at an angle thereto, in particular at right angles thereto.
  • the plate-shaped hollow body accumulates in front of the upsetting device due to the post-conveyance of the plate-shaped hollow body from the press slot at a significantly higher speed, so that the actual upsetting process takes place in the area between the pressing device and the upsetting device, for which the upsetting rollers act as a kind of stop - take on the braking function, i.e. serve as a compression element.
  • the compression slit is also at least as wide transversely to the throughput plane as the compression slit, preferably dimensioned wider than the compression slit, but preferably at most twice as wide, at most three times as wide, twice as wide.
  • the compression slot is positioned in the throughput direction in such a way that a flattened hollow body coming out of the pressing device protrudes into the compression slot, before it has completely left the pressing device, and is caught by the at least one rotating compression roller or the compression roller pair and more slowly through the Compression roller pair and the compression slot is moved through.
  • the edging slot in the edging rollers should have the same width everywhere in the axial direction of the rollers, i.e. the widest point should not be wider than a maximum of 20%, preferably a maximum of 10%, better a maximum of 5% wider than the narrowest point.
  • the axes of rotation of the press rolls are preferably also parallel to one another and/or parallel to the axes of rotation of the compression rolls.
  • the effective area is that axial area of the rollers that can come into contact with the hollow bodies, in particular the area between the boundary plates on both sides, opposite which the press rollers are mounted.
  • the effective area is preferably shorter in the axial direction than the greatest extent of the smallest hollow body provided for processing.
  • the throughput is thereby reduced compared to a feed in the transverse direction of the hollow body, but for the subsequent upsetting, a plate-shaped, flattened hollow body that is as long as possible in the throughput direction is advantageous, since this makes it easier for its front area to be gripped by the upsetting device before its rear area has left the pressing device.
  • the distance between the pressing device and the upsetting device in the throughput direction must also be selected depending on the dimensions of the hollow bodies intended for processing, and can in particular be adjustable, in particular also during operation of the device.
  • the passage distance is the distance between the narrowest points on the one hand of the press slot and on the other hand of the compression slot.
  • this passage distance In order to be able to upset even the shortest hollow body intended for processing, this passage distance must be less than the length of this shortest hollow body intended for processing, measured in the direction of passage, in particular shorter than its greatest extent or its greatest extent in the flattened, plate-like state.
  • the device should be able to process a certain size range of hollow bodies, and the throughput distance - and sometimes also the diameter of the edging rollers and/or the press roller - are fixed and selected in such a way that all hollow bodies within this size range can be processed with it can become.
  • the passage distance must not be chosen too short, since this is particularly the case with a hollow body that is very long in the direction of passage the compression, especially in the case of a hollow body made of plastic, could become so severe that white fracture could occur at the bends of the accordion-shaped compressed hollow body, and even more so on the compressed hollow body that is then compressed again in the transverse direction - if it is made of plastic would reduce the value of the upset hollow body.
  • the passage distance is preferably chosen such that the shortest hollow body intended for processing in the direction of passage is just sufficiently compressed, but no stress whitening occurs in the longest possible container.
  • the width of the compression slit will also be adjusted in this way.
  • the passage distance is adjustable, this is preferably set automatically depending on the length of the hollow body detected in the feed to the device in the direction of passage, i.e. it is set shorter the shorter the hollow body just fed is in the direction of passage.
  • the at least one edging roller is also fitted with radially protruding teeth, which are preferably distributed over the circumference and/or are preferably arranged in axially spaced tooth ring areas.
  • the teeth or tooth-ring areas do not necessarily have to engage in one another in the radial direction when there are two edging rolls, also in view of the fact that the hollow body arriving at the edging rolls is already upset and thus compared to the flattened state at the outlet of the pressing device is thickened, but causes such an interlocking particularly effective that no slippage can occur between the hollow body and the edging rollers in the edging slot.
  • This thickening can only be reduced to a limited extent by the upsetting device and in particular the at least one upsetting roller, i.e. in the upsetting slot, since excessive compression transverse to the main plane of the upset hollow body, which is now thicker but still in principle plate-shaped, leads to undesirable elongation of the compressed hollow body would lead in the throughput direction.
  • the width of the upsetting slot is therefore selected in such a way that the upset, plate-shaped hollow body that is guided through it can, as a rule, be separated from the two upsetting rollers can be detected well, but the hollow body cannot be pressed through the buckling slot faster than the peripheral speed of the at least one bucking roller.
  • the tooth shape of the at least one edging roller usually differs from that of the at least one press roller: Since the reduction in thickness in the compression slit is usually less than in the press slit, there is no problem with the teeth of the at least one edging roller catching and pulling it in, especially since the hollow body fed is fed into the sizing slot with a considerable force in the throughput direction and presses against the teeth of the edging rollers.
  • the teeth of the edging roller should therefore primarily cause a sufficiently strong static friction between primarily the teeth of the edging rollers and the accordion-shaped hollow body transported through them by corresponding distortion of the hollow body that is passed through.
  • the teeth of the press roller are preferably hook-shaped for gripping and also cutting, i.e. perforating, the wall of the hollow body, which is why the front surface pointing in the direction of rotation of the press roller is radial to the axial direction or its free outer end is even further forward than the inner end in the direction of rotation lies and thereby generates said hook shape.
  • the front flank can also be designed receding in the direction of rotation, ie the free outer end of the front flank of the tooth is further back in the direction of rotation than the radially inner end.
  • the incisions between two teeth following one another in the axial direction can have a concave rounding or bevel at the transition from their bottom to their flanks.
  • the teeth not only protrude from a mostly cylindrical base body of the roll, in particular the edging roll, but also a circumferential groove is formed in this base body between the corresponding tooth ring areas, this also applies to the outer edges of these circumferential grooves running in the circumferential direction - Can have a convex rounding or bevel - and/or the transition from the bottom to the flanks, which can then have a concave rounding or bevel.
  • this serves to avoid the occurrence of stress whitening in the plastic material during compression and, on the other hand, to ensure that no circumferentially closed channels are formed on the outside of the container during compression and, if necessary, subsequent compression, but only depressions open to the outside, so that when the label residues are subsequently removed from the surface of the container, all surface areas are accessible, in particular for the rinsing and subsequent blow-drying or blowing off of the label residues, which is usually used for removal.
  • plate-shaped or finger-shaped scrapers are known in principle, which are fixedly mounted downstream of the pressing rollers in the direction of passage and protrude radially into the axial distances, in particular the circumferential grooves, between the toothed ring areas and as close as possible reach up to the bottom of the slot.
  • the stripper surface facing the pressing slot i.e. the narrow side in the case of plate-shaped strippers, thus represents an extension and delimitation of the pressing slot as a guide slot and limits the thickening of the plate-shaped hollow body in this area of passage due to the upsetting that already occurs there.
  • these strippers are preferably extended in the direction of the upsetting device and can even dip into the spaces between the toothed ring areas of the upsetting roller or rollers.
  • the wiper surfaces limit the thickness of the upsetting area between the pressing device and the upsetting device - viewed in the axial direction of the rolls - to the extent by which the hollow body pressed flat in the pressing device can widen transversely to the throughput plane - viewed in the axial direction of the rolls - as a result of the upsetting process .
  • the width of this guide slot, delimited by the wiper surfaces, between the pressing device and the upsetting device increases in the direction of the upsetting device.
  • the wiper surfaces preferably end in the throughput direction in front of the outer circumference of the edging rollers, so that in the distance between them measured in the throughput direction, the plate-shaped hollow body can expand relatively unlimitedly transversely to the throughput plane due to the upsetting, because otherwise excessive forces could occur with an upset slot that is limited on all sides the accumulated material of the hollow body come, which could block or damage the device.
  • the pressing device can be preceded by a feed device which separates the incoming hollow bodies and primarily presses them into the pressing slot.
  • a vane shaft which rotates about an axis of rotation parallel to the axes of rotation of the pressing device, and from which vanes radiate radially, which come into contact with a supplied hollow body - preferably on a supply sliding surface directed obliquely downwards in the direction of the press slot slides - and presses it in the direction of the press slot.
  • the vane shaft preferably has two vanes lying opposite one another and thus radially bracing in diametrically opposite directions.
  • the vanes preferably have outer free ends which lag behind in the direction of rotation, ie which are further behind in the direction of rotation than their inner ends close to the axis of rotation.
  • such a vane shaft usually has a higher peripheral speed than the peripheral speed of the at least one press roller in the press device. This has the further effect that the vanes of the vane shaft, when they brush along the hollow body, already press it together somewhat, which makes it easier to grip and press flat in the subsequent pressing device.
  • the distance between the at least one impeller shaft, which forms a feed slot with the mentioned feed sliding surface, is selected in such a way that the front end of the fed hollow body is already gripped by the pressing and usually also the cutting rollers of the pressing device, during the rear area of the hollow body is still caught by the wings of the wing shaft and pushed forward.
  • the smallest possible distance between the free end of a wing and the wing counter-element, in particular the feed sliding surface, is smaller than the thickness of the thinnest hollow body intended for processing, so that the wings can still come into contact with such a hollow body.
  • the greatest possible distance between the blade shaft, in particular its central body, to which the two blades are attached, and the blade counter-element, in particular the feed sliding surface, is greater than the thickness of the thickest hollow body intended for processing, since otherwise such a thickest hollow body could no longer be inserted into the feed slot.
  • the vanes are preferably—viewed in the axial direction—curved or polygonal in shape with the end trailing behind in the direction of rotation.
  • the vanes of the vane shaft extend, in particular in the axial direction, over the entire length of the effective area of the at least one press roller and are preferably toothed at their free end edge.
  • the wings preferably have a bending stiffness that decreases towards the free end, so that the wings are preferably designed to be somewhat elastic at their free ends.
  • vanes which, viewed in the axial direction, consist of sheet metal material, for example, which is the same thickness over their entire radial extent, by supporting the vane on its rear side in its central area with respect to the direction of rotation. This can be done in a simple manner by the rear free end edge of the other wing lying against this rear side, which extends past the axis of rotation of the propeller shaft to the rear side of the other wing.
  • the hollow bodies that are fed in their longitudinal direction in this case can be very strongly flattened by the pressing device, even with a relatively large thickness and thus usually length of this hollow body, which impairs the function of the subsequent upsetting device and the upsetting effect that occurs there enlarged as shown.
  • the press rollers 1a, b are driven in opposite directions in such a direction that they move in the throughput direction 10 in the circumferential area adjacent to one another. The same also applies to the two compression rollers 3a, b.
  • the press slit 2, i.e. the passage between the two press rollers 1a, 1b, and the edging slit 5, i.e. the passage between the two edging rollers 3a, b, are preferably aligned with one another, in that the two pairs of rollers have an aligned perpendicular bisector to the connecting line drawn in this view between them respective axes of rotation 1'a, 1'b or 3'a, 3'b, which represents the direction of passage 10, and in this case is not directed exactly vertically but obliquely from top to bottom.
  • each of the press rollers 1a, b can be seen on each of the press rollers 1a, b in each case a plate-shaped stripper 9, the main plane of which is in the plane of the drawing Figure 2a , b is located, and from which in the direction of the figure 2 several in a row engaging in the grooves 8 (see Figure 5a, b) , in particular in all grooves 8, and which is held in position between the respective press roller 1a, b and a counter-body in a form-fitting manner transversely to the axial direction.
  • the wipers 9, for example, are also in Figure 3d1 and in figure 6 shown.
  • a feed device 20 for feeding in the hollow bodies 100.1a, 100.1b to be processed is provided upstream of the pressing device 1 in the throughput direction 10, consisting of a feed device 20 running obliquely downwards in the direction of the pressing slot 2 Vane sliding surface 23 and a spaced-apart vane shaft 17 whose axis of rotation 17' is also parallel to the axes of rotation 1'a, 1'b or 3'a, 3'b of the four rollers 1a, 1b or 3a, 3b and which can be driven in such a direction of rotation that the two wings 17a, 17b protruding from the wing shaft 17 on both sides push hollow bodies located between them on the side facing the wing sliding surface 23 in the throughput direction, i.e. to the two pairs of rollers of the pressing device 1 and convey the downstream upsetting device 3.
  • the drive device 6 drives all four rollers 1a, b, 3a, b as well as the impeller shaft 17 via gear wheels and chain drives, but with the different angular speeds discussed below.
  • the drive device 6 drives one of the two press rollers via a chain drive located just outside the one side cheek, which in turn also drives the other press roller and the two compression rollers 3a, b via pinions fixed to it in a rotationally fixed manner, while outside the other cheek via a further chain drive, the vane shaft 17 is driven by the directly driven press roller 1b, also via a chain drive.
  • the passage distance 21 between the connecting lines running parallel to one another between the two axes of rotation of the pair of press rollers on the one hand and the pair of compression rollers on the other hand—viewed in the axial direction as in FIG Figure 2a - is only slightly larger than the average of the diameter of a press roll and the diameter of an edging roll.
  • the two press rollers 1a, b--at least in their effective area which will be explained later--and on the other hand, the two compression rollers 3a, b are mirror-inverted when viewed in the axial direction.
  • the figures 2a , b differ in that the vane shaft 17 is shown in a different rotational position: In Figure 2b If the vane shaft 17 is in such a rotational position that one of the vanes 17a is in the position in which its freely ending vane edge 17a1 - viewed in the axial direction - occupies the smallest possible vane distance 24a from the vane counter-surface 23.
  • the radius, i.e. the flight circle, of the freely ending edge 17a1, 17b1 of the blades 17a, b to the axis of rotation 17' must be specified, as well as the center distance 22 between the axis of rotation 17' of the blade shaft 17 and the blade sliding surface 23.
  • vanes 17a, b which the vane shaft 17 has, are designed identically and are mounted on the vane shaft 17, so that the radial distance between their free end edges and the axis of rotation 17' is the same.
  • the Figures 3a - d show - again in a sectional view of the compacting device looking in the axial direction of the rollers 1a, b, 3a, b and/or the impeller shaft 17 - the function of feeding, compressing and upsetting the hollow bodies 100.1a, 100.1b to be processed.
  • Figure 3a there is a still undeformed, large hollow body 100.1a in the form of a plastic bottle in the feed device 20, in which the still undeformed hollow body 100.1a rests on the wing sliding surface 23 and slides down - in the direction of its greatest extension 100' , so that its lower end already touches one of the two press rollers 1a, b.
  • the smallest extension 100" of this hollow body 100.1a of the largest hollow body 100.1 to be processed is still smaller than the largest possible blade distance 24b between the blade shaft 17 and the blade sliding surface 23.
  • the front surface of the vane 17a pointing in the direction of rotation has in the area between the central body of the vane shaft 17, to which it is screwed, and its free end edge 17a1 - which as in Figure 1b shown can have a toothing 25 - approximately in the middle of a bend, so that the free end area is bent backwards, ie lagging behind in the direction of rotation, compared to the area closer to the central body.
  • This wing 17a rests approximately in this area with its front face on the upper side of the still undeformed container 100.1a.
  • this wing 17a presses on the one hand the hollow body 100.1a in the transverse direction 11 of the direction of its largest extension 100', in particular in the direction of its smallest extension 100", together and against the wing sliding surface 23 and additionally further in the direction of the pressing device 1, i.e. the pair of pressing rollers 1a, b, which with their teeth press the end of the hollow body 100.1a grasp and pull between them, i.e. through the pressing slot 2, thereby deforming it into an approximately plate-shaped hollow body 100.2a, as in 3c shown.
  • the vane shaft 17 has a peripheral speed that is several times higher than that of the press rollers 1a, b.
  • the approximately plate-shaped deformed hollow body 100.2a is corrugated in the direction of passage 10 on the one hand, and also corrugated in the axial direction 1'a of the press rollers 1a, b, like in the enlargement of the Figure 3c1 to recognize.
  • the wall sections of the plate-shaped deformed hollow body 100.2a which are closely adjacent to one another in this plate-shaped state, are partially cut through by their teeth 4.1, but only over a limited cutting length, ie perforated.
  • the plate-shaped hollow body 100.2a will protrude further and further out of the compression slot 2 of the compression device 1, and thus protrude into the compression slot 5 between the two subsequent compression rollers 3a, b and be gripped by their teeth 4.3, as in Figure 3d and the magnification Figure 3d1 shown.
  • the compression slot 5 can - as in Figure 3a shown - viewed in the axial direction, a distance between the outer circumferences of the edging rollers 3a, b, in the case of toothed edging rollers a free distance between the flight circles of their teeth 4.3, or these outer circumferences or flight circles can touch or almost touch - with a distance which is significantly less than the thickness of the compressed hollow body 100.3 - as in the figures 2a , b , 3b to d shown.
  • the flight circles of the teeth 4.3 can also be in the radial direction overlap, so that the teeth 4.3 alternately dip in the circumferential direction into the gaps between the teeth 4.3 of the adjacent compression rollers, as shown in Figure 4b.
  • the plate-shaped hollow body 100.2a pushed out of the compression slot 2 by the compression rollers 1a, b is between the compression roller pair 1a, b and the compression roller pair 3a, b against the direction of passage 10 and in this length - which is greatly shortened in direction of passage 10 - the already compressed hollow body 100.3a is passed between the compression rollers 3a, b and thereby again transversely to the plane of passage 10' - which is the plane running in direction of passage 10 which is parallel to the four Axis of rotation 1'a, 1'b, 3'a, 3'b is - compressed to form a compressed and additionally compressed in the transverse direction 11 hollow body 100.4a.
  • the width of the in Figure 5a shown axial effective range 1.1 of the press rollers 1a, 1b is selected to be smaller than the longest extent 100' of the smallest, i.e. above all the shortest, container 100.1b provided for processing, so that this too must be fed to the device in the direction of its greatest extent 100'.
  • the wings 17a, b can have increasing elasticity as they progress towards the free end.
  • the plate-shaped vanes 17a, b viewed in the direction of the axis of rotation 17', are bent twice with their end regions in the same direction, which are screwed to the central body of the vane shaft 17 in their central region between the two bends, the shape and dimensioning the wing 17a, b is selected in such a way that each wing 17a, b with its rear, free end edge 17a2, 17b2 supports the back of the front area of the other wing 17b, a between its screw connection on the base body and its free front end edge, preferably on the back of its front crank.
  • Figure 7a with a detail enlargement as Figure 7b shows a significantly simpler, second, non-inventive design of the compacting device.
  • the pressing device 1 consists of only a single pressing roller 1a, which pulls the hollow body 100.1a through the pressing slot 2 between this pressing roller 1a and a pressing guide surface 2' running at a distance from its circumference, with the pressing guide surface 2 ' is preferably the extension of the vane sliding surface 23 of the upstream feeding device 20.
  • the upsetting device 3 is also constructed much more simply: It consists only of a stop 13 in the form of a plate, which projects transversely into the movement path of the flattened hollow body 100.2a pushed out of the pressing device 1 and compresses it into a compressed hollow body 100.3a.
  • this plate-shaped stop 13 is mounted pivotably away from the direction of passage through the pressing slot 2 and is pretensioned in the direction of the pressing device 1 by means of a spring 15 .
  • This upsetting device 3 is essentially a braking device 16 for the flattened hollow body 100.2a pushed out of the pressing device 1.
  • a guide slot 12 is connected downstream of the press slot 2, formed on the one hand by the stripper surfaces 9' of the strippers 9 of the press roller 1a and on the other hand by a compression guide surface 5' , which consists in the extension of the press guide surface 2' in the throughput direction 10 beyond the area of the press roller 1a.
  • a middle ground between the first design of the figures 2 and 3 and the second design of the Figure 7a provides the third design according to figure 8 represents:
  • the pressing device 1 is constructed in the same way as in the second design according to FIG Figures 7a, b , albeit with the difference that the only available press roller 1a reaches either directly to the press guide surface 2' or even into corresponding grooves running in the throughput direction 10 in the component, here a plate, the outer surface of which has the press guide surface 2' represents immersed in order to cause the walls of the hollow body 100.1a to be cut through by the teeth 4.1 of this press roller 1a.
  • the compression device 3 differs from those of Figures 7a , b in that it does not have a plate-shaped stop 13, but rather a rotating edging roller 3a analogous to the edging roller 3a of the first design, which is arranged downstream of the press roller 1a in the throughput direction, and an opposite edging guide surface 5' at a distance therefrom, between which the compression slot 5 is formed.
  • the upset guide surface 5' is the extension of the press guide surface 2'.
  • the advantage is achieved that the upset hollow body 100.3a is additionally compressed again transversely to the throughput direction 10 by this design of the upsetting device 3 to form an upset and compressed hollow body 100.4a and thereby further compacted.
  • the Figures 4a, b , 5a, b show a press roller 1a and an edging roller 3a in side view and end view, as well as in 6 in their assembly state to each other:
  • the Figures 5a shows a side view, i.e. transverse to the axis of rotation 1'a of the press roller 1a shown, first of all the active area 1.1 in the middle, in which the toothed ring areas 14 with teeth 4.1 in the direction of rotation are located in the axial direction 1'a of the press roller 1a with annular grooves 8 alternate, the groove bottom has a smaller diameter than the base diameter 18 of Press roller 1a, from which the teeth 4.1a protrude outwards.
  • the grooves 8 are preferably wider in the axial direction than the teeth 4.1.
  • one of the bearing journals 1.2 is followed by an extension on the front side, which has a multi-tooth profile 1.3 on its circumference, which serves to push on and fix a pinion for the chain drive of this press roller 1a.
  • the second press roller 1b is arranged with respect to the arrangement of its toothed ring areas 14 and its grooves 8 in relation to the first such that its teeth 4.1 engage radially in the grooves 8 of the first press roller 1a and vice versa, with preferably the teeth 4.1 of the a press roller 1b radially no more than up to the base diameter 18 between the toothed ring areas 14 of the other press roller 1b, as best seen in the end view of two such press rollers 1a and 1b meshing with one another in FIG. 5b.
  • the base diameter is 18 in Figure 5a present and shown on the face side outside of the last tooth-ring area 14 in the axial direction.
  • the teeth 4.1 which are preferably evenly distributed over the circumference, each have a leading front flank 4.1a with the free radially outer end, whereby a hook-like front end region of the tooth 4.1 is formed is, which can engage and cut into the wall material of the container 100.1 with its sharp radially outer edge.
  • the according Figure 5b incisions between the circumferentially adjacent teeth 4.1a of a tooth-ring region viewed in the direction of the axis of rotation 1'a 14 are approximately U-shaped, with the transitions from their flanks to the bottom being strongly rounded, and the front flank 4.1a of this depression pointing forward in the direction of rotation is flatter than its rear edge, the front flank 4.1a of the next tooth 4.1.
  • an edging roller 3a is shown in a side view and two edging rollers 3a, b meshing with each other, i.e. in their interaction, in a front view, from which the difference in design compared to a press roller 1a also becomes clear: What they have in common is that a bearing pin 3.2 extends centrally at the end of the effective area 3.1 extending in the axial direction and, beyond one bearing pin, there is also an extension on which there is in turn a multiplicity of profiles 3.3.
  • the distances 8' between the individual teeth 4.3 in the axial direction between the tooth-ring regions 14 in the edging rollers 3a, 3b do not extend radially down to the bottom of the tooth, i.e. the channel running in the axial direction 1'a between two circumferentially adjacent teeth 4.3 in the axial direction and there is no circumferentially extending groove in the bottom of the groove.
  • extension of a tooth-ring area 14 in the axial direction is significantly larger than the axial extension of the distances 8' between the axially spaced teeth 4.3.
  • the two adjacent press rollers 3a, b rotating about parallel axes 3'a, 3'b can only mutually engage in that - as in Figure 4b recognizable - are positioned in their mutual rotational position in such a way that in the compression gap 5 the tooth 4.3 viewed in the axial direction of one press roller 3a dips between two circumferentially adjacent teeth 4.3 of the adjacent compression roller 3b, but does not reach the base diameter 18 of this other press roller 3b and vice versa .
  • the other, preferred, solution is that between the flight circles of the teeth 4.3 of the two compression rollers 3a, b a free passage as compression slot 5 remains.
  • FIG. 6 shows in a side view according to FIG Figures 5a , 4a the arrangement of a press roll 1a to the adjacent compression roll 3a.
  • Permanently mounted, plate-shaped scrapers 9 are drawn in, which extend with their main plane perpendicular to the direction of rotation 1'a and dip into each of the grooves 8 of the press roller 1a and reach as close as possible to their good base in order to remove any material adhering to the hollow bodies in the To remove rotation of the press roller 1a of this.
  • the scraper 9 ends in front of the outer circumference of the teeth 4.3 of the edging roller 3a, where they look in the direction of figure 6 continue behind this in the direction of rotation 3'a.
  • the grooves 8 of the press roller 1a are aligned with the distances 8' of the edging roller 3a in the axial direction, so that the scrapers 9 dip with their two end regions on the one hand into the grooves 8 and on the other hand into the distances 8', naturally at a distance from the Passing level 10', along which the flattened hollow body moves.
  • the base of the spacing 8' between the teeth 4.3 which has sloping flanks in the side view, is wide enough in the axial direction to allow the scrapers 9 to reach close to this base of the spacing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Crushing And Grinding (AREA)
  • Processing Of Solid Wastes (AREA)
  • Forging (AREA)

