EP3433386B1 - Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse. - Google Patents

Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse. Download PDF

Info

Publication number
EP3433386B1
EP3433386B1 EP17709124.6A EP17709124A EP3433386B1 EP 3433386 B1 EP3433386 B1 EP 3433386B1 EP 17709124 A EP17709124 A EP 17709124A EP 3433386 B1 EP3433386 B1 EP 3433386B1
Authority
EP
European Patent Office
Prior art keywords
temperature
treatment process
annealing
intermediate product
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17709124.6A
Other languages
German (de)
English (en)
Other versions
EP3433386A1 (fr
Inventor
Friedrich FÜREDER-KITZMÜLLER
Reinhold Schneider
Daniel Krizan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3433386A1 publication Critical patent/EP3433386A1/fr
Application granted granted Critical
Publication of EP3433386B1 publication Critical patent/EP3433386B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a method of heat treating a manganese steel intermediate. It is also about a specific alloy of a manganese steel intermediate, which is heat-treated in a special process in order to achieve a significantly reduced fatigue expansion.
  • composition or alloy as well as the heat treatment in the manufacturing process have a significant influence on the properties of steel products.
  • Mn manganese
  • medium-manganese steels which are also referred to as medium-manganese steels.
  • the manganese content in percent by weight (% by weight) is often in the range between 3 and 12.
  • a medium manganese steel has a high combination of tensile strength and elongation due to its structure. Typical applications in the automotive industry are complex safety-relevant deep-drawn components.
  • Fig. 1 A classic, highly schematic diagram is shown, in which the elongation at break A 80 (called total elongation) is plotted in percent above the tensile strength (called tensile strength) in MPa.
  • the tensile strength is abbreviated here with R m .
  • the diagram of the Fig. 1 provides an overview of the strength classes of steel materials currently used for the automotive industry. In general, the following statement applies: the higher the tensile strength R m of a steel alloy, the lower the elongation at break A 80 of this alloy. Put simply, it can be stated that the elongation at break A 80 decreases with increasing tensile strength R m and vice versa. An optimal compromise between the elongation at break A 80 and the tensile strength R m must therefore be found for each application.
  • Steel alloys with a high tensile strength R m of mostly more than 1000 MPa are used for steel barriers (e.g. for side impact protection), which are intended to prevent the penetration of vehicle parts in the event of an accident.
  • the new generation of high-strength AHSS (Advanced High-Strength Steels) steels is suitable here (reference number 2 in Fig. 1 ).
  • This category includes the TBF (Trip Bainitic Ferrite) steels and the Q&P (Quenching & Partitioning) steels.
  • These high-strength AHSS steels have, for example, a manganese content in the range between 1.2 and 3% by weight and a carbon content C which is between 0.05 and 0.25% by weight.
  • the range designated by the reference number 3 comprises medium-manganese steels with an Mn content between 3 and 12% by weight and with a carbon content ⁇ 1% by weight.
  • FIG. 2 An example tension curve 4 (also called stress-strain curve) is the Fig. 2 refer to.
  • the stress ⁇ in MPa
  • the tension curve 4 shows an intermediate maximum 5, which is referred to as the upper yield point (R eH ), followed by a plateau 6.
  • the plateau 6 merges into an increasing curve area.
  • the "length" of the plateau 6 is referred to as the elongation (A L ), as in Fig. 2 shown.
  • a steel product with such a pronounced yield strength can form undesirable strains on the surface of the components for the automotive industry. For this reason, the pronounced yield strength must typically be reduced by a re-rolling process.
  • the aftertreatment in a corresponding re-rolling mill (usually with a skin pass mill) is also referred to as skin pass.
  • the manganese steel intermediate products should preferably have no (measurable) fatigue strain.
  • a particularly suitable manganese steel alloy and an optimized method for the temperature treatment of a manganese steel intermediate product are provided.
