EP3438584B1 - Procédé et appareil de séparation d'air par distillation cryogénique - Google Patents

Procédé et appareil de séparation d'air par distillation cryogénique Download PDF

Info

Publication number
EP3438584B1
EP3438584B1 EP18186654.2A EP18186654A EP3438584B1 EP 3438584 B1 EP3438584 B1 EP 3438584B1 EP 18186654 A EP18186654 A EP 18186654A EP 3438584 B1 EP3438584 B1 EP 3438584B1
Authority
EP
European Patent Office
Prior art keywords
column
air
turbine
heat exchanger
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18186654.2A
Other languages
German (de)
English (en)
Other versions
EP3438584A1 (fr
Inventor
Patrice Cavagne
Bénédicte DOS SANTOS
Yann-Pierrick LEMAIRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1757493A external-priority patent/FR3069913B1/fr
Priority claimed from FR1757497A external-priority patent/FR3069914B1/fr
Priority claimed from FR1757498A external-priority patent/FR3069916B1/fr
Priority claimed from FR1757495A external-priority patent/FR3069915B1/fr
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3438584A1 publication Critical patent/EP3438584A1/fr
Application granted granted Critical
Publication of EP3438584B1 publication Critical patent/EP3438584B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04818Start-up of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0295Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04066Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/0423Subcooling of liquid process streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04775Air purification and pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/42Nitrogen or special cases, e.g. multiple or low purity N2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/22Compressor driver arrangement, e.g. power supply by motor, gas or steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/20Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Definitions