Description

    I. Anwendungsgebiet
  • Die Erfindung betrifft Hohlkörper wie etwa Kunststoffflaschen oder Metalldosen. Diese werden von den Kunden zurückgegeben und dafür dem Kunden das meist für den Hohlkörper entrichtete Pfand zurückgezahlt und die Hohlkörper werden in der Regel noch am Rückgabeort kompaktiert, um das Transportvolumen für das Transportieren zum Recycling-Betrieb zu verringern.
  • Dabei sind unterschiedliche Methoden bekannt:
    Eine Methode besteht im Schreddern der Behälter zu kleinen Partikeln, die dann als Schüttgut weiterverarbeitet werden können.
  • Eine andere Methode besteht im Zusammendrücken der Behälter, bisher meist zu plattenförmigen, flachgedrückten und damit hinsichtlich des Pfandanspruches entwerteten Behältern. Dies hat den Vorteil, dass solche flachgedrückten Behälter auch zu Ballen zusammengepresst und als umreifte Ballen ohne weitere Umhüllung transportiert werden können, was bei geshredderten Hohlkörpern nicht möglich ist.
  • Die vorliegende Erfindung befasst sich mit der zweiten Methode des Zusammendrückens der Behälter.
  • II. Technischer Hintergrund
  • In der Regel erfolgt das Zusammendrücken der Behälter, indem diese zwischen zwei miteinander kämmenden Press- und Schneid-Walzen hindurchgeführt werden, wodurch die beiden einander gegenüberliegenden Wandungen des Behälters nicht nur gegeneinander verpresst sondern von den Schneidzähnen dieser Press- und Schneidwalzen auch abschnittweise durchschnitten werden, wodurch sich die beiden benachbart zueinander liegenden Wandungen des zusammengedrückten Behälters gegeneinander verhaken und das anschließende Zurückfedern des zusammengedrückten Behälters aus der Plattenform in eine dickere Form aufgrund der Eigenelastizität des Materials des Behälters verhindert.
  • Das Einschneiden dient auch dazu aus den häufig mittels einer z.B. Verschlusskappe verschlossenen Behälters enthaltene Luft beim Zusammendrücken austreten zu lassen, und auch dazu, im Behälter noch vorhandene Rest-Flüssigkeit austreten zu lassen.
  • Allerdings ist die Dichte einer Transporteinheit aus flachgepressten Behältern geringer als die Dichte einer Transporteinheit aus geschredderten Behältern, wenn auch abhängig von Form und Größe der beim Schreddern hergestellten Partikel.
  • Die US 201 5/033961 A1 offenbart eine Vorrichtung zum Kompaktieren von Hohlkörpern nach dem Oberbegriff des Anspruchs 1. Ferner sei auf die US 201 5/033960 A1 sowie die US 2014/196616 A1 verwiesen.
  • III. Darstellung der Erfindung a) Technische Aufgabe
  • Es ist daher die Aufgabe gemäß der Erfindung, ein Verfahren und eine Vorrichtung zum stärkeren Kompaktieren von ganzen Hohlkörpern zur Verfügung zu stellen, also ohne diese zu Partikeln zu zerschneiden.
  • b) Lösung der Aufgabe
  • Diese Aufgabe wird durch die Merkmale der Ansprüche 1 und 18 gelöst. Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Hinsichtlich des Kompaktierungs-Verfahrens wird der jeweilige Hohlkörper zunächst einmal flachgedrückt, insbesondere durch Kraftbeaufschlagung quer zu seiner größten Erstreckungsrichtung. Dies ergibt einen etwa plattenförmigen, zumindest im mittleren Bereich zweilagigen, Hohlkörper, wobei die beiden Lagen durch einander gegenüberliegende Abschnitte der Wandung des Hohlkörpers gebildet werden. Diese beiden Lagen sind an den äußeren Bereichen umlaufend durch das Material der Wandung und evtl. eines Verschlusses miteinander verbunden, sofern der Hohlkörper beim Flachdrücken nicht platzt.
  • Letzteres soll dadurch vermieden werden, dass beim Flachdrücken zumindest die eine Lage des zum Schluss plattenförmigen Hohlkörpers perforiert oder mittels kurzer Schnitte durchtrennt wird.
  • Je nach verwendeter Vorrichtung können die beiden Lagen dabei zumindest bereichsweise auch kontaktierend aneinander anliegen, jedoch meistens aufgrund der Rückfederungs-Eigenschaften des Materials nicht über die gesamte Fläche der Platte, also des plattenförmigen Hohlkörpers.
  • Teilweise werden beim Perforieren oder Einschneiden beide Lagen des plattenförmigen Hohlkörpers mit dem gleichen Werkzeug und an der gleichen Stelle durchtrennt, vor allem um dabei ein Verhaken der Schnittkanten der beiden Lagen gegeneinander zu erreichen und das Rückfedern zu minimieren.
  • Das Einschneiden erfolgt jedoch nur partiell und ein Zerschneiden des Hohlkörpers in Einzelteile oder gar kleine Partikel soll gerade nicht stattfinden.
  • Vorzugsweise erfolgt das Flachdrücken im Durchlaufverfahren, während die danach etwa plattenförmigen Hohlkörper in Durchlaufrichtung bewegt werden. Die Erstreckung der Hauptebene des plattenförmigen Hohlkörpers quer zu Durchlaufrichtung und die Durchlaufrichtung selbst spannen eine Durchlaufebene auf.
  • Nach diesem bekannten Verfahrensschritt wird erfindungsgemäß der nun etwa plattenförmige Hohlkörper, also die doppellagige Platte, in einer der Richtungen der Hauptebene dieser Platte gestaucht, also zusammengeschoben, sodass die Platte in dieser Richtung kürzer wird, aber dabei natürlich auch dicker wird, denn durch das Stauchen wird ein Ziehharmonika-förmiger, gestauchter Hohlkörper erzeugt, bei dem jede der Wandungen - geschnitten entlang der Stauchrichtung - einen wellenförmigen oder Zickzack-förmigen Verlauf besitzt.
  • Dabei ist es vorteilhaft, wenn der gestauchte Hohlkörper anschließend nochmals quer zu seiner Stauchrichtung zusammengedrückt wird, um das Volumen nochmals zu verringern.
  • Beispielsweise wird durch seitliche Führungen, die etwa in Stauchrichtung verlaufen und einen Führungsschlitz begrenzen, ein seitliches Ausbrechen, also Ausbeulen, des Ziehharmonika-förmigen Hohlkörpers vermieden.
  • Vorzugsweise erfolgt das Stauchen mit einer Stauchrichtung in Richtung der größten Erstreckung des flach gedrückten Hohlkörpers, die vorzugsweise mit der größten Erstreckung des ursprünglichen, unverformten Hohlkörpers übereinstimmt. Bei einem im Durchlaufverfahren erfolgenden Flachdrücken entspricht die Stauchrichtung der Durchlaufrichtung beim Flachdrücken oder ist dieser entgegen gerichtet.
  • Das Stauchen wird vorzugsweise beendet, bevor vor allem an den Falten der Ziehharmonika Weißbruch bei einem aus Kunststoff bestehenden Hohlkörper auftritt, da dies den Wert des gestauchten Hohlkörpers vermindert.
  • Vorzugsweise wird das Stauchen des plattenförmigen Hohlkörpers bereits begonnen, bevor das vorherige Flachdrücken des Hohlkörpers beendet ist. Dies erleichtert den Übergang vom ersten zum zweiten Arbeitsschritt, vor allem wenn Flachdrücken und/oder das Stauchen im Durchlaufverfahren geschieht, und verringert die Gefahr des seitlichen Ausbrechens.
  • Vorzugsweise wird das Stauchen des plattenförmigen Hohlkörpers spätestens dann beendet, wenn auch das Flachdrücken des Hohlkörpers beendet wird, vor allem dann, wenn das Stauchen des Hohlkörpers beim Stauchen als Gegenlager und Anschlag verwendet wird.
  • Das Flachdrücken des Hohlkörpers erfolgt, indem man diesen durch einen Pressschlitz zwischen wenigstens einer rotierend angetriebenen Presswalze und einem Press-Gegenelement, sei es eine Press-Gleitfläche oder eine gegenläufig rotierende zweite Presswalze, hindurchführt, wobei sich der Pressschlitz in Verlaufsrichtung vorzugsweise verengt, insbesondere bis auf eine Dicke, die in etwa der Dicke des dadurch erzeugten plattenförmigen Hohlkörpers entspricht.
  • Vorzugsweise werden bei zwei zusammenwirkenden Presswalzen die Zähne der einen Presswalze, die in axialer Richtung beabstandet sind, mit den Zähnen der anderen Presswalze kämmen, indem sie zwischen deren Zähne in die axialen Abstände eintauchen, wodurch ein Wellbrett-artiger, flachgedrückter Hohlkörper erzielt wird.
  • Dementsprechend bedeutet Pressschlitz in diesem Zusammenhang nicht unbedingt, dass betrachtet in Achsrichtung der wenigstens einen Presswalze ein freier Durchgang und Durchblick zwischen der Presswalze und dem Press-Gegenelement, beispielsweise der zweiten Presswalze, gegeben ist:
    Denn aufgrund des wechselseitigen Eintauchens der Zähne der einen Presswalze in die Umfangsnuten zwischen den Zähnen der anderen Presswalze ist der Pressschlitz - betrachtet in der Aufsicht auf die durch die beiden Rotationsachsen der miteinander kämmenden Presswalzen definierten Ebene - zum einen vielfach gekröpft ausgebildet und zusätzlich in axialer Richtung meist auch an mehreren Stellen unterbrochen, nämlich dort, wo zueinander benachbarte Zähne der beiden Presswalzen in axialer Richtung dicht aneinander anliegend angeordnet sind, um an dieser Stelle ein Einschneiden und Durchdringen wenigstens einer der beiden im flachgedrückten Zustand eng zueinander benachbarten Wandungen des flach zu drückenden Hohlkörpers zu bewirken.
  • Dabei wird der zu bearbeitende Hohlkörper dem Pressschlitz vorzugsweise in einer Richtung zugeführt, die der größten Längserstreckung des Hohlkörpers entspricht, wodurch die Presswalzen nur eine relativ geringe axiale Länge benötigen.
  • Der Hohlkörper wird für das Hineinziehen in den Pressschlitz mittels radial aus wenigstens einer der Presswalzen vorstehenden Zähnen, vorzugsweise hakenförmigen Zähnen, erfasst und in den Pressschlitz hineingezogen, wobei durch am Ausgang des Pressschlitzes zwischen den Zähnen angeordnete Abstreifer verhindert wird, dass die Zähne die von ihr ergriffene Wandung des Hohlkörpers in Umfangsrichtung nach dem Ende des Pressschlitzes mitziehen.
  • Vorzugsweise wird der Hohlkörper durch eine in Durchlaufrichtung durch den Pressschlitz diesem vorgelagerte Zufuhrvorrichtung in den Pressschlitz hineingedrückt, um das Erfassen des Hohlkörpers durch die wenigstens eine, vorzugsweise beide, Presswalzen zu erleichtern und zuverlässig durchzuführen.
  • Das Flachdrücken kann jedoch auch durch zwei relativ gegeneinander bewegliche Pressstempel erfolgen, zwischen denen der Hohlkörper positioniert wird, und die den Hohlkörper zusammendrücken können, wobei die Fläche der Pressstempel vorzugsweise so groß gewählt wird, dass der gesamte Hohlkörper zwischen den beiden Pressstempeln Platz findet und nicht seitlich über diese hinausragt.
  • Wenn zum Flachdrücken der Hohlkörper durch einen Pressschlitz hindurch geführt wird, kann das Stauchen durchgeführt werden mittels Abbremsen des in Durchlaufrichtung vorderen Endes des flachgedrückten Hohlkörpers in Durchlaufrichtung, sodass sich das vordere Ende des bereits flachgedrückten Hohlkörpers langsamer vorwärts bewegt als das hintere Ende, und das vordere Ende des flachgedrückten Hohlkörpers stromabwärts des Pressschlitzes sogar zum Stillstand kommen kann, bevor das Flachpressen im Pressschlitz beendet ist.
  • Das Abbremsen kann durch Anlaufen des in Durchlaufrichtung vorderen Endes des plattenförmigen Hohlkörpers an einem Anschlag als Stauchelement - der fest stehend oder in Durchlaufrichtung beweglich ausgebildet sein kann - realisiert werden. Das Abbremsen kann auch dadurch realisiert werden, dass der plattenförmige Hohlkörper stromabwärts des Pressschlitzes durch einen Stauchschlitz geführt wird, dessen Durchlaufgeschwindigkeit durch den Stauchschlitz geringer ist als die Durchlaufgeschwindigkeit durch den Pressschlitz.
  • Solange der gleiche plattenförmige Hohlkörper mit seinem vorderen Bereich sich bereits im Stauchschlitz befindet am Stauchelement anliegt und mit seinem hinteren Bereich noch im Pressschlitz, findet dadurch ein Stauchen des plattenförmigen Hohlkörpers statt, wobei Schlupf zwischen dem plattenförmigen Hohlkörper und dem Stauchelement möglichst nicht auftreten soll.
  • Vorzugsweise beträgt dabei die Durchlaufgeschwindigkeit durch den Stauchschlitz weniger als die Hälfte, vorzugsweise weniger als ein Drittel der Durchlaufgeschwindigkeit desselben Hohlkörpers durch den Pressschlitz.
  • Um Schlupf zu vermeiden ist die Breite des Stauchschlitzes in zumindest einer Richtung kleiner ist als der hindurchzuführende flachgedrückte Hohlkörper, vorzugsweise in Querrichtung zur Hauptebene des flachgedrückten Hohlkörpers kleiner als dessen Dicke.
  • Dadurch kommt es zu einem erneuten Zusammendrücken des bereits flachgedrückten und in Durchlaufrichtung gestauchten Hohlkörpers quer zu dessen Durchlaufrichtung, insbesondere quer zu der Hauptebene des immer noch plattenförmigen, allerdings in einer der Hauptebenen der Platte gestauchten Hohlkörpers, was eine weitere Kompaktierung bewirkt.
  • Dabei stellen die Begrenzungsflächen des Stauchschlitzes das Stauchelement dar, entweder mittels entsprechend hoher Gleitreibung bei einer glatten, in Durchlaufrichtung verlaufenden Begrenzungsfläche des Stauchschlitzes, oder durch Formschluss, falls die Begrenzungsfläche wenigstens teilweise quer zur Durchlaufrichtung durch den Stauchschlitz ausgerichtet ist.
  • Für die Zwecke der vorliegenden Anmeldung soll klargestellt werden, dass unter Querrichtung - ohne weitere Bezugnahme - bezüglich der Hohlkörper bei einem noch unverformten Hohlkörper die Lotrechte auf dessen größte Erstreckungsrichtung verstanden wird, oder später die Lotrechte zur Hauptebene des flachgedrückten, plattenförmigen Hohlkörpers. Bezüglich der Vorrichtung ist die Querrichtung diejenige Richtung, die einerseits lotrecht zur Durchlaufrichtung steht und andererseits lotrecht zur axialen Richtung der Walzen.
  • Das Hindurchbewegen durch den Pressschlitz wirdbewirkt, indem der flachgedrückte Hohlkörper durch wenigstens eine den Stauchschlitz seitlich begrenzende, vorzugsweise angetriebene, rotierende Stauchwalze ergriffen und durch den Stauchschlitz hindurchgezogen wird, die Umfangsfläche der wenigstens einen Stauchwalze ist dann eine Begrenzungsfläche des Stauchschlitzes.
  • Vorzugsweise werden hierfür zwei nebeneinander vorhandene Stauchwalzen gegenläufig rotierend angetrieben, die sich so eng beisammen befinden, dass sie bei einem dazwischen eingeführten plattenförmigen Hohlkörper diesen mit einer so großen Reibungskraft kontaktieren, dass er durch den Stauchschlitz zwar hindurch geschoben wird, aber eben nicht mit einer größeren Durchlaufgeschwindigkeit als es der Umfangsgeschwindigkeit der einen oder beiden Stauchwalzen entspricht, da vorzugsweise kein oder wenn dann nur ein möglichst geringer, Schlupf zwischen dem plattenförmigen Hohlkörper und den beiden Stauchwalzen auftreten soll.
