EP2856050B1 - Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et éventuellement d'azote - Google Patents

Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et éventuellement d'azote Download PDF

Info

Publication number
EP2856050B1
EP2856050B1 EP13727260.5A EP13727260A EP2856050B1 EP 2856050 B1 EP2856050 B1 EP 2856050B1 EP 13727260 A EP13727260 A EP 13727260A EP 2856050 B1 EP2856050 B1 EP 2856050B1
Authority
EP
European Patent Office
Prior art keywords
column
methane
liquid
carbon monoxide
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13727260.5A
Other languages
German (de)
English (en)
Other versions
EP2856050A2 (fr
Inventor
Pascal Marty
Jean-Jacques Talbot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to PL13727260T priority Critical patent/PL2856050T3/pl
Publication of EP2856050A2 publication Critical patent/EP2856050A2/fr
Application granted granted Critical
Publication of EP2856050B1 publication Critical patent/EP2856050B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0271Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/CO mixtures, i.e. of synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0276Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/N2 mixtures, i.e. of ammonia synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/02Integration in an installation for exchanging heat, e.g. for waste heat recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • the present invention relates to an apparatus and method for cryogenic separation of a mixture of carbon monoxide, methane and hydrogen and optionally nitrogen.
  • An object of the invention is to make more compact an apparatus for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane when the methane is to be produced under pressure.
  • Another aim of the invention is, in certain cases, to reduce the maximum height of an apparatus for cryogenic separation of a mixture of carbon monoxide, hydrogen and methane. This makes it possible to reduce the cost of the apparatus as well as the transport costs.
  • the liquid methane withdrawn from the bottom of the CO / CH 4 column can be pressurized in a pump to then be stored and / or sent to a customer or to be sent to the head of the methane washing column, if necessary.
  • the Figure 1 represents a methane washing process according to the prior art
  • the Figures 2 and 3 represent methane washing processes according to the invention
  • the Figure 4 represents a partial condensation process according to the prior art
  • the Figure 5 represents a partial condensation process according to the invention
  • the Figure 6 represents a carbon monoxide washing process according to the prior art
  • the Figure 7 represents a carbon monoxide washing process according to the invention
  • the Figure 8 shows a nitrogen washing process according to the prior art
  • the Figure 9 represents a nitrogen washing process according to the invention.
  • a mixture of hydrogen, carbon monoxide and methane 1 is purified in unit 3 to remove water and carbon dioxide.
  • the purified mixture 5 cools in the main cryogenic exchanger 9 to be sent to a phase separator 7, where it is separated to form a gas 11 enriched in hydrogen and a liquid 13 enriched in methane.
  • the gas 11 separates in a methane washing column 17 fed at the top with a washing liquid 41 rich in methane.
  • the bottom liquid of column 17 is mixed with liquid 13 to form liquid 18 rich in CO and CH 4 and also containing nitrogen sent to the top of a stripping column 19 (in English "flash column") having a bottom reboiler 22.
  • the gas 21 withdrawn from the top of the column 19 is enriched in hydrogen and is heated in the exchanger 9 for upgrading as purge gas to a fuel network in general.
  • the bottom liquid 23 of column 19 mainly contains carbon monoxide (and nitrogen) and methane and is expanded in valve 25 and then sent for separation in CO / CH 4 column 27.
  • a gas 44 enriched in carbon monoxide is formed at the top of the column and a liquid enriched in methane 33 is formed at the bottom of the column.
  • the liquid 33 is divided into two, a part 37 being heated (or not) in the main cryogenic exchanger 9 for upgrading as purge gas (or in liquid form by bypassing the exchanger 9) at the pressure of the CO / column.
  • CH 4 (a few bars) and the other part 35 being pressurized by a pump 36 to supply the head of the washing column with methane 17 and for possible upgrading under pressure (fluid 38) in gaseous form via the main cryogenic exchanger 9 (or directly in liquid form by short-circuiting exchanger 9).
  • a carbon monoxide cycle keeps the device cold.
  • the carbon monoxide coming from the top of the column 27 is heated in the exchanger 9, sent as flow 45 to a compressor 51.
  • Part of the carbon monoxide is produced as gas 53 under pressure at the outlet of the compressor.
  • Another part 57 cools in the exchanger 9 and is divided into two.
  • a part 59 at an intermediate temperature of the exchanger 9 is expanded in a turbine 61 and sent by a valve 63 via line 65 to the compressor 51.
  • Another part 67 continues to cool in the exchanger 9.
  • a fraction 69 of the cooled carbon monoxide is used to heat the tank reboiler 22 of the tank. exhaustion column 19 and is condensed.
  • Another fraction 71 is used to heat the bottom reboiler 31 of the CO / CH 4 column 27 and is mixed with the condensed fraction 69.
  • the entire flow 73 is expanded in a valve 73 and sent to the top condenser 29 of the CO column. / CH 4 where it vaporizes to form the flow of carbon monoxide 43 which mixes with the overhead gas from the CO / CH 4 column.
  • phase separator 79 Part of the liquid 77 from the overhead condenser 29 is sent to a phase separator 79. From the phase separator 79 a liquid 81 is withdrawn which is sent to the exchanger 21 which cools the intermediate withdrawals from the methane washing column, the liquid 81 vaporizes therein and the gas is returned to the phase separator 79. The gas 83 from the phase separator 79 is sent to the inlet of the compressor 51 with the gas 43.
  • the three columns 17, 27, 19 are all placed on the ground, which increases the grip (the size) on the ground.
  • the column 27 is raised to a sufficient height.
  • the CO / CH 4 column 27 is placed above the exhaustion column 19, the two columns having the same main axis.
  • the liquid enriched in methane 33 from the bottom of the column 27 passes through a height H to reach the pump 36 and is at a higher pressure because of the hydrostatic pressure. Part of the liquid at the elevated pressure can be taken to serve as a product downstream or upstream of the pump 36.
  • the footprint of the columns of the cold box is thus reduced.
  • the sum of the heights of the two columns 27 and 19 is less than the height of the column 17, the length of the package of the columns of the cold box is not modified.
  • the stripping column comprises a few additional trays at the top of the column, constituting an auxiliary column 20 of reduced diameter compared to column 19.
  • the gas phase is washed with countercurrent with liquid methane 39 to extract the still dissolved carbon monoxide.
  • the liquid / vapor traffic in this section 20 is quite low: all the other gas flows entering the stripping column 19 are located below the section 20.
  • it is therefore justified to reduce the diameter in the upper section 20 of the exhaustion column: it then takes the name of “auxiliary column” (minaret).
  • the auxiliary column 20 is integrated for approximately one meter in the exhaustion column 19.
  • a mixture of hydrogen, carbon monoxide and methane 1 is purified in unit 3 to remove water and carbon dioxide.
  • the purified mixture 5 cools in a main cryogenic exchanger 9 to be sent to a phase separator 7, where it is separated to form a gas 11 enriched in hydrogen and a liquid 13 enriched in methane.
  • the liquid 13 is sent to the top of a stripping column 19 having a bottom reboiler 22.
