EP3433386B1 - Method for temperature-treating a manganese steel intermediate product. - Google Patents

Method for temperature-treating a manganese steel intermediate product. Download PDF

Info

Publication number
EP3433386B1
EP3433386B1 EP17709124.6A EP17709124A EP3433386B1 EP 3433386 B1 EP3433386 B1 EP 3433386B1 EP 17709124 A EP17709124 A EP 17709124A EP 3433386 B1 EP3433386 B1 EP 3433386B1
Authority
EP
European Patent Office
Prior art keywords
temperature
treatment process
annealing
intermediate product
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17709124.6A
Other languages
German (de)
French (fr)
Other versions
EP3433386A1 (en
Inventor
Friedrich FÜREDER-KITZMÜLLER
Reinhold Schneider
Daniel Krizan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3433386A1 publication Critical patent/EP3433386A1/en
Application granted granted Critical
Publication of EP3433386B1 publication Critical patent/EP3433386B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Definitions

  • the present invention relates to a method of heat treating a manganese steel intermediate. It is also about a specific alloy of a manganese steel intermediate, which is heat-treated in a special process in order to achieve a significantly reduced fatigue expansion.
  • composition or alloy as well as the heat treatment in the manufacturing process have a significant influence on the properties of steel products.
  • Mn manganese
  • medium-manganese steels which are also referred to as medium-manganese steels.
  • the manganese content in percent by weight (% by weight) is often in the range between 3 and 12.
  • a medium manganese steel has a high combination of tensile strength and elongation due to its structure. Typical applications in the automotive industry are complex safety-relevant deep-drawn components.
  • Fig. 1 A classic, highly schematic diagram is shown, in which the elongation at break A 80 (called total elongation) is plotted in percent above the tensile strength (called tensile strength) in MPa.
  • the tensile strength is abbreviated here with R m .
  • the diagram of the Fig. 1 provides an overview of the strength classes of steel materials currently used for the automotive industry. In general, the following statement applies: the higher the tensile strength R m of a steel alloy, the lower the elongation at break A 80 of this alloy. Put simply, it can be stated that the elongation at break A 80 decreases with increasing tensile strength R m and vice versa. An optimal compromise between the elongation at break A 80 and the tensile strength R m must therefore be found for each application.
  • Steel alloys with a high tensile strength R m of mostly more than 1000 MPa are used for steel barriers (e.g. for side impact protection), which are intended to prevent the penetration of vehicle parts in the event of an accident.
  • the new generation of high-strength AHSS (Advanced High-Strength Steels) steels is suitable here (reference number 2 in Fig. 1 ).
  • This category includes the TBF (Trip Bainitic Ferrite) steels and the Q&P (Quenching & Partitioning) steels.
  • These high-strength AHSS steels have, for example, a manganese content in the range between 1.2 and 3% by weight and a carbon content C which is between 0.05 and 0.25% by weight.
  • the range designated by the reference number 3 comprises medium-manganese steels with an Mn content between 3 and 12% by weight and with a carbon content ⁇ 1% by weight.
  • FIG. 2 An example tension curve 4 (also called stress-strain curve) is the Fig. 2 refer to.
  • the stress ⁇ in MPa
  • the tension curve 4 shows an intermediate maximum 5, which is referred to as the upper yield point (R eH ), followed by a plateau 6.
  • the plateau 6 merges into an increasing curve area.
  • the "length" of the plateau 6 is referred to as the elongation (A L ), as in Fig. 2 shown.
  • a steel product with such a pronounced yield strength can form undesirable strains on the surface of the components for the automotive industry. For this reason, the pronounced yield strength must typically be reduced by a re-rolling process.
  • the aftertreatment in a corresponding re-rolling mill (usually with a skin pass mill) is also referred to as skin pass.
  • the manganese steel intermediate products should preferably have no (measurable) fatigue strain.
  • a particularly suitable manganese steel alloy and an optimized method for the temperature treatment of a manganese steel intermediate product are provided.
  • the manganese-steel intermediate products which were produced from a melt of this manganese-steel alloy are subjected to a first temperature treatment process and a subsequent second temperature treatment process as part of a temperature treatment according to the invention.
  • the first temperature treatment process is a high temperature process in which the steel intermediate product is exposed to a first annealing temperature for a first holding period which is above a critical temperature limit (referred to as T KG ), which defines the critical temperature limit (T KG ) as follows is: T KG ⁇ (856 - SK ⁇ manganese content) degrees Celsius, and where S K is a slope value.
  • T KG critical temperature limit
  • the formula mentioned which serves as the definition of the critical temperature limit (T KG ), states that the critical temperature limit (T KG ) decreases with increasing manganese content in the manganese range mentioned.
  • the second temperature treatment process is an annealing process in which the steel intermediate product is exposed to a second annealing temperature T2, which is in any case lower than the first annealing temperature T1.
  • the first annealing temperature T1 preferably shows a dependency on the stated manganese range of the alloy, which is defined as follows: T1 T T KG .
  • the first holding period is preferably at least 10 seconds.
  • the first holding time is particularly preferably between 10 seconds and 7000 minutes in all embodiments.
  • the second annealing temperature T2 is preferably in the range between the temperatures A 1 and A 3 .
  • the second temperature treatment process including heating the steel intermediate, maintaining the second annealing temperature, and cooling the steel intermediate, takes less than 6000 minutes. This total time is preferably even less than 5000 minutes.
  • the invention makes it possible for the first time to provide intermediate steel products which have an elongation A L which is less than 3% and preferably less than 1%.
  • the process according to the invention can be used to produce intermediate steel products which have an average primary austenite grain size which is larger than 3 ⁇ m.
  • the alloy of the steel intermediate products of the invention preferably has an average manganese content, which means that the manganese content is in the range 3% by weight M Mn 12 12% by weight. In all embodiments, the manganese content is preferably in the range from 3.5% by weight M Mn 8 8.5% by weight.
  • the first temperature treatment process is carried out in a continuous belt system (annealing system).
  • annealing system This process is also known as continuous annealing.
  • hood annealing discontinuous heat treatment of the intermediate steel product.
  • the first temperature treatment of the invention can also be carried out by special temperature control during hot rolling. With this special temperature control, care is taken to ensure that the end temperature of the hot strip during hot rolling is in the range above the critical temperature limit T KG .
  • the second temperature treatment process is carried out in a discontinuously operating plant, the steel intermediate being exposed to the annealing process in this plant in a protective gas atmosphere.
  • This process is preferably carried out in a bell annealer.
  • the second temperature treatment process can also be carried out in a continuous strip system (annealing system) or in a hot-dip galvanizing system.
  • the steel intermediate of all embodiments can optionally be subjected to a skin pass process, this skin pass process primarily aimed at conditioning the surface of the steel intermediate product.
  • a more intensive skin pass is not necessary since the steel intermediate products of the invention have a low fatigue elongation.
  • the degree of skin passage can thus be reduced or avoided entirely.
  • steel intermediates can be produced which have an elongation at break which is less than 3% and which is preferably less than 1%.
  • intermediate steel products can be produced which have a tensile strength R m (also called minimum strength) which is greater than 490 MPa.
  • steel intermediate products can be produced which, owing to the reduced elastic expansion, have a (minimum) elongation at break (A 80 ) which is greater than 10%.
  • the invention can be used to e.g. To provide cold-rolled steel products in the form of cold-rolled flat materials (e.g. coils).
  • the invention can also be used to e.g. To manufacture thin sheets or wire and wire products.
  • the invention can also be used to provide hot-rolled steel products.