  • the manganese-steel intermediate products which were produced from a melt of this manganese-steel alloy are subjected to a first temperature treatment process and a subsequent second temperature treatment process as part of a temperature treatment according to the invention.
  • the first temperature treatment process is a high temperature process in which the steel intermediate product is exposed to a first annealing temperature for a first holding period which is above a critical temperature limit (referred to as T KG ), which defines the critical temperature limit (T KG ) as follows is: T KG ⁇ (856 - SK ⁇ manganese content) degrees Celsius, and where S K is a slope value.
  • T KG critical temperature limit
  • the formula mentioned which serves as the definition of the critical temperature limit (T KG ), states that the critical temperature limit (T KG ) decreases with increasing manganese content in the manganese range mentioned.
  • the second temperature treatment process is an annealing process in which the steel intermediate product is exposed to a second annealing temperature T2, which is in any case lower than the first annealing temperature T1.
  • the first annealing temperature T1 preferably shows a dependency on the stated manganese range of the alloy, which is defined as follows: T1 T T KG .
  • the first holding period is preferably at least 10 seconds.
  • the first holding time is particularly preferably between 10 seconds and 7000 minutes in all embodiments.
  • the second annealing temperature T2 is preferably in the range between the temperatures A 1 and A 3 .
  • the second temperature treatment process including heating the steel intermediate, maintaining the second annealing temperature, and cooling the steel intermediate, takes less than 6000 minutes. This total time is preferably even less than 5000 minutes.
  • the invention makes it possible for the first time to provide intermediate steel products which have an elongation A L which is less than 3% and preferably less than 1%.
  • the process according to the invention can be used to produce intermediate steel products which have an average primary austenite grain size which is larger than 3 ⁇ m.
  • the alloy of the steel intermediate products of the invention preferably has an average manganese content, which means that the manganese content is in the range 3% by weight M Mn 12 12% by weight. In all embodiments, the manganese content is preferably in the range from 3.5% by weight M Mn 8 8.5% by weight.
  • the first temperature treatment process is carried out in a continuous belt system (annealing system).
  • annealing system This process is also known as continuous annealing.
  • hood annealing discontinuous heat treatment of the intermediate steel product.
  • the first temperature treatment of the invention can also be carried out by special temperature control during hot rolling. With this special temperature control, care is taken to ensure that the end temperature of the hot strip during hot rolling is in the range above the critical temperature limit T KG .
  • the second temperature treatment process is carried out in a discontinuously operating plant, the steel intermediate being exposed to the annealing process in this plant in a protective gas atmosphere.
  • This process is preferably carried out in a bell annealer.
  • the second temperature treatment process can also be carried out in a continuous strip system (annealing system) or in a hot-dip galvanizing system.
  • the steel intermediate of all embodiments can optionally be subjected to a skin pass process, this skin pass process primarily aimed at conditioning the surface of the steel intermediate product.
  • a more intensive skin pass is not necessary since the steel intermediate products of the invention have a low fatigue elongation.
  • the degree of skin passage can thus be reduced or avoided entirely.
  • steel intermediates can be produced which have an elongation at break which is less than 3% and which is preferably less than 1%.
  • intermediate steel products can be produced which have a tensile strength R m (also called minimum strength) which is greater than 490 MPa.