  • the gas 21 withdrawn from the top of the column 19 is enriched in hydrogen and is heated in the exchanger 9 for upgrading as gas. purge to a fuel network in general.
  • the bottom liquid 23 of column 19 mainly contains carbon monoxide and methane and is sent to separate in the CO / CH 4 column 27.
  • a gas enriched in carbon monoxide is formed at the top of the column and an enriched liquid.
  • methane 33 is formed at the bottom of the column.
  • the liquid 35 is heated in the exchanger to serve as fuel.
  • the liquid 33 is divided into two, a part 37 being heated (or not) in the exchanger main cryogenic 9 for recovery as purge gas (or in liquid form by short-circuiting the exchanger 9) at the pressure of the CO / CH 4 column (a few bars) and the other part 35 being pressurized by a pump 36 for possible recovery under pressure (fluid 38) in gaseous form via the main cryogenic exchanger 9 (or directly in liquid form by bypassing the exchanger 9).
  • a carbon monoxide cycle keeps the device cold.
  • the carbon monoxide coming from the top of the column 27 is heated in the exchanger 9, sent as flow 45 to a compressor 51.
  • Part of the carbon monoxide is produced as gas 53 under pressure at the outlet of the compressor.
  • Another part 57 cools in the exchanger 9 and is divided into two.
  • a part 59 at an intermediate temperature of the exchanger 9 is expanded in a turbine 61 and sent by a valve 63 via the line 65 to the compressor 51.
  • Another part continues its cooling in the exchanger 9.
  • a fraction 69 of the monoxide of cooled carbon serves to heat the bottom reboiler 22 of column 19 and is condensed.
  • Another fraction 71 is used to heat the bottom reboiler 31 of the CO / CH 4 column 27 and is mixed with the condensed fraction 69.
  • the entire flow 73 is expanded in a valve and sent to the top condenser 29 of the CO / column. CH 4 where it vaporizes to form the flow of carbon monoxide 43 which will feed the compressor 51 after passing through the exchanger 9.
  • column 27 is positioned above column 19, which is itself positioned above phase separator 7. It is also possible to place phase separator 7 next to two columns 19, 27.
  • a mixture of hydrogen, carbon monoxide, nitrogen and methane 1 is purified in unit 3 to remove water and carbon dioxide.
  • the purified mixture 5 cools in an exchanger 9 to be sent to a phase separator 7, where it is separated to form a gas 11 enriched in hydrogen and a liquid 13 enriched in methane.
  • Gas 11 separates in a carbon monoxide washing column 601 fed at the top with a washing liquid 623 rich in carbon monoxide.
  • the bottom liquid of the column 601 is mixed with the liquid 13 to form the liquid 18 and the liquid formed is sent to the top of a stripping column 19 (in English “flash column”) having a bottom reboiler 22.
  • the gas 21 withdrawn from the top of column 19 is enriched in hydrogen and is heated in exchanger 9 for upgrading as purge gas to a fuel network in general ....
  • the bottom liquid 23 of column 19 mainly contains carbon monoxide and methane and is sent to separate in the CO / CH 4 column 27.
  • a gas enriched in carbon monoxide 43 is formed at the top of the column and a liquid.
  • enriched in methane 33 is formed at the bottom of the column.
  • the liquid 33 is divided into two, a part 37 being heated (or not) in the main cryogenic exchanger 9 for upgrading as purge gas (or in liquid form by short-circuiting the exchanger 9) at the pressure of the column CO / CH 4 27 (a few bars) and the other part 35 being pressurized by a pump 36 for possible recovery under pressure (fluid 38), in gaseous form via the main cryogenic exchanger 9 (or directly in liquid form in short- circuiting the exchanger 9).
  • a carbon monoxide cycle keeps the device cold.
  • the carbon monoxide coming from the top of the column 27 is heated in the exchanger 9, sent as flow 45 to a compressor 51.
  • Part of the carbon monoxide is produced as gas 53 under pressure at the outlet of the compressor.
  • Another part 57 cools in the exchanger 9 and is divided into two.
  • a part 59 is expanded in a valve 63 then sent through line 65 to the compressor 51.
  • Another part is divided into two fractions.
  • a fraction 69 of the cooled carbon monoxide serves to heat the bottom reboiler 22 of the stripping column 19 and is condensed.
  • Another fraction 71 is used to heat the bottom reboiler 631 of the CO / CH 4 column 27 and is mixed with the condensed fraction 71.
  • the entire flow 73 is expanded in a valve and sent to the overhead condenser 619 of the CO / column. CH 4 where it vaporizes to form the carbon monoxide fluid 43.
  • a carbon monoxide bath 29 at the top of column 27 supplies condenser 619 with gas to be condensed.
  • the overhead gas 635 from the column 27 is sent to the denitrogenation column 603 having an overhead condenser 615.
  • the bottom liquid 613 from the denitrogenation column 603 is sent to the denitrogenation column 603.
  • the overhead gas enriched in nitrogen 617 is heated in the exchanger 9 and directed to a network fuel.
  • the carbon monoxide necessary for washing in column 603 is provided by the fluids 609 and 611 withdrawn from the discharge of the compressor 51. A portion of these fluids is sent as flow 623 to the head of the washing column 601.
  • the installation of A denitrogenation column can be applicable in all the cases mentioned above when the nitrogen must be partially or totally removed from the gas produced.
  • the CO / CH 4 column 27 is positioned above the stripping column 19 so that the flow rate rich in liquid methane 35 is hydrostatically pressurized upstream of the pump 36.
  • the Figure 8 shows a nitrogen washing process in which a mixture of hydrogen, carbon monoxide, nitrogen and methane 1 leaves a unit of the Rectisol ® 804 type and is purified in a purification unit 3 for remove the water, the methanol and the CO 2 (adsorbing the methanol or any other solvent used in an upstream wash may also be required in all the cases mentioned above).
  • the purified mixture 5 is cooled in the exchanger 9 and then sent to a phase separator 7.
  • the gas from the phase separator 7 is mixed with an uncooled part 6 of the gas 5 to form the flow 11. Part of the flow 11 is used to reheat the bottom reboiler 851 of an N 2 / CH 4 850 column, being partially condensed.
  • the partially condensed flow is sent to a phase separator 809.
  • the liquid 819 from the separator 809 is rich in methane and is sent to the pump 36.
  • the gas 827 from the separator 809 joins gas 821 from separator 7, is cooled in exchanger 9, then separated in a phase separator 807 and the product gas 814 feeds the washing column with nitrogen 811 to be separated.
  • Column 811 is fed at the top with a flow of liquid 833 produced by the liquefaction of a flow 831 of gaseous nitrogen in exchanger 9. Another part 835 of the condensed nitrogen is mixed with the heated top gas 829.
  • the bottom liquid 847 of the nitrogen washing column 811 is expanded, then sent to a phase separator 845.
  • the product gas 853 is heated in the exchanger 9 as purge gas.
  • the fluid 849 feeds the column N 2 / CH 4 850 852 to form a gas flow depleted in methane and enriched in nitrogen and a liquid stream enriched in methane.
  • the liquid flow enriched in methane 35 is sent to the pump 36, then feeds a phase separator 821.
  • the gas 825 is sent to the exchanger 9 to produce a gas phase rich in methane.
  • the liquid 823 can either also be sent to the exchanger 9 to produce a phase rich in gaseous methane under pressure, or bypass the exchanger 9 to produce liquid methane under pressure as a final product. It is also possible to produce a phase rich in gaseous or liquid methane at low pressure by vaporizing liquid taken upstream of the pump 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Gas Separation By Absorption (AREA)