  • Um eine ausreichend hohe Reibung gegenüber dem plattenförmigen Hohlkörper zu erreichen, ist die wenigstens eine Stauchwalze, vorzugsweise sind beide Stauchwalzen, mit Zähnen besetzt, zwischen denen sich der plattenförmige Hohlkörper hindurchbewegen muss, sodass die Oberfläche der Zähne ebenfalls Bestandteil der Begrenzungsfläche des Stauchschlitzes sind, die aber teilweise quer zu Durchlaufrichtung liegen, und somit durch Formschluss eine Relativbewegung zwischen dem flachgedrückten Hohlkörper und dem Stauchelement in Form der Stauchwalze verhindern. Die Zähne der beiden Stauchwalzen können in radialer Richtung überlappen und dabei wie Zahnräder - allerdings vorzugsweise berührungslos - miteinander kämmen und/oder in axialer Richtung zueinander versetzt sein und in axialer Richtung abwechselnd ineinander eingreifen.
  • Vorzugsweise besteht der Stauchschlitz betrachtet sowohl in axialer Richtung als auch in Durchlaufrichtung in einem ständig vorhandenen Abstand zwischen den beiden Stauchwalzen.
  • Insbesondere ist im Betrieb der Vorrichtung die Umfangsgeschwindigkeit der wenigstens einen Stauchwalze deshalb geringer als die Hälfte, vorzugsweise geringer als ein Drittel der Umlaufgeschwindigkeit der wenigstens einen Presswalze.
  • Ein Hineindrücken des zu bearbeitenden Hohlkörpers in den Pressschlitz kann mittels einer Zufuhr-Vorrichtung erfolgen, insbesondere die Flügel einer Flügelwelle, deren Rotationsachse etwa parallel zu den Rotationsachsen der wenigstens einen Presswalze liegt, falls eine solche vorhanden ist.
  • Der mit dem Hohlkörper in Kontakt geratende Flügel bewegt sich mit seinem freien Ende in Richtung des Pressschlitzes oder der Pressstation, wobei sich jedoch das freie Ende des Flügels eine Umfangsgeschwindigkeit besitzt, die deutlich größer ist als die Umfangsgeschwindigkeit der wenigstens einen Presswalze, wenn das Flachdrücken mittels einer Presswalze erfolgt.
  • Somit wird die Aufgabe hinsichtlich der Kompaktierungs-Vorrichtung dadurch gelöst, dass eine gattungsgemäße Pressvorrichtung zum Flachdrücken von Hohlkörpern zusätzlich eine stromabwärts davon angeordnete Stauchvorrichtung aufweist zum Stauchen des in der Pressvorrichtung flachgedrückten, etwa plattenförmigen Hohlkörpers in einer der Richtungen der Hauptebene dieser Platte.
  • Die Pressvorrichtung und die Stauchvorrichtung sind dabei in ihrem Abstand zueinander so angeordnet, dass sie noch auf den gleichen zu bearbeitenden Hohlkörper gleichzeitig einwirken können, also die Stauchvorrichtung mehr in dessen vorderen Bereich und die Pressvorrichtung dann eher in dessen hinteren Bereich.
  • Die Vorrichtung ist vorzugsweise nicht handbetrieben, sondern besitzt eine Antriebsvorrichtung, welche die Pressvorrichtung und/oder die Stauchvorrichtung und/oder die Zufuhr-Vorrichtung, insbesondere die Flügelwelle, antreibt und vorzugsweise auch eine Steuerung zum Steuern zumindest aller beweglichen Teile der Vorrichtung und insbesondere dieser Antriebsvorrichtung. Die Steuerung kann insbesondere Bestandteil der Steuerung einer übergeordneten Einheit sein, in der die Kompaktierungs-Vorrichtung verbaut ist, beispielsweise eines Flaschen-Rücknahmeautomaten.
  • Vorzugsweise treibt nur ein Motor sowohl die Pressvorrichtung als auch die Stauchvorrichtung und ggf. auch die Zuführvorrichtung an.
  • Die Pressvorrichtung umfasst wenigstens eine rotierend antreibbare Presswalze, deren Funktion darin besteht, den Hohlkörper zu erfassen und durch einen zwischen der Presswalze und einem Gegen-Presselement ausgebildeten Pressschlitz hindurchzuziehen, wodurch die Dicke des Hohlkörpers reduziert wird und dieser flachgedrückt wird.
  • Die Durchlaufrichtung einerseits und die axiale Richtung der wenigstens einen Presswalze andererseits definieren die Durchlaufebene.
  • Zu diesem Zweck ist die Breite des Pressschlitzes natürlich wesentlich geringer als die Dicke des unverformten Hohlkörpers, und besitzt eine Dicke etwa entsprechend der gewünschten Dicke des dadurch herzustellenden plattenförmigen Hohlkörpers.
  • Das Press-Gegenelement kann in einem einfachen Fall eine insbesondere feststehende, in Durchlaufrichtung verlaufende und etwa parallel zum Außenumfang der Presswalze angeordneten Press-Leitfläche sein, besser bewährt hat sich jedoch als Press-Gegenelement eine zweite drehbare und insbesondere auch rotierend in Gegenrichtung zur ersten Presswalze antreibbare und vorzugsweise mit dieser kämmende zweite Presswalze.
  • Zum Erfassen und auch Perforieren des Hohlkörpers besitzt diese wenigstens eine Presswalze, vorzugweise beide Presswalzen, über den Umfang und/oder in axialer Richtung verteilte und beabstandete Zähne, die vorzugsweise hakenartig und mit einer scharfen Schneide ausgebildet sind, um den Hohlkörper dadurch gut erfassen und in den Pressschlitz hineinziehen zu können und zusätzlich die Wandung des Hohlkörpers zu durchdringen und dadurch darin enthaltene Luft und Flüssigkeiten austreten zu lassen.
  • Die Zähne sind axial beabstandet in Zahn-Ringbereichen angeordnet, die vorzugsweise so dimensioniert sind, dass die Zahnringbereiche der einen Presswalze zwischen die Zahn-Ringbereiche der benachbarten Presswalze radial eintauchen können, wobei zwischen den Walzen, also in radialer Richtung, als auch in axialer Richtung zwischen den Zähnen und Zahn-Ringbereichen ein Freiraum vorhanden ist, der genügt, um den Hohlkörper zwar dazwischen hindurchzuführen, aber diesen dennoch dabei flachzudrücken.
  • Der Pressschlitz ist in axialer Richtung betrachtet vorzugsweise über seine gesamte in axialer Richtung verlaufende Länge gleich breit, worunter verstanden wird, dass die breiteste Stelle maximal 20 %, besser maximal 10 %, besser maximal 5 % breiter ist als die engste Stelle.
  • Die Rotationsachsen der Presswalzen sind vorzugsweise parallel zueinander angeordnet, könnten jedoch auch im Winkel zueinander stehen wenn die Presswalzen beispielsweise kegelig ausgeführt wären.
  • Diese Merkmale einer Pressvorrichtung sind im Wesentlichen bekannt.
  • Die nachgeordnete, also in Durchlaufrichtung stromabwärts angeordnete Stauchvorrichtung kann in einer sehr einfachen Ausführungsform aus einem im Bewegungsweg des aus dem Pressschlitz heraus kommenden, plattenförmigen Hohlkörpers angeordneten Anschlag bestehen, gegen den der plattenförmige Hohlkörper mit seinem vorderen Ende andrückt und durch den der Nachschub an Plattenmaterial aus dem Pressschlitz dieses plattenförmigen Hohlkörpers entgegen der Durchlaufrichtung gestaucht wird, wodurch ein etwa Ziehharmonika-förmiger gestauchter Hohlkörper entsteht.
  • Der Anschlag kann dabei stillstehend angeordnet sein oder sich mit dem dagegen drückenden, plattenförmigen Hohlkörper in Durchlaufrichtung mitbewegen, allerdings mit einer geringeren Geschwindigkeit als die Durchlaufgeschwindigkeit desselben Hohlkörpers durch den Pressschlitz.
  • Der Anschlag kann für das Beenden des Stauchvorganges auch aus dem Bewegungsweg des plattenförmigen und später gestauchten Hohlkörpers herausbewegt werden, um dessen Abführung zu erleichtern.
  • Der Anschlag kann auch entgegen der Durchlaufrichtung zu diesem Zweck kraft-beaufschlagt sein, beispielsweise mittels einer Feder oder einer Bremsvorrichtung, um die Stauchkraft zu definieren.
  • Die erfindungsgemäße Stauchvorrichtung umfasst jedoch wenigstens eine rotierend angetriebene erste Stauchwalze, die dem Erfassen und Hindurchziehen des flach gedrückten Hohlkörpers durch einen Stauchschlitz dient, jedoch mit einer geringeren Durchlaufgeschwindigkeit als die Durchlaufgeschwindigkeit desselben Gegenstandes weiter stromaufwärts durch den Pressschlitz, indem sich das hintere Teil des plattenförmigen Hohlkörpers noch befindet, während der vordere Teil bereits durch den Stauchschlitz bewegt wird.
  • Vorzugsweise umfasst die Stauchvorrichtung als Stauch-Gegenelement nicht nur eine in Durchlaufrichtung und parallel zu der ersten Stauchwalze sich erstreckende Stauch-Leitfläche, sondern eine zweite gegenläufig zur ersten Stauchwalze rotierende Stauchwalze, die ebenfalls in Kontakt mit dem zwischen den Stauchwalzen durchgeführten plattenförmigen und bereits gestauchten Hohlkörper steht, wodurch eben eine Gleitreibung gegenüber einer feststehenden Leitfläche vermieden wird.
  • Die Achsrichtungen der Stauch Walzen können dabei parallel zu den Achsrichtungen der Presswalze liegen, oder - in Durchlaufrichtung betrachtet - windschief, also im Winkel dazu, insbesondere im rechten Winkel dazu.
  • Aufgrund der verringerten Durchlaufgeschwindigkeit in der Stauchvorrichtung staut sich der plattenförmige Hohlkörper vor der Stauchvorrichtung an durch die Nachförderung des plattenförmigen Hohlkörpers aus dem Pressschlitz mit deutlich höherer Geschwindigkeit, sodass im Bereich zwischen der Pressvorrichtung und der Stauchvorrichtung der eigentliche Stauchvorgang stattfindet, wofür die Stauchwalzen quasi die Anschlag- und Bremsfunktion übernehmen, also als Stauch-Element dienen..
  • Da der plattenförmige Hohlkörper am Stauchschlitz somit bereits im gestauchten und damit auch gegenüber dem plattenförmigen Zustand verdickten, Ziehharmonika-förmigen Zustand ankommt, ist der Stauchschlitz quer zur Durchlaufebene auch mindestens genauso breit wie der Pressschlitz, vorzugsweise breiter dimensioniert als der Pressschlitz, vorzugsweise jedoch höchstens doppelt so breit, allerhöchstens dreimal so breit doppelt so breit.
  • Denn im Stauchschlitz soll ja der bereits flachgedrückte und gestauchte Hohlkörper nochmals in Querrichtung zur Durchlaufrichtung mittels der Stauchwalzen zusammengedrückt werden, um das Volumen des Hohlkörpers nochmals zu verringern.
  • Dabei ist der Stauchschlitz in Durchlaufrichtung so positioniert, dass ein aus der Pressvorrichtung herauskommender flachgedrückter Hohlkörper zwangsweise in den Stauchschlitz hinein ragt, und zwar noch bevor er die Pressvorrichtung vollständig verlassen hat, und von der wenigstens einen rotierenden Stauchwalze oder dem Stauchwalzenpaar erfasst und langsamer durch das Stauchwalzenpaar und den Stauchschlitz hindurchbewegt wird.
  • Wie bei den Presswalzen sollte auch bei den Stauchwalzen der Stauchschlitz in axialer Richtung der Walzen überall die gleiche Breite besitzen, also die breiteste Stelle nicht breiter als maximal 20 %, besser maximal 10 %, besser maximal 5 %, breiter sein als die engste Stelle. Vorzugsweise liegen die Rotationsachsen der Presswalzen ebenfalls parallel zueinander und/oder parallel zu den Rotationsachse der Stauchwalzen.
  • Die Walzen - vorzugsweise sowohl die Presswalzen als auch die Stauchwalzen - besitzen an ihren axialen Enden jeweils einen Lagerzapfen, und der in der Regel mit Zähnen besetzte Wirkbereich dazwischen kann dazu benutzt werden um auf die Hohlkörper einzuwirken. Noch konkreter ist der Wirkbereich derjenige axiale Bereich der Walzen, der mit den Hohlkörpern in Kontakt geraten kann, insbesondere der Bereich zwischen den beidseitigen Begrenzungsplatten, gegenüber denen die Presswalzen gelagert sind. Vorzugsweise ist der Wirkbereich in axialer Richtung kürzer als die größte Erstreckung des kleinsten zur Bearbeitung vorgesehenen Hohlkörpers.
  • Dies bewirkt, dass die Hohlkörper nur in Richtung ihrer größten Erstreckung der gesamten Vorrichtung zugeführt werden können.
  • Der Mengendurchsatz wird dadurch gegenüber einer Zuführung in Querrichtung des Hohlkörpers reduziert, jedoch ist für das anschließende Stauchen ein in Durchlaufrichtung möglichst langer, plattenförmiger, flachgedrückter Hohlkörper von Vorteil, da dies erleichtert, dass dessen vorderer Bereich bereits von der Stauchvorrichtung ergriffen ist, bevor sein hinterer Bereich die Pressvorrichtung verlassen hat.
  • Dementsprechend muss auch der Abstand zwischen Pressvorrichtung und Stauchvorrichtung in Durchlaufrichtung, der sog. Durchlauf-Abstand, in Abhängigkeit von den Dimensionen der zur Bearbeitung vorgesehenen Hohlkörper gewählt werden, und kann insbesondere einstellbar sein, insbesondere auch während des Betriebes der Vorrichtung. Konkret ist der Durchlauf-Abstand der Abstand zwischen den jeweils engsten Stellen einerseits des Pressschlitzes und andererseits des Stauchschlitzes.
  • Um auch den kürzesten zur Bearbeitung vorgesehenen Hohlkörper noch stauchen zu können, muss dieser Durchlaufabstand geringer sein als die in Durchlaufrichtung gemessene Länge dieses kürzesten zur Bearbeitung vorgesehenen Hohlkörpers, insbesondere kürzer als dessen größte Erstreckung oder dessen größte Erstreckung im flachgedrückten, plattenförmigen Zustand.
  • In der Regel soll die Vorrichtung jedoch ein bestimmtes Größen-Spektrum an Hohlkörpern verarbeiten können, und der Durchlauf-Abstand - und teilweise auch die Durchmesser der Stauchwalzen und/oder der Presswalze - sind fix und so gewählt, dass alle Hohlkörper innerhalb dieses Größenbereiches damit bearbeitet werden können.
  • Da jedoch bei einem fixen Durchlauf-Abstand die bei einem langen flachgedrückten Hohlkörper auftretende Stauchung stärker ist als bei einem in Durchlaurichtung kurzen flachgedrückten Hohlkörper, darf der Durchlauf-Abstand auch nicht zu kurz gewählt werden, da dann vor allem bei einem in Durchlaufrichtung sehr langen Hohlkörper die Stauchung vor allem bei einem Hohlkörper aus Plastik so stark werden könnte, dass an den Biegungen des Ziehharmonika-förmigen gestauchten Hohlkörpers, und erst recht des gestauchten und anschließend nochmals in Querrichtung zusammengedrückten Hohlkörpers, - sofern dieser aus Kunststoff besteht - Weißbruch auftreten könnte, der den Wert des gestauchten Hohlkörpers verringern würde.
  • In der Praxis wird man den Durchlauf-Abstand vorzugsweise so wählen, dass der in Durchlaufrichtung kürzeste zur Bearbeitung vorgesehene Hohlkörper gerade noch ausreichend gestaucht wird, aber beim längsten möglichen Behälter noch kein Weißbruch auftritt. Auch die Breite des Stauch-Schlitzes wird man in diesem Sinne einstellen.
  • Falls der Durchlauf-Abstand verstellbar ist, stellt sich dieser vorzugsweise automatisch ein abhängig von der in der Zuführung zur Vorrichtung detektierten Länge des Hohlkörpers in Durchlaufrichtung, wird also umso kürzer eingestellt, je kürzer der soeben zugeführte Hohlkörper in Durchlaufrichtung ist.
