EP3438586B1 - Appareil et procédé de séparation d'air par distillation cryogénique - Google Patents
Appareil et procédé de séparation d'air par distillation cryogénique Download PDFInfo
- Publication number
- EP3438586B1 EP3438586B1 EP18186782.1A EP18186782A EP3438586B1 EP 3438586 B1 EP3438586 B1 EP 3438586B1 EP 18186782 A EP18186782 A EP 18186782A EP 3438586 B1 EP3438586 B1 EP 3438586B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- booster
- booster compressor
- turbine
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 16
- 238000000926 separation method Methods 0.000 title claims description 8
- 238000005086 pumping Methods 0.000 claims description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 238000004821 distillation Methods 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 5
- 238000013459 approach Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 235000021183 entrée Nutrition 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04018—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04818—Start-up of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04521—Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
- F25J3/04563—Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0295—Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04012—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
- F25J3/04024—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04066—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04109—Arrangements of compressors and /or their drivers
- F25J3/04115—Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
- F25J3/04127—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04193—Division of the main heat exchange line in consecutive sections having different functions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/0423—Subcooling of liquid process streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04381—Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04775—Air purification and pre-cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04781—Pressure changing devices, e.g. for compression, expansion, liquid pumping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04824—Stopping of the process, e.g. defrosting or deriming; Back-up procedures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
- F25J3/0486—Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04896—Details of columns, e.g. internals, inlet/outlet devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/40—Air or oxygen enriched air, i.e. generally less than 30mol% of O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/42—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/42—Nitrogen or special cases, e.g. multiple or low purity N2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/50—Oxygen or special cases, e.g. isotope-mixtures or low purity O2
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/22—Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/40—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/04—Multiple expansion turbines in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
- F25J2240/42—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/10—Control for or during start-up and cooling down of the installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/20—Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Definitions
- the present invention relates to an apparatus and a method for separating air by cryogenic distillation according to the preambles of claims 1 and 3 respectively.
- Such an apparatus and such a method are known from FR-A-2 851 330 . It relates in particular to devices using a supply air supercharger supplied with air coming from an intermediate level of a main supply air cooling exchanger, therefore at a temperature below 0 ° C. . This air is then boosted in the booster and returned to the main exchanger before being sent to a cryogenic distillation column.
- part of the compressed air is returned to the compressor upstream of the compressor after refrigeration followed by expansion in a valve.
- the present invention makes it possible to solve the problem by opening a valve to a turbine downstream of the compressor, in order to increase the flow rate in the compressor and thus leave the pumping zone.
- an air separation apparatus by cryogenic distillation comprising an air compressor to compress all the air to be distilled, an air booster to compress at least part of the air to be distilled, an expansion turbine to receive compressed air from the compressor and possibly from the air booster, a system of cryogenic distillation columns comprising at least one column, a heat exchanger, means for sending air air from the compressor to the heat exchanger having two ends, means for taking cooled air at an intermediate point of the heat exchanger between the two ends and for sending it to the booster, means for sending the compressed air from the booster to the heat exchanger, means for sending cooled air in the heat exchanger to the turbine, means for sending expanded air in the turbine to the system columns, means for withdrawing from the column system a flow enriched in oxygen and a flow enriched in nitrogen, these means being connected to the heat exchanger, means for relieving the air supercharged in the booster, no means of cooling between the discharge of the booster and the means for relieving the supercharged air and means for sending air, supercharged in
- the booster can be connected to the inlet of the turbine so that the boosted air can at least partially relax in the turbine.
- the apparatus comprising a column system comprising a column operating at a first pressure K1 and a column operating at a second pressure K2 lower than the second pressure.
- the columns are thermally connected through a tank reboiler of the second column heated by nitrogen from the top of the first column.
- Non-illustrated reflux flows enriched in nitrogen and oxygen are sent from column K1 to column K2.
- Liquid oxygen 31 is drawn off from the tank of the second column K2 and nitrogen gas 33 is drawn off at the head of the second column.
- LIN liquid nitrogen is sent to the top of the second column through certain phases to help keep the process cool.
- An oxygen-rich fluid is sent to heat up at the exchanger E, for example liquid oxygen 31 can vaporize in the heat exchanger E.
- a nitrogen-rich fluid is sent to heat up at the exchanger E.
- the apparatus comprises a first air expansion turbine T1, a second air expansion turbine T2, a first air blower C1 coupled to the first turbine and a second air blower C2 coupled to the second turbine.
- the compressed air 1 at a pressure P from another compressor is divided into two fractions, a first fraction 3 of which is sent to the heat exchanger E without having been compressed to a pressure beyond of the pressure P.
- a second fraction 5 is sent to the first booster C1 where it is compressed to a pressure higher than that (P) of the first fraction 3.
- the outlet of the first booster C1 is connected to the inlet of this booster by a line 25 through a valve V8.
- the first fraction 3 is cooled in the heat exchanger E to an intermediate temperature thereof and not having been compressed in the first booster is sent to the first and the second turbines through the open valve CL3 and the open valves V5, V13, V4, V19.
- the second fraction 5 cools in the heat exchanger E to an intermediate temperature thereof after being compressed in the first booster C1. Then it is sent to the second booster C2.
- the expanded air from the first and second turbines is sent to the first column K1 to be separated through the valves V6, V15, V11 and the pipe 13.
- the second fraction 5 is compressed in the second booster C2, passes through the open valve CL1 and then cools in the heat exchanger before being sent in liquid form to the first column K1 through the valve V9. Valves V2 and V3 are closed.
- the booster C1 approaches its pumping point, a portion of the boosted air is taken after cooling in a cooler downstream of the booster, expanded by the valve V8 and returned to the suction of the booster C1.
- the booster C2 supplied with air 19 coming from an intermediate point of the heat exchanger E, approaches its pumping point, no part of the air boosted in the booster C2 is sent at the suction of the C2 booster.
- the booster C2 has no refrigerant downstream of the booster. If the boosted flow in C2 falls below a threshold indicating that the pumping point is close, a portion of the boosted air is sent via line 23, expanded in valve V3 and arrives at the suction of the turbine. T2 to be relaxed and sent to distillation.
- the threshold for detecting the approach to the pumping point is defined by defining a pressure drop threshold between two points of the booster not to be exceeded. As long as the pressure drop remains above the threshold, all the compressed air is sent to the heat exchanger to liquefy there.
- the valve is opened allowing air to pass to the turbine.