  • steel intermediate products can be produced which, owing to the reduced elastic expansion, have a (minimum) elongation at break (A 80 ) which is greater than 10%.
  • the invention can be used to e.g. To provide cold-rolled steel products in the form of cold-rolled flat materials (e.g. coils).
  • the invention can also be used to e.g. To manufacture thin sheets or wire and wire products.
  • the invention can also be used to provide hot-rolled steel products.
  • Quantities or proportions are mostly given in percent by weight (short% by weight), unless otherwise stated. If information is given on the composition of the alloy or steel product, then the composition includes iron (Fe) and so-called unavoidable in addition to the explicitly listed materials Contamination that always occurs in the weld pool and that is also evident in the resulting steel intermediate. All percentages by weight must therefore always be supplemented to 100 percent by weight and all percentages by volume must always be supplemented to 100 percent of the total volume.
  • the heat treatment of the intermediate steel product comprises a first temperature treatment process S.1 and a subsequent second temperature treatment process S.2. These two temperature treatment processes S.1 and S.2 are in Fig. 3 shown in two side-by-side temperature-time diagrams.
  • the first temperature treatment process S.1 is a high-temperature process in which the steel intermediate product is exposed to a first annealing temperature T1 for a first holding period ⁇ 1 (this step is also referred to as holding H1).
  • the annealing temperature T1 is above a critical temperature limit T KG during the holding H1.
  • the alloy composition of the respective type can be found in Table 1, only the essential alloy components being mentioned here. There are a number of exemplary embodiments that have been tested for each type. The corresponding examples are numbered 1 to 26 in the left column in Table 2.
  • Fig. 4 the following four samples are shown by the circle symbols mentioned: type 4, 18; Type1, 1; Type 3, 14 and Type 7, 24 (the designation Type 4, 18 stands for example for the alloy composition of Type 4, Example No. 18).
  • the absolute value 866 in degrees Celsius defines the point of intersection with the vertical axis and the value S K defines the slope. S K is therefore also referred to as the slope value.
  • the straight line 8 is parallel to the straight line 7.
  • the first annealing temperature T1 In the case of steel alloys of the manganese steel intermediate, as already defined, the first annealing temperature T1 must always be above the lower critical temperature limit T KG in order to ensure that a manganese steel intermediate is obtained in which the fatigue expansion occurs A L is less than 3%.
  • the second temperature treatment process S.2 also has an influence on the elongation.
  • the second annealing temperature T2 In order to maintain the grain size of the austenite grains in the structure, the second annealing temperature T2 must in any case be lower than the first annealing temperature T1. Since the first annealing temperature T1 is always above the lower critical temperature limit T KG , it can be concluded that the second annealing temperature T2 should preferably be below the lower critical temperature limit T KG .
  • the first annealing temperature T1 is above the temperature limit T KG and that the second annealing temperature T2 is in the range between A 1 and A 3 .
  • the second temperature treatment S.2 is also referred to as intercritical annealing.
  • the first holding period ⁇ 1 is preferably at least 10 seconds and preferably between 10 seconds and 6000 minutes.
  • the second holding period ⁇ 2 is at least 10 seconds in all embodiments. In Fig. 3 the two holding times ⁇ 1 and ⁇ 2 are only shown as examples. The time interval between the first temperature treatment process S.1 and the second temperature treatment process S.2 can be selected as required. The second temperature treatment process S.2 is typically carried out shortly after the first temperature treatment process S.1.
  • Embodiments are preferred in which the first temperature treatment process S.1, including heating E1 of the intermediate steel product, holding H1 of the first annealing temperature T1 and cooling Ab1 of the intermediate steel product, takes less than 7000 minutes.