  • the present invention relates to a method and an apparatus for separating air by cryogenic distillation.
  • the invention relates to an apparatus for separating air by cryogenic distillation, in particular to an apparatus using a heat exchanger to cool all the air intended for distillation.
  • the device is kept cold at least partially by one or two turbines, at least one of which is optionally coupled to a compressor.
  • An air compressor has an inlet temperature which is an intermediate temperature of the heat exchanger, less than 0 ° C or even less than -50 ° C. It receives air from an intermediate level of the heat exchanger.
  • Another air compressor may have an inlet temperature above 0 ° C.
  • FR-A-2851330 which describes a method according to the preamble of claim 1, to connect the outlet of a cold compressor to the inlet of a turbine by parallel pipes, passing through the main heat exchanger of the air separation and the other does not pass there.
  • it is recommended to send the compressed air in the cold compressor to the turbine without passing through the heat exchanger, to avoid sending too hot air.
  • the hot air from the compressor 5 passes via the valve V1 to the exchanger, which could damage the exchanger.
  • the expanded air is sent to a medium pressure column of a double distillation column and separated to form at least one product enriched in oxygen or nitrogen.
  • the present invention can make it possible to reduce the cost of the installation, to facilitate restarting and the calculation of the pressures required for the installation.
  • a check valve also called a non-return valve, is a valve that allows fluids to flow downstream, but that closes automatically to block any fluid that goes upstream.
  • the pressure to be supported by the heat exchanger is necessary to define the pressure to be supported by the heat exchanger as a function of the balancing pressure of the valve at the outlet of the cold booster sending air to the turbine. This pressure being greater than that of the turbine inlet for a device without this additional pipe. This could impose a change of waves and therefore an additional cost on the exchanger.
  • the invention proposes to have a check valve on the pipe supplying the two turbines with air coming from an intermediate point of the main heat exchanger.
  • This valve is arranged so that the air arriving from the cold booster from the additional pipe is prevented from arriving in the heat exchanger.
  • the valve closes automatically to prevent air from flowing to the exchanger. In normal operation, it lets air pass from the exchanger to the expansion turbine (s).
  • downstream and upstream in this claim refer to the direction of air flow in normal process operation.
  • an air separation apparatus by cryogenic distillation comprising a heat exchanger, a double separation column comprising a first column and a second column, the second column operating at lower pressure.
  • first column means for sending compressed and purified air to cool in the heat exchanger, a compressor, means for withdrawing a first part of the air at an intermediate temperature at an intermediate point of the heat exchanger and for sending it to the compressor, means for returning compressed air to the compressor in the heat exchanger where it cools, means for sending liquefied air to at least the first column, means for sending liquids enriched with oxygen and nitrogen from the first column to the second column, means for withdrawing a fluid enriched with oxygen in the tank of the second column, means for withdrawing a nitrogen-enriched fluid from the head of the second column and means for sending the nitrogen-enriched fluid to heat up in the heat exchanger, a withdrawal line for removing a second part of the air from the heat exchanger at an intermediate temperature thereof and at an intermediate point of the heat exchanger, possibly means for
  • downstream and upstream in this claim refer to the direction of air flow in normal operation of the device.
  • the apparatus comprising a column system comprising a column operating at a first pressure K1 and a column operating at a second pressure K2 lower than the first pressure.
  • the columns are thermally connected through a tank reboiler of the second column heated by nitrogen from the top of the first column.
  • Non-illustrated reflux flows enriched in nitrogen and oxygen are sent from column K1 to column K2.
  • Liquid oxygen 31 is drawn off from the tank of the second column K2 and nitrogen gas 33 is drawn off at the head of the second column.
  • Liquid nitrogen is sent to the top of the second column through certain phases to help maintain the cold process. Liquid oxygen 31 can vaporize in the heat exchanger E.
  • the apparatus comprises a first air expansion turbine T1, a second air expansion turbine T2, a first air compressor C1 coupled to the first turbine and a second air compressor C2 coupled to the second turbine.
  • the compressed air 1 at a pressure P coming from another compressor is divided into two portions, a first portion 3 of which is sent to the heat exchanger E without having been compressed to a pressure beyond of the pressure P.
  • a second portion 5 is sent to the first compressor C1 where it is compressed to a pressure greater than that (P) of the first portion 3.
  • the output of the first compressor C1 is connected to the input of this compressor by a line 25 through a valve V8.
  • the inlet temperature of compressor C2 is less than 0 ° C, or even less than -50 ° C.
  • the first portion 3 is cooled in the heat exchanger E to an intermediate temperature thereof and an intermediate point P of the exchanger and having not been compressed in the first compressor is sent towards the first and second turbines through the open valve CL3 and the open valves V5, V13, V4, V19, the air being divided in two at a division point D for sending to the two turbines T1, T2.
  • the second portion 5 cools in the heat exchanger E to an intermediate temperature thereof after having been compressed in the first compressor C1. Then it is sent to the second compressor C2.
  • the expanded air from the first and second turbines is sent to the first column K1 to be separated through the valves V6, V15, V11 and the line 13.
  • the second portion 5 is compressed in the second compressor C2, passes through the open valve CL1 and then cools in the heat exchanger before being sent in liquid form to the first column K1 through the valve V9. Valves V2 and V3 are closed.
  • valve V9 is closed and valve V3 open.
  • the valve is disposed on the draw-off line 8 preferably between the point P for drawing off air intended for the turbines and the division point D of the fractions 9 and 11 where the air is shared between the two turbines.
  • This division point can also be used to divide the air intended for the short-circuiting line.
  • the valve must be between the point of arrival A of the air coming from line 23 and the intermediate point P of the exchanger E.
  • valve can be placed on the line 9 if the line 23 opens into the line 9 or on the line 11 if the line 23 opens on the line 11.
  • the first portion 3 is taken out of the heat exchanger at an intermediate temperature thereof and, having not been compressed in the first compressor, is sent to the second compressor C2.
  • the second portion 5 cools in the heat exchanger to an intermediate temperature thereof after having been compressed in the first compressor C1 and is withdrawn at an intermediate point P of the exchanger by a withdrawal pipe 8. Then it is sent to the first and second turbines. In this case, it is the first portion 3 of the air which is diverted, in the event of starting, not to pass any more by the heat exchanger E but directly at the entry of the turbine T1 or T2, even the of them.
  • valve V19 As described above, it is recommended to send part of the air from line 23 into line 9 by opening valve V19 and then to line 11 and the short-circuiting line 15 with its valve V7 .
  • the valve CL3 prevents this air 23 from passing in the opposite direction to that of normal operation and arriving in the exchanger at the intermediate point P.
  • the air sent to the turbine during starting through the line 23 arrives at an arrival point A upstream of the turbines T1, T2, preferably downstream of the division point D, but downstream of the heat exchanger E and the check valve CL3.
  • the valve is disposed on the draw-off line 8 preferably between the point P for drawing off air intended for the turbines and the division point D of the fractions 9 and 11 where the air is shared between the two turbines.
  • This division point can also be used to divide the air intended for the short-circuiting line.
  • the valve must be between the point of arrival A of the air coming from line 23 and the intermediate point P of the exchanger E.
  • valve can be placed on the line 9 if the line 23 opens into the line 9 or on the line 11 if the line 23 opens on the line 11.
  • the invention also applies to the case in which the device comprises only a single air turbine coupled to a cold compressor.
  • the air is sent in normal service from the cold compressor to the heat exchanger.