- the rest of the compressed air is returned to the heat exchanger E through the valve CL1 and at least partially liquefies in the exchanger before being expanded in the valve V9 and sent to the column K1.
- the part of the air sent to the inlet of the turbine T2 can be sent to the outlet of the latter arriving in the pipe 17.
- the air expansion valve will relax this part of the air up to a pressure slightly above the pressure of column K1.
- Air can even be sent to the two turbines T1, T2, to the inputs of the two, to the outputs of the two or to the input of one and to the output of the other.
- the first fraction 3 is taken out of a heat exchanger at an intermediate temperature thereof and, having not been compressed in the first booster, is sent to the second booster C2.
- the second fraction 5 cools in the heat exchanger to an intermediate temperature thereof after being compressed in the first booster C1. Then it is sent to the first and second turbines.
- the booster C2 supplied with air 19 coming from an intermediate point of the heat exchanger E, approaches its point of pumping, no part of the air boosted in the booster C2 is sent to the suction of the booster C2.
- the booster C2 has no refrigerant downstream of the booster.
- a portion of the boosted air is sent via line 23, expanded in valve V3 and arrives at the suction of the turbine. T2, without passing through the exchanger E, to be expanded in the turbine T2 and sent to distillation.
- the threshold for detecting the approach to the pumping point is defined by defining a pressure drop threshold between two points of the booster not to be exceeded. This pressure difference is equivalent to the minimum air flow in the booster under which it must not pass. As long as the pressure drop remains above the threshold, all the compressed air is sent to the heat exchanger to liquefy there.
- the valve is opened allowing air to pass to the turbine.
- the rest of the compressed air is returned to the heat exchanger E through the valve CL1 and at least partially liquefies in the exchanger before being expanded in the valve V9 and sent to the column K1.
- the part of the air sent to the inlet of the turbine T2 can be sent to the outlet of the latter arriving in the pipe 17.
- the air expansion valve will relax this part of the air up to a pressure slightly above the pressure of column K1.
- Air can even be sent to the two turbines T1, T2, to the inputs of the two, to the outputs of the two or to the input of one and to the output of the other.
- An oxygen-rich fluid is sent to heat up at the exchanger E, for example liquid oxygen 31 can vaporize in the heat exchanger E.
- a nitrogen-rich fluid is sent to heat up at the exchanger E.
- the invention also applies to the case in which the device comprises only a single air turbine coupled to a cold booster.
- the air is sent in normal service from the cold booster to the heat exchanger.
- the air can then pass directly into the column system after expansion or otherwise can be sent at least in part to the single turbine.
- the device can comprise a single cold booster and a single turbine, whether or not receiving air from the cold booster outside of the pumping risk period.
- This invention applies to any process using a cold air blower in an apparatus for separating air by cryogenic distillation. It applies for example to the processes of FR2943408 , WO05064252 , EP2831525 , JP2015114083 , JP54162678 , EP1055894 , EP2600090 , JP2005221199 , EP2963370 , EP2963369 , FR2913760 , FR3033397 , EP2458311 , EP1782011 , EP1711765 , FR2895068 , EP2489968 , DE102011121314 , EP1014020 , FR2985305 , DE102006027650 , FR2861841 , FR3010778 , EP644388 and FR2721383 .
- the air blower has an inlet temperature preferably between 0 ° C and -180 ° C, or even between -60 ° C and -180 ° C.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
- La présente invention est relative à un appareil et à un procédé de séparation d'air par distillation cryogénique selon les préambules des revendications 1 et 3 respectivement. Un tel appareil et un tel procédé sont connus de
FR-A-2 851 330 - Lorsque la différence de pression entre l'entrée et la sortie d'un compresseur devient trop élevée, des instabilités que l'on appelle décollements apparaissent au niveau des aubes du compresseur. Le décrochage aérodynamique ne permet plus de pousser l'air dans le bon sens, et la partie « haute pression » du compresseur (la sortie) se vide dans sa partie « basse pression » (l'entrée). Dans certains cas extrêmes, une inversion du sens d'écoulement peut même se produire.
- Ces grandes fluctuations de débit portent le nom de pompage, en raison de la nature de ce phénomène d'instabilité aérodynamique, qui donne naissance à des ondes longitudinales. Si, en augmentant la vitesse de rotation, la différence de pression entre l'entrée et la sortie d'un compresseur augmente, cette augmentation de pression est limitée par ce phénomène de pompage. Lorsque le rapport de compression dépasse une valeur critique, le pompage apparaît et l'augmentation de la vitesse de rotation du compresseur n'influera presque plus sur le rapport de compression.
- Si ce phénomène nivelle les performances des compresseurs, il est également parfois très destructeur pour les compresseurs.
- Généralement quand l'approche du pompage est détectée, on renvoie une partie de l'air comprimé dans le compresseur en amont du compresseur après réfrigération suivie de détente dans une vanne.
- Dans le cas d'un surpresseur froid, dans un but de réduire les coûts, il est souhaitable de supprimer le réfrigérant en aval de la surpression et en amont de l'échangeur de chaleur. Un tel appareil est connu de
FR-A-2851330 - On pourrait envisager de renvoyer l'air surpressé dans le surpresseur froid à la propre aspiration en cas de pompage et de refroidir l'air surpressé à renvoyer à l'aspiration dans des passages dédiés de l'échangeur de chaleur, mais cette solution risque de coûter cher en compliquant l'échangeur.
- La présente invention permet de résoudre le problème en ouvrant une vanne vers une turbine en aval du compresseur, afin d'augmenter le débit dans le compresseur et ainsi sortir de la zone de pompage.
- Selon un objet de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique comprenant un compresseur d'air pour comprimer tout l'air à distiller, un surpresseur d'air pour comprimer au moins une partie de l'air à distiller, une turbine de détente pour recevoir de l'air comprimé provenant du compresseur et éventuellement du surpresseur d'air, un système de colonnes de distillation cryogénique comprenant au moins une colonne, un échangeur de chaleur, des moyens pour envoyer de l'air du compresseur à l'échangeur de chaleur ayant deux extrémités, des moyens pour prélever de l'air refroidi à un point intermédiaire de l'échangeur de chaleur entre les deux extrémités et pour l'envoyer au surpresseur, des moyens pour envoyer de l'air surpressé du surpresseur à l'échangeur de chaleur, des moyens pour envoyer de l'air refroidi dans l'échangeur de chaleur à la turbine, des moyens pour envoyer de l'air détendu dans la turbine au système de colonnes, des moyens pour soutirer du système de colonnes un débit enrichi en oxygène et un débit enrichi en azote, ces moyens étant reliés à l'échangeur de chaleur, des moyens pour détendre l'air surpressé dans le surpresseur, aucun moyen de refroidissement entre le refoulement du surpresseur et les moyens pour détendre l'air surpressé et des moyens pour envoyer de l'air, surpressé dans le surpresseur et détendu par les moyens de détente, en amont ou en aval de la turbine, sans avoir été refroidi dans l'échangeur de chaleur après avoir été surpressé, caractérisé en ce qu'il comprend des moyens pour détecter la perte de charge ou le débit entre deux points du surpresseur ainsi que des moyens pour ouvrir les moyens de détente, par exemple une vanne, pour envoyer l'air surpressé en amont ou en aval de la turbine sans passer par l'échangeur de chaleur, afin d'augmenter le débit dans le surpresseur, uniquement si la perte de charge ou du débit du surpresseur dépasse un seuil indiquant que le pompage est proche.