  • Quantities or proportions are mostly given in percent by weight (short% by weight), unless otherwise stated. If information is given on the composition of the alloy or steel product, then the composition includes iron (Fe) and so-called unavoidable in addition to the explicitly listed materials Contamination that always occurs in the weld pool and that is also evident in the resulting steel intermediate. All percentages by weight must therefore always be supplemented to 100 percent by weight and all percentages by volume must always be supplemented to 100 percent of the total volume.
  • the heat treatment of the intermediate steel product comprises a first temperature treatment process S.1 and a subsequent second temperature treatment process S.2. These two temperature treatment processes S.1 and S.2 are in Fig. 3 shown in two side-by-side temperature-time diagrams.
  • the first temperature treatment process S.1 is a high-temperature process in which the steel intermediate product is exposed to a first annealing temperature T1 for a first holding period ⁇ 1 (this step is also referred to as holding H1).
  • the annealing temperature T1 is above a critical temperature limit T KG during the holding H1.
  • the alloy composition of the respective type can be found in Table 1, only the essential alloy components being mentioned here. There are a number of exemplary embodiments that have been tested for each type. The corresponding examples are numbered 1 to 26 in the left column in Table 2.
  • Fig. 4 the following four samples are shown by the circle symbols mentioned: type 4, 18; Type1, 1; Type 3, 14 and Type 7, 24 (the designation Type 4, 18 stands for example for the alloy composition of Type 4, Example No. 18).
  • the absolute value 866 in degrees Celsius defines the point of intersection with the vertical axis and the value S K defines the slope. S K is therefore also referred to as the slope value.
  • the straight line 8 is parallel to the straight line 7.
  • the first annealing temperature T1 In the case of steel alloys of the manganese steel intermediate, as already defined, the first annealing temperature T1 must always be above the lower critical temperature limit T KG in order to ensure that a manganese steel intermediate is obtained in which the fatigue expansion occurs A L is less than 3%.
  • the second temperature treatment process S.2 also has an influence on the elongation.
  • the second annealing temperature T2 In order to maintain the grain size of the austenite grains in the structure, the second annealing temperature T2 must in any case be lower than the first annealing temperature T1. Since the first annealing temperature T1 is always above the lower critical temperature limit T KG , it can be concluded that the second annealing temperature T2 should preferably be below the lower critical temperature limit T KG .
  • the first annealing temperature T1 is above the temperature limit T KG and that the second annealing temperature T2 is in the range between A 1 and A 3 .
  • the second temperature treatment S.2 is also referred to as intercritical annealing.
  • the first holding period ⁇ 1 is preferably at least 10 seconds and preferably between 10 seconds and 6000 minutes.
  • the second holding period ⁇ 2 is at least 10 seconds in all embodiments. In Fig. 3 the two holding times ⁇ 1 and ⁇ 2 are only shown as examples. The time interval between the first temperature treatment process S.1 and the second temperature treatment process S.2 can be selected as required. The second temperature treatment process S.2 is typically carried out shortly after the first temperature treatment process S.1.
  • Embodiments are preferred in which the first temperature treatment process S.1, including heating E1 of the intermediate steel product, holding H1 of the first annealing temperature T1 and cooling Ab1 of the intermediate steel product, takes less than 7000 minutes.
  • Embodiments are preferred in which the second temperature treatment process S.2, including heating E2 of the steel intermediate, maintaining H2 of the second annealing temperature T2 and cooling Ab2 of the steel intermediate, takes less than 6000 minutes and preferably less than 5000 minutes.
  • the significant reduction in the elongation A L is independent of whether the first temperature treatment process S.1 and / or the second temperature treatment process S.2 in a continuous belt system (for example in a continuous system) or in a discontinuously operating system (for example in a bell annealer).
  • the invention can be applied both to cold strip intermediate products and to hot strip intermediate products. In both cases there is a significant reduction in the elongation A L.
  • Fig. 5 shows both the reduction in the elongation A L in percent and the dependence of the mean original austenite grain size (D UAK M ) in ⁇ m with increasing annealing temperature T1 for two exemplary samples of type 1 and type 2 (see also Table 1) as follows.
  • Fig. 5 derive from the fact that the critical temperature limit T KG1 ⁇ 820 ° C is for the examined alloy composition of type 1 (represented by curve 9), if one wants to achieve an elongation at break for this type composition 1 which is less than 3%.
  • Curve 10 shows the associated course of the mean original austenite grain boundary D UAK M 1 , as a function of temperature T1. For the Type 1 example, this results in a grain size of> 3 ⁇ m.
  • Fig. 5 derive from the fact that the critical temperature limit T KG2 is ⁇ 970 ° C for the examined alloy composition of type 2 (represented by curve 11), if one wants to achieve a fatigue strain which is less than 3% for this type 2 alloy composition.
  • Curve 12 shows the associated course of the mean original austenite grain boundary D UAK M , depending on the temperature T1. For the Type 2 example, this results in a grain size of> 8 ⁇ m.
  • the microalloying element niobium (Nb) has a noticeable influence, which is shown as a shift from T KG2 (compared to T KG1 ) to a higher critical temperature for A L ⁇ 3%.
  • Curves 10 and 12 in Fig. 5 show that the original austenite grain size increases with increasing temperature T1.
  • Fig. 5 the corresponding lower critical temperature limit T KG1 is shown as a dashed vertical line. It can be seen that the alloy compositions of type 1 have an average grain size which is> 3 ⁇ m from an annealing temperature T1> T KG1 .
  • the lower critical temperature limit T KG1 is in Fig. 4 identified by a small black triangle.
  • the microalloy leads to an increase in the critical temperature limit T KG .
  • the critical temperature limit T KG2 around is approx. 150 ° C higher than with Type 1 alloy compositions.
  • the corresponding effective lower critical temperature limit T * KG2 is shown as a dashed vertical line.
  • Fig. 6 shows a schematic diagram showing the stress ⁇ in MPa as a function of the elongation ⁇ in%.
  • the representation of the Fig. 6 is with the representation of the Fig. 2 to compare, being Fig. 6 shows only a small section.
  • Type 3 alloys in Table 1 four identical samples were compared here. Type 3 alloys also meet the requirements of the invention. All four samples were each subjected to a first temperature treatment process S.1 and a subsequent second temperature treatment process S.2. All process parameters were identical, except that in the first temperature treatment process S.1, the first annealing temperature T1 was varied as follows (see column 2 of the following Table 3): Table 3 alloy T1 [° C] T2 [° C] Curve Type 3 810 640 13.1 Type 3 850 640 13.2 Type 3 900 640 13.3 Type 3 950 640 13.4
  • the solid curve 13.1 Fig. 6 (Type 3, 14 of Table 2) shows a clearly visible pronounced yield point and has an elongation of A L ⁇ 2.6%.
  • Curve 13.2 represents another exemplary sample (type 3, 15 of table 2) of type 3, the yield strength here still being slightly pronounced.
  • Curve 13.4 represents another exemplary sample of type 3, with no pronounced yield point being visible here either. This is type 3, 17 of table 2.
  • the corresponding measurement values are in the range from approx. 700 to 1000 MPa and with an elongation at break A 80 in the range from approx. 20 to 40%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Temperaturbehandeln eines Mangan-Stahlzwischenprodukts. Es geht auch um eine spezifische Legierung eines Mangan-Stahlzwischenprodukts, das im Rahmen eines speziellen Verfahrens temperaturbehandelt wird, um so eine deutlich reduzierte Lüdersdehnung zu erzielen. Diese Anmeldung beansprucht die Priorität der europäischen Patentanmeldung Nummer EP 16 162 073.7 , welche am 23. März 2016 eingereicht wurde.The present invention relates to a method of heat treating a manganese steel intermediate. It is also about a specific alloy of a manganese steel intermediate, which is heat-treated in a special process in order to achieve a significantly reduced fatigue expansion. This application claims priority from European patent application number EP 16 162 073.7 which was submitted on March 23, 2016.