  • the air can then pass directly into the column system after expansion or otherwise can be sent at least in part to the single turbine.
  • the air from the cold compressor can avoid the heat exchanger by passing through a short-circuiting pipe connected upstream of the inlet of the single turbine. Air can also be sent from this shorting line to another shorting line which allows air to be sent from the cold compressor to the column system, without passing through the turbine, by expanding it in a valve.
  • the air sent to the turbine during startup through line 23 arrives at an arrival point A upstream of the turbine but downstream of the heat exchanger E and of the check valve CL3.
  • the valve CL3 closes the draw-off line 8 and thus prevents the air coming from the line 23 from rising towards the exchanger.
  • the pressure of the exchange line E going towards the suction of the turbine or turbines T1, T2 should be defined as a function of the balancing pressure due to the connection of the anti-pumping valve V3 from the cold booster outlet C2 to the suction of the turbine T2 in the variant in the figure.
  • This balancing pressure is necessarily higher than the pressure of the normal source coming to the turbine. In in some cases, this could impose a change of waves and therefore an additional cost on the exchanger.
  • the design of the exchanger does not take into account the balancing pressure and we just use a flow valve PSV defined on the scenario of a leak of the valve CL3 placed between the outlet P of the exchanger and the CL3 valve.
  • the position of the check valve CL3 upstream of the dividing point D dividing the pipes supplying the two turbines provides a quick way to depressurize the suction of the turbines before restarting if the installation (point of division D) of the additional pipe 11, 15 for bypassing turbines is downstream of this common valve CL3.
  • the operating pressures of the one or two turbines or of the exchanger can be defined without waiting the final design of the pipes to calculate and know the effective volumes to be taken into account in a traditional calculation. This saves time.
  • the design pressure of the exchange line E is therefore completely independent of the balancing pressure thanks to the valve CL3 and a valve to protect the valve from leaking from the valve CL3, so we can define its design pressure very early in the project. independently of the T2 turbine.
  • the design pressure on the T2 turbine does not have a big impact on its cost, we can make volume approximations to define conservatively the balancing pressure to be taken into account on the turbine without having the layout and the exact volume of piping which would allow the balancing pressure to be calculated finely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • La présente invention est relative à un procédé et à un appareil de séparation d'air par distillation cryogénique.
  • L'invention est relative à un appareil de séparation d'air par distillation cryogénique, en particulier à un appareil utilisant un échangeur de chaleur pour refroidir tout l'air destiné à la distillation. L'appareil est tenu en froid au moins partiellement par une ou deux turbines, dont au moins une est éventuellement couplée à un compresseur. Un compresseur d'air a une température d'entrée qui est une température intermédiaire de l'échangeur de chaleur, inférieure à 0°C, voire inférieure à -50°C. Il reçoit de l'air d'un niveau intermédiaire de l'échangeur de chaleur. Un autre compresseur d'air peut avoir une température d'entrée supérieure à 0°C.
  • L'usage d'un tel compresseur ayant une température d'entrée inférieure à 0°C, connu sous le nom « compresseur froid », car ayant une température d'entrée très froide, pose des problèmes. Au moment du démarrage l'air chauffé dans le compresseur froid peut se trouver à une température supérieure à celles supportées par l'échangeur de chaleur.
  • Il est connu de FR-A-2851330 , qui décrit un procédé selon le préambule de la revendication 1, de relier la sortie d'un compresseur froide à l'entrée d'une turbine par des conduites en parallèle, une passant pas l'échangeur de chaleur principal de l'appareil de séparation d'air et l'autre n'y passant pas. Ainsi lors du démarrage des machines, il est préconisé d'envoyer l'air comprimé dans le compresseur froid à la turbine sans passer par l'échangeur de chaleur, afin d'éviter d'y envoyer de l'air trop chaud. Dans ce procédé, il existe un risque que l'air chaud du compresseur 5 passe via la vanne V1 vers l'échangeur, ce qui pourrait endommager l'échangeur.
  • Il est connu de fournir aux moins une partie des frigories nécessaires à la séparation d'air par détente d'air en une turbine ou deux turbines connectées en parallèle, alimentée(s) par de l'air provenant d'un compresseur ou d'un surpresseur.
  • L'air détendu est envoyé à une colonne moyenne pression d'une double colonne de distillation et séparé pour former au moins un produit enrichi en oxygène ou en azote.
  • La présente invention peut permettre de réduire le coût de l'installation, de faciliter le redémarrage et le calcul des pressions requises pour l'installation.
  • Un clapet de retenue, aussi appelé clapet de non-retour, est une vanne qui permet aux fluides de s'écouler vers l'aval, mais qui se ferme automatiquement pour bloquer tout fluide qui remonterait en amont.
  • Dans le contexte d'un appareil comprenant un surpresseur froid d'air pris à un niveau intermédiaire de l'échangeur de chaleur, il est proposé de rajouter une conduite supplémentaire afin d'envoyer ponctuellement au moins une partie, voire tout l'air du surpresseur froid à l'entrée d'au moins une turbine de détente d'air sans passer par l'échangeur.
  • Dans ce cas, il est nécessaire de définir la pression à supporter par l'échangeur de chaleur en fonction de la pression d'équilibrage de la vanne en sortie du surpresseur froid envoyant l'air vers la turbine. Cette pression étant supérieure à celle d'entrée de turbine pour un appareil sans cette conduite supplémentaire. Ceci pourrait imposer un changement d'ondes et donc un surcoût sur l'échangeur.
  • Afin de réduire le prix de l'échangeur, l'invention propose de disposer un clapet de retenue sur la conduite alimentant les deux turbines en air provenant d'un point intermédiaire de l'échangeur de chaleur principal. Ce clapet est disposé de sorte que l'air arrivant du surpresseur froid depuis la conduite supplémentaire est empêché d'arriver dans l'échangeur de chaleur. Le clapet se ferme automatiquement pour empêcher de l'air de couler vers l'échangeur. En fonctionnement normal, elle laisse passer l'air de l'échangeur vers la ou les turbines de détente.
  • Selon un objet de l'invention, il est prévu un procédé de séparation d'air par distillation cryogénique dans lequel :
    1. i) de l'air comprimé et épuré est refroidi dans un échangeur de chaleur, une première partie de l'air est comprimée à une température intermédiaire de l'échangeur de chaleur dans un compresseur et renvoyée à l'échangeur de chaleur où il se refroidit, la première partie de l'air se trouve liquéfiée et est envoyée à au moins une première colonne d'une double colonne, la double colonne comprenant la première colonne et une deuxième colonne, la deuxième colonne fonctionnant à plus basse pression que la première colonne,
    2. ii) des liquides enrichis en oxygène et en azote sont envoyés de la première colonne vers la deuxième colonne, un fluide enrichi en oxygène est soutiré en cuve de la deuxième colonne et un fluide enrichi en azote est soutiré de la tête de la deuxième colonne et se réchauffe dans l'échangeur de chaleur,
    3. iii) une deuxième partie de l'air sort de l'échangeur de chaleur à une température intermédiaire de celui-ci et éventuellement est ensuite divisée en une première et une deuxième fractions à un point de division, la deuxième partie de l'air ou au moins une partie de la première fraction est détendue dans une première turbine et envoyée à la première colonne, éventuellement au moins une partie de la deuxième fraction est détendue dans une deuxième turbine et envoyée à la première colonne, et
    4. iv) le refoulement du compresseur est relié à l'entrée de la turbine ou d'au moins une des première et deuxième turbines à travers une conduite et un point d'arrivée qui permet d'envoyer de l'air du compresseur à la turbine ou une des turbines sans passer par l'échangeur de chaleur,
    caractérisé en ce que la deuxième partie de l'air est envoyée à un clapet de retenue en aval de l'échangeur de chaleur et éventuellement en amont du point de division pour le cas avec deux turbines, le clapet servant à empêcher l'air de passer dans le sens contraire de celui de l'opération normale et d'arriver depuis le point d'arrivée dans l'échangeur, étant disposé sur une conduite entre le point d'arrivée et l'échangeur.
  • Les termes « en aval » et « en amont » dans cette revendication font référence au sens d'écoulement de l'air en opération normale du procédé.
  • Selon d'autres aspects facultatifs :
    • pendant le démarrage, on envoie de l'air du compresseur à la turbine ou une des turbines en passant par le point d'arrivée mais sans passer par l'échangeur de chaleur, l'air étant refoulé par le clapet de retenue.