- Le surpresseur peut être relié à l'entrée de la turbine de sorte que l'air surpressé puisse se détendre au moins en partie dans la turbine.
- Selon un autre aspect de l'invention, il est prévu un procédé de séparation d'air par distillation cryogénique dans lequel on comprime tout l'air à distiller dans un compresseur d'air, on surpresse au moins une partie de l'air à distiller comprimé dans le compresseur d'air dans un surpresseur d'air, on détend dans au moins une turbine de détente de l'air comprimé provenant du compresseur et éventuellement du surpresseur d'air, on sépare de l'air comprimé refroidi dans un échangeur de chaleur dans un système de colonnes de distillation cryogénique comprenant au moins une colonne, on prélève de l'air refroidi à un point intermédiaire de l'échangeur de chaleur entre ses deux extrémités pour envoyer au surpresseur, on envoie de l'air surpressé du surpresseur à l'échangeur de chaleur, on envoie de l'air refroidi dans l'échangeur de chaleur à la turbine, on envoie de l'air détendu dans la turbine au système de colonnes, on soutire du système de colonnes un débit enrichi en oxygène et un débit enrichi en azote et on réchauffe ces débits dans l'échangeur de chaleur caractérisé en ce que :
- i) si la perte de charge entre deux points du surpresseur passe en dessous d'un seuil indiquant que le point de pompage est proche ou
- ii) un débit du surpresseur passe en dessous d'un débit minimal du surpresseur indiquant que le point de pompage est proche,
- Selon d'autres aspects facultatifs :
- si, de préférence uniquement si, la perte de charge entre les deux points est au dessus du seuil et/ou un débit du surpresseur passe au-dessus du débit minimal du surpresseur, on envoie tout l'air du surpresseur à l'échangeur de chaleur pour se refroidir.
- si la perte de charge entre les deux points du surpresseur passe en-dessous du seuil et/ou un débit du surpresseur passe en dessous du débit minimal du surpresseur, on n'envoie aucune partie de l'air surpressé en amont du surpresseur.
- de l'air surpressé et détendu est détendu dans la turbine si la perte de charge entre les deux points du surpresseur passe en dessous du seuil (et/ou un débit du surpresseur passe en dessous du débit minimal du surpresseur et de préférence aucun débit d'air provenant du surpresseur n'est détendu dans la turbine si la perte de charge entre les deux points du surpresseur est au-dessus du seuil et/ou un débit du surpresseur passe au-dessus du débit minimal.
- si la perte de charge entre les deux points du surpresseur passe en dessous du seuil et/ou un débit du surpresseur passe en dessous du débit minimal, l'air surpressé est détendu jusqu'à la pression d'une colonne du système de colonnes, est mélangé avec l'air provenant de la turbine et est envoyé à la colonne.
- le procédé de séparation s'effectue dans un appareil de séparation par distillation cryogénique.
- si la perte de charge entre les deux points du surpresseur est au-dessus du seuil ou débit du surpresseur est au-dessus du débit minimal, on envoie tout l'air surpressé se refroidir dans l'échangeur de chaleur.
- l'air surpressé détendu envoyé à la turbine est envoyé à une turbine couplée au surpresseur dont provient l'air.
- l'air surpressé détendu envoyé à la turbine est envoyé à une turbine recevant de l'air, voire tout l'air qu'elle détend, du surpresseur.
- la turbine reçoit de l'air du surpresseur uniquement dans le cas où la perte de charge entre les deux points du surpresseur est en dessous du seuil.
- si la perte de charge entre deux points du surpresseur passe en dessous d'un seuil et/ou un débit du surpresseur passe en dessous d'un débit minimal du surpresseur, on détend une partie de l'air surpressé dans le surpresseur dans des moyens de détente autre qu'une turbine.
- si la perte de charge entre deux points du surpresseur passe en dessous d'un seuil et/ou un débit du surpresseur passe en dessous d'un débit minimal du surpresseur, on détend une partie de l'air surpressé dans le surpresseur dans une vanne.
- si la perte de charge entre deux points du surpresseur passe en dessous d'un seuil et/ou un débit du surpresseur passe en dessous d'un débit minimal du surpresseur, on détend une partie de l'air surpressé dans le surpresseur jusqu'à une pression d'entrée ou de sortie d'une turbine de l'appareil, voire jusqu'à la pression d'une colonne de l'appareil.
- le surpresseur d'air a une température d'entrée entre 0°C et -180°C, voire entre -60°C et -180°C.
- L'invention sera décrite de manière plus détaillée en se référant à la figure qui illustre un appareil de séparation d'air par distillation cryogénique selon l'invention.
- L'appareil comprenant un système de colonnes comprenant une colonne opérant à une première pression K1 et une colonne opérant à une deuxième pression K2 inférieure à la deuxième pression. Les colonnes sont reliées thermiquement à travers un rebouilleur de cuve de la deuxième colonne chauffé par de l'azote de tête de la première colonne. Des débits de reflux non-illustrés enrichis en azote et en oxygène sont envoyés de la colonne K1 à la colonne K2. De l'oxygène liquide 31 est soutiré en cuve de la deuxième colonne K2 et de l'azote gazeux 33 est soutiré en tête de la deuxième colonne. De l'azote liquide LIN est envoyé en tête de la deuxième colonne par certaines phases pour aider à tenir le procédé en froid. Un fluide riche en oxygène est envoyé se réchauffer à l'échangeur E, par exemple l'oxygène liquide 31 peut se vaporiser dans l'échangeur de chaleur E. Un fluide riche en azote est envoyé se réchauffer à l'échangeur E.