Sowohl die Zusammensetzung, respektive Legierung, als auch die Wärmebehandlung im Herstellungsprozess haben einen deutlichen Einfluss auf die Eigenschaften von Stahlprodukten.Both the composition or alloy, as well as the heat treatment in the manufacturing process have a significant influence on the properties of steel products.

Es ist bekannt, dass im Rahmen einer Wärmebehandlung das Aufwärmen, Halten und Abkühlen einen Einfluss auf das endgültige Gefüge eines Stahlprodukts haben kann. Weiterhin spielt, wie bereits angedeutet, natürlich auch die Legierungszusammensetzung des Stahlprodukts eine große Rolle. Die thermodynamischen und werkstofftechnischen Zusammenhänge in legierten Stählen sind sehr komplex und hängen von vielen Parametern ab.It is known that heating, holding and cooling can have an impact on the final structure of a steel product as part of a heat treatment. Furthermore, as already indicated, the alloy composition of the steel product also plays a major role. The thermodynamic and material-technical relationships in alloyed steels are very complex and depend on many parameters.

Es hat sich gezeigt, dass sich durch eine Kombination verschiedener Phasen im Gefüge eines Stahlprodukts die mechanischen Eigenschaften und die Verformbarkeit beeinflussen lassen.It has been shown that a combination of different phases in the structure of a steel product can influence the mechanical properties and the deformability.

Je nach spezifischem Anforderungsprofil kommen unterschiedliche Stähle zum Einsatz.Depending on the specific requirement profile, different steels are used.