Description

  • La présente invention est relative à un appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone, de méthane et d'hydrogène et éventuellement de l'azote.
  • Les mélanges peuvent être constitués par :
    • du monoxyde de carbone, d'hydrogène, avec les impuretés méthane et d'azote (boite froide H2/CO).
    • de l'azote avec les impuretés hydrogène, monoxyde de carbone et méthane (boite froide lavage à l'azote).
  • Il est connu d'effectuer une première séparation par voie cryogénique d'un mélange de monoxyde de carbone, d'hydrogène et de méthane pour produire un gaz riche en hydrogène et un mélange liquide contenant principalement du CO, du CH4 (et l'azote). Ce deuxième mélange est typiquement séparé dans une colonne CO/CH4 pour produire un gaz enrichi en monoxyde de carbone (et contenant l'azote) et un liquide enrichi en méthane.
  • On peut dénombrer plusieurs méthodes pour effectuer la première séparation.
  • Il est connu d'effectuer la première séparation du mélange de monoxyde de carbone, d'hydrogène et de méthane pour éliminer l'hydrogène par condensation partielle suivie d'une deuxième séparation du deuxième mélange contenant principalement du monoxyde de carbone (et azote) et du méthane dans une colonne CO/CH4.
  • Il est également connu d'effectuer une première séparation du mélange dans une colonne de lavage au monoxyde de carbone ou au méthane ou à l'azote pour produire le deuxième mélange de monoxyde de carbone et de méthane. Ce deuxième mélange est ensuite séparé dans une colonne CO/CH4.
  • Un but de l'invention est de rendre plus compact un appareil de séparation cryogénique d'un mélange de monoxyde de carbone, d'hydrogène et de méthane lorsque le méthane doit être produit sous pression.
  • Un autre but de l'invention est, dans certains cas, de diminuer la hauteur maximale d'un appareil de séparation cryogénique d'un mélange de monoxyde de carbone, d'hydrogène et de méthane. Ceci permet de réduire le coût de l'appareil ainsi que les coûts de transport.
  • Le méthane liquide soutiré de la cuve de la colonne CO/CH4 peut être pressurisé dans une pompe pour être ensuite stocké et/ou envoyé à un client ou pour être envoyé en tête de la colonne de lavage au méthane, le cas échéant.
  • Il est un autre but de la présente invention d'alimenter la pompe de méthane liquide par un liquide pressurisé par pression hydrostatique en surélevant la cuve de la colonne CO/CH4.
  • Les caractéristiques du préambule de la revendication 1 sont connues de US6098424 A ou US 2010/043489 A1 . D'autres appareils similaires sont connus de EP-A-1080765 et Walter Bals « H2-CO-Anlage BASF Ludwigshafen », 1980, Linde Berichte aus Technik und Wissenschaft.
  • Selon un objet de l'invention, il est prévu un appareil selon la revendication 1. Selon d'autres aspects facultatifs, l'appareil comprend :
    • une pompe reliée à la troisième conduite, disposée plus près du sol que la cuve de la deuxième colonne.
    • une colonne auxiliaire dont la tête est éventuellement reliée à la pompe et dont la cuve est reliée à la tête de la première colonne par des moyens pour envoyer du gaz de la tête de la première colonne à la cuve de la colonne auxiliaire et par des moyens pour envoyer du liquide de la cuve de la colonne auxiliaire vers la tête de la première colonne, la colonne auxiliaire étant disposée à côté de la première colonne.
    • la colonne auxiliaire est disposée de sorte que sa cuve est plus loin du sol que la tête de la première colonne.
    • la colonne auxiliaire est fixée à la deuxième colonne.
    • la première unité comprend une colonne de prétraitement, une conduite pour amener le mélange de la colonne de prétraitement à la première colonne, la colonne auxiliaire étant fixée à la colonne de pré-traitement.
    • l'appareil comprend une colonne de post-traitement en aval de la deuxième colonne, la colonne auxiliaire étant fixée à la colonne de post-traitement.
    • la première unité comprend une colonne de lavage au méthane, cette colonne étant reliée à la première colonne pour l'alimenter avec le mélange qui est un liquide de cuve de la colonne de lavage au méthane, la tête de la colonne de lavage au méthane étant reliée à la pompe.
    • la première unité comprend un séparateur de phases et des moyens pour amener du liquide du séparateur de phases comme le mélange qui alimente la première colonne.
    • la première unité comprend une colonne de lavage et la première colonne, le liquide de lavage étant riche en monoxyde de carbone, ainsi que des moyens pour envoyer le liquide de cuve de la colonne de lavage à la première colonne.
    • la première unité comprend une colonne de lavage, le liquide de lavage étant riche en azote, la colonne de lavage constituant la première colonne.
    • des moyens pour produire du méthane liquide comme produit final.
    • la première unité comprend une colonne de lavage à l'azote, le deuxième liquide contient du méthane et de l'azote et la deuxième colonne produit un gaz enrichi en azote.
  • Selon un autre objet de l'invention, il est prévu un procédé selon la revendication 10.
  • Selon d'autres aspects facultatifs de l'invention :
    • le rebouilleur de cuve est chauffé par un gaz de cycle qui est le monoxyde de carbone.
    • un gaz de tête de la première colonne se réchauffe dans un échangeur où se refroidit le mélange.
    • tout le gaz de tête de la première colonne se réchauffe dans l'échangeur.
    • le liquide enrichi en méthane est pressurisé en partie par une pompe disposée plus près du sol que la cuve de la deuxième colonne.
    • la pompe est au sol.
    • on envoie un gaz de tête de la première colonne à la cuve d'une colonne auxiliaire et du liquide enrichi en méthane à la tête de la colonne, la colonne auxiliaire étant disposée à côté de la première colonne.
    • la première unité comprend une colonne de prétraitement, une conduite pour amener le mélange de la colonne de prétraitement à la première colonne, la colonne auxiliaire étant fixée à la colonne de pré-traitement.
    • l'appareil comprend une colonne de post-traitement en aval de la deuxième colonne, la colonne auxiliaire étant fixée à la colonne de post-traitement.
    • la première unité comprend une colonne de lavage au méthane, le liquide de cuve de la colonne de lavage étant envoyé à la première colonne comme le mélange et du liquide enrichi en méthane pressurisé étant envoyé à la colonne de lavage.