- L'appareil comprend une première turbine de détente d'air T1, une deuxième turbine de détente d'air T2, un premier surpresseur d'air C1 couplé à la première turbine et un deuxième surpresseur d'air C2 couplé à la deuxième turbine.
- L'air comprimé 1 à une pression P provenant d'un autre compresseur (non-illustré) est divisé en deux fractions, dont une première fraction 3 est envoyée à l'échangeur de chaleur E sans avoir été comprimé à une pression au-delà de la pression P. Une deuxième fraction 5 est envoyée au premier surpresseur C1 où elle est comprimée à une pression supérieure à celle (P) de la première fraction 3. La sortie du premier surpresseur C1 est reliée à l'entrée de ce surpresseur par une conduite 25 à travers une vanne V8.
- Selon une première variante, la première fraction 3 est refroidie dans l'échangeur de chaleur E jusqu' à une température intermédiaire de celui-ci et n'ayant pas été comprimée dans le premier surpresseur est envoyée vers la première et la deuxième turbines à travers le clapet ouvert CL3 et les vannes ouvertes V5, V13, V4, V19.
- La deuxième fraction 5 se refroidit dans l'échangeur de chaleur E jusqu'à une température intermédiaire de celui-ci après avoir été comprimée dans le premier surpresseur C1. Ensuite elle est envoyée vers le deuxième surpresseur C2.
- En marche normale, l'air détendu provenant des première et deuxième turbines est envoyé à la première colonne K1 pour être séparé à travers les vannes V6, V15, V11 et la conduite 13. La deuxième fraction 5 est comprimée dans le deuxième surpresseur C2, passe par le clapet ouvert CL1 et ensuite se refroidit dans l'échangeur de chaleur avant d'être envoyé sous forme liquide à la première colonne K1 à travers la vanne V9. Les vannes V2 et V3 sont fermées.
- Si le surpresseur C1 s'approche de son point de pompage, une partie de l'air surpressé est prise après refroidissement dans un refroidisseur en aval du surpresseur, détendue par la vanne V8 et renvoyée à l'aspiration du surpresseur C1.
- Si le surpresseur C2, alimenté par de l'air 19 provenant d'un point intermédiaire de l'échangeur de chaleur E, s'approche de son point de pompage, aucune partie de l'air surpressé dans le surpresseur C2 n'est envoyée à l'aspiration du surpresseur C2. Le surpresseur C2 n'a pas de réfrigérant en aval du surpresseur. Si le débit surpressé en C2 passe en dessous d'un seuil indiquant que le point de pompage est proche, une partie de l'air surpressé est envoyée par la conduite 23, détendue dans la vanne V3 et arrive à l'aspiration de la turbine T2 pour y être détendue et envoyée à la distillation.
- Le seuil de détection de l'approche du point de pompage est défini en définissant un seuil de perte de charge entre deux points du surpresseur à ne pas dépasser. Tant que la perte de charge reste au-dessus du seuil, on envoie tout l'air surpressé à l'échangeur de chaleur pour y liquéfier.
- Une fois que la perte de charge a atteint le seuil, on ouvre la vanne permettant à l'air de passer vers la turbine.
- Le reste de l'air surpressé est renvoyé à l'échangeur de chaleur E à travers le clapet CL1 et se liquéfie au moins partiellement dans l'échangeur avant d'être détendu dans la vanne V9 et envoyé à la colonne K1.
- Alternativement, la partie de l'air envoyée à l'entrée de la turbine T2 peut être envoyée à la sortie de celle-ci arrivant dans la conduite 17. Dans ce cas, la vanne de détente de l'air détendra cette partie de l'air jusqu' à une pression légèrement au-dessus de la pression de la colonne K1.
- Il est également possible d'envoyer la partie de l'air non pas vers la turbine T2 mais vers l'entrée ou la sortie de la turbine T1. L'air peut même être envoyé aux deux turbines T1, T2, aux entrées des deux, aux sorties des deux ou à l'entrée d'une et à la sortie de l'autre.
- Selon une deuxième variante, la première fraction 3 est sortie d'un échangeur de chaleur à une température intermédiaire de celui-ci et n'ayant pas été comprimée dans le premier surpresseur est envoyée vers le deuxième surpresseur C2.
- La deuxième fraction 5 se refroidit dans l'échangeur de chaleur jusqu'à une température intermédiaire de celui-ci après avoir été comprimée dans le premier surpresseur C1. Ensuite elle est envoyée vers la première et la deuxième turbines.
- Dans ce cas aussi si le surpresseur C2, alimenté par de l'air 19 provenant d'un point intermédiaire de l'échangeur de chaleur E, s'approche de son point de pompage, aucune partie de l'air surpressé dans le surpresseur C2 n'est envoyée à l'aspiration du surpresseur C2. Le surpresseur C2 n'a pas de réfrigérant en aval du surpresseur.
- Si le débit surpressé en C2 passe en dessous d'un seuil indiquant que le point de pompage est proche, une partie de l'air surpressé est envoyée par la conduite 23, détendue dans la vanne V3 et arrive à l'aspiration de la turbine T2, sans passer par l'échangeur E, pour être détendue dans la turbine T2 et envoyée à la distillation.
- Le seuil de détection de l'approche du point de pompage est défini en définissant un seuil de perte de charge entre deux points du surpresseur à ne pas dépasser. Cette différence de pression est équivalente au débit minimal d'air dans le surpresseur sous lequel il ne faut pas passer. Tant que la perte de charge reste au-dessus du seuil, on envoie tout l'air surpressé à l'échangeur de chaleur pour y liquéfier.
- Une fois que la perte de charge passe sous le seuil, on ouvre la vanne permettant à l'air de passer vers la turbine.
- Il est aussi possible de déclencher l'ouverture de la vanne si le débit d'air dans le surpresseur passe en dessous d'un seuil.
- Le reste de l'air surpressé est renvoyé à l'échangeur de chaleur E à travers le clapet CL1 et se liquéfie au moins partiellement dans l'échangeur avant d'être détendu dans la vanne V9 et envoyé à la colonne K1.
- Alternativement, la partie de l'air envoyée à l'entrée de la turbine T2 peut être envoyée à la sortie de celle-ci arrivant dans la conduite 17. Dans ce cas, la vanne de détente de l'air détendra cette partie de l'air jusqu' à une pression légèrement au-dessus de la pression de la colonne K1.