Eine bedeutende Komponente heutiger, neuer Stahl-Legierungen ist Mangan (Mn). Es handelt sich um sogenannte Mittel-Mangan-Stähle, die auch als Medium-Mangan-Stähle bezeichnet werden. Der Mangan-Anteil in Gewichtsprozent (Gew.%) liegt dabei häufig im Bereich zwischen 3 und 12. Ein Medium-Mangan-Stahl hat aufgrund seines Gefüges eine hohe Kombination von Zugfestigkeit und Dehnung. Typische Anwendung in der Automobilindustrie sind komplexe sicherheitsrelevante Tiefziehbauteile.An important component of today's new steel alloys is manganese (Mn). These are so-called medium-manganese steels, which are also referred to as medium-manganese steels. The manganese content in percent by weight (% by weight) is often in the range between 3 and 12. A medium manganese steel has a high combination of tensile strength and elongation due to its structure. Typical applications in the automotive industry are complex safety-relevant deep-drawn components.

In Fig. 1 ist ein klassisches, stark schematisiertes Diagramm gezeigt, bei dem die Bruchdehnung A80 (im Englischen total elongation genannt) in Prozent über der Zugfestigkeit (im Englischen tensile strength genannt) in MPa aufgetragen ist. Die Zugfestigkeit wird hier mit Rm abgekürzt. Das Diagramm der Fig. 1 gibt eine Übersicht über die Festigkeitsklassen momentan eingesetzter Stahlwerkstoffe für die Automobilindustrie. Generell gilt die folgende Aussage: umso höher die Zugfestigkeit Rm einer Stahllegierung ist, umso geringer ist die Bruchdehnung A80 dieser Legierung. Vereinfacht ausgedrückt kann festgestellt werden, dass die Bruchdehnung A80 Mit zunehmender Zugfestigkeit Rm abnimmt und umgekehrt. Es muss also für jede Anwendung ein optimaler Kompromiss zwischen der Bruchdehnung A80 und der Zugfestigkeit Rm gefunden werden.In Fig. 1 A classic, highly schematic diagram is shown, in which the elongation at break A 80 (called total elongation) is plotted in percent above the tensile strength (called tensile strength) in MPa. The tensile strength is abbreviated here with R m . The diagram of the Fig. 1 provides an overview of the strength classes of steel materials currently used for the automotive industry. In general, the following statement applies: the higher the tensile strength R m of a steel alloy, the lower the elongation at break A 80 of this alloy. Put simply, it can be stated that the elongation at break A 80 decreases with increasing tensile strength R m and vice versa. An optimal compromise between the elongation at break A 80 and the tensile strength R m must therefore be found for each application.

Im Automobilsektor arbeitet man mit einer ganzen Reihe unterschiedlicher Stahllegierungen, die jeweils speziell für ihr jeweiliges Einsatzgebiet am Fahrzeug optimiert wurden. Bei Innen- und Außenpanelen, strukturellen Teilen und Stoßfängern kommen Legierungen zum Einsatz, die eine gute Energieabsorption aufweisen. Stahlpanele für die Außenhaut eines Fahrzeugs sind relativ "weich" und haben beispielsweise eine Zugfestigkeit Rm von ca. 300 MPa und eine gute Bruchdehnung A80 >30%. Die Stahllegierungen von sicherheitsrelevanten Bauteilen haben beispielsweise eine Zugfestigkeit Rm im Bereich zwischen 600 und 1000 MPa. Hierfür eignen sich zum Beispiel sehr gut die TRIP (transfomation induced plasticity) Stähle (Bezugszeichen 1 in Fig. 1).In the automotive sector, you work with a whole range of different steel alloys, each of which has been specially optimized for its respective area of application on the vehicle. Alloys with good energy absorption are used for interior and exterior panels, structural parts and bumpers. Steel panels for the outer skin of a vehicle are relatively "soft" and have, for example, a tensile strength R m of approximately 300 MPa and a good elongation at break A 80 > 30%. The steel alloys of safety-relevant components, for example, have a tensile strength R m in the range between 600 and 1000 MPa. TRIP (transformation induced plasticity) steels (reference number 1 in.) Are very well suited for this Fig. 1 ).

Bei Stahlbarrieren (z.B. für den Seitenaufprallschutz), die bei einem Unfall das Eindringen von Fahrzeugteilen verhindern sollen, werden Stahllegierungen eingesetzt, die eine hohe Zugfestigkeit Rm von meist mehr als 1000 MPa aufweisen. Hier eignet sich beispielweise die neue Generation von höherfesten AHSS (Advanced High-Strength Steels) Stählen (Bezugszeichen 2 in Fig. 1). In dieser Kategorie befinden sich die TBF (Trip Bainitic Ferrite) Stähle und die Q&P (Quenching & Partitioning) Stähle. Diese hochfesten AHSS Stähle haben beispielsweise einen Mangan-Anteil im Bereich zwischen 1,2 und 3 Gew.% und einen Kohlenstoffanteil C, der zwischen 0,05 und 0,25 Gew.% liegt.Steel alloys with a high tensile strength R m of mostly more than 1000 MPa are used for steel barriers (e.g. for side impact protection), which are intended to prevent the penetration of vehicle parts in the event of an accident. For example, the new generation of high-strength AHSS (Advanced High-Strength Steels) steels is suitable here (reference number 2 in Fig. 1 ). This category includes the TBF (Trip Bainitic Ferrite) steels and the Q&P (Quenching & Partitioning) steels. These high-strength AHSS steels have, for example, a manganese content in the range between 1.2 and 3% by weight and a carbon content C which is between 0.05 and 0.25% by weight.