  • Embodiments are preferred in which the second temperature treatment process S.2, including heating E2 of the steel intermediate, maintaining H2 of the second annealing temperature T2 and cooling Ab2 of the steel intermediate, takes less than 6000 minutes and preferably less than 5000 minutes.
  • the significant reduction in the elongation A L is independent of whether the first temperature treatment process S.1 and / or the second temperature treatment process S.2 in a continuous belt system (for example in a continuous system) or in a discontinuously operating system (for example in a bell annealer).
  • the invention can be applied both to cold strip intermediate products and to hot strip intermediate products. In both cases there is a significant reduction in the elongation A L.
  • Fig. 5 shows both the reduction in the elongation A L in percent and the dependence of the mean original austenite grain size (D UAK M ) in ⁇ m with increasing annealing temperature T1 for two exemplary samples of type 1 and type 2 (see also Table 1) as follows.
  • Fig. 5 derive from the fact that the critical temperature limit T KG1 ⁇ 820 ° C is for the examined alloy composition of type 1 (represented by curve 9), if one wants to achieve an elongation at break for this type composition 1 which is less than 3%.
  • Curve 10 shows the associated course of the mean original austenite grain boundary D UAK M 1 , as a function of temperature T1. For the Type 1 example, this results in a grain size of> 3 ⁇ m.
  • Fig. 5 derive from the fact that the critical temperature limit T KG2 is ⁇ 970 ° C for the examined alloy composition of type 2 (represented by curve 11), if one wants to achieve a fatigue strain which is less than 3% for this type 2 alloy composition.
  • Curve 12 shows the associated course of the mean original austenite grain boundary D UAK M , depending on the temperature T1. For the Type 2 example, this results in a grain size of> 8 ⁇ m.
  • the microalloying element niobium (Nb) has a noticeable influence, which is shown as a shift from T KG2 (compared to T KG1 ) to a higher critical temperature for A L ⁇ 3%.
  • Curves 10 and 12 in Fig. 5 show that the original austenite grain size increases with increasing temperature T1.
  • Fig. 5 the corresponding lower critical temperature limit T KG1 is shown as a dashed vertical line. It can be seen that the alloy compositions of type 1 have an average grain size which is> 3 ⁇ m from an annealing temperature T1> T KG1 .
  • the lower critical temperature limit T KG1 is in Fig. 4 identified by a small black triangle.
  • the microalloy leads to an increase in the critical temperature limit T KG .
  • the critical temperature limit T KG2 around is approx. 150 ° C higher than with Type 1 alloy compositions.
  • the corresponding effective lower critical temperature limit T * KG2 is shown as a dashed vertical line.
  • Fig. 6 shows a schematic diagram showing the stress ⁇ in MPa as a function of the elongation ⁇ in%.
  • the representation of the Fig. 6 is with the representation of the Fig. 2 to compare, being Fig. 6 shows only a small section.
  • Type 3 alloys in Table 1 four identical samples were compared here. Type 3 alloys also meet the requirements of the invention. All four samples were each subjected to a first temperature treatment process S.1 and a subsequent second temperature treatment process S.2. All process parameters were identical, except that in the first temperature treatment process S.1, the first annealing temperature T1 was varied as follows (see column 2 of the following Table 3): Table 3 alloy T1 [° C] T2 [° C] Curve Type 3 810 640 13.1 Type 3 850 640 13.2 Type 3 900 640 13.3 Type 3 950 640 13.4
  • the solid curve 13.1 Fig. 6 (Type 3, 14 of Table 2) shows a clearly visible pronounced yield point and has an elongation of A L ⁇ 2.6%.
  • Curve 13.2 represents another exemplary sample (type 3, 15 of table 2) of type 3, the yield strength here still being slightly pronounced.
  • Curve 13.4 represents another exemplary sample of type 3, with no pronounced yield point being visible here either. This is type 3, 17 of table 2.
  • the corresponding measurement values are in the range from approx. 700 to 1000 MPa and with an elongation at break A 80 in the range from approx. 20 to 40%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (14)