    • l'au moins une partie de la deuxième fraction est détendue dans la deuxième turbine et envoyée à la première colonne, l'au moins une partie de la première fraction détendue dans la première turbine et l'au moins une partie de la deuxième fraction détendue dans la deuxième turbine sont mélangées à un point de mélange et ensuite envoyées comme un seul débit à la première colonne.
    • une partie de la première et/ou de la deuxième fraction n'est pas détendue dans une turbine mais dans une vanne et ensuite est envoyée au système de colonnes.
    • pendant le démarrage et/ou une marche de débit réduit dans la colonne et/ou la dépressurisation, une partie de la première et/ou de la deuxième fraction n'est pas détendue dans une turbine mais dans une vanne et ensuite est envoyée au système de colonnes.
    • une partie de la deuxième partie de l'air n'est pas détendue dans la turbine mais dans une vanne et ensuite est envoyée au système de colonnes.
    • pendant le démarrage et/ou une marche de débit réduit dans la colonne et/ou la dépressurisation, une partie de la deuxième partie de l'air n'est pas détendue dans la turbine mais dans une vanne et ensuite est envoyée au système de colonnes.
    • la partie de la première et/ou deuxième fraction détendue dans la vanne est mélangée avec le seul débit envoyé à la première colonne en aval du point de mélange.
    • de l'air est refroidi dans l'échangeur de chaleur jusqu'à une température intermédiaire de celle-ci, comprimé dans le compresseur et renvoyé à l'échangeur de chaleur, le compresseur étant entrainé par la première ou la deuxième turbine.
    • la température d'entrée du compresseur est inférieure à 0°C, voire inférieure à -50°C.
  • Selon un autre objet de l'invention, il est prévu un appareil de séparation d'air par distillation cryogénique comprenant un échangeur de chaleur, une double colonne de séparation comprenant une première colonne et une deuxième colonne, la deuxième colonne fonctionnant à plus basse pression que la première colonne, des moyens pour envoyer de l'air comprimé et épuré se refroidir dans l'échangeur de chaleur, un compresseur, des moyens pour soutirer une première partie de l'air à une température intermédiaire à un point intermédiaire de l'échangeur de chaleur et pour l'envoyer au compresseur, des moyens pour renvoyer de l'air comprimé dans le compresseur dans l'échangeur de chaleur où il se refroidit, des moyens pour envoyer de l'air liquéfiée à au moins la première colonne, des moyens pour envoyer des liquides enrichis en oxygène et en azote de la première colonne vers la deuxième colonne, des moyens pour soutirer un fluide enrichi en oxygène en cuve de la deuxième colonne, des moyens pour soutirer un fluide enrichi en azote de la tête de la deuxième colonne et des moyens pour envoyer le fluide enrichi en azote se réchauffer dans l'échangeur de chaleur, une conduite de soutirage pour sortir une deuxième partie de l'air de l'échangeur de chaleur à une température intermédiaire de celui-ci et à un point intermédiaire de l'échangeur de chaleur, éventuellement des moyens pour diviser la deuxième partie en une première et une deuxième fractions à un point de division, une première turbine et éventuellement une deuxième turbine, des moyens pour envoyer la deuxième partie de l'air ou au moins une partie de la première fraction se détendre dans la première turbine et ensuite à la première colonne, éventuellement des moyens pour envoyer au moins une partie de la deuxième fraction se détendre dans la deuxième turbine et ensuite à la première colonne et des moyens pour envoyer de l'air du refoulement du compresseur à une entrée de la turbine ou d'une des turbines sans passer par l'échangeur de chaleur, ces moyens étant reliés à un point d'arrivée (A) caractérisé en ce qu'il comprend un clapet de retenue disposé sur la conduite de soutirage en aval de l'échangeur de chaleur et éventuellement en amont du point de division, le clapet étant disposé sur une conduite entre le point d'arrivée et l'échangeur et étant capable d'empêcher l'arrivée d'air depuis le point d'arrivée vers l'échangeur.
  • Les termes « en aval » et « en amont » dans cette revendication font référence au sens d'écoulement de l'air en opération normale de l'appareil.
  • Selon d'autres aspects facultatifs :
    • l'appareil comprend des moyens pour mélanger l'au moins une partie de la première fraction détendue dans la première turbine et l'au moins une partie de la deuxième fraction détendue dans la deuxième turbine à un point de mélange et des moyens pour les envoyer comme un seul débit à la première colonne.
    • l'appareil comprend une vanne de détente reliée au clapet de retenue à travers le point de division et reliée au système de colonnes, de sorte que de l'air puisse passer du clapet au système de colonnes sans passer par une turbine.
    • dans le cas où l'appareil comprend deux turbines, les moyens pour envoyer de l'air du refoulement du compresseur à une entrée d'une des turbines sans passer par l'échangeur de chaleur sont reliés à un point d'arrivée entre le point de division et l'entrée de la turbine.
    • l'appareil comprend la deuxième turbine et une vanne entre le point d'arrivée et le point de division.
  • L'invention sera décrite en plus de détail en se référant à la figure qui illustre un appareil de séparation d'air par distillation cryogénique selon l'invention.
  • L'appareil comprenant un système de colonnes comprenant une colonne opérant à une première pression K1 et une colonne opérant à une deuxième pression K2 inférieure à la première pression. Les colonnes sont reliées thermiquement à travers un rebouilleur de cuve de la deuxième colonne chauffé par de l'azote de tête de la première colonne. Des débits de reflux non-illustrés enrichis en azote et en oxygène sont envoyés de la colonne K1 à la colonne K2. De l'oxygène liquide 31 est soutiré en cuve de la deuxième colonne K2 et de l'azote gazeux 33 est soutiré en tête de la deuxième colonne. De l'azote liquide est envoyé en tête de la deuxième colonne par certaines phases pour aider à tenir le procédé en froid. L'oxygène liquide 31 peut se vaporiser dans l'échangeur de chaleur E.
  • L'appareil comprend une première turbine de détente d'air T1, une deuxième turbine de détente d'air T2, un premier compresseur d'air C1 couplé à la première turbine et un deuxième compresseur d'air C2 couplé à la deuxième turbine. L'air comprimé 1 à une pression P provenant d'un autre compresseur (non-illustré) est divisé en deux portions, dont une première portion 3 est envoyée à l'échangeur de chaleur E sans avoir été comprimé à une pression au-delà de la pression P. Une deuxième portion 5 est envoyée au premier compresseur C1 où elle est comprimée à une pression supérieure à celle (P) de la première portion 3. La sortie du premier compresseur C1 est reliée à l'entrée de ce compresseur par une conduite 25 à travers une vanne V8.
  • La température d'entrée du compresseur C2 est inférieure à 0°C, voire inférieure à -50°C.
  • Selon une première variante, la première portion 3 est refroidie dans l'échangeur de chaleur E jusqu' à une température intermédiaire de celui-ci et un point intermédiaire P de l'échangeur et n'ayant pas été comprimée dans le premier compresseur est envoyée vers la première et la deuxième turbines à travers le clapet ouvert CL3 et les vannes ouvertes V5, V13, V4, V19, l'air étant divisé en deux à un point de division D pour envoi vers les deux turbines T1, T2.
  • La deuxième portion 5 se refroidit dans l'échangeur de chaleur E jusqu'à une température intermédiaire de celui-ci après avoir été comprimée dans le premier compresseur C1. Ensuite elle est envoyée vers le deuxième compresseur C2.
  • En marche normale, l'air détendu provenant des première et deuxième turbines est envoyé à la première colonne K1 pour être séparé à travers les vannes V6, V15, V11 et la conduite 13. La deuxième portion 5 est comprimée dans le deuxième compresseur C2, passe par le clapet ouvert CL1 et ensuite se refroidit dans l'échangeur de chaleur avant d'être envoyé sous forme liquide à la première colonne K1 à travers la vanne V9. Les vannes V2 et V3 sont fermées.
  • En phase de démarrage, on craint que l'air provenant du compresseur C2 n'arrive trop chaud à l'entrée de l'échangeur E en sortie de C2, par exemple à une température plus haute que les 65°C de température de tenue mécanique de l'échangeur. Pour éviter cela, la vanne V9 est fermée et la vanne V3 ouverte.
  • Ainsi l'air provenant du compresseur C2 ne passe plus vers l'échangeur de chaleur E mais vers l'entrée de la deuxième turbine T2 à travers la conduite 23 et la vanne ouverte V3. Tout l'air ne peut pas passer dans la turbine donc la vanne V4 est ouverte, le débit passant par la turbine étant limitée par l'ouverture des aubages de la turbine et le reste de l'air provenant du compresseur C2 passe à la colonne à travers les conduites 11 et 15.