  • Ebenso wie bei der wenigstens einen Presswalze ist auch bei der wenigstens einen Stauchwalze ein Besatz mit radial vorstehenden Zähnen vorhanden, die vorzugsweise über den Umfang verteilt angeordnet sind und/oder vorzugsweise in axial beabstandeten Zahn-Ringbereichen angeordnet sind.
  • Im Gegensatz zu den Presswalzen müssen in radialer Richtung die Zähne bzw. Zahn-Ringbereiche bei zwei vorhandenen Stauchwalzen jedoch nicht zwingend ineinander eingreifen, auch angesichts der Tatsache, dass der an den Stauchwalzen ankommende Hohlkörper bereits gestaucht und damit gegenüber dem flachgedrückten Zustand am Auslauf der Pressvorrichtung verdickt ist, jedoch bewirkt ein solches Ineinandergreifen besonders wirksam, dass kein Schlupf zwischen dem Hohlkörper und den Stauchwalzen im Stauchschlitz auftreten kann.
  • Diese Verdickung kann durch die Stauchvorrichtung und insbesondere die wenigstens eine Stauchwalze, also im Stauchschlitz, nur begrenzt verringert werden, da bei einem zu starken Zusammendrücken quer zur Hauptebene des nun zwar dickeren, aber immer noch im Prinzip plattenförmigen, gestauchten Hohlkörpers dies zu einer unerwünschten Längung des gestauchten Hohlkörpers in Durchlaufrichtung führen würde.
  • Die Breite des Stauchschlitzes ist daher so gewählt, dass der hindurch geführte, gestauchte plattenförmige Hohlkörper von den in der Regel beiden Stauchwalzen gut erfasst werden kann, aber der Hohlkörper nicht schneller durch den Stauchschlitz hindurchgedrückt werden kann, als es der Umfangsgeschwindgkeit der wenigstens einen Stauchwalze entspricht.
  • Die Zahnform der wenigstens einen Stauchwalze unterscheidet sich in der Regel jedoch von derjenigen der wenigstens einen Presswalze:
    Da die Dickenreduzierung im Stauchschlitz meist geringer ist als im Pressschlitz, ist das Erfassen und Hineinziehen durch die Zähne der wenigstens einen Stauchwalze unproblematisch, zumal der zugeführte Hohlkörper mit einer erheblichen Kraft in Durchlaufrichtung dem Stauchschlitz zugeführt wird und gegen die Zähne der Stauchwalzen drückt. Die Zähne der Stauchwalze sollen also primär durch entsprechende Verwerfung des hindurchgeführten Hohlkörpers eine ausreichend starke Haftreibung zwischen primär den Zähnen der Stauchwalzen und dem hindurch transportierten Ziehharmonika-förmigen Hohlkörper bewirken.
  • Die Zähne der Presswalze sind vorzugsweise hakenförmig gestaltet für das Ergreifen und auch Einschneiden, also Perforieren, der Wandung des Hohlkörpers, weshalb die in Drehrichtung der Presswalze weisende Frontfläche radial zur axialen Richtung steht oder deren freies äußeres Ende gegenüber dem inneren Ende in Drehrichtung sogar weiter vorn liegt und dadurch die besagte Hakenform generiert.
  • Da dies bei der Stauchwalze nicht notwendig ist, kann bei diesen auch die Frontflanke in Drehrichtung zurückweichend ausgebildet sein, also das freie äußere Ende der Frontflanke des Zahnes in Drehrichtung weiter hinten liegen als das radial innere Ende.
  • Da auch keine Schneidfunktion durch die Zähne der Stauchwalze erfüllt werden muss, ist an den relevanten Stellen keine scharfe Kante, sondern eine konvexe oder konkave Rundung oder Abschrägung vorgesehen.
  • Dies betrifft bei den Zähnen der Stauchwalze deren äußere Kanten, also entweder die in Umfangsrichtung verlaufenden Kanten und/oder auch die quer zur Drehrichtung verlaufenden äußeren Endkanten die dann eine konvexe Rundung oder Abschrägung aufweisen können.
  • Die Einschnitte zwischen zwei in axialer Richtung aufeinanderfolgenden Zähnen können am Übergang von ihrem Boden zu ihren Flanken dagegen eine konkave Rundung oder Abschrägung aufweisen.
  • Wenn die Zähne nicht nur aus einem, meist zylinder-förmigen, Grundkörper der Walze, insbesondere der Stauchwalze, vorstehen, sondern zwischen den entsprechenden Zahn-Ringbereichen zusätzlich eine Umfangsnut in diesem Grundkörper ausgebildet ist, gilt dies auch für die in Umfangsrichtung verlaufenden Außenkanten dieser Umfangsnuten - eine konvexe Rundung oder Abschrägung aufweisen können - und/oder den Übergang vom Boden zu den Flanken, die dann eine konkave Rundung oder Abschrägung aufweisen können.
  • Dies dient einerseits dazu, dass das Auftreten von Weißbruch im Kunststoffmaterial beim Stauchen möglichst vermieden wird, und andererseits auch dazu, dass beim Stauchen und gegebenenfalls anschließenden Zusammendrücken sich keine umfänglich geschlossenen Kanäle auf der Außenseite des Behälters bilden, sondern lediglich nach außen hin offene Vertiefungen, damit beim anschließenden Entfernen der Etikettenreste von der Oberfläche des Behälters alle Oberflächenbereiche zugänglich sind, insbesondere für das zum Entfernen meist genutzte Spülen und anschließende Trockenblasen oder Abblasen der Etikettenreste.
  • Abgesehen davon, sollte natürlich auch bei zusammenwirkenden, mit Zähnen besetzten, Walzen, die ineinander eintauchen, deren Achsabstand also geringer ist als die Summe ihrer größten Radien, sowohl in radialer als auch in axialer Richtung zwischen den zusammenwirkenden Walzen und deren Teilen ein ausreichender Freiraum zum Hindurchführen des Hohlkörpers vorhanden sein.
  • Von den bekannten, ein Paar von Press- und Schneidwalzen aufweisenden Pressvorrichtungen sind prinzipiell plattenförmige oder fingerförmige Abstreifer bekannt, die in Durchlaufrichtung stromabwärts der Presswalzen fest montiert sind und radial in die axialen Abstände, insbesondere die Umfangsnuten, zwischen den Zahn-Ringbereichen hineinragen und möglichst nah bis an den Nutengrund heranreichen.
  • Damit wird verhindert, dass sich das Material des Hohlkörpers so stark mit einem Zahn verhakt, dass dieser das Wandungsmaterial am Ende des Pressschlitzes nicht freigibt, sondern in Umfangsrichtung mitnimmt und damit den bereits flachgedrückten Hohlkörper wieder unerwünschter Weise aufweitet.
  • Die dem Pressschlitz zugewandte Abstreiferfläche, bei plattenförmigen Abstreifern also deren Schmalseite, stellen somit eine Verlängerung und Begrenzung des Pressschlitzes als Führungsschlitz dar und begrenzen in diesem Bereich des Durchlaufen die Verdickung des plattenförmigen Hohlkörpers durch das dort bereits auftretende Stauchen.
  • Bei der erfindungsgemäßen Vorrichtung mit stromabwärts nachgeordneter Stauchvorrichtung, insbesondere einem Stauchwalzen-Paar, sind diese Abstreifer vorzugsweise in Richtung der Stauchvorrichtung verlängert und können sogar in die Zwischenräume zwischen den Zahn-Ringbereichen der Stauchwalze oder - walzen eintauchen.
  • Dies erfordert dann natürlich, dass quer zur Durchlaufrichtung betrachtet die Abstände zwischen den Zahn-Ringbereichen der wenigstens einen Presswalze mit denen der wenigstens einen Stauchwalze fluchten und vorzugsweise etwa gleich breit sind.
  • Vorzugsweise gilt dies auch für die jeweiligen Zahn-Ringbereiche und deren Erstreckung und Positionierung in axialer Richtung.
  • Dadurch begrenzen die Abstreifer-Flächen - betrachtet in Achsrichtung der Walzen - die Dicke des Stauchbereiches zwischen Pressvorrichtung und Stauchvorrichtung auf das Maß, um welches sich der in der Pressvorrichtung flachgedrückte Hohlkörper durch den Stauchvorgang quer zur Durchlaufebene - in axialer Richtung der Walzen betrachtet - verbreitern kann.
  • Diese Begrenzung durch die Abstreifer-Flächen verhindert auch, dass der gesamte, sich dazwischen bildende Ziehharmonika-förmige Hohlkörper seitlich ausbrechen kann, sodass die gestauchte, Ziehharmonika-förmige Platte im Wesentlichen eine ebene Platte bleibt.
  • Vorzugsweise nimmt - wiederum betrachtet in axialer Richtung der Walzen - die Breite dieses durch die Abstreiferflächen begrenzten Führungsschlitzes zwischen Pressvorrichtung und Stauchvorrichtung in Richtung Stauchvorrichtung zu.
  • Bevorzugt enden die Abstreiferflächen in Durchlaufrichtung jedoch vor dem Außenumfang der Stauchwalzen, damit in dem in Durchlaufrichtung gemessenen Abstand dazwischen sich der plattenförmige Hohlkörper aufgrund des Stauchens relativ unbegrenzt quer zur Durchlaufebene ausdehnen kann, denn ansonsten könnte es bei einem allseits begrenzten Stauchschlitz zu hohen auftretenden Kräften durch das angestaute Material des Hohlkörpers kommen, welches die Vorrichtung blockieren oder auch beschädigen könnte.
  • Wie bei den gattungsgemäßen Pressvorrichtungen bestehend aus einem Paar von Press- und Schneidwalzen prinzipiell bekannt, kann der Pressvorrichtung eine Zufuhr-Vorrichtung stromaufwärts vorgeordnet sein, die die ankommenden Hohlkörper zum einen vereinzelt und vor allem in den Pressschlitz hineindrückt.
  • Hierfür ist prinzipiell bereits eine Flügelwelle bekannt, die um eine Rotationsachse parallel zu den Rotationsachsen der Pressvorrichtung rotiert, und von der radial Flügel abstreben, die in Kontakt mit einem zugeführten Hohlkörper geraten - der vorzugsweise auf einer schräg nach unten gerichteten Zufuhr-Gleitfläche in Richtung Pressschlitz gleitet - und diesen in Richtung Pressschlitz drückt.
  • Im vorliegenden Fall besitzt die Flügelwelle vorzugsweise zwei einander gegenüber liegende und damit in diametral entgegengerichtete Richtungen radial abstrebende Flügel.
  • Die Flügel besitzen vorzugsweise in Drehrichtung nacheilende äußere freie Enden, die also in Drehrichtung weiter hinten liegen als ihre inneren Enden nahe an der Rotationsachse.
  • Eine solche Flügelwelle besitzt dabei in Betrieb meist eine größere Umfangsgeschwindigkeit als die Umfangsgeschwindigkeit der wenigstens einen Presswalze in der Pressvorrichtung. Dies bewirkt den weiteren Effekt, dass die Flügel der Flügelwelle beim Entlangstreifen an dem Hohlkörper diesen bereits ebenfalls etwas zusammendrücken, was das Ergreifen und Flachdrücken in der anschließenden Pressvorrichtung erleichtert.
  • Dabei ist der Abstand der wenigstens einen Flügelwelle, die mit der genannten Zufuhr-Gleitfläche einen Zufuhr-Schlitz bildet - so gewählt, dass das vordere Ende des zugeführten Hohlkörpers bereits von den Press- und meist auch Schneid-Walzen der Pressvorrichtung ergriffen ist, während der hintere Bereich des Hohlkörpers noch von den Flügeln der Flügelwelle erfasst und vorwärts geschoben ist.
  • In radialer Richtung ist der geringstmögliche Abstand zwischen dem freien Ende eines Flügels und dem Flügel-Gegenelement, insbesondere der Zufuhr-Gleitfläche, kleiner als die Dicke des dünnsten zur Bearbeitung vorgesehenen Hohlkörpers, damit die Flügel noch in Kontakt mit einem solchen Hohlkörper gelangen können.
  • Der größtmögliche Abstand zwischen der Flügelwelle, insbesondere deren Zentralkörper, an dem die beiden Flügel befestigt sind, und dem Flügel-Gegenelement, insbesondere der Zufuhr-Gleitfläche, ist dagegen größer als die Dicke des dicksten zur Bearbeitung vorgesehenen Hohlkörpers, da ansonsten ein solcher dickster Hohlkörper nicht mehr in den Zufuhr-Schlitz eingeführt werden könnte. Vorzugsweise sind die Flügel - in Achsrichtung betrachtet - bogenförmig oder polygonzugförmig ausgebildet mit in Drehrichtung nacheilendem Ende.
  • Die Flügel der Flügelwelle erstrecken sich insbesondere in axialer Richtung über die gesamte Länge des Wirkbereiches der wenigstens einen Presswalze und sind an ihrer freien Endkante vorzugsweise gezahnt ausgebildet.
  • Vorzugsweise besitzen die Flügel bei der erfindungsgemäßen Ausführungsform eine zum freien Ende hin abnehmende Biegesteifigkeit, sodass die Flügel an ihren freien Enden vorzugsweise etwas elastisch ausgebildet sind.
  • Dies kann auf einfache Art und Weise auch bei Flügeln, die in axialer Richtung betrachtet aus einem über ihre gesamte radiale Erstreckung gleich dicken z.B. Blechmaterial bestehen, dadurch erreicht werden, dass der Flügel auf seiner bezüglich der Drehrichtung Rückseite in seinem mittleren Bereich abgestützt ist. Dies kann auf einfache Art und Weise durch die an dieser Rückseite anliegende hintere freie Endkante des anderen Flügels erfolgen, der sich an der Rotationsachse der Flügelwelle vorbei erstreckt bis zur Rückseite des anderen Flügels.
  • Durch diese spezifische Ausbildung der Zufuhr-Vorrichtung können die in diesem Fall in ihrer Längsrichtung zugeführten Hohlkörper auch bei einer relativ großen Dicke und damit meist auch Länge dieses Hohlkörpers von der Pressvorrichtung sehr stark flachgedrückt werden, was die Funktion der anschließenden Stauchvorrichtung und den dort auftretenden Staucheffekt wie dargelegt vergrößert.
  • Gerade bei relativ großen und damit langen Hohlkörpern kann somit eine starke Stauchung und damit Volumenreduzierung erreicht werden.
  • c) Ausführungsbeispiele
  • Ausführungsformen gemäß der Erfindung sind im Folgenden beispielhaft näher beschrieben. Es zeigen:
  • Figuren 1a, b:
    unterschiedliche perspektivische Ansichten der ersten Bauform der Kompaktierungs-Vorrichtung,
    Figuren 2a, b:
    Schnittdarstellungen durch die Kompaktierungs-Vorrichtung der Figuren 1a, b, geschnitten lotrecht zur Achsrichtung der darin enthaltenen Walzen,
    Figuren 3a - d:
    vergrößerte Detaildarstellungen in einer Ansicht analog der Figuren 2 in unterschiedlichen Betriebszuständen bei der Bearbeitung eines Hohlkörpers,
    Figur 3b1:
    eine Detailvergrößerung aus Figur 3b,
    Figur 3d1:
    eine Detailvergrößerung aus Figur 3d,
    Figuren 4a, b:
    eine Stauchwalze in Seitenansicht und Stirnansicht,
    Figuren 5a, b:
    eine Presswalze in Seitenansicht und Stirnansicht,
    Figur 6:
    eine Seitenansicht auf gemäß dem Montagezustand in Durchlaufrichtung je eine hintereinander angeordnete Presswalze und Stauchwalze mit Abstreifern dazwischen
    Figur 7a:
    eine zweite, nicht-erfindungsgemäße Bauform der Kompaktierungs-Vorrichtung geschnitten lotrecht zur Achsrichtung der darin enthaltenen Presswalze,
    Figur 7b:
    eine Detailvergrößerung aus Figur 7a,
    Figur 8:
    eine dritte Bauform der Kompaktierungs-Vorrichtung geschnitten lotrecht zur Achsrichtung der darin enthaltenen Presswalze und Stauchwalze.
  • Der Grundaufbau der Stauchvorrichtung kann am besten anhand der Figuren 1a, b sowie Figur 2 beschrieben werden:
    Wie am besten Figur 2a, b erkennen lässt, umfasst die Kompaktierungs-Vorrichtung
    • zum einen eine Pressvorrichtung 1 zum Zusammenpressen von Hohlkörpern, umfassend zwei um parallele Rotationsachsen 1'a, 1'b nebeneinander gegenläufig rotierende und ineinander eingreifende Presswalzen 1a, b