In dem Bereich, der in Fig. 1 mit dem Bezugszeichen 3 bezeichnet ist, sind die bereits erwähnten Medium-Mangan-Stähle schematisch zusammen-gefasst. Der mit dem Bezugszeichen 3 bezeichnete Bereich umfasst Medium-Mangan-Stähle mit einem Mn-Anteil zwischen 3 und 12 Gew.% und mit einem KohlenstoffAnteil ≤ 1 Gew.%.In the area that in Fig. 1 With the reference number 3, the medium-manganese steels already mentioned are summarized schematically. The range designated by the reference number 3 comprises medium-manganese steels with an Mn content between 3 and 12% by weight and with a carbon content ≤ 1% by weight.

Die heutigen Medium Mangan Stähle weisen aufgrund ihres ultra feinen Kornes (typischerweise ≤ 1µm) eine ausgeprägte Streckgrenze auf, die sich bei der Zugprüfung deutlich zeigt. Eine beispielhafte Zugkurve 4 (auch Spannungs-Dehnungs-Kurve genannt) ist der Fig. 2 zu entnehmen. In Fig. 2 ist die Spannung σ (in MPa) über die Dehnung ε (in %) aufgetragen. Die Zugkurve 4 zeigt ein Zwischenmaximum 5, das als obere Streckgrenze (ReH) bezeichnet wird, gefolgt von einem Plateau 6. Im Bereich der unteren Streckgrenze (ReL) geht das Plateau 6 in einen ansteigenden Kurvenbereich über. Die "Länge" des Plateaus 6 wird als Lüdersdehnung (AL) bezeichnet, wie in Fig. 2 gezeigt. Ein Stahlprodukt mit einer solch ausgeprägten Streckgrenze kann an der Oberfläche der Bauteile für die Automobilindustrie unerwünschte Lüdersbänder (strecher-strainer marks) bilden. Daher muß die ausgeprägte Streckgrenze typischerweise durch einen Nachwalz - Prozess reduziert werden. Das Nachbehandeln in einem entsprechenden Nachwalzwerk (meist mit einem Dressiergerüst) wird auch als Dressieren bezeichnet.Today's medium manganese steels have a pronounced yield strength due to their ultra-fine grain (typically ≤ 1µm), which is clearly shown in the tensile test. An example tension curve 4 (also called stress-strain curve) is the Fig. 2 refer to. In Fig. 2 the stress σ (in MPa) is plotted against the strain ε (in%). The tension curve 4 shows an intermediate maximum 5, which is referred to as the upper yield point (R eH ), followed by a plateau 6. In the region of the lower yield point (R eL ), the plateau 6 merges into an increasing curve area. The "length" of the plateau 6 is referred to as the elongation (A L ), as in Fig. 2 shown. A steel product with such a pronounced yield strength can form undesirable strains on the surface of the components for the automotive industry. For this reason, the pronounced yield strength must typically be reduced by a re-rolling process. The aftertreatment in a corresponding re-rolling mill (usually with a skin pass mill) is also referred to as skin pass.

Der energetische und technische Aufwand für das Dressieren ist zum Teil recht hoch. Zusätzlich führt dieser Prozess zu einer Reduktion der nutzbaren Dehnung.The energetic and technical effort for the skin training is sometimes quite high. In addition, this process leads to a reduction in the usable elongation.

Es stellt sich daher die Aufgabe, ein Verfahren zum Herstellen von Mangan-Stahlzwischenprodukten zu entwickeln, bei denen die Lüdersdehnung weniger deutlich ausgeprägt ist. Vorzugsweise sollen die Mangan-Stahlzwischenprodukte keine (messbare) Lüdersdehnung aufweisen.It is therefore the task of developing a process for producing manganese steel intermediate products in which the elongation is less pronounced. The manganese steel intermediate products should preferably have no (measurable) fatigue strain.

Untersuchungen an zahlreichen Legierungszusammensetzungen von Medium-Mangan-Stählen haben gezeigt, dass es einen Zusammenhang zwischen der ursprünglichen Austenit-Korngrösse dieser Stähle und der Lüdersdehnung gibt. D.h. die ursprüngliche Austenit-Korngrösse hat einen Einfluss auf die mechanischen Eigenschaften dieser Stähle. Generell kann postuliert werden, dass sich die Lüdersdehnung umgekehrt proportional zur ursprünglichen Austenit-Korngrösse verhält.Studies on numerous alloy compositions of medium-manganese steels have shown that there is a connection between the original austenite grain size of these steels and the elongation at break. I.e. the original austenite grain size has an influence on the mechanical properties of these steels. In general, it can be postulated that the elongation is inversely proportional to the original austenite grain size.

Als Teilaufgabe der Erfindung geht es somit darum eine Legierungszusammensetzung und ein Verfahren zur Temperaturbehandlung zu finden, um eine Vergrößerung der ursprünglichen Austenit-Korngrösse zu erzielen und um die vergrösserten Austenit-Körner im Gefüge der Medium-Mangan-Stähle zu manifestieren. Anders als im Stand der Technik (siehe z.B. WO2014095082 A1 ), wo es um das Bereitstellen von ultrafeinen Gefügen geht (mit einer Ultrafeinkörnigkeit mit einer mittleren Korngrösse von ca. 1 µm), zielt die Erfindung in eine andere Richtung. Ausserdem kommt in der beispielhaft genannten Patentanmeldung WO2014095082 A1 ein Doppelglühverfahren zum Einsatz, das mit anderen Temperaturen und Verfahrensabläufen arbeitet. Stahlprodukte, die nach dem Verfahren von WO2014095082 A1 hergestellt wurden, haben eine deutlich ausgeprägte Streckgrenze.It is therefore part of the object of the invention to find an alloy composition and a method for temperature treatment in order to achieve an increase in the original austenite grain size and to manifest the enlarged austenite grains in the structure of the medium-manganese steels. Unlike in the prior art (see e.g. WO2014095082 A1 ), when it comes to providing ultra-fine microstructures (with an ultra-fine grain with an average grain size of approx. 1 µm), the invention aims in a different direction. In addition, the patent application mentioned as an example WO2014095082 A1 a double annealing process is used, which works with different temperatures and processes. Steel products made by the process of WO2014095082 A1 have a clearly defined yield strength.