  • Il est également possible d'envoyer l'air de démarrage vers l'entrée des deux turbines. Ainsi l'air passe dans la conduite 11 et passe à la turbine T1 à travers les vannes V13, V5 et/ou à la conduite de court-circuitages 15 dans laquelle il est détendu par la vanne V7 pour obtenir une réduction de pression similaire à celle de la turbine T1. La vanne V2 reste fermée. Il est également possible d'envoyer l'air provenant du compresseur C2 vers le refoulement de la turbine T1 et/ou vers le refoulement de la turbine T2. Ainsi l'air ne circule ni dans l'échangeur de chaleur ni de préférence dans les turbines et passe directement à la colonne de distillation. Le clapet CL3 empêche l'air 23 de passer dans le sens contraire de celui de l'opération normale et d'arriver dans l'échangeur au point intermédiaire P. L'air envoyé à la turbine pendant le démarrage à travers la conduite 23 arrive à un point d'arrivée A en amont des turbines T1, T2, de préférence en aval du point de division D, mais en aval de l'échangeur de chaleur E et du clapet de retenue CL3.
  • Le clapet est disposé sur la conduite de soutirage 8 de préférence entre le point P de soutirage d'air destiné aux turbines et le point de division D des fractions 9 et 11 où l'air est partagé entre les deux turbines. Ce point de division peut également servir à diviser l'air destiné à la conduite de court-circuitage.
  • Le clapet doit se trouver entre le point d'arrivée A de l'air provenant de la conduite 23 et le point intermédiaire P de l'échangeur E.
  • Dans une version moins performante, le clapet peut être placé sur la conduite 9 si la conduite 23 débouche dans la conduite 9 ou sur la conduite 11 si la conduite 23 débouche sur la conduite 11.
  • Lorsqu'on démarre les turbines T1, T2 et donc les compresseurs C1, C2, les vannes antipompage des compresseurs C1, C2 sont totalement ouvertes (vanne V8 pour C1 et vanne V3 pour C2).
  • Ceci permet le démarrage à chaud du compresseur froid C2 quelle que soit la température et sans conséquence sur les températures de calcul des équipements en aval du compresseur C2. L'élévation de la température est extrêmement faible au démarrage, étant donné le taux de compression minimal sur le compresseur C1 grâce à la vanne d'anti pompage V3.
  • Selon une deuxième variante, la première portion 3 est sortie de l' échangeur de chaleur à une température intermédiaire de celui-ci et n'ayant pas été comprimée dans le premier compresseur est envoyée vers le deuxième compresseur C2.
  • La deuxième portion 5 se refroidit dans l'échangeur de chaleur jusqu'à une température intermédiaire de celui-ci après avoir été comprimée dans le premier compresseur C1 et est soutirée à un point intermédiaire P de l'échangeur par une conduite de soutirage 8. Ensuite elle est envoyée vers la première et la deuxième turbines. Dans ce cas, c'est la première portion 3 de l'air qui est divertie, en cas de démarrage, pour ne plus passer par l'échangeur de chaleur E mais directement à l'entrée de la turbine T1 ou T2, voire les deux.
  • Comme décrit ci-dessus, il est recommandé d'envoyer une partie de l'air provenant de la conduite 23 dans la conduite 9 en ouvrant la vanne V19 et ensuite vers la conduite 11 et la conduite de court-circuitage 15 avec sa vanne V7. Le clapet CL3 empêche cet air 23 de passer dans le sens contraire de celui de l'opération normale et d'arriver dans l'échangeur au point intermédiaire P. L'air envoyé à la turbine pendant le démarrage à travers la conduite 23 arrive à un point d'arrivée A en amont des turbines T1,T2, de préférence en aval du point de division D, mais en aval de l'échangeur de chaleur E et du clapet de retenue CL3.
  • Le clapet est disposé sur la conduite de soutirage 8 de préférence entre le point P de soutirage d'air destiné aux turbines et le point de division D des fractions 9 et 11 où l'air est partagé entre les deux turbines. Ce point de division peut également servir à diviser l'air destiné à la conduite de court-circuitage.
  • Le clapet doit se trouver entre le point d'arrivée A de l'air provenant de la conduite 23 et le point intermédiaire P de l'échangeur E.
  • Dans une version moins performante, le clapet peut être placé sur la conduite 9 si la conduite 23 débouche dans la conduite 9 ou sur la conduite 11 si la conduite 23 débouche sur la conduite 11.
  • L'invention s'applique également au cas dans lequel l'appareil ne comprend qu'une seule turbine d'air couplée à un compresseur froid. Dans ce cas, l'air est envoyé en service normal du compresseur froid vers l'échangeur de chaleur. L'air peut ensuite passer directement dans le système de colonne après détente ou sinon peut être envoyé au moins en partie à la seule turbine.
  • Pendant le démarrage, l'air du compresseur froid peut éviter l'échangeur de chaleur en passant par une conduite de court-circuitage relié en amont de l'entrée de l'unique turbine. L'air peut également être envoyé depuis cette conduite de court-circuitage à une autre conduite de court-circuitage qui permet d'envoyer de l'air du compresseur froid au système de colonnes, sans passer par la turbine, en le détendant dans une vanne.
  • L'air envoyé à la turbine pendant le démarrage à travers la conduite 23 arrive à un point d'arrivée A en amont de la turbine mais en aval de l'échangeur de chaleur E et du clapet de retenue CL3. Le clapet CL3 ferme la conduite de soutirage 8 et ainsi empêche l'air provenant de la conduite 23 de monter vers l'échangeur.
  • La position du clapet de retenue CL3 sur la conduite de soutirage 8 entre l'arrivée A d'air du compresseur C2 et le point intermédiaire P de l'échangeur permet de diminuer la pression de calcul de l'échangeur E, ce qui a un impact sur le coût de l'appareil.
  • En l'absence d'un clapet CL3 sur la conduite de soutirage 8, la pression de la ligne d'échange E allant vers l'aspiration de la turbine ou des turbines T1,T2 devrait être définie en fonction de la pression d'équilibrage due à la connexion de la vanne anti-pompage V3 de la sortie booster froid C2 vers l'aspiration de la turbine T2 dans la variante de la figure. Cette pression d'équilibrage est forcément plus élevée que la pression de la source normale venant à la turbine. Dans certains cas, cela pourrait imposer un changement d'ondes et donc un surcoût sur l'échangeur.
  • Avec le clapet, la conception de l'échangeur ne prend pas en compte la pression d'équilibrage et on utilise juste une soupape de débit PSV définie sur le scénario d'une fuite du clapet CL3 placée entre la sortie P de l'échangeur et le clapet CL3.
  • Pour la variante avec deux turbines, la position du clapet de retenue CL3 en amont du point de division D divisant les conduites alimentant les deux turbines permet d'avoir un moyen rapide de dépressuriser l'aspiration des turbines avant redémarrage si l'implantation (point de division D) de la conduite supplémentaire 11, 15 de contournement de turbines est en aval de ce clapet commun CL3.
  • Dans le cas où on aurait le clapet CL3 non pas sur la ligne commune 8 allant de l'échangeur E vers les deux turbines T1, T2 mais sur uniquement la ligne 9 alimentant la seule turbine T2, après chaque arrêt et donc pour chaque redémarrage on aurait à l'entrée de cette turbine la pression d'équilibrage (supérieure voire très supérieure à la pression opératoire). Comme dans cette configuration on se trouve "en cul de sac", on ne peut dépressuriser ce bout de tuyau soit en passant par la turbine mais cela nécessiterait la prise en compte d'un cas de démarrage à une pression aspiration plus élevée avec des impacts design voire une impossibilité technique (rapport de détente trop élevée) soit l'obligation d'ajouter un artifice de dépressurisation. Dans le cas de l'invention où le clapet est disposé sur la ligne commune alimentant les deux turbines, la pression montera moins haut dû à l'équilibrage dans un volume de tuyau plus élevé et il y aura toujours le moyen de dépressuriser à distance avant redémarrage par la vanne de contournement V7 vers la colonne K1.
  • La position du clapet de retenue CL3 en amont du point de division D divisant les conduites alimentant les deux turbines permet de s'affranchir d'un dimensionnement pénalisant, par rapport à la pression d'équilibrage du compresseur C2, pour la ligne d'échange E en surdimensionnement légèrement la pression à appliquer sur les turbines T1, T2. Ce surdimensionnement est négligeable au regard sur surcoût que l'on devrait appliquer sur la ligne d'échange E s'il n'y avait pas le clapet CL3.
  • Dans le cadre de l'invention, les pressions de fonctionnement de la ou deux turbines ou de l'échangeur (dans l'exemple, de la turbine T2 reliée au compresseur C2 et de la ligne d'échange E) peuvent être définies sans attendre la conception finale des tuyauteries pour calculer et connaitre les volumes effectifs à prendre en compte dans un calcul traditionnel. Ceci implique un gain de temps.
  • La pression de calcul de la ligne d'échange E est donc totalement indépendante de la pression d'équilibrage grâce au clapet CL3 et une soupape de protection de la fuite du clapet CL3, on peut donc définir sa pression de calcul très tôt dans le projet indépendamment de la turbine T2. Comme la pression de calcul sur la turbine T2 n'a pas de gros impact sur son coût, on peut faire des approximations de volume pour définir de façon conservatrice la pression d'équilibrage à prendre en compte sur la turbine sans avoir le tracé et le volume exact de tuyauterie qui permettrait de calculer finement la pression d'équilibrage.