- Il est également possible d'envoyer la partie de l'air non pas vers la turbine T2 mais vers l'entrée ou la sortie de la turbine T1. L'air peut même être envoyé aux deux turbines T1, T2, aux entrées des deux, aux sorties des deux ou à l'entrée d'une et à la sortie de l'autre.
- Un fluide riche en oxygène est envoyé se réchauffer à l'échangeur E, par exemple l'oxygène liquide 31 peut se vaporiser dans l'échangeur de chaleur E. Un fluide riche en azote est envoyé se réchauffer à l'échangeur E.
- L'invention s'applique également au cas dans lequel l'appareil ne comprend qu'une seule turbine d'air couplée à un surpresseur froid.
- Dans ce cas, l'air est envoyé en service normal du surpresseur froid vers l'échangeur de chaleur. L'air peut ensuite passer directement dans le système de colonne après détente ou sinon peut être envoyé au moins en partie à la seule turbine.
- Dans le cas où une partie de l'air surpressé se liquéfie dans l'échangeur de chaleur et est détendu dans une vanne V9 en amont du système de colonnes, quand le débit d'air surpressé dans le surpresseur C1 passe en dessous d'un seuil indiquant l'approche du pompage, on peut augmenter le débit de liquide passant dans la vanne V9. Cette vanne sera alors dimensionnée sur ce cas de fonctionnement.
- Il sera compris que l'appareil peut comprendre un seul surpresseur froid et une seule turbine, recevant ou non de l'air du surpresseur froid en dehors de période de risque de pompage.
- Cette invention s'applique à tout procédé utilisant un surpresseur froid d'air dans un appareil de séparation d'air par distillation cryogénique. Elle s'applique par exemple aux procédés de
FR2943408 WO05064252 EP2831525 ,JP2015114083 JP54162678 EP1055894 ,EP2600090 ,JP2005221199 EP2963370 ,EP2963369 ,FR2913760 FR3033397 EP2458311 ,EP1782011 ,EP1711765 ,FR2895068 EP2489968 ,DE102011121314 ,EP1014020 ,FR2985305 DE102006027650 ,FR2861841 FR3010778 EP644388 FR2721383 - Le surpresseur d'air a une température d'entrée de préférence entre 0°C et -180°C, voire entre -60°C et -180°C.
Claims (11)
- Appareil de séparation d'air par distillation cryogénique comprenant un compresseur d'air pour comprimer tout l'air à distiller, un surpresseur d'air (C2) pour comprimer au moins une partie de l'air à distiller, une turbine de détente (T1, T2) pour recevoir de l'air comprimé provenant du compresseur et éventuellement du surpresseur d'air, un système de colonnes de distillation cryogénique comprenant au moins une colonne (K1, K2), un échangeur de chaleur (E), des moyens pour envoyer de l'air du compresseur à l'échangeur de chaleur ayant deux extrémités, des moyens (19) pour prélever de l'air refroidi à un point intermédiaire de l'échangeur de chaleur entre les deux extrémités et pour l'envoyer au surpresseur, des moyens (CL1, 21) pour envoyer de l'air surpressé du surpresseur à l'échangeur de chaleur, des moyens pour envoyer de l'air refroidi (9, 11) dans l'échangeur de chaleur à la turbine, des moyens (17, 13) pour envoyer de l'air détendu dans la turbine au système de colonnes, des moyens pour soutirer du système de colonnes un débit enrichi en oxygène (31) et un débit enrichi en azote (33), ces moyens étant reliés à l'échangeur de chaleur, des moyens (V3) pour détendre l'air surpressé dans le surpresseur, aucun moyen de refroidissement entre le refoulement du surpresseur et les moyens pour détendre l'air surpressé et des moyens pour envoyer de l'air, surpressé dans le surpresseur et détendu par les moyens de détente, en amont ou en aval de la turbine, sans avoir été refroidi dans l'échangeur de chaleur après avoir été surpressé caractérisé en ce qu'il comprend des moyens pour détecter la perte de charge ou le débit entre deux points du surpresseur (C2) ainsi que des moyens pour ouvrir les moyens de détente (V3) pour envoyer l'air surpressé en amont ou en aval de la turbine sans passer par l'échangeur de chaleur, afin d'augmenter le débit dans le surpresseur, uniquement si la perte de charge ou le débit du surpresseur dépasse un seuil indiquant que le pompage est proche.
- Appareil selon la revendication 1 dans lequel le surpresseur (C2) est relié à l'entrée de la turbine (T2) de sorte que l'air surpressé puisse se détendre au moins en partie dans la turbine.
- Procédé de séparation d'air par distillation cryogénique dans lequel on comprime tout l'air à distiller dans un compresseur d'air, on surpresse au moins une partie de l'air à distiller comprimé dans le compresseur d'air dans un surpresseur d'air (C2), on détend dans au moins une turbine de détente (T2, T1) de l'air comprimé provenant du compresseur et éventuellement du surpresseur d'air, on sépare de l'air comprimé refroidi dans un échangeur de chaleur (E) dans un système de colonnes de distillation cryogénique comprenant au moins une colonne (K1, K2), on prélève de l'air refroidi à un point intermédiaire de l'échangeur de chaleur entre ses deux extrémités pour envoyer au surpresseur, on envoie de l'air surpressé du surpresseur à l'échangeur de chaleur, on envoie de l'air refroidi dans l'échangeur de chaleur à l'au moins une turbine, on envoie de l'air détendu dans l'au moins une turbine au système de colonnes, on soutire du système de colonnes un débit enrichi en oxygène (31) et un débit enrichi en azote (33) et on réchauffe ces débits dans l'échangeur de chaleur caractérisé en ce que :i) si la perte de charge entre deux points du surpresseur passe en dessous d'un seuil indiquant que le point de pompage est proche ouii) si le débit du surpresseur passe en dessous d'un débit minimal du surpresseur indiquant que le point de pompage est proche,on détend une partie de l'air surpressé dans le surpresseur sans l'avoir refroidi entre le surpresseur et la détente et on envoie l'air surpressé détendu en amont ou en aval de l'au moins une turbine, sans avoir été refroidi dans l'échangeur de chaleur après avoir été surpressé et pour les cas i) et ii) on augmente le débit dans le surpresseur pour sortir de la zone de pompage.