Gemäß Erfindung werden eine besonders geeignete Mangan-Stahl-Legierung und ein optimiertes Verfahren zum Temperaturbehandeln eines Mangan-Stahlzwischenprodukts bereitgestellt.According to the invention, a particularly suitable manganese steel alloy and an optimized method for the temperature treatment of a manganese steel intermediate product are provided.

Die Mangan-Stahl-Legierung der Erfindung umfasst:

  • einen Mangananteil (Mn), der im folgenden Manganbereich 3 Gew.% ≤ Mn ≤ 12 Gew.% liegt,
  • einen Anteil von einem oder mehreren Legierungselementen der Gruppe:
    Silizium (Si), Aluminium (Al), Nickel (Ni), Chrom (Cr), Molybdän (Mo), Phosphor (P), Schwefel (S), Stickstoff (N), Kupfer (Cu), Bor (B), Kobalt (Co), Wolfram (W),
  • einen optionalen Kohlenstoffanteil (C) von weniger als 1 Gew.%,
  • einen optionalen Anteil von einem oder mehreren Mikrolegierungselementen z. B.: Titan (Ti), Niob (Nb) und Vanadin (V), wobei der gesamte Anteil der Mikrolegierungselemente weniger als 0,45 Gew.% beträgt, und
  • als Rest einen Eisenanteil (Fe) und unvermeidbare Verunreinigungen.
The manganese steel alloy of the invention comprises:
  • a manganese content (Mn) which lies in the following manganese range 3% by weight ≤ Mn ≤ 12% by weight,
  • a proportion of one or more alloying elements of the group:
    Silicon (Si), aluminum (Al), nickel (Ni), chrome (Cr), molybdenum (Mo), phosphorus (P), sulfur (S), nitrogen (N), copper (Cu), boron (B), Cobalt (Co), tungsten (W),
  • an optional carbon content (C) of less than 1% by weight,
  • an optional portion of one or more microalloying elements e.g. For example: titanium (Ti), niobium (Nb) and vanadium (V), the total proportion of the microalloying elements being less than 0.45% by weight, and
  • the remainder iron (Fe) and unavoidable impurities.

Die Mangan-Stahlzwischenprodukte, die aus einer Schmelze dieser Mangan-Stahl-Legierung hergestellt wurden, werden im Rahmen einer erfindungsgemässen Temperaturbehandlung einem ersten Temperaturbehandlungsprozess und einem nachfolgenden zweiten Temperaturbehandlungsprozess unterzogen.The manganese-steel intermediate products which were produced from a melt of this manganese-steel alloy are subjected to a first temperature treatment process and a subsequent second temperature treatment process as part of a temperature treatment according to the invention.

Bei dem ersten Temperaturbehandlungsprozess handelt es sich um ein Hochtemperaturverfahren, bei dem das Stahlzwischenprodukt während einer ersten Haltedauer einer ersten Glühtemperatur ausgesetzt wird, die oberhalb einer kritischen Temperaturgrenze (als TKG bezeichnet,) liegt, wobei diese kritische Temperaturgrenze (TKG) wie folgt definiert ist: TKG ≥ (856 - SK Mangananteil) Grad Celsius, und wobei SK ein Steigungswert ist.The first temperature treatment process is a high temperature process in which the steel intermediate product is exposed to a first annealing temperature for a first holding period which is above a critical temperature limit (referred to as T KG ), which defines the critical temperature limit (T KG ) as follows is: T KG ≥ (856 - SK manganese content) degrees Celsius, and where S K is a slope value.

Die genannte Formel, die als Definiton der kritischen Temperaturgrenze (TKG) dient, sagt aus, dass die kritische Temperaturgrenze (TKG) im genannten Manganbereich mit zunehmendem Mangananteil abnimmt.The formula mentioned, which serves as the definition of the critical temperature limit (T KG ), states that the critical temperature limit (T KG ) decreases with increasing manganese content in the manganese range mentioned.

Der genannte Steigungswert ist bei allen Ausführungsformen wie folgt definiert SK = 7,83±10% und vorzugsweise bei SK = 7,83.The slope value is defined in all embodiments as follows S K = 7.83 ± 10% and preferably at S K = 7.83.

Bei dem zweiten Temperaturbehandlungsprozess handelt es sich um ein Glühverfahren, bei dem das Stahlzwischenprodukt einer zweiten Glühtemperatur T2 ausgesetzt wird, die in jedem Fall niedriger ist als die erste Glühtemperatur T1.The second temperature treatment process is an annealing process in which the steel intermediate product is exposed to a second annealing temperature T2, which is in any case lower than the first annealing temperature T1.

Vorzugsweise zeigt die erste Glühtemperatur T1 bei allen Ausführungsformen eine Abhängigkeit vom genannten Manganbereich der Legierung, die wie folgt definiert ist: T1 ≥ TKG.In all embodiments, the first annealing temperature T1 preferably shows a dependency on the stated manganese range of the alloy, which is defined as follows: T1 T T KG .