Claims (14)

  1. Procédé de séparation d'air par distillation cryogénique dans lequel :
    i) de l'air comprimé et épuré est refroidi dans un échangeur de chaleur (E), une première partie (19) de l'air est comprimée à une température intermédiaire de l'échangeur de chaleur dans un compresseur (C2) et renvoyée à l'échangeur de chaleur où elle se refroidit, la première partie de l'air se trouve liquéfiée et est envoyée à au moins une première colonne (K1) d'une double colonne, la double colonne comprenant la première colonne et une deuxième colonne (K2), la deuxième colonne fonctionnant à plus basse pression que la première colonne,
    ii) des liquides enrichis en oxygène et en azote sont envoyés de la première colonne vers la deuxième colonne, un fluide enrichi en oxygène (31) est soutiré en cuve de la deuxième colonne et un fluide enrichi en azote (33) est soutiré de la tête de la deuxième colonne et se réchauffe dans l'échangeur de chaleur,
    iii) une deuxième partie de l'air (3,5) sort de l'échangeur de chaleur à une température intermédiaire de celui-ci et éventuellement est ensuite divisée en une première et une deuxième fractions à un point de division (D), la deuxième partie de l'air ou au moins une partie de la première fraction (9) pour le cas où la deuxième partie de l'air est divisée en deux fractions est détendue dans une première turbine (T2) et envoyée à la première colonne, et éventuellement au moins une partie de la deuxième fraction est détendue dans une deuxième turbine (T1) et envoyée à la première colonne pour le cas où la deuxième partie de l'air est divisée en deux fractions, et
    iv) le refoulement du compresseur est relié à l'entrée de la première turbine ou pour le cas avec deux turbines à l'entrée d'au moins une des première et deuxième turbines à travers une conduite de courtcircuitage (23) et un point d'arrivée (A) qui permet d'envoyer de l'air du compresseur à la première turbine ou pour le cas avec deux turbines à une des turbines sans passer par l'échangeur de chaleur, caractérisé en ce que la deuxième partie de l'air est envoyée à un clapet de retenue (CL3) en aval de l'échangeur de chaleur et éventuellement en amont du point de division pour le cas avec deux turbines, le clapet servant à empêcher l'air de passer dans le sens contraire de celui de l'opération normale et d'arriver depuis le point d'arrivée dans l'échangeur, étant disposé sur une conduite entre le point d'arrivée et l'échangeur.
  2. Procédé selon la revendication 1 dans lequel pendant le démarrage, on envoie de l'air du compresseur (C2) à la turbine (T1) ou une des turbines en passant par le point d'arrivée (A) mais sans passer par l'échangeur de chaleur (E), l'air étant refoulé par le clapet de retenue (CL3).
  3. Procédé selon la revendication 1 ou 2 dans lequel l'au moins une partie de la deuxième fraction est détendue dans la deuxième turbine (T2) et envoyée à la première colonne (K1), l'au moins une partie de la première fraction détendue dans la première turbine (T2) et l'au moins une partie de la deuxième fraction détendue dans la deuxième turbine (T1) sont mélangées à un point de mélange (M) et ensuite envoyées comme un seul débit à la première colonne.
  4. Procédé selon la revendication 1 ou 2 dans lequel une partie (11, 15) de la première et/ou de la deuxième fraction n'est pas détendue dans une turbine mais dans une vanne (V7) et ensuite est envoyée au système de colonnes (K1,K2).
  5. Procédé selon la revendication 4 dans lequel la partie de la première et/ou deuxième fraction détendue dans la vanne (V7) est mélangée avec le seul débit (13) envoyé à la première colonne (K1) en aval du point de mélange (M).
  6. Procédé selon l'une des revendications précédentes dans lequel le compresseur (C2) est entrainé par la première ou la deuxième turbine (T2,T1).
  7. Procédé selon l'une des revendications précédentes dans lequel la température d'entrée du compresseur est inférieure à 0°C, voire inférieure à -50°C.
  8. Appareil de séparation d'air par distillation cryogénique comprenant un échangeur de chaleur (E), une double colonne de séparation comprenant une première colonne et une deuxième colonne (K1, K2), la deuxième colonne fonctionnant à plus basse pression que la première colonne, des moyens pour envoyer de l'air comprimé et épuré se refroidir dans l'échangeur de chaleur, un compresseur (C2), des moyens pour soutirer une première partie de l'air à une température intermédiaire à un point intermédiaire (P) de l'échangeur de chaleur et pour l'envoyer au compresseur, des moyens pour renvoyer de l'air comprimé dans le compresseur dans l'échangeur de chaleur où il se refroidit, des moyens pour envoyer de l'air liquéfiée à au moins la première colonne, des moyens pour envoyer des liquides enrichis en oxygène et en azote de la première colonne vers la deuxième colonne, des moyens pour soutirer un fluide enrichi en oxygène (31) en cuve de la deuxième colonne, des moyens pour soutirer un fluide enrichi en azote (33) de la tête de la deuxième colonne et des moyens pour envoyer le fluide enrichi en azote se réchauffer dans l'échangeur de chaleur, une conduite de soutirage (8) pour sortir une deuxième partie de l'air de l'échangeur de chaleur à une température intermédiaire de celui-ci et à un point intermédiaire (P) de l'échangeur de chaleur, éventuellement des moyens pour diviser la deuxième partie en une première et une deuxième fractions à un point de division (D), une première turbine (T2) et éventuellement une deuxième turbine (T1),des moyens pour envoyer la deuxième partie de l'air ou au moins une partie de la première fraction pour le cas avec des moyens pour diviser la deuxième partie en deux fractions se détendre dans la première turbine et ensuite à la première colonne, éventuellement des moyens pour envoyer au moins une partie de la deuxième fraction se détendre dans la deuxième turbine et ensuite à la première colonne pour le cas avec deux turbines, et des moyens (23, V3, CL2) pour envoyer de l'air du refoulement du compresseur à une entrée de la première turbine ou d'une des turbines pour le cas avec deux turbines sans passer par l'échangeur de chaleur, ces moyens étant reliés à un point d'arrivée (A) caractérisé en ce qu'il comprend un clapet de retenue (CL3) disposé sur la conduite de soutirage (8) en aval de l'échangeur de chaleur et éventuellement en amont du point de division pour le cas avec des moyens pour diviser la deuxième partie en deux fractions, le clapet étant disposé sur une conduite entre le point d'arrivée et l'échangeur et étant capable d'empêcher l'arrivée d'air depuis le point d'arrivée vers l'échangeur.
  9. Appareil selon la revendication 8 comprenant des moyens pour mélanger l'au moins une partie de la première fraction détendue dans la première turbine (T2) et l'au moins une partie de la deuxième fraction détendue dans la deuxième turbine (T1) à un point de mélange (M) et des moyens pour les envoyer comme un seul débit (13) à la première colonne (K1).
  10. Appareil selon la revendication 8 ou 9 comprenant la deuxième turbine (T1), des moyens pour diviser la deuxième partie (3,5) en une première et une deuxième fractions (9,11) à un point de division (D), des moyens pour envoyer au moins une partie de la deuxième fraction se détendre dans la deuxième turbine et ensuite à la première colonne, une vanne de détente (V7) reliée au clapet de retenue (CL3) à travers le point de division (D) et reliée au système de colonnes (K1, K2), de sorte que de l'air puisse passer du clapet au système de colonnes sans passer par une turbine.
  11. Appareil selon la revendication 8, 9 ou 10 comprenant la deuxième turbine (T1) dans lequel les moyens pour envoyer de l'air du refoulement du compresseur à une entrée d'une des turbines (T1, T2) sans passer par l'échangeur de chaleur sont reliés au point d'arrivée (A) entre le point de division (D) et l'entrée de la turbine (T1, T2).
  12. Appareil selon la revendication 11 comprenant une vanne (V19) entre le point d'arrivée (A) et le point de division (D).
  13. Appareil selon l'une des revendications 8 à 12 dans lequel le clapet de retenue (CL3) est capable de se fermer automatiquement.
  14. Appareil selon l'une des revendications 8 à 13 dans lequel le compresseur (C2) est entrainé par la première ou la deuxième turbine (T2,T1).
EP18186654.2A 2017-08-03 2018-07-31 Procédé et appareil de séparation d'air par distillation cryogénique Active EP3438584B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1757493A FR3069913B1 (fr) 2017-08-03 2017-08-03 Appareil et procede de separation d'air par distillation cryogenique
FR1757497A FR3069914B1 (fr) 2017-08-03 2017-08-03 Appareil et procede de separation d'air par distillation cryogenique
FR1757498A FR3069916B1 (fr) 2017-08-03 2017-08-03 Procede de degivrage d'un appareil de separation d'air par distillation cryogenique et appareil adapte pour etre degivre par ce procede
FR1757495A FR3069915B1 (fr) 2017-08-03 2017-08-03 Appareil et procede de separation d'air par distillation cryogenique