- Procédé selon la revendication 3 dans lequel si, de préférence uniquement si, la perte de charge entre les deux points est au dessus du seuil et/ou un débit du surpresseur (C2) est au dessus du débit minimal du surpresseur, on envoie tout l'air du surpresseur à l'échangeur de chaleur (E) pour se refroidir
- Procédé selon la revendication 3 dans lequel que si la perte de charge entre les deux points du surpresseur passe en-dessous du seuil et/ou un débit du surpresseur passe en dessous du débit minimal du surpresseur, on n'envoie aucune partie de l'air surpressé en amont du surpresseur.
- Procédé selon la revendication 3 ou 4 dans lequel de l'air surpressé et détendu est détendu dans la turbine (T2) si la perte de charge entre les deux points du surpresseur (C2) passe en dessous du seuil et/ou un débit du surpresseur passe en dessous du débit minimal du surpresseur et de préférence aucun débit d'air provenant du surpresseur n'est détendu dans la turbine si la perte de charge entre les deux points du surpresseur est au-dessus du seuil et/ou un débit du surpresseur passe au-dessus du débit minimal.
- Procédé selon la revendication 3 ou 4 dans lequel si la perte de charge entre les deux points du surpresseur (C2) passe en dessous du seuil et/ou un débit du surpresseur passe en dessous du débit minimal, l'air surpressé est détendu jusqu'à la pression d'une colonne (K1, K2) du système de colonnes, est mélangé avec l'air provenant de la turbine (T2) et est envoyé à la colonne.
- Procédé selon la revendication 3, 4, 5 ou 6 dans lequel si la perte de charge entre les deux points du surpresseur est au-dessus du seuil, on envoie tout l'air surpressé se refroidir dans l'échangeur de chaleur (E).
- Procédé selon l'une des revendications 3 à 6 ou 8 dans lequel l'air surpressé détendu envoyé à la turbine (T2) est envoyé à une turbine couplée au surpresseur dont provient l'air.
- Procédé selon l'une des revendications 3 à 6 ou 8 dans lequel l'air surpressé détendu envoyé à la turbine est envoyé à une turbine (T2) recevant de tout l'air qu'elle détend, du surpresseur (C2).
- Procédé selon l'une des revendications 3 à 8 dans lequel la turbine (T2) reçoit de l'air du surpresseur uniquement dans le cas où la perte de charge entre les deux points du surpresseur est en dessous du seuil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL18186782T PL3438586T3 (pl) | 2017-08-03 | 2018-08-01 | Aparat i sposób rozdzielania powietrza przez destylację kriogeniczną |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1757497A FR3069914B1 (fr) | 2017-08-03 | 2017-08-03 | Appareil et procede de separation d'air par distillation cryogenique |
FR1757493A FR3069913B1 (fr) | 2017-08-03 | 2017-08-03 | Appareil et procede de separation d'air par distillation cryogenique |
FR1757498A FR3069916B1 (fr) | 2017-08-03 | 2017-08-03 | Procede de degivrage d'un appareil de separation d'air par distillation cryogenique et appareil adapte pour etre degivre par ce procede |
FR1757495A FR3069915B1 (fr) | 2017-08-03 | 2017-08-03 | Appareil et procede de separation d'air par distillation cryogenique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3438586A1 EP3438586A1 (fr) | 2019-02-06 |
EP3438586B1 true EP3438586B1 (fr) | 2020-04-08 |
Family
ID=62981145
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18186654.2A Active EP3438584B1 (fr) | 2017-08-03 | 2018-07-31 | Procédé et appareil de séparation d'air par distillation cryogénique |
EP18186659.1A Withdrawn EP3438585A3 (fr) | 2017-08-03 | 2018-07-31 | Procédé de dégivrage d'un appareil de séparation d'air par distillation cryogénique et appareil adapté pour être dégivré par ce procédé |
EP18186782.1A Active EP3438586B1 (fr) | 2017-08-03 | 2018-08-01 | Appareil et procédé de séparation d'air par distillation cryogénique |
EP18187381.1A Active EP3438587B1 (fr) | 2017-08-03 | 2018-08-03 | Appareil et procédé de séparation d'air par distillation cryogénique |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18186654.2A Active EP3438584B1 (fr) | 2017-08-03 | 2018-07-31 | Procédé et appareil de séparation d'air par distillation cryogénique |
EP18186659.1A Withdrawn EP3438585A3 (fr) | 2017-08-03 | 2018-07-31 | Procédé de dégivrage d'un appareil de séparation d'air par distillation cryogénique et appareil adapté pour être dégivré par ce procédé |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18187381.1A Active EP3438587B1 (fr) | 2017-08-03 | 2018-08-03 | Appareil et procédé de séparation d'air par distillation cryogénique |
Country Status (4)
Country | Link |
---|---|
US (4) | US20190049178A1 (fr) |
EP (4) | EP3438584B1 (fr) |
CN (4) | CN109387032A (fr) |
PL (2) | PL3438586T3 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112304027A (zh) * | 2020-12-04 | 2021-02-02 | 开封空分集团有限公司 | 氮气循环流程全液体制取的空分装置及制取方法 |
FR3118145B1 (fr) * | 2020-12-23 | 2023-03-03 | Air Liquide | Procédé de redémarrage d’un appareil de séparation d’air |
Family Cites Families (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2113680A (en) * | 1938-04-12 | Method anx apparatus fob defrost- | ||
US2664718A (en) * | 1949-10-11 | 1954-01-05 | Union Carbide & Carbon Corp | Process of and apparatus for lowtemperature separation of air |
US3421333A (en) * | 1964-08-28 | 1969-01-14 | Linde Ag | Thawing technique for a single air separation plant |
US3418820A (en) * | 1966-11-14 | 1968-12-31 | Judson S. Swearingen | Method and apparatus for removing vapors from gaseous mixtures by freezing |
IT1019710B (it) * | 1974-07-12 | 1977-11-30 | Nuovo Pignone Spa | Processo ed apparato per la produ zione di elevate percentuali di os sigeno e/o azoto allo stato liquido |
JPS54162678A (en) | 1978-06-14 | 1979-12-24 | Hitachi Ltd | Air separating apparatus taking out liquid product utilizing coldness of lng |
DE4109945A1 (de) * | 1991-03-26 | 1992-10-01 | Linde Ag | Verfahren zur tieftemperaturzerlegung von luft |
FR2701313B1 (fr) * | 1993-02-09 | 1995-03-31 | Air Liquide | Procédé et installation de production d'azote ultra-pur par distillation d'air. |
FR2704632B1 (fr) * | 1993-04-29 | 1995-06-23 | Air Liquide | Procede et installation pour la separation de l'air. |
US5379598A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