Besonders bevorzugt sind Ausführungsformen der Erfindung, bei einer kritischen Temperatur TK ≥ (866 - SK Mangananteil) Grad Celsius, wobei gilt: SK = 7,83±10%.Embodiments of the invention are particularly preferred at a critical temperature TK ((866 - S K manganese content) degrees Celsius, where: S K = 7.83 ± 10%.

Vorzugsweise beträgt die erste Haltedauer bei allen Ausführungsformen mindestens 10 Sekunden. Besonders vorzugsweise beträgt die erste Haltedauer bei allen Ausführungsformen zwischen 10 Sekunden und 7000 Minuten.In all embodiments, the first holding period is preferably at least 10 seconds. The first holding time is particularly preferably between 10 seconds and 7000 minutes in all embodiments.

Vorzugsweise liegt die zweite Glühtemperatur T2 bei allen Ausführungsformen im Bereich zwischen den Temperaturen A1 und A3.In all embodiments, the second annealing temperature T2 is preferably in the range between the temperatures A 1 and A 3 .

Es werden vorteilhafte Ergebnisse erzielt, falls der zweite Temperaturbehandlungsprozess inklusive des Erwärmens des Stahlzwischenprodukts, des Haltens der zweiten Glühtemperatur und des Abkühlens des Stahlzwischenprodukts weniger als 6000 Minuten dauert. Vorzugsweise liegt diese Gesamtzeit sogar bei weniger als 5000 Minuten.Advantageous results are obtained if the second temperature treatment process, including heating the steel intermediate, maintaining the second annealing temperature, and cooling the steel intermediate, takes less than 6000 minutes. This total time is preferably even less than 5000 minutes.

Die Erfindung lässt sich besonders vorteilhaft auf Legierungen anwenden, bei denen der Anteil der einen oder mehreren Legierungselemente im folgenden Bereich liegt:

  • Silizium (Si) ≤ 3 Gew.%, und vorzugsweise ≤ 2 Gew.%,
  • Aluminium (Al) ≤ 8 Gew.%, und vorzugsweise ≤ 6 Gew.%,
  • Nickel (Ni) ≤ 2 Gew.%, und vorzugsweise ≤ 1 Gew.%,
  • Chrom (Cr) ≤ 2 Gew.%, und vorzugsweise ≤ 0,5 Gew.%,
  • Molybdän (Mo) ≤ 0,5 Gew.%, und vorzugsweise ≤ 0,25 Gew.%,
  • Phosphor (P) ≤ 0,05 Gew.%, und vorzugsweise ≤ 0,025 Gew.%,
  • Schwefel (S) ≤ 0,03 Gew.%, und vorzugsweise ≤ 0,01 Gew.%,
  • Stickstoff (N) ≤ 0,05 Gew.%, und vorzugsweise ≤ 0,025 Gew.%,
  • Kupfer (Cu) ≤ 1 Gew.%, und vorzugsweise ≤ 0,5 Gew.%,
  • Bor (B) ≤ 0,005 Gew.%, und vorzugsweise ≤ 0,0035 Gew.%.
  • Wolfram (W) ≤ 1 Gew.%, und vorzugsweise ≤ 0,5 Gew.%.
  • Kobalt (Co) ≤ 2 Gew.%, und vorzugsweise ≤ 1 Gew.%.
The invention can be applied particularly advantageously to alloys in which the proportion of the one or more alloying elements lies in the following range:
  • Silicon (Si) ≤ 3% by weight, and preferably ≤ 2% by weight,
  • Aluminum (Al) ≤ 8% by weight, and preferably ≤ 6% by weight,
  • Nickel (Ni) ≤ 2% by weight, and preferably ≤ 1% by weight,
  • Chromium (Cr) ≤ 2% by weight, and preferably ≤ 0.5% by weight,
  • Molybdenum (Mo) ≤ 0.5% by weight, and preferably ≤ 0.25% by weight,
  • Phosphorus (P) ≤ 0.05% by weight, and preferably ≤ 0.025% by weight,
  • Sulfur (S) ≤ 0.03% by weight, and preferably ≤ 0.01% by weight,
  • Nitrogen (N) ≤ 0.05% by weight, and preferably ≤ 0.025% by weight,
  • Copper (Cu) ≤ 1% by weight, and preferably ≤ 0.5% by weight,
  • Boron (B) ≤ 0.005% by weight, and preferably ≤ 0.0035% by weight.
  • Tungsten (W) ≤ 1% by weight, and preferably ≤ 0.5% by weight.
  • Cobalt (Co) ≤ 2% by weight, and preferably ≤ 1% by weight.

Vorteilhafte Ergebnisse zeigen sich bei allen Ausführungsformen, bei denen als Mikrolegierungselemente Elemente der folgenden Gruppe eingesetzt werden: Titan (Ti), Niob (Nb), Vanadium (V).Advantageous results are shown in all embodiments in which elements of the following group are used as microalloying elements: titanium (Ti), niobium (Nb), vanadium (V).

Die Erfindung ermöglicht erstmals das Bereitstellen von Stahlzwischenprodukten, die eine Lüdersdehnung AL aufweisen, die geringer ist als 3% und vorzugsweise geringer als 1%.The invention makes it possible for the first time to provide intermediate steel products which have an elongation A L which is less than 3% and preferably less than 1%.

Gleichzeitig können mit dem erfindungsgemässen Verfahren Stahlzwischenprodukte hergestellt werden, die eine mittlere primäre Austenit-Korngrösse haben, die grösser ist als 3 µm.At the same time, the process according to the invention can be used to produce intermediate steel products which have an average primary austenite grain size which is larger than 3 μm.