    • la première unité comprend une colonne de lavage, alimentée par un liquide de lavage étant riche en monoxyde de carbone ou en azote, le liquide de cuve de la colonne de lavage étant envoyé à la première colonne.
    • le procédé produit du méthane liquide comme produit final provenant de la cuve de la deuxième colonne.
    • la première unité comprend une colonne de lavage à l'azote, le deuxième liquide contient du méthane et de l'azote et la deuxième colonne produit un gaz enrichi en azote.
  • L'invention sera décrite en plus de détail par rapport aux Figures.
  • La Figure 1 représente un procédé de lavage au méthane selon l'art antérieur, les Figures 2 et 3 représentent des procédés de lavage au méthane selon l'invention, la Figure 4 représente un procédé de condensation partielle selon l'art antérieur, la Figure 5 représente un procédé de condensation partielle selon l'invention, la Figure 6 représente un procédé de lavage au monoxyde de carbone selon l'art antérieur, la Figure 7 représente un procédé de lavage au monoxyde de carbone selon l'invention, la Figure 8 représente un procédé de lavage à l'azote selon l'art antérieur et la Figure 9 représente un procédé de lavage à l'azote selon l'invention.
  • Selon la Figure 1, un mélange d'hydrogène, de monoxyde de carbone et de méthane 1 est épuré dans l'unité 3 pour enlever l'eau et le dioxyde de carbone. Le mélange épuré 5 se refroidit dans l'échangeur cryogénique principal 9 pour être envoyé à un séparateur de phases 7, où il est séparé pour former un gaz 11 enrichi en hydrogène et un liquide 13 enrichi en méthane. Le gaz 11 se sépare dans une colonne 17 de lavage au méthane alimentée en tête par un liquide de lavage 41 riche en méthane.
  • Le liquide de cuve de la colonne 17 est mélangé avec le liquide 13 pour former le liquide 18 riche en CO et CH4 et contenant aussi l'azote envoyé en tête d'une colonne d'épuisement 19 (en anglais « flash column ») ayant un rebouilleur de cuve 22. Le gaz 21 soutiré en tête de la colonne 19 est enrichi en hydrogène et se réchauffe dans l'échangeur 9 pour valorisation en tant que gaz de purge vers un réseau de carburant en général.
  • Le liquide de cuve 23 de la colonne 19 contient principalement du monoxyde de carbone (et azote) et du méthane et est détendu dans la vanne 25 puis envoyé pour séparation dans la colonne CO/CH4 27. Un gaz 44 enrichi en monoxyde de carbone est formé en tête de la colonne et un liquide enrichi en méthane 33 est formé en cuve de la colonne. Le liquide 33 est divisé en deux, une partie 37 étant réchauffée (ou pas) dans l'échangeur cryogénique principal 9 pour valorisation comme gaz de purge (ou sous forme liquide en bipassant l'échangeur 9) à la pression de la colonne CO/CH4 (quelques bars) et l'autre partie 35 étant pressurisée par une pompe 36 pour alimenter la tête de la colonne de lavage au méthane 17 et pour valorisation éventuelle sous pression (fluide 38) sous forme gazeuse via l'échangeur cryogénique principal 9 (ou directement sous forme liquide en court-circuitant l'échangeur 9).
  • Un cycle de monoxyde de carbone assure le maintien en froid de l'appareil. Le monoxyde de carbone provenant de la tête de la colonne 27 est réchauffé dans l'échangeur 9, envoyé comme débit 45 à un compresseur 51. Une partie du monoxyde de carbone est produit comme gaz 53 sous pression à la sortie du compresseur. Une autre partie 57 se refroidit dans l'échangeur 9 et est divisée en deux. Une partie 59 à une température intermédiaire de l'échangeur 9 est détendue dans une turbine 61 et envoyée par une vanne 63 par la conduite 65 au compresseur 51. Une autre partie 67 poursuit son refroidissement dans l'échangeur 9. Une fraction 69 du monoxyde de carbone refroidi sert à chauffer le rebouilleur de cuve 22 de la colonne d'épuisement 19 et se trouve condensée. Une autre fraction 71 sert à chauffer le rebouilleur de cuve 31 de la colonne CO/CH4 27 et est mélangée avec la fraction condensée 69. Le débit entier 73 est détendu dans une vanne 73 et envoyé au condenseur de tête 29 de la colonne CO/CH4 où il se vaporise pour former le débit de monoxyde de carbone 43 qui se mélange avec le gaz de tête de la colonne CO/CH4.
  • Une partie du liquide 77 du condenseur de tête 29 est envoyée à un séparateur de phases 79. Du séparateur de phases 79 on soutire un liquide 81 qui est envoyé à l'échangeur 21 qui refroidit les soutirages intermédiaires de la colonne de lavage au méthane, le liquide 81 s'y vaporise et le gaz est renvoyé au séparateur de phases 79. Le gaz 83 du séparateur de phases 79 est envoyé à l'entrée du compresseur 51 avec le gaz 43.
  • On notera que les trois colonnes 17, 27, 19 sont toutes posées au sol, ce qui augmente la prise (l'encombrement) au sol. Pour répondre à une hauteur hydrostatique nécessaire pour alimenter la pompe 36 en liquide riche en CH4 sans risque de cavitation, la colonne 27 est surélevée d'une hauteur suffisante.
  • Selon l'invention, comme indiqué Figure 2, la colonne CO/CH4 27 est placée au-dessus de la colonne d'épuisement 19, les deux colonnes ayant le même axe principal. Ainsi le liquide enrichi en méthane 33 de la cuve de la colonne 27 traverse une hauteur H pour arriver à la pompe 36 et se trouve à une pression plus élevée à cause de la pression hydrostatique. Une partie du liquide à la pression surélevée peut être prise pour servir de produit en aval ou en amont de la pompe 36. L'encombrement au sol des colonnes de la boite froide s'en trouve ainsi réduit. En outre, si la somme des hauteurs des deux colonnes 27 et 19 est inférieure à la hauteur de la colonne 17, la longueur du paquet des colonnes de la boite froide n'est pas modifiée.
  • Dans une boite froide avec lavage au méthane classique comme illustrée à la Figure 1, la phase liquide 18 du fond de cuve de la colonne de lavage 17 est envoyée vers la colonne d'épuisement 19. Celle-ci a pour fonction d'éliminer l'hydrogène résiduel encore dissout dans le monoxyde de carbone.