    • sowie eine in Durchlaufrichtung 10 stromabwärts der Pressvorrichtung 1 angeordnete Stauchvorrichtung 3 umfassend zwei um zueinander parallele Rotationsachsen 3'a, 3'b benachbart nebeneinander gegenläufig rotierende Stauchwalzen 3a, 3b, die entweder ebenfalls miteinander kämmen oder einen sehr geringen Stauchschlitz 5 zwischen sich aufweisen.
  • Die Presswalzen 1a, b sind gegenläufig in eine solche Richtung angetrieben, dass sie sich im einander benachbarten Umfangsbereich in Durchlaufrichtung 10 bewegen. Das gleiche gilt auch für die beiden Stauchwalzen 3a, b.
  • Der Pressschlitz 2, also der Durchgang zwischen den beiden Presswalzen 1a, 1b und der Stauchschlitz 5, also der Durchgang zwischen den beiden Stauchwalzen 3a, b, fluchten vorzugsweise zueinander, indem die beiden Walzenpaare eine zueinander fluchtende Mittelsenkrechte zur in dieser Ansicht eingezeichneten Verbindungslinie zwischen ihren jeweiligen Rotationsachsen 1'a, 1'b bzw. 3'a, 3'b aufweisen, die die Durchlaufrichtung 10 darstellt, und in diesem Fall nicht exakt vertikal sondern schräg von oben nach unten gerichtet ist.
  • In den Figuren 2a, b ist an jeder der Presswalzen 1a, b jeweils ein plattenförmiger Abstreifer 9 zu sehen, dessen Hauptebene in der Zeichenebene der Figur 2a, b liegt, und von denen sich in Blickrichtung der Figur 2 jeweils mehrere hintereinander eingreifend in die Nuten 8 (siehe Figur 5a, b), insbesondere in alle Nuten 8, befinden, und der zwischen der jeweiligen Presswalze 1a, b und einem Gegenkörper formschlüssig quer zur axialen Richtung in Position gehalten wird. Die Abstreifer 9 sind beispielsweise auch in Figur 3d1 und in Figur 6 dargestellt.
  • In Durchlaufrichtung 10 stromaufwärts der Pressvorrichtung 1 ist eine Zufuhrvorrichtung 20 zum Zuführen der zu bearbeitenden Hohlkörper 100.1a, 100.1b, vorgesehen, bestehend aus einer schräg abwärts in Richtung Pressschlitz 2 verlaufenden Flügel-Gleitfläche 23 sowie einer im Abstand zu dieser angeordneten Flügelwelle 17, deren Rotationsachse 17' ebenfalls parallel zu den Rotationsachsen 1'a, 1'b bzw. 3'a, 3'b der vier Walzen 1a, 1b bzw. 3a, 3b angeordnet ist, und die in einer solchen Drehrichtung antreibbar ist, dass die von der Flügelwelle 17 beidseits abstehenden beiden Flügel 17a, 17b auf der der Flügel-Gleitfläche 23 zugewandten Seite dazwischen befindliche Hohlkörper in Durchlaufrichtung schieben, also zu den beiden Walzenpaaren der Pressvorrichtung 1 und der nachgelagerten Stauchvorrichtung 3 befördern.
  • Wie am besten die Figuren 1a, b zeigen, sind alle vier Walzen 1a, b, 3a, b als auch die Flügelwelle 17 zwischen zwei Seitenwangen eines Gehäuses aufgenommen und gegenüber diesen gelagert und alle vier Walzen gemeinsam angetrieben von einer Antriebsvorrichtung 6, die einen Elektromotor 6a umfasst sowie einen elektrischen Anschlusskasten 7, wobei die gesamte Antriebsvorrichtung 6 auf einer Querplatte montiert ist, die sich in Querrichtung zu den beiden Seitenwangen erstreckt und mit beiden verschraubt ist.
  • Die Antriebsvorrichtung 6 treibt über Zahnräder und Kettentriebe alle vier Walzen 1a, b, 3a, b als auch die Flügelwelle 17 an, jedoch mit den im Folgenden angesprochenen unterschiedlichen Winkelgeschwindigkeiten.
  • Zu diesem Zweck treibt die Antriebsvorrichtung 6 über einen nah außerhalb der einen Seitenwange befindlichen Kettenantrieb die eine der beiden Presswalzen an, die ihrerseits über darauf drehfest befestigte Ritzel auch die andere Presswalze sowie die beiden Stauchwalzen 3a, b antreibt, während außerhalb der anderen Wange über einen weiteren Kettenantrieb die Flügelwelle 17 von der direkt angetriebenen Presswalze 1b aus angetrieben wird, ebenfalls über einen Kettentrieb.
  • Ferner ist zu erkennen, dass in diesem Fall der Achsabstand der beiden Presswalzen 1a, b der gleiche ist wie der beiden Stauchwalzen 3a, b, was aber für die Verwirklichung der Erfindung nicht zwingend erforderlich ist.
  • Der Durchlauf-Abstand 21 zwischen den parallel zueinander verlaufenden Verbindungslinien zwischen den beiden Rotationsachsen des Presswalzenpaares einerseits und des Stauchwalzenpaares andererseits - betrachtet in Achsrichtung wie in Figur 2a - ist nur geringfügig größer als der Mittelwert aus dem Durchmesser einer Presswalze und dem Durchmesser einer Stauchwalze.
  • An dieser Stelle soll klargestellt werden, dass aufgrund der zweidimensionalen Darstellung aus Vereinfachungsgründen von einer "Verbindungslinie" zwischen den beiden Rotationsachsen gesprochen wird, wobei natürlich klar sein sollte, dass es sich dabei geometrisch um eine Verbindungsebene handelt, die durch die beiden Rotationsachsen definiert wird.
  • Vorzugsweise sind einerseits die beiden Presswalzen 1a, b - zumindest in ihrem Wirkbereich, der später erläutert wird - und andererseits auch die beiden Stauchwalzen 3a, b in axialer Richtung betrachtet spiegelbildlich ausgebildet.
  • Die Figuren 2a, b unterscheiden sich dadurch, dass dabei die Flügelwelle 17 in einer jeweils anderen Drehlage dargestellt ist:
    In Fig. 2b befindet sich die Flügelwelle 17 in einer solchen Drehlage, dass einer der Flügel 17a sich in der Position befindet, in der seine - in Achsrichtung betrachtet - frei endende Flügelkante 17a1 den geringstmöglichen Flügel-Abstand 24a zur Flügel-Gegenfläche 23 einnimmt.
  • In Fig. 2b ist die Flügelwelle 17 dagegen in einer solchen Lage gezeichnet, dass der freie Durchgang zwischen der Flügelwelle 17 und der Flügel-Gleitfläche 23 maximiert ist, also der größtmögliche Flügel-Abstand 24b dargestellt ist.
  • Abhängig davon, welcher kleinste und größte Flügel-Abstand 24a, b gewünscht wird, muss der Radius, also der Flugkreis, der frei endenden Kante 17a1, 17b1 der Flügel 17a, b zu der Rotationsachse 17' festgelegt werden sowie der Achsabstand 22 zwischen der Rotationsachse 17' der Flügelwelle 17 und der Flügel-Gleitfläche 23.
  • Die in diesem Fall nur zwei Flügel 17a, b, welche die Flügelwelle 17 aufweist, sind identisch gestaltet und an der Flügelwelle 17 montiert, sodass der radiale Abstand ihrer freien Endkanten zur Rotationsachse 17' der gleiche ist.
  • Die Figuren 3a - d zeigen - wiederum in einer Schnittdarstellung der Kompaktierungs-Vorrichtung mit Blickrichtung in Achsrichtung der Walzen 1a, b, 3a, b und/oder der Flügelwelle 17 - die Funktion des Zuführens, Zusammenpressens und Stauchens der zu bearbeitenden Hohlkörper 100.1a, 100.1b.
  • In Fig. 3a befindet sich ein noch unverformter großer Hohlkörper 100.1a in Form einer Kunststoff-Flasche in der Zufuhrvorrichtung 20, in der der noch unverformte Hohlkörper 100.1a auf der Flügel-Gleitfläche 23 aufliegt und auf dieser - in Richtung seiner größten Erstreckung 100' - nach unten rutscht, sodass sein unteres Ende schon die eine der beiden Presswalzen 1a, b berührt.
  • Wie zu erkennen, ist die kleinste Erstreckung 100" dieses Hohlkörpers 100.1a des größten zu verarbeitenden Hohlkörpers 100.1 immer noch kleiner als der größtmögliche Flügel-Abstand 24b zwischen der Flügelwelle 17 und der Flügel-Gleitfläche 23.
  • Die in Drehrichtung weisende Frontfläche des Flügels 17a weist in dem Bereich zwischen dem Zentralkörper der Flügelwelle 17, an dem er verschraubt ist, und seiner freien Endkante 17a1 - die wie in Figur 1b dargestellt eine Zahnung 25 aufweisen kann - etwa in der Mitte eine Biegung auf, sodass der freie Endbereich nach hinten, also in Drehrichtung nacheilend, gebogen ist gegenüber dem näher an dem Zentralkörper liegenden Bereich. Dieser Flügel 17a liegt etwa mit diesem Bereich mit seiner Frontfläche an der Oberseite des noch unverformten Behälters 100.1a an.
  • Bei Weiterdrehung der Flügelwelle 17, wie in Fig. 3b dargestellt, drückt dieser Flügel 17a zum einen den Hohlkörper 100.1a in Querrichtung 11 der Richtung seiner größten Erstreckung 100', insbesondere in Richtung seiner kleinsten Erstreckung 100", zusammen und gegen die Flügel-Gleitfläche 23 und zusätzlich weiter in Richtung der Pressvorrichtung 1, also des Presswalzenpaares 1a, b, die mit ihren Zähnen das sie kontaktierende Ende des Hohlkörpers 100.1a erfassen und zwischen sich, also durch den Pressschlitz 2, hindurchziehen und dabei zu einem etwa plattenförmigen Hohlkörper 100.2a verformen, wie in Fig. 3c dargestellt.
  • Dabei besitzt die Flügelwelle 17 eine mehrfach höhere Umfangsgeschwindigkeit als die Presswalzen 1a, b.
  • Da zwischen den Presswalzen 1a, b in aller Regel kein in Blickrichtung der Fig. 3b, c verbleibender freier Abstand besteht, sondern die Zähne der einen Presswalze 1a zwischen die Zähne der anderen Presswalze 1b eingreifen, ist der etwa plattenförmig verformte Hohlkörper 100.2a einerseits gewellt in Durchlaufrichtung 10, andererseits auch gewellt in Achsrichtung 1'a der Presswalzen 1a, b, wie in der Vergrößerung der Figur 3c1 zu erkennen. Zusätzlich sind durch deren Zähne 4.1 die in diesem plattenförmigen Zustand eng zueinander benachbart liegenden Wandabschnitte des plattenförmig verformten Hohlkörpers 100.2a teilweise durchschnitten, aber nur über eine begrenzte Schnittlänge, also perforiert.
  • Durch weiteres Hindurchziehen wird der plattenförmige Hohlkörper 100.2a immer weiter aus dem Pressschlitz 2 der Pressvorrichtung 1 vorstehen, und somit in den Stauchschlitz 5 zwischen den beiden nachfolgenden Stauchwalzen 3a, b hineinragen und von deren Zähnen 4.3 ergriffen werden, wie in Figur 3d und der Vergrößerung Figur 3d1 dargestellt.
  • Der Stauchschlitz 5 kann dabei - wie in Figur 3a dargestellt - in axialer Richtung betrachtet ein Abstand zwischen den Außenumfängen der Stauchwalzen 3a, b sein, bei gezahnten Stauchwalzen also ein freier Abstand zwischen den Flugkreisen von deren Zähnen 4.3, oder diese Außenumfänge bzw. Flugkreise können sich berühren oder fast berühren - mit einem Abstand, der deutlich geringer ist als die Dicke des gestauchten Hohlkörpers 100.3 -, wie in den Figuren 2a, b, 3b bis d dargestellt. Die Flugkreise der Zähne 4.3 können jedoch in radialer Richtung auch überlappen, sodass die Zähne 4.3 in Umfangsrichtung wechselseitig in die Lücken zwischen den Zähnen 4.3 der benachbarten Stauchwalzen eintauchen, wie in Figur 4b dargestellt.
  • Da die Umfangsgeschwindigkeit der Stauchwalzen 3a, b jedoch deutlich geringer ist als die Umfangsgeschwindigkeit der Presswalzen 1a, b, wird der von den Presswalzen 1a, b aus dem Pressschlitz 2 herausgeschobene plattenförmige Hohlkörper 100.2a zwischen dem Presswalzenpaar 1a, b und den Stauchwalzenpaar 3a, b entgegen der Durchlaufrichtung 10 gestaucht und in dieser - in Durchlaufrichtung 10 stark verkürzten - Länge der bereits gestauchte Hohlkörper 100.3a zwischen den Stauchwalzen 3a, b hindurchgeführt und dadurch erneut quer zur Durchlaufebene 10' - die die in Durchlaufrichtung 10 verlaufende Ebene die parallel zu den vier Rotationsachsen 1'a, 1'b, 3'a, 3'b liegt - zusammengedrückt zu einem gestauchten und zusätzlich in Querrichtung 11 zusammengedrückten Hohlkörper 100.4a.
  • Wie vor allem die Vergrößerung der Figur 3d1 zeigt, begrenzen die gegeneinander gerichteten Schmalseiten der plattenförmigen Abstreifer 9, die Abstreifer-Flächen 9', in Querrichtung 11 zur Durchlaufebene 10' einen Führungsschlitz 12, der in diesem Bereich die Verdickung des flachgedrückten Hohlkörpers 100. 2a begrenzt.
  • Da in Durchlaufrichtung 10 die Abstreifer 9 jedoch in einem Abstand 26 vor dem Außenumfang der Stauchwalzen 3a, b enden, ist in diesem Abstand 26 eine zusätzliche Verdickung des bereits sich stauchenden Hohlkörpers 100. 3a möglich, bevor dieser von den Stauchwalzen 3a, b erfasst und in Querrichtung 11 erneut wieder zusammengedrückt wird.
  • In dieser Schnittdarstellung der Figuren 3c, 3d, wird offensichtlich, dass dieser Endzustand des Hohlkörpers 100.4a - dessen Dimension in Blickrichtung dieser Figuren über alle drei Arbeitssituationen der Figur 3b, c, d abnimmt - ein stark verringertes Volumen gegenüber dem nur durch die Pressvorrichtung 1 zusammengedrückten, plattenförmigen Hohlkörper 100.2a besitzt, dessen Länge in Durchlaufrichtung im Wesentlichen der größten Erstreckung 100' des Hohlkörpers 100.1a entspricht.
  • In Fig. 3b ist zusätzlich neben dem maximal großen, durch die Kompaktiervorrichtung noch zu verarbeitenden, Hohlkörper 100.1a auch der kleinste durch die Vorrichtung noch zu bearbeitende Behälter 100.1b in Form einer Getränkedose dargestellt.
  • Um die Stauchwirkung zu optimieren, soll sichergestellt werden, dass die zu bearbeitenden Hohlkörper 100.1 jeweils in Richtung ihrer größten Erstreckung 100' eingezogen und in Durchlaufrichtung 10 durch die Vorrichtung geführt werden.
  • Aus diesem Grund ist die Breite des in Fig. 5a dargestellten axialen Wirkbereiches 1.1 der Presswalzen 1a, 1b kleiner gewählt als die längste Erstreckung 100' des kleinsten, also vor allem kürzesten, zur Verarbeitung vorgesehenen Behälters 100.1b, damit auch dieser zwangsweise in Richtung seiner größten Erstreckung 100' der Vorrichtung zugeführt werden muss.
  • Ferner ist in Fig. 3b zu erkennen, dass der in Fig. 2a dargestellte kleinste Flügel-Abstand 24a geringer ist als die kleinste Erstreckung 100" dieses kleinsten zu bearbeitenden Behälters 100.1b, damit auch bei einem solchen Behälter der Flügel 17a noch den Behälter 100.1b erfasst und in Richtung Pressvorrichtung 1 weiterschiebt und ihn dabei vorzugsweise auch noch in seiner Querrichtung, also in Richtung seiner geringsten Erstreckung 100", zusammendrückt. Denn gerade dieses Zusammendrücken setzt dem drehenden Flügel 17a, b den für die ausreichende Förderwirkung notwendigen Widerstand entgegen.
  • Dennoch können die Flügel 17a, b in ihrem Verlauf in Richtung zum freien Ende hin eine zunehmende Elastizität aufweisen.
  • Im vorliegenden Fall wird dies trotz gleichbleibender Wandstärke der in entgegengesetzte Richtungen von ihrer Befestigungsstelle am Zentralkörper radial überstehenden, plattenförmigen Flügel 17a, b erreicht, indem die Flügel 17a, b von ihrer Befestigungsstelle am Zentralkörper bis zu ihrer vorderen freien Endkante 17a1, 17b1 vorstehende z.B. Flügel 17b auf seiner Rückseite etwa im mittleren Bereich abgestützt wird, und zwar durch die hintere Endkante 17a2 eines, insbesondere des, anderen Flügels 17a, wobei es vorzugsweise nur zwei Flügel 17 a, b über den Umfang verteilt gibt.