Publications (2)

Publication Number Publication Date
EP3438584A1 EP3438584A1 (fr) 2019-02-06
EP3438584B1 true EP3438584B1 (fr) 2020-03-11

Family

ID=62981145

Family Applications (4)

Application Number Title Priority Date Filing Date
EP18186654.2A Active EP3438584B1 (fr) 2017-08-03 2018-07-31 Procédé et appareil de séparation d'air par distillation cryogénique
EP18186659.1A Withdrawn EP3438585A3 (fr) 2017-08-03 2018-07-31 Procédé de dégivrage d'un appareil de séparation d'air par distillation cryogénique et appareil adapté pour être dégivré par ce procédé
EP18186782.1A Active EP3438586B1 (fr) 2017-08-03 2018-08-01 Appareil et procédé de séparation d'air par distillation cryogénique
EP18187381.1A Active EP3438587B1 (fr) 2017-08-03 2018-08-03 Appareil et procédé de séparation d'air par distillation cryogénique

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP18186659.1A Withdrawn EP3438585A3 (fr) 2017-08-03 2018-07-31 Procédé de dégivrage d'un appareil de séparation d'air par distillation cryogénique et appareil adapté pour être dégivré par ce procédé
EP18186782.1A Active EP3438586B1 (fr) 2017-08-03 2018-08-01 Appareil et procédé de séparation d'air par distillation cryogénique
EP18187381.1A Active EP3438587B1 (fr) 2017-08-03 2018-08-03 Appareil et procédé de séparation d'air par distillation cryogénique

Country Status (4)

Country Link
US (4) US20190049178A1 (fr)
EP (4) EP3438584B1 (fr)
CN (4) CN109387034B (fr)
PL (2) PL3438586T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3118145B1 (fr) * 2020-12-23 2023-03-03 Air Liquide Procédé de redémarrage d’un appareil de séparation d’air