  • A la différence de la Figure 1, pour améliorer la récupération de monoxyde de carbone, la colonne d'épuisement comprend quelques plateaux supplémentaires en tête de colonne, constituant une colonne auxiliaire 20 à diamètre réduit par rapport à la colonne 19. Dans cette section supplémentaire, la phase gazeuse est lavée à contre-courant par du méthane liquide 39 pour en extraire le monoxyde de carbone encore dissout. Le trafic liquide/vapeur dans cette section 20 est assez faible : tous les autres débits de gaz entrant dans la colonne d'épuisement 19 sont situés en dessous de la section 20. Afin d'assurer une bonne distribution liquide/vapeur et un bon contact entre les phases, il est donc justifié de diminuer le diamètre dans la section supérieure 20 de la colonne d'épuisement : elle prend alors le nom de « colonne auxiliaire » (minaret).
  • La colonne 19 est alimentée par le liquide de lavage 18 en dessous de la colonne auxiliaire. La colonne auxiliaire 20 est alimentée en tête par un liquide 39 riche en méthane provenant de la pompe 36. Le gaz de tête 21 de la colonne auxiliaire est envoyé après réchauffage dans l'échangeur 9 comme gaz de purge.
  • (A) Pour faciliter son support, la colonne auxiliaire 20 s'intègre sur environ un mètre dans la colonne d'épuisement 19.
  • D'autre part, la mise en place de la colonne CO/CH4 27 nécessitant une certaine élévation pour pouvoir alimenter la ou les pompes 36 de méthane positionnées en fond de cuve avec une hauteur nette d'aspiration (désignée par NPSH) disponible suffisante, dans la Figure 2, on propose de positionner la colonne CO/CH4 27 au dessus de la colonne d'épuisement 19 (avec ou sans la colonne auxiliaire 20). C'est souvent l'accumulation verticale de ces deux colonnes 19, 27 ou des trois colonnes 19, 20, 27 cumulées qui détermine le dimensionnement en hauteur du paquet des colonnes. La Figure 3 montre alors une autre variante qui permet de réduire la dimension verticale du paquet (« casing » en anglais) des colonnes (ensemble de la colonne d'épuisement 19 et la colonne CO/CH4 27).
  • Une innovation de la présente invention consiste à relocaliser la colonne auxiliaire 20 de tête de colonne d'épuisement, par exemple en la fixant sur le côté de la colonne de lavage 17. Cette relocalisation peut être effectuée ailleurs dans la boite froide (sur une autre colonne par exemple, telle que la deuxième colonne 27 ou une colonne de post-traitement telle qu'une colonne de déazotation) pour autant que la colonne auxiliaire 20 reste positionnée en charge sur la partie inférieure de la colonne d'épuisement 19. Cette idée permet de réduire à la fois :
    • la longueur de la virole de la partie inférieure de la colonne d'épuisement 19 pour la raison (A) mentionnée ci-avant
    • l'élévation de la virole de la colonne CO/CH4 27 grâce au repositionnement de la colonne auxiliaire 20 (tout en s'assurant que la nouvelle élévation reste compatible avec le NPSH requis pour la ou les pompes de méthane).
  • Lorsque le paquet « colonnes « est dimensionné en hauteur par l'ensemble « colonne d'épuisement 19 + colonne CO/CH4 27 », cette hauteur s'en trouve donc réduite.
  • Selon la Figure 4, un mélange d'hydrogène, de monoxyde de carbone et de méthane 1 est épuré dans l'unité 3 pour enlever l'eau et le dioxyde de carbone. Le mélange épuré 5 se refroidit dans un l'échangeur cryogénique principal 9 pour être envoyé à un séparateur de phases 7, où il est séparé pour former un gaz 11 enrichi en hydrogène et un liquide 13 enrichi en méthane. Le liquide 13 est envoyé en tête d'une colonne d'épuisement 19 ayant un rebouilleur de cuve 22. Le gaz 21 soutiré en tête de la colonne 19 est enrichi en hydrogène et se réchauffe dans l'échangeur 9 pour valorisation en tant que gaz de purge vers un réseau de carburant en général.
  • Le liquide de cuve 23 de la colonne 19 contient principalement du monoxyde de carbone et du méthane et est envoyé se séparer dans la colonne CO/CH4 27. Un gaz enrichi en monoxyde de carbone est formé en tête de la colonne et un liquide enrichi en méthane 33 est formé en cuve de la colonne. Le liquide 35 est réchauffé dans l'échangeur pour servir de carburant. Le liquide 33 est divisé en deux, une partie 37 étant réchauffée (ou pas) dans l'échangeur cryogénique principal 9 pour valorisation comme gaz de purge (ou sous forme liquide en court-circuitant l'échangeur 9) à la pression de la colonne CO/CH4 (quelques bars) et l'autre partie 35 étant pressurisée par une pompe 36 pour valorisation éventuelle sous pression (fluide 38) sous forme gazeuse via l'échangeur cryogénique principal 9 (ou directement sous forme liquide en bipassant l'échangeur 9).
  • Un cycle de monoxyde de carbone assure le maintien en froid de l'appareil. Le monoxyde de carbone provenant de la tête de la colonne 27 est réchauffé dans l'échangeur 9, envoyé comme débit 45 à un compresseur 51. Une partie du monoxyde de carbone est produite comme gaz 53 sous pression à la sortie du compresseur. Une autre partie 57 se refroidit dans l'échangeur 9 et est divisée en deux. Une partie 59 à une température intermédiaire de l'échangeur 9 est détendue dans une turbine 61 et envoyée par une vanne 63 par la conduite 65 au compresseur 51. Une autre partie poursuit son refroidissement dans l'échangeur 9. Une fraction 69 du monoxyde de carbone refroidi sert à chauffer le rebouilleur de cuve 22 de la colonne 19 et se trouve condensée. Une autre fraction 71 sert à chauffer le rebouilleur de cuve 31 de la colonne CO/CH4 27 et est mélangée avec la fraction condensée 69. Le débit entier 73 est détendu dans une vanne et envoyé au condenseur de tête 29 de la colonne CO/CH4 où il se vaporise pour former le débit de monoxyde de carbone 43 qui va alimenter le compresseur 51 après passage dans l'échangeur 9.
  • On notera que les deux colonnes 19, 27 sont toutes posées au sol.
  • Pour l'innovation de la Figure 5, on notera qu'à la différence de la Figure 4, la colonne 27 est positionnée au-dessus la colonne 19, qui est elle-même positionnée au-dessus du séparateur de phases 7. Il est également possible de placer le séparateur de phases 7 à côté des deux colonnes 19, 27.
  • Selon la Figure 6, un mélange d'hydrogène, de monoxyde de carbone, d'azote et de méthane 1 est épuré dans l'unité 3 pour enlever l'eau et le dioxyde de carbone. Le mélange épuré 5 se refroidit dans un échangeur 9 pour être envoyé à un séparateur de phases 7, où il est séparé pour former un gaz 11 enrichi en hydrogène et un liquide 13 enrichi en méthane. Le gaz 11 se sépare dans une colonne 601 de lavage au monoxyde de carbone alimentée en tête par un liquide de lavage 623 riche en monoxyde de carbone.