  • Zu diesem Zweck sind die plattenförmigen, in Blickrichtung der Rotationsachse 17' zweifach mit ihren Endbereichen in die gleiche Richtung gekröpfte Flügel 17a, b, die in ihrem mittleren Bereich zwischen den beiden Kröpfungen mit dem Zentralkörper der Flügelwelle 17 verschraubt sind, wobei die Form und Dimensionierung der Flügel 17a, b eben so gewählt ist, dass jeder Flügel 17a, b mit seiner hinteren, freien Endkante 17a2, 17b2 die Rückseite des vorderen Bereiches des anderes Flügels 17b, a zwischen dessen Verschraubung am Grundkörper und dessen freier vorderer Endkante abstützt, vorzugsweise an der Rückseite von dessen vorderer Kröpfung.
  • Fig. 7a mit einer Ausschnittvergrößerung als Figur 7b zeigt eine wesentlich einfacher aufgebaute, zweite, nicht-erfindungsgemäße Bauform der Kompaktierungs-Vorrichtung.
  • Im Gegensatz zur ersten Bauform besteht die Pressvorrichtung 1 nur aus einer einzigen Presswalze 1a, die den Hohlkörper 100.1a zwischen dieser Presswalze 1a und einer im Abstand zu deren Umfang verlaufenden Press-Leitfläche 2' durch den Pressschlitz 2 zieht, wobei die Press-Leitfläche 2' vorzugsweise die Verlängerung der Flügel-Gleitfläche 23 der vorgelagerten Zufuhrvorrichtung 20 ist.
  • Auch die Stauchvorrichtung 3 ist wesentlich einfacher aufgebaut:
    Sie besteht lediglich aus einem Anschlag 13 in Form einer Platte, die quer in den Bewegungsweg des aus der Pressvorrichtung 1 herausgeschobenen, flachgedrückten Hohlkörpers 100.2a hineinragt und diesen staucht zu einem gestauchten Hohlkörper 100. 3a.
  • Um dem zunehmenden, aus dem Pressschlitz 2 herausgeschobenen Material Rechnung zu tragen, ist dieser plattenförmige Anschlag 13 abseits der Durchlaufrichtung durch den Pressschlitz 2 schwenkbar gelagert und in Richtung Pressvorrichtung 1 mittels einer Feder 15 vorgespannt. Diese Stauchvorrichtung 3 ist also im Wesentlichen eine Bremsvorrichtung 16 für den aus der Pressvorrichtung 1 herausgeschobenen flachgedrückten Hohlkörper 100.2a.
  • Dadurch wird dieser zwar entgegen der Durchlaufrichtung 10 gestaucht, kann aber leicht seitlich ausbrechen, weshalb sich stromabwärts des Pressschlitzes 2 ein Führungsschlitz 12 anschließt, gebildet einerseits durch die Abstreifer-Flächen 9' der Abstreifer 9 der Presswalze 1a und andererseits eine Stauch-Leitfläche 5', die in der Verlängerung der Press-Leitfläche 2' in Durchlaufrichtung 10 über den Bereich der Presswalze 1a hinaus besteht.
  • Dennoch enden beide im Abstand vor dem plattenförmige Anschlag 13.
  • Vor allem aber wird - im Gegensatz zu der ersten Bauform - nach dem Stauchen der gestauchte Hohlkörper 100.3a nicht ein weiteres Mal in Querrichtung 11 zur Durchlaufrichtung 10 zusammengedrückt.
  • Somit wird eine so stark vereinfachte Vorrichtung auch bei weitem nicht denselben Kompaktierungserfolg erreichen wie die dargestellte erste Bauform der Vorrichtung und auch nicht so problemlos funktionieren.
  • Einen Mittelweg zwischen der ersten Bauform der Figuren 2 und 3 und der zweiten Bauform der Figur 7a, stellt die dritte Bauform gemäß Figur 8 dar:
    Die Pressvorrichtung 1 ist dabei genauso aufgebaut wie bei der zweiten Bauform gemäß der Figuren 7a, b, allerdings mit dem Unterschied, dass die einzige vorhandene Presswalze 1a entweder bis unmittelbar an die Press-Leitfläche 2' heranreicht oder sogar in entsprechende, in Durchlaufrichtung 10 verlaufende, Nuten in dem Bauteil, hier einer Platte, deren Außenfläche die Press-Leitfläche 2' darstellt, eintaucht, um ein Durchschneiden der Wandung des Hohlkörpers 100.1a durch die Zähne 4.1 dieser Presswalze 1a zu bewirken.
  • Die Stauchvorrichtung 3 unterscheidet sich von denjenigen der Figuren 7a, b dadurch, dass sie keinen plattenförmigen Anschlag 13 aufweist, sondern eine rotierende Stauchwalze 3a analog der Stauch Walze 3a der ersten Bauform, die in Durchlaufrichtung nach der Presswalze 1a angeordnet ist, und einer im Abstand dazu gegenüberliegenden Stauch-Leitfläche 5', zwischen denen der Stauchschlitz 5 ausgebildet ist.
  • Die Stauch-Leitfläche 5' ist die Verlängerung der Press-Leitfläche 2'.
  • Die Bauform der Figur 8 kann man also sehen als die Hälfte links von Stauchschlitz 5 und Pressschlitz 2 der ersten Bauform gemäß der Figuren 2a, b, 3a bis c, wobei die Hälfte rechts davon ersetzt ist durch die Press-Leitfläche 2' und die anschließende Stauch-Leitfläche 5', die, vorzugsweise ohne Absatz, ineinander übergehen.
  • Somit wird bei dieser Bauform der Vorteil erzielt, dass der gestauchte Hohlkörper 100.3a durch diese Bauform der Stauchvorrichtung 3 zusätzlich nochmals quer zu Durchlaufrichtung 10 zusammengedrückt wird zu einem gestauchten und zusammengedrückten Hohlkörper 100.4a und dadurch weiter kompaktiert wird.
  • Die Figuren 4a, b, 5a, b zeigen eine Presswalze 1a und eine Stauchwalze 3a jeweils in Seitenansicht und Stirnansicht, sowie in Fig. 6 in ihrem Montagezustand zueinander:
    Die Figuren 5a zeigt in der Seitenansicht, also quer zur Rotationsachse 1'a der dargestellten Presswalze 1a, zunächst den Wirkbereich 1.1 in der Mitte, in dem sich die in Umlaufrichtung mit Zähnen 4.1 besetzte Zahn-Ringbereiche 14 in axialer Richtung 1'a der Presswalze 1a mit Ringnuten 8 abwechseln, deren NutenGrund einen geringeren Durchmesser aufweist als der Basisdurchmesser 18 der Presswalze 1a, von dem aus die Zähne 4.1a nach außen ragen. Dabei sind die Nuten 8 in axialer Richtung vorzugsweise breiter als Zähne 4.1.
  • Stirnseitig anschließend an den Wirkbereich 1.1 sind die Lagerzapfen 1.2 axial abragend erkennbar, mit denen diese Presswalze 1a in den beiden Seitenwangen, wie sie in oder an den Figuren 1a, b erkennbar sind, gelagert ist.
  • Zusätzlich schließt sich daran stirnseitig an einen der Lagerzapfen 1.2 ein Fortsatz an, der auf seinem Umfang eine Vielzahn-Profilierung 1.3 besitzt, die dem Aufschieben und Fixieren eines Ritzels für den Ketten-Antrieb dieser Presswalze 1a dient.
  • Wie in Fig. 5a im rechten Teil angedeutet, ist die zweite Presswalze 1b hinsichtlich der Anordnung ihrer Zahn-Ringbereiche 14 und ihrer Nuten 8 zur ersten so angeordnet, dass deren Zähne 4.1 in die Nuten 8 der ersten Presswalze 1a radial eingreifen und umgekehrt, wobei vorzugsweise die Zähne 4.1 der einen Presswalze 1b radial nicht mehr als bis zum Basisdurchmesser 18 zwischen die Zahn-Ringbereiche 14 der anderen Presswalze 1b eintauchen, wie am besten in der Stirnansicht zweier miteinander kämmender solcher Presswalzen 1a und1b in Figur 5b zu erkennen.
  • Der Basisdurchmesser 18 ist in Fig. 5a stirnseitig außerhalb des in axialer Richtung jeweils letzten Zahn-Ringbereiches 14 vorhanden und dargestellt.
  • Um ein gutes Erfassen und Hineinziehen des zu bearbeitenden Hohlkörpers 100.1a/b zu erzielen, besitzen die über den Umfang vorzugsweise gleichmäßig verteilt angeordneten Zähne 4.1 jeweils eine mit dem freien radial äußeren Ende voreilende Frontflanke 4.1a, wodurch eine hakenartiger vorderer Endbereich des Zahnes 4.1 gebildet wird, der mit seiner scharfen radial äußeren Kante in das Wandmaterial des Behälters 100.1 eingreifen und einschneiden kann.
  • Die gemäß Figur 5b in Richtung der Rotationsachse 1'a betrachteten Einschnitte zwischen den Umfangsrichtung benachbarten Zähnen 4.1a eines Zahn-Ringbereiches 14 sind etwa U-förmig gestaltet, wobei die Übergänge von deren Flanken zu denen Boden stark gerundet sind, und die in Drehrichtung nach vorne weisende Frontflanke 4.1a dieser Vertiefung flacher verläuft als deren rückwärtige Kante, der Frontflanke 4.1a des nächsten Zahnes 4.1.
  • Diese Einschnitte verlaufen häufig wendel-förmig um die axiale Richtung 1'a der jeweiligen Presswalze 1a, b herum, sodass ein Hohlkörper nicht zeitgleich, sondern zeitlich beabstandet hintereinander von zwei in axialer Richtung benachbarten Zähnen 4.1 ergriffen wird, was die Belastung auf die Presswalzen 1a, b verringert.
  • Die Zahnhöhe in radialer Richtung entspricht also
    • bezüglich des Basisdurchmessers 18 der Hälfte der Differenz zwischen dem Gesamtdurchmesser 19 der Presswalze 1a und dem Basisdurchmesser 18, und/oder
    • bezüglich des Nutengrundes der Ringnuten 8 der Hälfte der Differenz zwischen dem Durchmesser des Nutengrundes und dem Gesamtdurchmesser 19 der Presswalze 1a.
  • In den Figuren 4a, b ist dagegen eine Stauchwalze 3a in Seitenansicht und zwei Stauchwalzen 3a, b miteinander kämmend, also in ihrem Zusammenwirken, in Stirnansicht dargestellt, aus der auch der Unterschied der Gestaltung gegenüber einer Presswalze 1a klar wird:
    Gemeinsam ist zunächst, dass sich an den in Achsrichtung erstreckenden Wirkbereich 3.1 stirnseitig jeweils zentrisch überstehend ein Lagerzapfen 3.2 erstreckt und über den einen Lagerzapfen hinaus zusätzlich ein Fortsatz, auf dem sich wiederum eine Vielzahl-Profilierung 3.3 befindet.
  • Aus Fig. 4b wird zunächst klar, dass die in axialer Richtung erkennbare Neigung der Zähne 4.3 - die auch bei der Stauchwalze 3a über den Umfang und in axialer Richtung verteilt angeordnet sind - der Drehrichtung entgegengesetzt ist, während bei der Presswalze 1a, b die Neigung der Zähne 4.1 in Drehrichtung gerichtet ist. Dies verbessert die beabsichtigte Stauchwirkung oder Bremswirkung für den im Stauchschlitz 5 ankommenden plattenförmigen Hohlkörper 100.2.
  • Ferner ist erkennbar, dass die bei den Stauchwalzen 3a, 3b zwischen den Zahn-Ringbereichen 14 in axialer Richtung vorhandenen Abstände 8' zwischen den einzelnen Zähnen 4.3 nicht radial bis auf den Zahngrund nach unten reichen, also die in axialer Richtung 1'a verlaufende Rinne zwischen zwei in Umfangsrichtung benachbarten Zähnen 4.3 in axialer Richtung durchgeht und sich in deren Nutengrund keine in Umfangsrichtung verlaufende Nut befindet.
  • Des Weiteren ist in axialer Richtung die Erstreckung eines Zahn-Ringbereiches 14 wesentlich größer als die axiale Erstreckung der Abstände 8' zwischen den axial beabstandeten Zähnen 4.3.
  • Dementsprechend können die beiden benachbart um parallele Achsen 3'a, 3'b rotierenden Presswalzen 3a, b nur dadurch gegenseitig in Eingriff gelangen, dass sie - wie in Fig. 4b erkennbar - in ihrer wechselseitigen Drehlage so positioniert sind, dass im Stauchspalt 5 der in axialer Richtung betrachtete Zahn 4.3 der einen Presswalze 3a zwischen zwei in Umfangsrichtung benachbarte Zähne 4.3 der benachbarten Stauchwalze 3b eintaucht, aber den Basisdurchmesser 18 dieser anderen Presswalze 3b nicht erreicht und umgekehrt.
  • Der wechselseitige Abstand sowohl in radialer Richtung als auch in Umfangsrichtung wird für das Aufnehmen des Materials des dazwischen durchgeführten, bereits flachgedrückten Behälters 100.2 benötigt, im Gegensatz zu den Presswalzen gemäß Fig. 5a, b, bei denen ein Spiel in axialer Richtung zwischen benachbarten Zähnen 4.1 nicht zwingend erforderlich ist oder gar vermieden werden soll, um ein Durchschneiden des Wandmaterials des Behälters 100.2 zu bewirken.
  • Die andere, bevorzugte, Lösung besteht darin, dass zwischen den Flugkreisen der Zähne 4.3 der beiden Stauchwalzen 3a, b ein freier Durchgang als Stauchschlitz 5 verbleibt.
  • Fig. 6 zeigt in einer Seitenansicht entsprechend der Figuren 5a, 4a die Anordnung einer Presswalze 1a zu der benachbarten Stauchwalze 3a.
  • Dabei sind fest montierte, plattenförmige Abstreifer 9 eingezeichnet, die sich mit ihrer Hauptebene lotrecht zur Rotationsrichtung 1'a erstrecken und in jede der Nuten 8 der Presswalze 1a eintauchen und möglichst nahe an deren guten Grund heranreichen, um dort eventuell anhaftendes Material der Hohlkörper bei der Rotation der Presswalze 1a von dieser zu entfernen.
  • Für die darunter dargestellte Stauchwalze 3a sind nebeneinander zwei unterschiedliche Möglichkeiten dargestellt:
    Im linken Bereich sind die Abstände 8' zwischen den Zähnen 4.3 dieser Stauchwalze 3a in Rotationsrichtung 3'a geringer als die Abstände zwischen den Zähnen 4.1 der Presswalze 1a und korrelieren mit diesen in axialer Richtung auch nicht.
  • Dementsprechend enden die Abstreifer 9 vor dem Außenumfang der Zähne 4.3 der Stauchwalze 3a, wobei sie sich in Blickrichtung der Figur 6 hinter dieser noch in Richtung der Rotationsrichtung 3'a fortsetzen.
  • In der rechten Hälfte dagegen fluchten die Nuten 8 der Presswalze 1a mit den Abständen 8' der Stauchwalze 3a in axialer Richtung, sodass die Abstreifer 9 mit ihren beiden Endbereichen einerseits in die Nuten 8 und andererseits in die Abstände 8' radial eintauchen, natürlich beabstandet zur Durchlaufebene 10', entlang der sich ja der flachgedrückte Hohlkörper bewegt.
  • Insbesondere ist der Abstandsgrund des in der Seitenansicht schräge Flanken aufweisenden Abstandes 8' zwischen den Zähnen 4.3 in axialer Richtung breit genug, um die Abstreifer 9 bis nahe an diesen Abstandsgrund heranreichen zu lassen.
  • BEZUGSZEICHENLISTE
  • 1
    Pressvorrichtung
    1a, b
    Press-Walze
    1' a, 1' b
    Rotationsachse
    1.1
    Wirkbereich
    1.2
    Lagerzapfen
    1.3
    Vielzahnprofilierung
    2
    Press-Schlitz
    2'
    Press-Leitfläche
    3
    Stauchvorrichtung
    3a, b
    Stauch-Walze
    3' a, 3' b
    Rotationsachse
    3.1
    Wirkbereich
    3.2
    Lagerzapfen
    4,4.1,4.3
    Zahn
    4a
    Frontflanke
    4b
    Außenkante
    4c
    Rundung, Abschrägung
    5
    Stauch-Schlitz
    5'
    Stauch-Leitfläche
    6
    Antriebsvorrichtung
    6a
    Motor
    7
    Steuerung
    8
    Umfangs-Nut
    8'
    Abstand
    9
    Abstreifer
    10
    Durchlaufrichtung
    10'
    Durchlaufebene
    11
    Querrichtung
    12
    Führungsschlitz
    13
    Anschlag
    14
    Zahn-Ringbereich
    15
    Feder
    16
    Bremsvorrichtung
    17
    Flügelwelle
    17'
    Rotationsachse
    17a, b
    Flügel
    17a1, 17b1
    vordere freie Endkante
    17a2, 17b2
    hintere freie Endkante
    18
    Basisdurchmesser
    19
    Gesamtdurchmesser
    20
    Zufuhr-Vorrichtung
    21
    Durchlauf-Abstand
    22
    Achs-Abstand
    23
    Flügel-Gegenelement, Flügel-Gleitfläche
    24a
    kleinster Flügelabstand
    24b
    größter Flügelabstand
    25
    Zahnung
    26
    Abstand
    100.1
    (unverformter) Hohlkörper
    100.2
    flach gedrückter, plattenförmiger Hohlkörper
    100.3
    gestauchter Hohlkörper
    100.4
    gestauchter und danach nochmals flach gedrückter Hohlkörper
    100'
    größte Erstreckung
    100"
    kleinste Erstreckung