FR2721383B1 (fr) | 1994-06-20 | 1996-07-19 | Maurice Grenier | Procédé et installation de production d'oxygène gazeux sous pression. |
US5758515A (en) * | 1997-05-08 | 1998-06-02 | Praxair Technology, Inc. | Cryogenic air separation with warm turbine recycle |
FR2787560B1 (fr) | 1998-12-22 | 2001-02-09 | Air Liquide | Procede de separation cryogenique des gaz de l'air |
JP2000337767A (ja) | 1999-05-26 | 2000-12-08 | Air Liquide Japan Ltd | 空気分離方法及び空気分離設備 |
FR2803221B1 (fr) * | 1999-12-30 | 2002-03-29 | Air Liquide | Procede et installation de separation d'air |
DE10052180A1 (de) * | 2000-10-20 | 2002-05-02 | Linde Ag | Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft |
DE10209421A1 (de) * | 2002-03-05 | 2003-04-03 | Linde Ag | Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft |
WO2004015347A2 (fr) * | 2002-08-08 | 2004-02-19 | Pacific Consolidated Industries, L.P. | Generateur d'azote |
FR2851330B1 (fr) * | 2003-02-13 | 2006-01-06 | Air Liquide | Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air |
FR2861841B1 (fr) | 2003-11-04 | 2006-06-30 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
US7228715B2 (en) | 2003-12-23 | 2007-06-12 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic air separation process and apparatus |
FR2865024B3 (fr) | 2004-01-12 | 2006-05-05 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
JP2005221199A (ja) | 2004-02-09 | 2005-08-18 | Kobe Steel Ltd | 空気分離装置 |
US7272954B2 (en) | 2004-07-14 | 2007-09-25 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude | Low temperature air separation process for producing pressurized gaseous product |
DE102005026534B4 (de) * | 2005-06-08 | 2012-04-19 | Man Diesel & Turbo Se | Dampferzeugungsanlage |
FR2895068B1 (fr) | 2005-12-15 | 2014-01-31 | Air Liquide | Procede de separation d'air par distillation cryogenique |
DE102006027650A1 (de) | 2006-06-14 | 2007-02-01 | Linde Ag | Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft |
FR2913670A1 (fr) | 2007-03-12 | 2008-09-19 | Philippe Lutringer | Dispositif integre d'ouverture et de refermeture de canettes pour boissons |
FR2913759B1 (fr) | 2007-03-13 | 2013-08-16 | Air Liquide | Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique. |
FR2915271A1 (fr) * | 2007-04-23 | 2008-10-24 | Air Liquide | Procede et appareil de separation des gaz de l'air par distillation cryogenique |
CN201173660Y (zh) * | 2008-03-12 | 2008-12-31 | 杭州福斯达气体设备有限公司 | 一种中小型多工况节能型空分设备 |
US20090241595A1 (en) * | 2008-03-27 | 2009-10-01 | Praxair Technology, Inc. | Distillation method and apparatus |
FR2943408A1 (fr) | 2009-03-17 | 2010-09-24 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
FR2943772A1 (fr) * | 2009-03-27 | 2010-10-01 | Air Liquide | Appareil et procede de separation d'air par distillation cryogenique |
GB2469077A (en) * | 2009-03-31 | 2010-10-06 | Dps Bristol | Process for the offshore liquefaction of a natural gas feed |
FR2948184B1 (fr) * | 2009-07-20 | 2016-04-15 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
US8663364B2 (en) * | 2009-12-15 | 2014-03-04 | L'Air Liquide, Société Anonyme pour l'Étude et l'Éxploitation des Procédés Georges Claude | Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture |
FR2965312B1 (fr) * | 2010-09-23 | 2016-12-23 | Air Liquide | Procede de compression de plusieurs flux gazeux sur un unique compresseur |
DE102010052545A1 (de) | 2010-11-25 | 2012-05-31 | Linde Aktiengesellschaft | Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft |
EP2482016B1 (fr) * | 2011-01-26 | 2019-04-10 | General Electric Technology GmbH | Procédé pour détendre un flux gazeux comprenant du dioxyde de carbone et centrale électrique à oxy-combustion avec un arrangement pour détendre un flux gazeux comprenant du dioxyde de carbone |
EP2489968A1 (fr) | 2011-02-17 | 2012-08-22 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la décomposition à basse température d'air |
JP5863320B2 (ja) * | 2011-08-05 | 2016-02-16 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
EP2600090B1 (fr) | 2011-12-01 | 2014-07-16 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air |
CN202328999U (zh) * | 2011-12-01 | 2012-07-11 | 液化空气(杭州)有限公司 | 带快速启动的空气分离设备 |
DE102011121314A1 (de) | 2011-12-16 | 2013-06-20 | Linde Aktiengesellschaft | Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft |
FR2985305B1 (fr) | 2012-01-03 | 2017-12-22 | L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede et appareil de production de gaz de l'air sous pression utilisant un surpresseur cryogenique |
US20130255313A1 (en) | 2012-03-29 | 2013-10-03 | Bao Ha | Process for the separation of air by cryogenic distillation |
CN102706098B (zh) * | 2012-05-21 | 2013-11-06 | 鞍钢股份有限公司 | 一种增压膨胀机热启动的方法 |
FR2995393B1 (fr) * | 2012-09-12 | 2014-10-03 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique. |
EP2713128A1 (fr) * | 2012-10-01 | 2014-04-02 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Processus pour la séparation de l'air par distillation cryogénique |
US9518778B2 (en) * | 2012-12-26 | 2016-12-13 | Praxair Technology, Inc. | Air separation method and apparatus |
DE102013002094A1 (de) * | 2013-02-05 | 2014-08-07 | Linde Aktiengesellschaft | Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage |
FR3010778B1 (fr) | 2013-09-17 | 2019-05-24 | Air Liquide | Procede et appareil de production d'oxygene gazeux par distillation cryogenique de l'air |
FR3014545B1 (fr) * | 2013-12-05 | 2018-12-07 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede et appareil de separation d’air par distillation cryogenique |
JP6159242B2 (ja) | 2013-12-13 | 2017-07-05 | 大陽日酸株式会社 | 空気分離方法及び装置 |
CN103760850B (zh) * | 2014-01-06 | 2017-01-04 | 上海加力气体有限公司 | 一种有关制氮机的远程监控与无人控制的装置及方法 |
FR3020669B1 (fr) * | 2014-04-30 | 2018-10-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede et appareil d’epuration et de refroidissement d’un melange gazeux |
BR112016027427B1 (pt) * | 2014-06-02 | 2022-07-05 | Praxair Technology, Inc | Sistema e método de separação de ar |
EP2963369B1 (fr) | 2014-07-05 | 2018-05-02 | Linde Aktiengesellschaft | Procede et dispositif cryogeniques de separation d'air |
EP2963370B1 (fr) | 2014-07-05 | 2018-06-13 | Linde Aktiengesellschaft | Procede et dispositif cryogeniques de separation d'air |