  • Le liquide de cuve de la colonne 601 est mélangé avec le liquide 13 pour former le liquide 18 et le liquide formé est envoyé en tête d'une colonne d'épuisement 19 (en anglais « flash column ») ayant un rebouilleur de cuve 22. Le gaz 21 soutiré en tête de la colonne 19 est enrichi en hydrogène et se réchauffe dans l'échangeur 9 pour valorisation en tant que gaz de purge vers un réseau de carburant en général....
  • Le liquide de cuve 23 de la colonne 19 contient principalement du monoxyde de carbone et du méthane et est envoyé se séparer dans la colonne CO/CH4 27. Un gaz enrichi en monoxyde de carbone 43 est formé en tête de la colonne et un liquide enrichi en méthane 33 est formé en cuve de la colonne. Le liquide 33 est divisé en deux, une partie 37 étant réchauffée (ou pas) dans l'échangeur cryogénique principal 9 pour valorisation comme gaz de purge (ou sous forme liquide en court-circuitant l'échangeur 9) à la pression de la colonne CO/CH4 27 (quelques bars) et l'autre partie 35 étant pressurisée par une pompe 36 pour valorisation éventuelle sous pression (fluide 38), sous forme gazeuse via l'échangeur cryogénique principal 9 (ou directement sous forme liquide en court-circuitant l'échangeur 9).
  • Un cycle de monoxyde de carbone assure le maintien en froid de l'appareil. Le monoxyde de carbone provenant de la tête de la colonne 27 est réchauffé dans l'échangeur 9, envoyé comme débit 45 à un compresseur 51. Une partie du monoxyde de carbone est produite comme gaz 53 sous pression à la sortie du compresseur. Une autre partie 57 se refroidit dans l'échangeur 9 et est divisée en deux. Une partie 59 est détendue dans une vanne 63 puis envoyée par la conduite 65 au compresseur 51. Une autre partie est divisée en deux fractions. Une fraction 69 du monoxyde de carbone refroidi sert à chauffer le rebouilleur de cuve 22 de la colonne d'épuisement 19 et se trouve condensée. Une autre fraction 71 sert à chauffer le rebouilleur de cuve 631 de la colonne CO/CH4 27 et est mélangée avec la fraction condensée 71. Le débit entier 73 est détendu dans une vanne et envoyé au condenseur de tête 619 de la colonne CO/CH4 où il se vaporise pour former le fluide 43 de monoxyde de carbone. Un bain de monoxyde de carbone 29 en tête de la colonne 27 alimente le condenseur 619 en gaz à condenser.
  • Dans le cas où le monoxyde de carbone contient trop d'azote, le gaz de tête 635 de la colonne 27 est envoyé à la colonne de déazotation 603 ayant un condenseur de tête 615. Le liquide de cuve 613 de la colonne de déazotation 603 se vaporise dans le condenseur de tête 615 et est mélangé au fluide 43 pour former le fluide 45 qui est envoyé au compresseur 51 via l'échangeur 9. Le gaz de tête enrichi en azote 617 est réchauffé dans l'échangeur 9 et dirigé vers un réseau de carburant. Le monoxyde de carbone nécessaire au lavage dans la colonne 603 est assuré par les fluides 609 et 611 soutirés au refoulement du compresseur 51. Une partie de ces fluides est envoyée comme débit 623 en tête de la colonne de lavage 601. La mise en place d'une colonne de déazotation peut être applicable dans tous les cas de figure précédemment cités lorsque l'azote doit être partiellement ou totalement retiré du gaz produit.
  • On notera que les quatre colonnes 601, 19, 27, 603 sont toutes posées sur le sol, ce qui augmente la prise au sol.
  • Selon l'innovation de la Figure 7, la colonne CO/CH4 27 est positionnée au-dessus de la colonne d'épuisement 19 pour que le débit riche en méthane liquide 35 soit pressurisé hydrostatiquement en amont de la pompe 36.
  • La Figure 8 montre un procédé de lavage à l'azote dans lequel un mélange d'hydrogène, de monoxyde de carbone, d'azote et de méthane 1 sort d'une unité de type Rectisol ® 804 et est épuré dans une unité d'épuration 3 pour retirer l'eau, le méthanol et le CO2 (adsorber le méthanol ou tout autre solvant utilisé dans un lavage amont peut être également requis dans tous les cas de figure précédemment cités). Le mélange épuré 5 est refroidi dans l'échangeur 9 puis envoyé à un séparateur de phases 7. Le gaz du séparateur de phases 7 est mélangé avec une partie 6 non refroidie du gaz 5 pour former le débit 11. Une partie du débit 11 est utilisé pour réchauffer le rebouilleur de cuve 851 d'une colonne N2/CH4 850, en étant partiellement condensé. Le débit partiellement condensé est envoyé à un séparateur de phases 809. Le liquide 819 du séparateur 809 est riche en méthane et est envoyé à la pompe 36. Le gaz 827 du séparateur 809 rejoint du gaz 821 du séparateur 7, est refroidi dans l'échangeur 9, puis séparé dans un séparateur de phases 807 et le gaz produit 814 alimente la colonne de lavage à l'azote 811 pour être séparé.
  • La colonne 811 est alimentée en tête par un débit de liquide 833 produit par la liquéfaction d'un débit 831 d'azote gazeux dans l'échangeur 9. Une autre partie 835 de l'azote condensé est mélangée avec le gaz de tête 829 réchauffé de la colonne 811 contenant de l'hydrogène et envoyé à l'unité d'extraction de CO2/H2S (Rectisol ® par exemple) 804 pour échange thermique ; le gaz formé 843 sort de l'appareil.
  • Le liquide de cuve 847 de la colonne de lavage à l'azote 811 est détendu, puis envoyé à un séparateur de phases 845. Le gaz produit 853 se réchauffe dans l'échangeur 9 comme gaz de purge. Le liquide 849 alimente la colonne N2/CH4 850 pour former un débit gazeux 852 appauvri en méthane et enrichi en azote et un débit liquide enrichi en méthane. Le débit liquide enrichi en méthane 35 est envoyé à la pompe 36, puis alimente un séparateur de phases 821. Le gaz 825 est envoyé à l'échangeur 9 pour produire une phase gazeuse riche en méthane. Le liquide 823 peut soit être également envoyé à l'échangeur 9 pour produire une phase riche en méthane gazeuse sous pression, soit court-circuiter l'échangeur 9 pour produire du méthane liquide sous pression comme produit final. Il est également possible de produire une phase riche en méthane gazeuse ou liquide à basse pression en vaporisant du liquide pris en amont de la pompe 36.
  • Dans l'innovation de la Figure 9, la colonne N2/CH4 850 est disposée au-dessus de la colonne de lavage à l'azote 811.
  • Dans une alternative non couverte par la présente invention, on pourrait également envisager de surélever la colonne 27 en la plaçant uniquement au-dessus d'un séparateur de phases, par exemple au-dessus du séparateur 7 pour la Figure 4, du séparateur 7 pour la Figure 6 ou un des séparateurs 7, 807, 809, 845 pour la Figure 8.