  1. Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse dont l'alliage comprend :
    ∘ une proportion de manganèse (Mn) dans la plage de manganèse (MnB) suivante 3 % en poids ≤ Mn ≤ 12 % en poids,
    ∘ une proportion d'un ou de plusieurs éléments d'alliage du groupe :
    silicium (Si), aluminium (Al), nickel (Ni), chrome (Cr), molybdène (Mo), phosphore (P), soufre (S), azote (N), cuivre (Cu), bore (B), tungstène (W), cobalt (Co),
    ∘ une proportion en carbone (C) optionnelle de moins de 1 % en poids,
    ∘ une proportion optionnelle d'un ou de plusieurs éléments de micro-alliage, la proportion totale des éléments de micro-alliage étant inférieure à 0,45 % en poids, et
    ∘ le reste présentant une proportion en fer (Fe) et des impuretés inévitables,
    le traitement thermique du produit intermédiaire en acier comprenant un premier processus de traitement thermique (S.1) et un deuxième processus de traitement thermique ultérieur (S.2), caractérisé en ce que
    - le premier processus de traitement thermique (S.1) est un procédé à haute température dans lequel le produit intermédiaire en acier est exposé pendant une première période de maintien (Δ1) à une première température de recuit (T1) qui est supérieure à une limite de température critique (TKG) qui est définie comme suit : TKG = (856 - SK * proportion de manganèse) degré Celsius, SK étant une valeur de pente, et cette valeur de pente étant égale à SK = 7,83 ± 10 %, de préférence SK = 7,83,
    - le deuxième processus de traitement thermique (S.2) est un procédé de recuit dans lequel le produit intermédiaire en acier est exposé à une deuxième température de recuit (T2) inférieure à la première température de recuit (T1).
  2. Procédé selon la revendication 1, caractérisé en ce que la première température de recuit (T1) dans la plage de manganèse mentionnée (MnB) présente une dépendance qui est définie comme suit : T1 ≈ (866-Sk * proportion de manganèse) degré Celsius.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la première période de maintien (Δ1) est d'au moins 10 secondes et est comprise de préférence entre 10 secondes et 6000 minutes.
  4. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la deuxième température de recuit (T2) se situe dans la plage entre les températures A1 et A3, A1 étant la température de départ de l'austénitisation et A3 étant la température de départ de l'austénitisation complète.
  5. Procédé selon la revendication 1, caractérisé en ce que la deuxième température de recuit (T2) est située dans la plage allant de 630 °C à 675 °C.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que, dans le cadre du deuxième processus de traitement thermique (S.2), la deuxième température de recuit (T2) est maintenue pendant une deuxième période de maintien (Δ2) d'au moins 10 secondes.
  7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le deuxième processus de traitement thermique (S.2), avec un processus de réchauffement (E2) du produit intermédiaire en acier, le maintien (H2) de la deuxième température de recuit (T2) et un processus de refroidissement (A2) du produit intermédiaire en acier, dure moins de 6000 minutes et de préférence moins de 5000 minutes.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la proportion du ou des plusieurs éléments d'alliage est située dans la plage suivante :
    - silicium (Si) ≤ 3 % en poids, et de préférence ≤ 2 % en poids,
    - aluminium (Al) ≤ 8 % en poids, et de préférence ≤ 6 % en poids,
    - nickel (Ni) ≤ 2 % en poids, et de préférence ≤ 1 % en poids,
    - chrome (Cr) ≤ 2 % en poids, et de préférence ≤ 0,5 % en poids,
    - molybdène (Mo) ≤ 0,5 % en poids, et de préférence ≤ 0,25 % en poids,
    - phosphore (P) ≤ 0,05 % en poids, et de préférence ≤ 0,025 % en poids,
    - soufre (S) ≤ 0,03 % en poids, et de préférence ≤ 0,01 % en poids,
    - azote (N) ≤ 0,05 % en poids, et de préférence ≤ 0,025 % en poids,
    - cuivre (Cu) ≤ 1 % en poids, et de préférence ≤ 0,5 % en poids,
    - bore (B) ≤ 0,005 % en poids, et de préférence ≤ 0,0035 % en poids,
    - tungstène (W) ≤ 1 % en poids, et de préférence ≤ 0,5 % en poids,
    - cobalt (Co) ≤ 2 % en poids, et de préférence ≤ 1 % en poids.
  9. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que les éléments de micro-alliage sont des éléments du groupe : titane (Ti), niobium (Nb), vanadium (V).
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le premier processus de traitement thermique (S.1) est un procédé qui est réalisé dans une installation à bande continue ou dans une installation fonctionnant en discontinu.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le deuxième processus de traitement thermique (S.2) est un procédé qui est réalisé dans une installation à bande continue ou dans une installation fonctionnant en discontinu, le produit intermédiaire en acier dans cette installation étant exposé au procédé de recuit dans une atmosphère inerte.
  12. Procédé selon la revendication 11, caractérisé en ce qu'on utilise une installation de recuit à cloche comme installation à fonctionnement discontinu.
  13. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que le produit intermédiaire en acier, dans une étape en aval du deuxième processus de traitement thermique (S.2), est soumis à un procédé de dressage, ce procédé de dressage visant principalement à conditionner la surface du produit intermédiaire en acier.
  14. Procédé selon l'une des revendications 1 à 12, caractérisé en ce que le premier processus de traitement thermique (S.1) est réalisé pendant un procédé de laminage à chaud, ce procédé de laminage à chaud étant effectué avec une température de fin de laminage située dans la plage au-dessus de la limite de température critique (TKG).
EP17709124.6A 2016-03-23 2017-03-10 Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse. Active EP3433386B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16162073.7A EP3222734A1 (fr) 2016-03-23 2016-03-23 Procede de traitement thermique d'un produit intermediaire en acier/manganese et produit intermediaire en acier traite thermiquement
PCT/EP2017/055714 WO2017162450A1 (fr) 2016-03-23 2017-03-10 Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse et produit intermédiaire en acier-manganèse ayant subi un traitement thermique correspondant