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113680A (en) * 1938-04-12 Method anx apparatus fob defrost-
US2664718A (en) * 1949-10-11 1954-01-05 Union Carbide & Carbon Corp Process of and apparatus for lowtemperature separation of air
US3421333A (en) * 1964-08-28 1969-01-14 Linde Ag Thawing technique for a single air separation plant
US3418820A (en) * 1966-11-14 1968-12-31 Judson S. Swearingen Method and apparatus for removing vapors from gaseous mixtures by freezing
IT1019710B (it) * 1974-07-12 1977-11-30 Nuovo Pignone Spa Processo ed apparato per la produ zione di elevate percentuali di os sigeno e/o azoto allo stato liquido
JPS54162678A (en) 1978-06-14 1979-12-24 Hitachi Ltd Air separating apparatus taking out liquid product utilizing coldness of lng
DE4109945A1 (de) * 1991-03-26 1992-10-01 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
FR2701313B1 (fr) * 1993-02-09 1995-03-31 Air Liquide Procédé et installation de production d'azote ultra-pur par distillation d'air.
FR2704632B1 (fr) * 1993-04-29 1995-06-23 Air Liquide Procede et installation pour la separation de l'air.
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2721383B1 (fr) * 1994-06-20 1996-07-19 Maurice Grenier Procédé et installation de production d'oxygène gazeux sous pression.
US5758515A (en) * 1997-05-08 1998-06-02 Praxair Technology, Inc. Cryogenic air separation with warm turbine recycle
FR2787560B1 (fr) 1998-12-22 2001-02-09 Air Liquide Procede de separation cryogenique des gaz de l'air
JP2000337767A (ja) 1999-05-26 2000-12-08 Air Liquide Japan Ltd 空気分離方法及び空気分離設備
FR2803221B1 (fr) * 1999-12-30 2002-03-29 Air Liquide Procede et installation de separation d'air
DE10052180A1 (de) * 2000-10-20 2002-05-02 Linde Ag Drei-Säulen-System zur Tieftemperatur-Zerlegung von Luft
DE10209421A1 (de) * 2002-03-05 2003-04-03 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
CA2493098A1 (fr) * 2002-08-08 2004-02-19 Pacific Consolidated Industries, L.P. Generateur d'azote
FR2851330B1 (fr) * 2003-02-13 2006-01-06 Air Liquide Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air
FR2861841B1 (fr) 2003-11-04 2006-06-30 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US7228715B2 (en) 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
FR2865024B3 (fr) 2004-01-12 2006-05-05 Air Liquide Procede et installation de separation d'air par distillation cryogenique
JP2005221199A (ja) 2004-02-09 2005-08-18 Kobe Steel Ltd 空気分離装置
US7272954B2 (en) 2004-07-14 2007-09-25 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Proceded Georges Claude Low temperature air separation process for producing pressurized gaseous product
DE102005026534B4 (de) * 2005-06-08 2012-04-19 Man Diesel & Turbo Se Dampferzeugungsanlage
FR2895068B1 (fr) 2005-12-15 2014-01-31 Air Liquide Procede de separation d'air par distillation cryogenique
DE102006027650A1 (de) 2006-06-14 2007-02-01 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
FR2913670A1 (fr) 2007-03-12 2008-09-19 Philippe Lutringer Dispositif integre d'ouverture et de refermeture de canettes pour boissons
FR2913759B1 (fr) 2007-03-13 2013-08-16 Air Liquide Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique.
FR2915271A1 (fr) * 2007-04-23 2008-10-24 Air Liquide Procede et appareil de separation des gaz de l'air par distillation cryogenique
CN201173660Y (zh) * 2008-03-12 2008-12-31 杭州福斯达气体设备有限公司 一种中小型多工况节能型空分设备
US20090241595A1 (en) * 2008-03-27 2009-10-01 Praxair Technology, Inc. Distillation method and apparatus
FR2943408A1 (fr) 2009-03-17 2010-09-24 Air Liquide Procede et installation de separation d'air par distillation cryogenique
FR2943772A1 (fr) * 2009-03-27 2010-10-01 Air Liquide Appareil et procede de separation d'air par distillation cryogenique
GB2469077A (en) * 2009-03-31 2010-10-06 Dps Bristol Process for the offshore liquefaction of a natural gas feed
FR2948184B1 (fr) * 2009-07-20 2016-04-15 Air Liquide Procede et appareil de separation d'air par distillation cryogenique
US8663364B2 (en) * 2009-12-15 2014-03-04 L'Air Liquide, Société Anonyme pour l'Étude et l'Éxploitation des Procédés Georges Claude Method of obtaining carbon dioxide from carbon dioxide-containing gas mixture
FR2965312B1 (fr) * 2010-09-23 2016-12-23 Air Liquide Procede de compression de plusieurs flux gazeux sur un unique compresseur
DE102010052545A1 (de) 2010-11-25 2012-05-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung eines gasförmigen Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2482016B1 (fr) * 2011-01-26 2019-04-10 General Electric Technology GmbH Procédé pour détendre un flux gazeux comprenant du dioxyde de carbone et centrale électrique à oxy-combustion avec un arrangement pour détendre un flux gazeux comprenant du dioxyde de carbone
EP2489968A1 (fr) 2011-02-17 2012-08-22 Linde Aktiengesellschaft Procédé et dispositif destinés à la décomposition à basse température d'air
JP5863320B2 (ja) * 2011-08-05 2016-02-16 三菱重工コンプレッサ株式会社 遠心圧縮機
EP2600090B1 (fr) 2011-12-01 2014-07-16 Linde Aktiengesellschaft Procédé et dispositif destinés à la production d'oxygène sous pression par décomposition à basse température de l'air
CN202328999U (zh) * 2011-12-01 2012-07-11 液化空气(杭州)有限公司 带快速启动的空气分离设备
DE102011121314A1 (de) 2011-12-16 2013-06-20 Linde Aktiengesellschaft Verfahren zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
FR2985305B1 (fr) 2012-01-03 2017-12-22 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de production de gaz de l'air sous pression utilisant un surpresseur cryogenique
US20130255313A1 (en) 2012-03-29 2013-10-03 Bao Ha Process for the separation of air by cryogenic distillation
CN102706098B (zh) * 2012-05-21 2013-11-06 鞍钢股份有限公司 一种增压膨胀机热启动的方法
FR2995393B1 (fr) * 2012-09-12 2014-10-03 Air Liquide Procede et appareil de separation d'air par distillation cryogenique.
EP2713128A1 (fr) * 2012-10-01 2014-04-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Processus pour la séparation de l'air par distillation cryogénique
US9518778B2 (en) * 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
DE102013002094A1 (de) * 2013-02-05 2014-08-07 Linde Aktiengesellschaft Verfahren zur Produktion von Luftprodukten und Luftzerlegungsanlage
FR3010778B1 (fr) 2013-09-17 2019-05-24 Air Liquide Procede et appareil de production d'oxygene gazeux par distillation cryogenique de l'air
FR3014545B1 (fr) * 2013-12-05 2018-12-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d’air par distillation cryogenique
JP6159242B2 (ja) 2013-12-13 2017-07-05 大陽日酸株式会社 空気分離方法及び装置
CN103760850B (zh) * 2014-01-06 2017-01-04 上海加力气体有限公司 一种有关制氮机的远程监控与无人控制的装置及方法
FR3020669B1 (fr) * 2014-04-30 2018-10-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil d’epuration et de refroidissement d’un melange gazeux
WO2015187117A1 (fr) * 2014-06-02 2015-12-10 Praxair Technology, Inc. Système et procédé de séparation d'air
EP2963370B1 (fr) 2014-07-05 2018-06-13 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
EP2963369B1 (fr) 2014-07-05 2018-05-02 Linde Aktiengesellschaft Procede et dispositif cryogeniques de separation d'air
JP6354516B2 (ja) * 2014-10-20 2018-07-11 新日鐵住金株式会社 深冷空気分離装置及び深冷空気分離方法
FR3033397A1 (fr) 2015-03-06 2016-09-09 Air Liquide Procede de compression et de refroidissement d’un melange gazeux
AU2016277834B2 (en) * 2015-06-15 2020-04-09 8 Rivers Capital, Llc System and method for startup of a power production plant
EP3196573A1 (fr) * 2016-01-21 2017-07-26 Linde Aktiengesellschaft Procede de production d'un produit pneumatique et installation de decomposition d'air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20190041129A1 (en) 2019-02-07
CN109387033A (zh) 2019-02-26
US20190049178A1 (en) 2019-02-14
PL3438586T3 (pl) 2020-09-07
US20190049177A1 (en) 2019-02-14
PL3438587T3 (pl) 2020-09-07
CN109387031B (zh) 2021-11-02
EP3438587B1 (fr) 2020-04-08
EP3438586A1 (fr) 2019-02-06
US10866024B2 (en) 2020-12-15
US10794630B2 (en) 2020-10-06
US20190041130A1 (en) 2019-02-07
CN109387031A (zh) 2019-02-26
EP3438586B1 (fr) 2020-04-08
EP3438584A1 (fr) 2019-02-06
EP3438585A2 (fr) 2019-02-06
EP3438587A1 (fr) 2019-02-06
CN109387034A (zh) 2019-02-26
EP3438585A3 (fr) 2019-04-17
CN109387032A (zh) 2019-02-26
CN109387034B (zh) 2021-11-19
CN109387033B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US7370494B2 (en) Method and installation for producing, in gaseous form and under high pressure, at least one fluid chosen from oxygen, argon and nitrogen by cryogenic distillation of air
EP0178207A1 (fr) Procédé et installation de fractionnement cryogénique de charges gazeuses
EP3438584B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
WO2005073651A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR2936864A1 (fr) Procede de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en helium et d'un courant d'hydrocarbures deazote et installation associee.
EP2856050B1 (fr) Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et éventuellement d'azote
EP0718576A1 (fr) Procédé de séparation d'un mélange gazeux par distillation cryogénique
FR2913760A1 (fr) Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique
EP2457047B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR3069914A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
CA2771205A1 (fr) Procede et installation de production d'oxygene par distillation d'air
EP2504647A2 (fr) Procede et appareil de compression et de refroidissement d'air
FR3069916A1 (fr) Procede de degivrage d'un appareil de separation d'air par distillation cryogenique et appareil adapte pour etre degivre par ce procede
FR3069913A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR2879595A1 (fr) Procede d'integration d'une unite de deazotation sur une boite froide produisant du monoxyde de carbone
FR3069915A1 (fr) Appareil et procede de separation d'air par distillation cryogenique
FR2915271A1 (fr) Procede et appareil de separation des gaz de l'air par distillation cryogenique
WO2013171426A2 (fr) Procédé et appareil de distillation à température subambiante
WO2011095739A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
WO2022136088A1 (fr) Procédé de redémarrage d'un appareil de séparation d'air
FR2862746A1 (fr) Procede et installation de separation d'air par distillation cryogenique
FR2846077A1 (fr) Appareil et procede d'echange de chaleur pour flux gazeux a separer et installation de separation de gaz par distillatio n cryogenique utilisant un tel appareil
FR2985305A1 (fr) Procede et appareil de production de gaz de l'air sous pression utilisant un surpresseur cryogenique
FR3122488A1 (fr) Procédé et appareil de séparation d’un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide
FR3022014A3 (fr) Appareil de separation d'air et procede de mise en froid d'un appareil de separation d'air par distillation cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190806

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 3/04 20060101AFI20191023BHEP

INTG Intention to grant announced

Effective date: 20191115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1243648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018002971

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200711

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1243648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018002971

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

26N No opposition filed

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 6

Ref country code: DE

Payment date: 20230719

Year of fee payment: 6