JP6354516B2 (ja) * | 2014-10-20 | 2018-07-11 | 新日鐵住金株式会社 | 深冷空気分離装置及び深冷空気分離方法 |
FR3033397A1 (fr) | 2015-03-06 | 2016-09-09 | Air Liquide | Procede de compression et de refroidissement d’un melange gazeux |
EA036619B1 (ru) * | 2015-06-15 | 2020-11-30 | 8 Риверз Кэпитл, Ллк | Система и способ запуска установки генерации мощности |
EP3196573A1 (fr) * | 2016-01-21 | 2017-07-26 | Linde Aktiengesellschaft | Procede de production d'un produit pneumatique et installation de decomposition d'air |
-
2018
- 2018-07-31 EP EP18186654.2A patent/EP3438584B1/fr active Active
- 2018-07-31 EP EP18186659.1A patent/EP3438585A3/fr not_active Withdrawn
- 2018-08-01 EP EP18186782.1A patent/EP3438586B1/fr active Active
- 2018-08-01 PL PL18186782T patent/PL3438586T3/pl unknown
- 2018-08-03 US US16/054,240 patent/US20190049178A1/en not_active Abandoned
- 2018-08-03 CN CN201810877089.8A patent/CN109387032A/zh active Pending
- 2018-08-03 CN CN201810877101.5A patent/CN109387033B/zh active Active
- 2018-08-03 CN CN201810875560.XA patent/CN109387031B/zh active Active
- 2018-08-03 US US16/054,213 patent/US10866024B2/en active Active
- 2018-08-03 EP EP18187381.1A patent/EP3438587B1/fr active Active
- 2018-08-03 PL PL18187381T patent/PL3438587T3/pl unknown
- 2018-08-03 CN CN201810877672.9A patent/CN109387034B/zh active Active
- 2018-08-03 US US16/054,223 patent/US10794630B2/en active Active
- 2018-08-03 US US16/054,350 patent/US20190049177A1/en active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
US10794630B2 (en) | 2020-10-06 |
CN109387031A (zh) | 2019-02-26 |
US10866024B2 (en) | 2020-12-15 |
US20190041129A1 (en) | 2019-02-07 |
EP3438585A2 (fr) | 2019-02-06 |
EP3438587B1 (fr) | 2020-04-08 |
CN109387033A (zh) | 2019-02-26 |
EP3438584B1 (fr) | 2020-03-11 |
PL3438587T3 (pl) | 2020-09-07 |
EP3438587A1 (fr) | 2019-02-06 |
CN109387031B (zh) | 2021-11-02 |
PL3438586T3 (pl) | 2020-09-07 |
EP3438584A1 (fr) | 2019-02-06 |
EP3438585A3 (fr) | 2019-04-17 |
EP3438586A1 (fr) | 2019-02-06 |
CN109387032A (zh) | 2019-02-26 |
US20190041130A1 (en) | 2019-02-07 |
CN109387033B (zh) | 2021-12-14 |
US20190049178A1 (en) | 2019-02-14 |
CN109387034B (zh) | 2021-11-19 |
US20190049177A1 (en) | 2019-02-14 |
CN109387034A (zh) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0024962B1 (fr) | Procédé cryogénique de séparation d'air avec production d'oxygène sous haute pression | |
CA2429319C (fr) | Procede et installation de separation d'un melange gazeux contenant du methane par distillation, et gaz obtenue par cette separation | |
US7370494B2 (en) | Method and installation for producing, in gaseous form and under high pressure, at least one fluid chosen from oxygen, argon and nitrogen by cryogenic distillation of air | |
EP2344821B1 (fr) | Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée | |
EP1623172B1 (fr) | Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air | |
FR2571129A1 (fr) | Procede et installation de fractionnement cryogenique de charges gazeuses | |
EP3438586B1 (fr) | Appareil et procédé de séparation d'air par distillation cryogénique | |
FR2805339A1 (fr) | Procede de production d'oxygene par rectification cryogenique | |
US20120324943A1 (en) | Two Step Nitrogen and Methane Separation Process | |
EP2475945A2 (fr) | Procede et installation de production d'oxygene par distillation d'air | |
EP2788699B1 (fr) | Procédé et appareil de liquéfaction d'un gaz riche en co2 | |
EP2457047B1 (fr) | Procédé et appareil de séparation d'air par distillation cryogénique | |
FR3069915A1 (fr) | Appareil et procede de separation d'air par distillation cryogenique | |
FR2865024A1 (fr) | Procede et installation de separation d'air par distillation cryogenique | |
WO2009112744A2 (fr) | Appareil de separation d'air par distillation cryogenique | |
FR3069913A1 (fr) | Appareil et procede de separation d'air par distillation cryogenique | |
US12061045B2 (en) | Method for starting up a cryogenic air separation unit and associated air separation unit | |
FR3069916A1 (fr) | Procede de degivrage d'un appareil de separation d'air par distillation cryogenique et appareil adapte pour etre degivre par ce procede | |
FR2915271A1 (fr) | Procede et appareil de separation des gaz de l'air par distillation cryogenique | |
WO2005047790A2 (fr) | Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants | |
FR3069914A1 (fr) | Appareil et procede de separation d'air par distillation cryogenique | |
US9964354B2 (en) | Method for producing pressurized gaseous oxygen through the cryogenic separation of air | |
EP3060629A1 (fr) | Procédé de fractionnement d'un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée | |
FR3140938A1 (fr) | Procédé et appareil de récupération de gaz pour compresseur | |
FR2862746A1 (fr) | Procede et installation de separation d'air par distillation cryogenique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190806 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191112 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1254950 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018003597 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200709 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200817 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200808 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1254950 Country of ref document: AT Kind code of ref document: T Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200708 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602018003597 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
26N | No opposition filed |
Effective date: 20210112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200801 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200408 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220726 Year of fee payment: 5 Ref country code: GB Payment date: 20220822 Year of fee payment: 5 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230523 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230822 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230721 Year of fee payment: 6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230801 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240829 Year of fee payment: 7 |