Publications (2)

Publication Number Publication Date
EP3433386A1 EP3433386A1 (fr) 2019-01-30
EP3433386B1 true EP3433386B1 (fr) 2020-06-17

Family

ID=55640576

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16162073.7A Withdrawn EP3222734A1 (fr) 2016-03-23 2016-03-23 Procede de traitement thermique d'un produit intermediaire en acier/manganese et produit intermediaire en acier traite thermiquement
EP17709124.6A Active EP3433386B1 (fr) 2016-03-23 2017-03-10 Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16162073.7A Withdrawn EP3222734A1 (fr) 2016-03-23 2016-03-23 Procede de traitement thermique d'un produit intermediaire en acier/manganese et produit intermediaire en acier traite thermiquement

Country Status (7)

Country Link
US (1) US20190071748A1 (fr)
EP (2) EP3222734A1 (fr)
JP (1) JP6945545B2 (fr)
KR (1) KR102246704B1 (fr)
CN (1) CN108884507B (fr)
ES (1) ES2816065T3 (fr)
WO (1) WO2017162450A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034890A (zh) * 2017-12-13 2018-05-15 天津市宝月钢制品有限公司 低合金中锰耐磨钢热轧板及制备方法
EP3594368A1 (fr) * 2018-07-13 2020-01-15 voestalpine Stahl GmbH Produit intermédiaire d'acier milieu-manganèse-feuillard laminé à froid à teneur en carbone réduite et procédé de fourniture d'un tel produit intermédiaire d'acier