Claims (15)

  1. Appareil de séparation cryogénique d'un mélange (5) de méthane, de monoxyde de carbone et d'hydrogène et éventuellement de l'azote comprenant une première unité de séparation comprenant au moins une première colonne (19, 811) et éventuellement un séparateur de phases (7, 807, 809, 821, 845), la première unité de séparation étant alimentée par le mélange (5, 814), une première conduite pour sortir un gaz enrichi en hydrogène et éventuellement en azote (21, 829) de la première unité, une deuxième conduite pour sortir un liquide (23, 847, 849) contenant du méthane et du monoxyde de carbone de la première colonne ou du séparateur de phases, une deuxième colonne (27, 850) reliée à la deuxième conduite, une troisième conduite reliée à la cuve de la deuxième colonne pour soutirer un liquide enrichi en méthane (33) et une quatrième conduite reliée à la tête de la deuxième colonne pour soutirer un gaz enrichi en monoxyde de carbone et éventuellement en azote (43, 852), la deuxième colonne comprenant un rebouilleur de cuve (31), l'appareil ne comprenant pas de moyen pour envoyer de gaz de tête de la première colonne pour chauffer le rebouilleur de cuve de la deuxième colonne et la deuxième conduite étant une conduite reliée à la cuve de la première colonne
    caractérisé en ce que la première colonne est disposée en dessous de la deuxième colonne, les deux colonnes ont le même axe principal, de sorte que le liquide enrichi en méthane (33) est produit à une pression plus élevée que la pression de la cuve de la deuxième colonne, et le liquide enrichi en méthane est produit à la pression plus élevée au moins en partie par pression hydrostatique.
  2. Appareil selon la revendication 1 comprenant une pompe (36) reliée à la troisième conduite, disposée plus près du sol que la cuve de la deuxième colonne (27, 850).
  3. Appareil selon la revendication 2 comprenant une colonne auxiliaire (20), dont la tête est éventuellement reliée à la pompe (36) et, dont la cuve est reliée à la tête de la première colonne (19, 811) par des moyens pour envoyer du gaz de la tête de la première colonne à la cuve de la colonne auxiliaire et par des moyens pour envoyer du liquide de la cuve de la colonne auxiliaire vers la tête de la première colonne, la colonne auxiliaire étant éventuellement disposée à côté de la première colonne.
  4. Appareil selon la revendication 3 dans lequel la colonne auxiliaire (20) est disposée de sorte que sa cuve est plus loin du sol que la tête de la première colonne (19).
  5. Appareil selon la revendication 3 ou 4 dans lequel la colonne auxiliaire (20) est fixée à la deuxième colonne (27) ou la première unité comprend une colonne de prétraitement (17), une conduite pour amener le mélange de la colonne de prétraitement à la première colonne, la colonne auxiliaire étant fixée à la colonne de pré-traitement ou l'appareil comprend une colonne de post-traitement en aval de la deuxième colonne, la colonne auxiliaire étant fixée à la colonne de post-traitement.
  6. Appareil selon l'une des revendications 2 à 5 dans lequel la première unité comprend une colonne de lavage au méthane (17), cette colonne étant reliée à la première colonne (19) pour l'alimenter avec le mélange qui est un liquide de cuve de la colonne de lavage au méthane, la tête de la colonne de lavage au méthane étant reliée à la pompe (36).
  7. Appareil selon l'une des revendications 1 à 5 dans lequel la première unité comprend un séparateur de phases (7) et des moyens pour amener du liquide du séparateur de phases comme le mélange qui alimente la première colonne.
  8. Appareil selon l'une des revendications 1 à 5 dans lequel la première unité comprend une colonne de lavage (601), le liquide de lavage étant riche en monoxyde de carbone, ainsi que des moyens pour envoyer le liquide de cuve de la colonne de lavage à la première colonne (19).
  9. Appareil selon l'une des revendications précédentes comprenant des moyens pour produire du méthane liquide comme produit final.
  10. Procédé de séparation cryogénique d'un mélange de méthane et de monoxyde de carbone ainsi que d'hydrogène et éventuellement d'azote dans lequel une première séparation du mélange est réalisée utilisant au moins une première colonne (19, 811 alimentée par le mélange, pour produire un fluide (23, 847, 849) enrichi en méthane et contenant du monoxyde de carbone, et éventuellement de l'azote, et aussi un gaz enrichi en hydrogène (21,829), le fluide est séparé dans une deuxième colonne (27, 850) pour produire un gaz enrichi en monoxyde de carbone (45), et éventuellement en azote, et un liquide enrichi en méthane (35,37), la deuxième colonne comprenant un rebouilleur de cuve (31) qui est chauffé par un gaz (71) autre qu'un gaz de tête de la première colonne et le fluide enrichi en méthane provient de la cuve de la première colonne
    caractérisé en ce que la première colonne est disposée en dessous de la deuxième colonne, les deux colonnes ayant le même axe principal, de sorte que le liquide enrichi en méthane est pressurisé à une pression plus élevée que la pression de la cuve de la deuxième colonne au moins en partie par pression hydrostatique.
  11. Procédé selon la revendication 10 dans lequel le rebouilleur de cuve (31) est chauffé par un gaz de cycle (71) qui est le monoxyde de carbone.
  12. Procédé selon l'une des revendications 10 et 11 dans lequel un gaz de tête (21) de la première colonne (19) se réchauffe dans un échangeur (9) où se refroidit le mélange.
  13. Procédé selon la revendication 12 dans lequel tout le gaz de tête (21) de la première colonne se réchauffe dans l'échangeur (9).
  14. Procédé selon une des revendications 10 à 13 dans lequel le liquide enrichi en méthane (35) est pressurisé en partie par une pompe (36) disposée plus près du sol que la cuve de la deuxième colonne (27).
  15. Procédé selon la revendication 14 dans lequel la pompe (36) est au sol.
EP13727260.5A 2012-05-31 2013-05-06 Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et éventuellement d'azote Active EP2856050B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13727260T PL2856050T3 (pl) 2012-05-31 2013-05-06 Urządzenie i sposób kriogenicznego rozdzielania mieszaniny tlenku węgla i metanu oraz wodoru i opcjonalnie azotu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1255063A FR2991442B1 (fr) 2012-05-31 2012-05-31 Appareil et procede de separation cryogenique d'un melange de monoxyde de carbone et de methane ainsi que d'hydrogene et/ou d'azote
PCT/FR2013/051003 WO2013178901A2 (fr) 2012-05-31 2013-05-06 Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et/ou d'azote

Publications (2)

Publication Number Publication Date
EP2856050A2 EP2856050A2 (fr) 2015-04-08
EP2856050B1 true EP2856050B1 (fr) 2021-04-14

Family

ID=48577110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13727260.5A Active EP2856050B1 (fr) 2012-05-31 2013-05-06 Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et éventuellement d'azote

Country Status (5)

Country Link
EP (1) EP2856050B1 (fr)
CN (1) CN104769376B (fr)
FR (1) FR2991442B1 (fr)
PL (1) PL2856050T3 (fr)
WO (1) WO2013178901A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3052159B1 (fr) * 2016-06-06 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation pour la production combinee d'un melange d'hydrogene et d'azote ainsi que de monoxyde de carbone par distillation et lavage cryogeniques
US11137204B2 (en) * 2016-08-25 2021-10-05 Praxair Technology, Inc. Process and apparatus for producing carbon monoxide
FR3057942B1 (fr) * 2016-10-21 2019-12-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation cryogenique d’un gaz de synthese par condensation partielle
SG11202008918SA (en) 2018-03-21 2020-10-29 Air Liquide Method and appliance for separating a synthesis gas by cryogenic distillation
FR3079288B1 (fr) * 2018-03-21 2020-05-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et appareil de separation d'un gaz de synthese par distillation cryogenique
CN108332510A (zh) * 2018-03-22 2018-07-27 上海华林工业气体有限公司 一种提高HyCO冷箱CO回收率的系统及方法
FR3089429B1 (fr) * 2018-12-11 2021-06-18 Air Liquide Procédé et appareil de purification d’un gaz riche en d’hydrogène