Claims (23)

  1. Vorrichtung zum Kompaktieren von Hohlkörpern (100.1), insbesondere Flaschen aus z.B. Kunststoff und/oder Dosen aus z.B. Metall, mit
    a) einer Pressvorrichtung (1) zum Flachdrücken und gegebenenfalls Perforieren eines Hohlkörpers (100.1), wobei
    b) in Durchlaufrichtung (10) stromabwärts der Pressvorrichtung (1) eine Stauchvorrichtung (3) angeordnet ist zum Stauchen des flachgedrückten, plattenförmigen Hohlkörpers (100.2) in einer der Richtungen der Hauptebene der Platte (100.2),
    wobei die Pressvorrichtung (1)
    - wenigstens eine rotierend antreibbare Presswalze (1a) umfasst zum Erfassen und Hindurchziehen eines Hohlkörpers (100.1) durch einen zwischen der Presswalze (1a) und einem Press-Gegenelement (1b) ausgebildeten Press-Schlitz (2) in Durchlaufrichtung (10), wodurch das Flachdrücken erfolgt,
    die Stauchvorrichtung (3)
    - wenigstens eine rotierend antreibbare erste Stauchwalze (3a) umfasst zum Erfassen und Hindurchziehen eines flachgedrückten Hohlkörpers (100.2) durch einen zwischen der Stauchwalze (3a) und einem Stauch-Gegenelement (3b) ausgebildeten Stauch-Schlitz (5) in Durchlaufrichtung (10), dadurch gekennzeichnet, dass
    - die wenigstens eine Presswalze (1a) in einem Wirkbereich (1.1) über den Umfang verteilt radial über einen Basisdurchmesser (18) der Presswalze (1a) vorstehende Zähne (4) aufweist,
    - die Zähne (4) innerhalb von mehreren, axial beabstandeten Zahn-Ringbereichen (14) ausgebildet sind, und
    - in die axialen Abstände zwischen den Zahn-Ringbereichen (14) Abstreifer (9) mit ihrer Abstreifer-Fläche (9') etwa tangential zum Umfang des Grundkörpers der Walze (1a) und entgegen der Durchlaufrichtung (10) hineinragen.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    - die Vorrichtung wenigstens eine Antriebsvorrichtung (6) zum Antreiben der Pressvorrichtung (1) und/oder der Stauchvorrichtung (3) aufweist und
    - insbesondere eine Steuerung zum Steuern der wenigstens einen Antriebsvorrichtung (6),
    und/oder
    - die Stauchvorrichtung (3) angeordnet ist zum Stauchen des flachgedrückten, plattenförmigen Hohlkörpers (100.2) in oder entgegen der Durchlaufrichtung (10).
    (Pressvorrichtung = wenigstens eine Presswalze)
  3. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - das Press-Gegenelement (1b)
    - entweder eine, insbesondere feststehende, Press-Leitfläche (2') aufweist
    - oder eine zweite drehbare, insbesondere rotierend gegenläufig zur ersten Presswalze (1a) antreibbare, Presswalze (1b) ist.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - der Press-Schlitz (2) in Durchlaufrichtung (10) betrachtet überall gleich breit ist, indem die breiteste Stelle maximal 20 % breiter ist als die engste Stelle, und/oder
    - die Rotationsachsen (1'a, 1'b) der Presswalzen (1a, b) parallel zueinander angeordnet sind.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    - das Stauch-Gegenelement (3b)
    - entweder eine, insbesondere feststehende, Stauch-Leitfläche (5') umfasst
    - oder eine zweite drehbare, insbesondere rotierend gegenläufig zur ersten Stauchwalze (3a) rotierend antreibbare, Stauchwalze (3b) ist.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - der Stauch-Schlitz (5) auf der Durchlaufrichtung (10) angeordnet ist und/oder so positioniert ist, dass ein zwischen den Presswalzen (1a, b) in Durchlaufrichtung (10) hindurchbewegter, flach gedrückter Hohlkörper (100.2) zwangsweise in den Stauch-Schlitz (5) hineinragt und von der wenigstens einen rotierenden Stauchwalze (3a) erfasst wird,
    - wenigstens eine Antriebs-Vorrichtung (6) vorhanden ist, die in der Lage ist, die wenigstens eine Stauchwalze (3a), insbesondere beide Stauchwalzen (3a, b), mit geringerer Umfangsgeschwindigkeit anzutreiben als die Umfangsgeschwindigkeit der beiden Presswalzen (1a, b).
  7. Vorrichtung nach Anspruch 5 und gewünschtenfalls nach Anspruch 6, dadurch gekennzeichnet, dass
    - die Rotationsachse (3'a) der ersten Stauchwalze (3a), insbesondere auch die Rotationsachse (3'b) der zweiten Stauchwalze (3b), entweder etwa parallel oder auch im Winkel, insbesondere im rechten Winkel zu den Rotationsachsen (1'a, 1'b) der Presswalzen (1a, b) angeordnet ist, und/oder
    - die Walzen (1a, b, 3a, b) in Richtung ihrer Rotationsachsen (1'a, 1'b, 3*a, 3'b) im mittleren Bereich einen Wirkbereich (1.1, 3.1) und stirnseitig axial über den Wirkbereich hinaus ragende Lagerzapfen (1.2, 3.2) aufweisen, wobei der Wirkbereich (1.1, 3.1) in seiner axialen Richtung kürzer ist als die größte Erstreckung (100') des kleinsten zur Bearbeitung vorgesehenen Hohlkörpers (100.1b).
  8. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - die wenigstens eine Stauchwalze (3a, b) im Wirkbereich (3.1) über den Umfang verteilt radial über den Basisdurchmesser (18) der Walze im Wirkbereich (3.1) vorstehende Zähne (4) aufweisen und
    - insbesondere die Zähne (4) der einen Presswalze (1a) in radialer Richtung in die axialen Abstände zwischen den Zahn-Ringbereichen (14) der benachbarten Presswalze (1b) eintauchen.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Durchlauf-Abstand (9) zwischen der Pressvorrichtung (1) und der Stauchvorrichtung (3), insbesondere zwischen der jeweils engsten Stelle des Press-Schlitzes (2) und des Stauch-Schlitzes (5),
    - kürzer ist als die in Durchlaufrichtung (10) gemessene Länge (100') des kürzesten zur Bearbeitung vorgesehenen, flach gedrückten Hohlkörpers (100.2b), insbesondere kürzer ist als die größte Längserstreckung (100') des kürzeste unverformten Hohlkörpers (100.1b)
    und/oder
    - mindestens so groß ist, dass beim Bearbeiten des in Durchlaufrichtung (10) längsten vorgesehenen Hohlkörpers (100.1) die Stauchung noch nicht so stark ist, dass an den Biegestellen des gestauchten Hohlkörpers (100.3a), sofern er aus Kunststoff besteht, Weißbruch auftritt, insbesondere an mehr als 10 % der Biegestellen.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - die Zähne (4.1) der wenigstens einen Presswalze (1a, b) betrachtet in ihrer axialen Richtung (1'a, 1' b) eine in Drehrichtung weisende Frontflanke (4. 1a) aufweisen, die radial zur axialen Richtung (1'a, 1'b) steht oder deren freies äußeres Ende gegenüber dem inneren Ende in Drehrichtung weiter vorne liegt, und/oder
    - die Zähne (4.1) der wenigstens einen Presswalze (1a), insbesondere abhängig von der Wandstärke der zur Bearbeitung vorgesehenen Hohlkörper (100.1), so dimensioniert und positioniert sind, insbesondere relativ zu der anderen Presswalze (1b), dass beim Hindurchführen durch die Pressvorrichtung (1) wenigstens eine Wandung des Hohlkörpers (100.2), vorzugsweise beide Wandungen, von den Zähnen (4.1) Durchdrungen werden, insbesondere Durchschnitten werden.
  11. Vorrichtung nach Anspruch 8 und gewünschtenfalls nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, dass
    - die Zähne (4.3) der wenigstens einen Stauchwalze (3a, b) in Umfangsrichtung betrachtet am Übergang von ihren Außenkanten (4b) zu ihren seitlichen Flanken eine Rundung oder Abschrägung (4c) aufweisen,
    - oder eventuell vorhandene Umfangs-Nuten (8) zwischen den Zahn-Ringbereichen (14.1, 14.3) in Umfangsrichtung betrachtet am Übergang von ihrem Nutboden zu ihren seitlichen Nutflanken eine Rundung oder Abschrägung (4c) aufweisen.
  12. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - die Abstreifer (9) mit ihrer Abstreifer-Fläche (9') etwa tangential zum Umfang des Grundkörpers der Walze und entgegen der Durchlaufrichtung (10) in Umfangsnuten (8) zwischen den Zahn-Ringbereichen (14) hineinragen,
    - insbesondere die Abstreifer (9) der wenigstens einen Press-Walze (1a) bis möglichst nah an die Stauch-Vorrichtung (3), insbesondere den Umfang der wenigstens einen Stauch-Walze (3a), heranreichen, und insbesondere in die axialen Abstände zwischen die Zahn-Ringbereiche (14) der wenigstens einen Stauch-Walze (3a) hineinreichen.
  13. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der durch die Abstreifer-Flächen (9') der axial beabstandeten Abstreifer (9) und gegebenenfalls eine gegenüberliegende Stauch-Leitfläche (5') begrenzte Führungsschlitz (12) sich in Durchlaufrichtung (10) - betrachtet in axialer Richtung - erweitert.
  14. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    - in Durchlaufrichtung (10) stromaufwärts der Pressvorrichtung (1) eine rotierend antreibbare Flügelwelle (17) mit ihrer Rotationsachse (17') etwa parallel zum Press-Schlitz (2) und gegenüber einem Flügel-Gegenelement (23), insbesondere einer Zufuhr-Gleitfläche (18), angeordnet ist, deren Flügel (17a, b) mit den freien Enden in Drehrichtung nacheilend gekrümmt oder polygonzugartig - in Richtung der Rotationsachse (17') betrachtet - ausgebildet sind, und insbesondere
    - die Flügelwelle (17) in einem solchen Achs-Abstand (22) zum Press-Schlitz (2) und zum Flügel-Gegenelement (23) angeordnet ist, dass bei Antrieb der Flügelwelle (17) in die entsprechende Drehrichtung die Flügel (17a, b) einen auf dem Flügel-Gegenelement (18) aufliegenden Hohlkörper (100.1) in Richtung Press-Schlitz (2) drücken.
  15. Vorrichtung nach Anspruch 14,
    dadurch gekennzeichnet, dass
    - der geringstmögliche Flügel-Abstand (24a) zwischen dem freien Ende eines Flügels (17 a, b) und dem Flügel-Gegenelement (23) kleiner ist als die kleinste Erstreckung (100") des dünnsten und/oder kleinsten zur Bearbeitung vorgesehenen Hohlkörpers (100.1b)
    und/oder
    - der größtmögliche Flügel-Abstand (24a) zwischen der Flügelwelle (17) und dem Flügel-Gegenelement (23) größer ist als die größte Erstreckung (100') des dicksten und/oder größten zur Bearbeitung vorgesehenen Hohlkörpers (100.1a).
  16. Vorrichtung nach Anspruch 14 und gewünschtenfalls nach Anspruch 15, dadurch gekennzeichnet, dass
    - die Flügel (17a, b) sich in axialer Richtung der Flügelwelle (17) über mindestens 60%, besser mindestens 70% besser mindestens 80% besser mindestens 90% der Länge des Wirkbereiches (1.1) der wenigstens einen Presswalze (1a) erstrecken,
    und/oder
    - die freie Endkante der Flügel (17 a, b) eine Zahnung (25) aufweist, und/oder
    - die Flügel (17a, b) zu ihrem freien Ende hin eine abnehmende Biegesteifigkeit quer zu ihrer Hauptebene aufweisen,
    und insbesondere
    - jeder Flügel (17a, b) betrachtet in axialer Richtung in seiner radialen Verlaufsrichtung im mittleren Bereich in Gegen-Richtung zur Drehrichtung, also auf seiner Rückseite, abgestützt ist, insbesondere durch das an seiner Rückseite anliegende hintere freie Ende eines anderen Flügels (17b, a).
  17. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Stauchvorrichtung (3) einen quer zu Durchlaufrichtung (10), im Bewegungsweg des flachgedrückten, plattenförmigen Hohlkörpers (100.2) angeordneten, Anschlag (13) umfasst, der
    - quer zur Durchlaufrichtung (10) aus dem Bewegungsweg des flachgedrückten, plattenförmigen Hohlkörpers (100.2) heraus bewegbar, insbesondere gesteuert bewegbar, ist,
    - insbesondere entgegen der Durchlaufrichtung kraft-beaufschlagt ist, insbesondere mittels einer Feder (15) oder einer Bremsvorrichtung (16), und/oder
    - der Anschlag (13) in Durchlaufrichtung (10) beweglich, insbesondere gesteuert bewegbar, ausgebildet ist.
  18. Verfahren zum Kompaktieren von Hohlkörpern, insbesondere Flaschen aus z.B. Kunststoff und/oder Dosen aus z.B. Metall, mit einer Vorrichtung nach einem der vorhergehenden Ansprüche, indem
    - der Hohlkörper (100.1) flachgedrückt wird, - anschließend der flachgedrückte, etwa plattenförmige, Hohlkörper (100.2) in einer der Richtungen der Hauptebene der Platte (100.2) gestaucht wird, wobei
    - der flachgedrückte Hohlkörper (100.2) durch einen Stauch-Schlitz (5) hindurchbewegt wird, indem der flachgedrückte Hohlkörper (100.2) durch wenigstens eine den Stauch-Schlitz (5) seitlich begrenzende rotierende Stauchwalze (3a) ergriffen und durch den Stauch-Schlitz (5) hindurchgezogen wird.
  19. Verfahren nach Anspruch 18,
    dadurch gekennzeichnet, dass
    - das Stauchen des flachgedrückten Hohlkörpers (100.2) zumindest begonnen wird, noch bevor das Flachdrücken des Hohlkörpers (100.1) beendet ist, und/oder
    - das Stauchen des flachgedrückten Hohlkörpers (100.2) spätestens dann beendet wird, wenn das Flachdrücken des Hohlkörpers (100) beendet wird, und/oder
    - der flachgedrückte, etwa plattenförmige, Hohlkörper (100.2) in der größten Längserstreckung (100.2') des flachgedrückten Hohlkörpers (100.2) gestaucht wird.
  20. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass
    - das Flachdrücken des unverformten Hohlkörpers (100.1) durchgeführt wird mittels Hindurchziehen des unverformten Hohlkörpers (100.1) durch den Press-Schlitz (2) zwischen wenigstens einer, rotierend angetriebenen Presswalze (1a) und einem Press-Gegenelement (1b), insbesondere einer gegenläufig rotierenden zweiten Presswalze (1b),
    und/oder
    - das Stauchen durchgeführt wird mittels Abbremsen des vorderen Endes des flachgedrückten Hohlkörpers (100.2) in Durchlaufrichtung (10) gegenüber dessen Durchlaufgeschwindigkeit durch den Press-Schlitz (2),
    - insbesondere mittels Hindurchziehen, ohne Schlupf, des flachgedrückten Hohlkörpers (100.2) stromabwärts des Press-Schlitzes (2) durch den Stauch-Schlitz (5).
  21. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass
    - die flachgedrückten, plattenförmigen Hohlkörper (100.2) dem Stauch-Schlitz (5) in einer der Richtungen der Hauptebene der Platte (100.2), insbesondere in Richtung der größten Längserstreckung (100') des Hohlkörpers (100) im Ausgangszustand, zugeführt werden, und/oder
    - die zu bearbeitenden Hohlkörper (100. 1) dem Press-Schlitz (2) in Richtung ihrer größten Längserstreckung (100') zugeführt werden.
  22. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass
    - die Vorrichtung so betrieben wird, dass die Durchlaufgeschwindigkeit durch den Stauch-Schlitz (5) weniger als die Hälfte, vorzugsweise weniger als 1/3, der Durchlaufgeschwindigkeit durch den Press-Schlitz (2) beträgt,
    - insbesondere die Umfangsgeschwindigkeit der wenigstens einen Stauch-Walze (3a) im Betrieb der Vorrichtung weniger als die Hälfte, vorzugsweise weniger als 1/3 der Umfangsgeschwindigkeit der wenigstens einen Press-Walze (1a) beträgt.
  23. Verfahren nach einem der vorhergehenden Verfahrensansprüche, dadurch gekennzeichnet, dass
    - vor dem Flachdrücken der Hohlkörper (100.1) heran transportiert wird, insbesondere mittels der Flügel (17a, b) einer Flügelwelle (17), und
    - die Vorrichtung so gesteuert wird, dass die Umfangsgeschwindigkeit der Flügel (17a, b) der Flügelwelle (17) im Betrieb der Vorrichtung mindestens doppelt so groß, besser mindestens dreimal so groß ist wie die Durchlaufgeschwindigkeit durch den Press-Schlitz (2), insbesondere wie die Umfangsgeschwindigkeit der wenigstens einen Press-Walze (1a).
EP18711528.2A 2017-03-15 2018-03-13 Vorrichtung und verfahren zum kompaktieren von hohlkörpern mittels stauchen Active EP3458257B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017105526.6A DE102017105526A1 (de) 2017-03-15 2017-03-15 Vorrichtung und Verfahren zum Kompaktieren von Hohlkörpern mittels Stauchen
PCT/EP2018/056239 WO2018167060A1 (de) 2017-03-15 2018-03-13 Vorrichtung und verfahren zum kompaktieren von hohlkörpern mittels stauchen