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588421B2 (ja) * 1988-04-11 1997-03-05 日新製鋼株式会社 延性に優れた超高強度鋼材の製造方法
JPH05163533A (ja) * 1991-12-12 1993-06-29 Kobe Steel Ltd 深絞り性に優れる複合組織焼付硬化性鋼板の製造方法
JP2876968B2 (ja) * 1993-12-27 1999-03-31 日本鋼管株式会社 高延性を有する高強度鋼板およびその製造方法
US6390201B1 (en) * 2000-07-05 2002-05-21 Shell Oil Company Method of creating a downhole sealing and hanging device
AT411904B (de) * 2003-03-24 2004-07-26 Ebner Ind Ofenbau Haubenglühofen, insbesondere für stahlband- oder drahtbunde
CN101560597B (zh) * 2009-05-27 2010-08-11 东北大学 消除铁素体不锈钢冷轧板带吕德斯应变的柔性化退火方法
JP2013237923A (ja) * 2012-04-20 2013-11-28 Jfe Steel Corp 高強度鋼板およびその製造方法
EP2746409A1 (fr) * 2012-12-21 2014-06-25 Voestalpine Stahl GmbH Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier doté d'un alliage spécial
JP5862833B2 (ja) * 2013-08-12 2016-02-16 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法
US10253389B2 (en) * 2014-03-31 2019-04-09 Jfe Steel Corporation High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor
KR101677396B1 (ko) * 2015-11-02 2016-11-18 주식회사 포스코 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102246704B1 (ko) 2021-04-30
KR20180127435A (ko) 2018-11-28
EP3433386A1 (fr) 2019-01-30
JP6945545B2 (ja) 2021-10-06
EP3222734A1 (fr) 2017-09-27
CN108884507B (zh) 2020-06-16
ES2816065T3 (es) 2021-03-31
JP2019516857A (ja) 2019-06-20
WO2017162450A1 (fr) 2017-09-28
CN108884507A (zh) 2018-11-23
US20190071748A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
DE19947393B4 (de) Stahldraht für hochfeste Federn und Verfahren zu seiner Herstellung
DE60033498T2 (de) Heissgetauchtes galvanisiertes stahlblech mit hoher festigkeit und hervorragenden eigenschaften beim umformen und galvanisieren
EP3083239B1 (fr) Produit en acier plat pour composants d'un carrosserie de vehicule automobile
EP2855717B1 (fr) Tôle d'acier et méthode pour son obtention
DE60319534T2 (de) Hochfestes kaltgewalztes stahlblech und herstellunsgverfahren dafür
DE69828865T2 (de) Hochfestes, hervorragend bearbeitbares kaltgewalztes stahlblech mit hervorragender schlagbeständigkeit
EP2935635B1 (fr) Procédé de traitement thermique d'un produit en acier au manganèse et produit en acier au manganèse
EP2905348B1 (fr) Produit en acier plat de haute résistance avec une structure bainitique-martensitique et procédé de fabrication d'un tel produit acier plat
WO2020011638A1 (fr) Produit intermédiaire en acier laminé à froid medium manganèse ayant un taux de carbone réduit et procédé pour la fourniture d'un tel produit intermédiaire en acier
DE3401406A1 (de) Verfahren zur herstellung von stahlplatten mit hoher zugfestigkeit
EP3512968B1 (fr) Procédé pour fabriquer un produit plat en acier à partir d'un acier au manganèse et produit plat en acier résultant
EP3724359B1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d'une résistance à la fissuration de bords élevée ainsi que d'une capacité de durcissement à la cuisson élevée et procédé de fabrication d'un tel produit plat en acier
EP2009120B1 (fr) Utilisation d'un alliage d'acier très solide destiné à la fabrication de tuyaux en acier très résistants et ayant une bonne déformabilité
EP3029162A1 (fr) Procédé de traitement à chaud d'un produit en manganèse-acier et produit en manganèse-acier
DE2427038A1 (de) Nichtrostender stahl und verfahren zu seiner herstellung
EP3433386B1 (fr) Procédé de traitement thermique d'un produit intermédiaire en acier au manganèse.
DE112020006043T5 (de) Kaltgewalztes stahlblech mit ultrahoher festigkeit und verfahren zu dessen herstellung
WO2020058244A1 (fr) Procédé de fabrication de tôles en acier ultrarésistantes et tôle en acier correspondante
EP1352982A2 (fr) Acier inoxydable, procédé de fabrication de pièces sans fissuration de tension et pièce obtenue
EP3872206B1 (fr) Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
DE69123134T2 (de) Verfahren zum Herstellen eines hochfesten, elektrowiderstands- geschweissten Stahlrohres
EP3122910A2 (fr) Composants en alliage d'acier et procédé de fabrication de composants à haute résistance
DE2049916A1 (de) Stahllegierung
EP1664357B1 (fr) Utilisation d'un acier pour la fabrication des chaines, procedes de production d'une chaine, et chaine ainsi produite
DE1807992B2 (de) Wärmebehandlungsverfahren zur Erzielung eines bainitischen Gefüges in einem hochfesten Stahl

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005743

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005743

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2816065

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210310

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210310

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1281368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220310

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170310

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 8

Ref country code: GB

Payment date: 20240327

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 8

Ref country code: FR

Payment date: 20240325

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240401

Year of fee payment: 8