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695303A (en) * 1986-07-08 1987-09-22 Mcdermott International, Inc. Method for recovery of natural gas liquids

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE740750C (de) * 1938-04-08 1943-10-28 Max Seidel Verfahren und Vorrichtung zur Entfernung von nicht oder schwer kondensierbaren Daempfen oder Gasen aus zu kondensierenden Daempfen
US3750413A (en) * 1968-10-15 1973-08-07 Hydrocarbon Research Inc Cryogenic apparatus assembly method
JPS5485181A (en) * 1977-12-21 1979-07-06 Ube Ind Ltd Removing emthod for nitrogen in hydrogen gas
FR2718428B1 (fr) * 1994-04-11 1997-10-10 Air Liquide Procédé et installation de production de monoxyde de carbone.
GB9800693D0 (en) * 1998-01-13 1998-03-11 Air Prod & Chem Separation of carbon monoxide from nitrogen-contaminated gaseous mixtures
FR2775276B1 (fr) * 1998-02-20 2002-05-24 Air Liquide Procede et installation de production de monoxyde de carbone et d'hydrogene
US6173584B1 (en) * 1999-09-03 2001-01-16 Air Products And Chemicals, Inc. Multieffect distillation
DE10121339A1 (de) * 2001-05-02 2002-11-07 Linde Ag Verfahren zum Abtrennen von Stickstoff aus einer Stickstoff-entaltenden Kohlenwasserstoff Fraktion
DE10161584A1 (de) * 2001-12-14 2003-06-26 Linde Ag Vorrichtung und Verfahren zur Erzeugung gasförmigen Sauerstoffs unter erhöhtem Druck
DE10226209B4 (de) * 2002-06-13 2008-04-03 Lurgi Ag Anlage und Verfahren zur Erzeugung und Zerlegung von Synthesegasen aus Erdgas
FR2841330B1 (fr) * 2002-06-21 2005-01-28 Inst Francais Du Petrole Liquefaction de gaz naturel avec recyclage de gaz naturel
GB0220791D0 (en) * 2002-09-06 2002-10-16 Boc Group Plc Nitrogen rejection method and apparatus
FR2916264A1 (fr) * 2006-12-21 2008-11-21 Air Liquide Procede de separation d'un melange de monoxyde de carbone, de methane, d'hydrogene et eventuellement d'azote par distillation cryogenique
US9052136B2 (en) * 2010-03-31 2015-06-09 Ortloff Engineers, Ltd. Hydrocarbon gas processing
DE102010044646A1 (de) * 2010-09-07 2012-03-08 Linde Aktiengesellschaft Verfahren zum Abtrennen von Stickstoff und Wasserstoff aus Erdgas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695303A (en) * 1986-07-08 1987-09-22 Mcdermott International, Inc. Method for recovery of natural gas liquids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FOERG, W.: "Hydrogen purification at low temperatures", CHEMICAL AND PROCESS ENGINEERING, vol. 52, no. 2, 1 February 1971 (1971-02-01), pages 57 - 63,68, XP009520174, ISSN: 0953-2269 *

Also Published As

Publication number Publication date
PL2856050T3 (pl) 2021-10-25
CN104769376B (zh) 2016-08-31
FR2991442B1 (fr) 2018-12-07
EP2856050A2 (fr) 2015-04-08
CN104769376A (zh) 2015-07-08
WO2013178901A2 (fr) 2013-12-05
FR2991442A1 (fr) 2013-12-06
WO2013178901A3 (fr) 2015-10-29

Similar Documents

Publication Publication Date Title
EP2856050B1 (fr) Appareil et procédé de séparation cryogénique d'un mélange de monoxyde de carbone et de méthane ainsi que d'hydrogène et éventuellement d'azote
US10222121B2 (en) Cryogenic system for removing acid gases from a hydrocarbon gas stream
EP0572590B1 (fr) Procede de deazotation d'une charge d'un melange d'hydrocarbures consistant principalement en methane et renfermant au moins 2 % molaire d'azote
JP4966856B2 (ja) 液化天然ガスからエタンを抽出する方法
WO2009144423A2 (fr) Procédé et appareil de séparation cryogénique d'un mélange d'hydrogène et de monoxyde de carbone
EP3625196A1 (fr) Procédé de récupération d'un courant d'hydrocarbures en c2+ dans un gaz résiduel de raffinerie et installation associée
EP2137475B1 (fr) Procédé de mise en froid d'une ligne d'échange cryogénique
WO2005073651A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
FR3075067A1 (fr) Procede et appareil de separation cryogenique d'un gaz de synthese contenant une etape de separation de l'azote
WO2013135993A2 (fr) Procédé et appareil de séparation d'un mélange contenant du dioxyde de carbone par distillation
EP1966554B1 (fr) Appareil de séparation d'air par distillation cryogénique
EP3350119B1 (fr) Procédé et appareil de production d'un mélange de monoxyde de carbone et d'hydrogène
EP3049741B1 (fr) Procédé et appareil de séparation cryogenique d'un mélange contenant au moins du monoxyde de carbone, de l'hydrogène et de l'azote
EP3769022A1 (fr) Procede et appareil de separation d'un gaz de synthese par distillation cryogenique
EP3599438A1 (fr) Procede et appareil de separation cryogenique d'un melange de monoxyde de carbone, d'hydrogene et de methane pour la production de ch4
WO2013171426A2 (fr) Procédé et appareil de distillation à température subambiante
FR3102548A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
WO2018087471A1 (fr) Procédé de séparation cryogénique d'un courant de gaz naturel
FR3079288A1 (fr) Procede et appareil de separation d'un gaz de synthese par distillation cryogenique
EP3542112B1 (fr) Procédé et installation de séparation cryogénique d'un mélange gazeux par lavage au méthane
WO2022162041A1 (fr) Procédé et appareil de séparation d'un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide
FR3057056A1 (fr) Procede et appareil de recuperation d’argon dans une unite de separation d’un gaz de purge de synthese d’ammoniac
FR3110223A1 (fr) Procédé d’extraction d'azote d'un courant de gaz naturel ou de bio-méthane
FR3097951A1 (fr) Procede et appareil de separation cryogenique d’un gaz de synthese pour la production de ch4

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141105

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20151029

R17P Request for examination filed (corrected)

Effective date: 20160429

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200506

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013076877

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1382775

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1382775

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013076877

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210506

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210506

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130506

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 11

Ref country code: FR

Payment date: 20230526

Year of fee payment: 11

Ref country code: DE

Payment date: 20230519

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230502

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230519

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414