Publications (2)

Publication Number Publication Date
EP3458257A1 EP3458257A1 (de) 2019-03-27
EP3458257B1 true EP3458257B1 (de) 2022-08-17

Family

ID=61683775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18711528.2A Active EP3458257B1 (de) 2017-03-15 2018-03-13 Vorrichtung und verfahren zum kompaktieren von hohlkörpern mittels stauchen

Country Status (6)

Country Link
US (1) US20200189223A1 (de)
EP (1) EP3458257B1 (de)
JP (1) JP6918960B2 (de)
DE (1) DE102017105526A1 (de)
PL (1) PL3458257T3 (de)
WO (1) WO2018167060A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4309885A3 (de) * 2019-01-31 2024-05-22 Tomra Systems ASA Vorrichtung zum verdichten von entleerten behältern für recyclingzwecke
CN113771473B (zh) * 2021-08-18 2023-09-29 中策永通电缆有限公司 适应多尺寸及自动检测高分子墙板的压合设备
IT202200004829A1 (it) * 2022-03-14 2023-09-14 Polytech Lab S R L Dispositivo per l’ottimizzazione della raccolta delle bottiglie di plastica destinate al riciclo

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522311A (en) * 1995-05-12 1996-06-04 Tomra Systems A/S Beverage container compacting device having endless belts with puncturing members
US5746378A (en) 1995-06-23 1998-05-05 Marathon Equipment Company Volume reduction machine
JPH10328894A (ja) * 1997-06-05 1998-12-15 Senda:Kk 容器の減容処理装置
JPH1157647A (ja) * 1997-08-13 1999-03-02 Kiyoudai:Kk プラスチック容器等の圧縮機構
JPH11291092A (ja) 1998-04-07 1999-10-26 Nakayo Telecommun Inc 容器潰し機
US6675947B2 (en) * 2001-03-30 2004-01-13 Can & Bottle Systems, Inc. Recycling machine with container compacting system
JP3997541B2 (ja) * 2002-09-30 2007-10-24 三和産業株式会社 ペットボトル用圧潰装置
KR200353068Y1 (ko) * 2004-03-11 2004-06-14 김민식 페트병 압착기
DE102006033615A1 (de) * 2006-04-21 2007-10-25 Hermann Scharfen Maschinenfabrik Gmbh & Co. Kg Einheit zum Kompaktieren von Hohlkörpern
DE102006020592A1 (de) * 2006-05-02 2007-11-08 Hans-Hermann Trautwein Sb-Technik Gmbh Vorrichtung zum Verdichten von Hohlkörpern
DE202008012248U1 (de) 2008-09-11 2008-11-27 Schwelling, Hermann Vorrichtung zum Zusammendrücken leerer, verformbarer Behälter
EP2692514B1 (de) 2012-07-31 2019-06-26 Wincor Nixdorf International GmbH Kompaktierungsvorrichtung und Verfahren zum Kompaktieren von Gebinden
EP2692515B1 (de) * 2012-07-31 2015-09-16 Wincor Nixdorf International GmbH Kompaktierungsvorrichtung zum Kompaktieren von Gebinden
US10195805B2 (en) * 2013-01-16 2019-02-05 Hermann Schwelling Pressure roller for an apparatus for compaction of empty beverage containers
DE102016207702A1 (de) 2016-05-04 2017-11-09 Ernst Hombach Gmbh & Co. Kg Kompaktierungsvorrichtung für Leergutrücknahmeautomaten

Also Published As

Publication number Publication date
US20200189223A1 (en) 2020-06-18
JP6918960B2 (ja) 2021-08-11
EP3458257A1 (de) 2019-03-27
PL3458257T3 (pl) 2022-11-21
JP2020514073A (ja) 2020-05-21
DE102017105526A1 (de) 2018-09-20
WO2018167060A1 (de) 2018-09-20

Similar Documents

Publication Publication Date Title
EP1620252B1 (de) Vorrichtung zum zusammendrücken leerer behälter sowie verfahren hierzu
DE69929670T2 (de) Schubgliederkette für Lasten
EP2756946B1 (de) Druckwalze für eine Vorrichtung zum Zusammendrücken leerer Getränkebehälter
EP3458257B1 (de) Vorrichtung und verfahren zum kompaktieren von hohlkörpern mittels stauchen
DE10325368B4 (de) Vorrichtung zum Zusammendrücken leerer Behälter
DE102014105672B4 (de) Vorrichtung zum Zusammendrücken von Behältern
EP0564901B1 (de) Vorschubeinrichtung für Tafeln
DE2100204C3 (de) Vorrichtung zum Herstellen selbstschneidender Schrauben durch Walzen eines Gewindes in einen Rohling
EP3415290A1 (de) Schneideinheit sowie schneidverfahren
EP2163375B1 (de) Vorrichtung zum Zusammendrücken leerer, verformbarer Behälter
DE102006036145B4 (de) Vorrichtung zur Verringerung der Größe oder zum Zusammendrücken von Hohlkörpern aus verformbaren Materialien
EP2692513B1 (de) Kompaktierungsvorrichtung zum Kompaktieren von Gebinden und Verfahren zum Betreiben einer Kompaktierungsvorrichtung
EP3894206A1 (de) Vorrichtung mit guillotine-ablängvorrichtung zum fertigen eines verpackungsmaterialerzeugnisses aus einem faserausgangsmaterial und verfahren zum fertigen eines verpackungsmaterialerzeugnisses
DE3689792T2 (de) Apparat zur sammlung und entlastung von müll.
DE202008012248U1 (de) Vorrichtung zum Zusammendrücken leerer, verformbarer Behälter
EP0492428A2 (de) Vorrichtung zum Lochen von Bändern aus Folien oder Blech
EP3359478B1 (de) Faltriemen für eine vorrichtung zum falten von faltschachtelzuschnitten
EP2692515B1 (de) Kompaktierungsvorrichtung zum Kompaktieren von Gebinden
EP4014744A1 (de) Vorrichtung und verfahren zum einschnüren und/oder abtrennen eines wurststrangs
WO2019092276A1 (de) Vorsatzgerät mit pflückrotoren
EP1356920A2 (de) Verfahren und Vorrichtung zur Verringerung der Grösse von Hohlkörpern
EP2275250B1 (de) Vorrichtung zum Kompaktieren von Hohlkörpern
EP4133942A1 (de) Verdrängerelementepaar
DE4304020A1 (de) Häcksler
EP3330070A2 (de) Vorrichtung und verfahren zum rillen von wellpappe und vollpappe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018010421

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1511918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220817

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018010421

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

26N No opposition filed

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230313

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230313

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 7

Ref country code: GB

Payment date: 20240320

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1511918

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240305

Year of fee payment: 7

Ref country code: NO

Payment date: 20240322

Year of fee payment: 7

Ref country code: FR

Payment date: 20240328

Year of fee payment: 7