Die Legierung der Stahlzwischenprodukte der Erfindung weist gemäß Erfindung vorzugsweise einen mittleren Mangangehalt auf, was bedeutet, dass der Mangananteil im Bereich 3 Gew.% ≤ Mn ≤ 12 Gew.% liegt. Vorzugsweise liegt der Mangananteil bei allen Ausführungsformen im Bereich von 3,5 Gew.% ≤ Mn ≤ 8,5 Gew.%.According to the invention, the alloy of the steel intermediate products of the invention preferably has an average manganese content, which means that the manganese content is in the range 3% by weight M Mn 12 12% by weight. In all embodiments, the manganese content is preferably in the range from 3.5% by weight M Mn 8 8.5% by weight.

Der Kohlenstoffanteil der Stahlprodukte der Erfindung ist generell eher niedrig. Ausserdem ist der Kohlenstoffanteil bei allen Ausführungsformen optional. D.h. der Kohlenstoffanteil liegt bei der Erfindung im Bereich C ≤ 1 Gew.%. Besonders bevorzugt sind Ausführungsformen, bei denen der Kohlenstoffanteil im einem der folgenden Bereiche liegt

  1. a. 0,01 ≤ C ≤ 0,8 Gew.%, oder
  2. b. 0,05 ≤ C ≤ 0,3 Gew.%.
The carbon content of the steel products of the invention is generally rather low. In addition, the carbon content is optional in all embodiments. Ie the carbon content in the invention is in the range C ≤ 1% by weight. Embodiments in which the carbon content is in one of the following ranges are particularly preferred
  1. a. 0.01 ≤ C ≤ 0.8% by weight, or
  2. b. 0.05 ≤ C ≤ 0.3% by weight.

Bei einem bevorzugten Verfahren der Erfindung wird der erste Temperaturbehandlungsprozess in einer kontinuierlichen Bandanlage (Glühanlage) durchgeführt. Dieser Vorgang wird auch als Kontiglühen bezeichnet. Oder eine andere Möglichkeit ist eine diskontinuierliche Wärmebehandlung (Haubenglühung) des Stahlzwischenproduktes.In a preferred method of the invention, the first temperature treatment process is carried out in a continuous belt system (annealing system). This process is also known as continuous annealing. Or another possibility is a discontinuous heat treatment (hood annealing) of the intermediate steel product.

Falls es um das Temperaturbehandeln eines Warmbandes geht, so kann die erste Temperaturbehandlung der Erfindung auch durch eine spezielle Temperaturführung beim Warmwalzen durchgeführt werden. Bei dieser speziellen Temperaturführung wird darauf geachtet, dass die Walzendtemperatur des Warmbandes beim Warmwalzen im Bereich oberhalb der kritischen Temperaturgrenze TKG liegt.If heat treatment of a hot strip is involved, the first temperature treatment of the invention can also be carried out by special temperature control during hot rolling. With this special temperature control, care is taken to ensure that the end temperature of the hot strip during hot rolling is in the range above the critical temperature limit T KG .

Bei einem bevorzugten Verfahren der Erfindung wird der zweite Temperaturbehandlungsprozess in einer diskontinuierlich arbeitenden Anlage durchgeführt wird, wobei das Stahlzwischenprodukt dem Glühverfahren in dieser Anlage in einer Schutzgasatmosphäre ausgesetzt wird. Dieser Vorgang wird vorzugsweise in einer Haubenglühanlage durchgeführt. Der zweite Temperaturbehandlungsprozess kann bei allen Ausführungsformen aber auch in einer kontinuierlichen Bandanlage (Glühanlage) oder in einer Feuerverzinkungsanlage durchgeführt werden.In a preferred method of the invention, the second temperature treatment process is carried out in a discontinuously operating plant, the steel intermediate being exposed to the annealing process in this plant in a protective gas atmosphere. This process is preferably carried out in a bell annealer. In all embodiments, however, the second temperature treatment process can also be carried out in a continuous strip system (annealing system) or in a hot-dip galvanizing system.

Das Stahlzwischenprodukt aller Ausführungsformen kann optional einem Dressierverfahren unterzogen werden, wobei dieses Dressierverfahren primär darauf gerichtet ist die Oberfläche des Stahlzwischenprodukts zu konditionieren. Ein intensiveres Dressieren ist nicht erforderlich, da die Stahlzwischenprodukte der Erfindung eine geringe Lüdersdehnung aufweisen.The steel intermediate of all embodiments can optionally be subjected to a skin pass process, this skin pass process primarily aimed at conditioning the surface of the steel intermediate product. A more intensive skin pass is not necessary since the steel intermediate products of the invention have a low fatigue elongation.

Mit der Erfindung kann somit der Dressiergrad reduziert oder ganz vermieden werden.With the invention, the degree of skin passage can thus be reduced or avoided entirely.

Es ist ein Vorteil der Erfindung, dass Stahlzwischenprodukte hergestellt werden können, die eine Lüdersdehnung aufweisen, die geringer ist als 3% und die vorzugsweise geringer ist als 1%.It is an advantage of the invention that steel intermediates can be produced which have an elongation at break which is less than 3% and which is preferably less than 1%.

Es ist ein Vorteil der Erfindung, dass Stahlzwischenprodukte hergestellt werden können, die eine Zugfestigkeit Rm (auch Mindestfestigkeit genannt) aufweisen, die grösser ist als 490 MPa.It is an advantage of the invention that intermediate steel products can be produced which have a tensile strength R m (also called minimum strength) which is greater than 490 MPa.

Es ist ein Vorteil der Erfindung, dass Stahlzwischenprodukte hergestellt werden können, die aufgrund der reduzierten Lüdersdehnung eine (Mindest-) Bruchdehnung (A80) aufweisen, die grösser ist als 10%.It is an advantage of the invention that steel intermediate products can be produced which, owing to the reduced elastic expansion, have a (minimum) elongation at break (A 80 ) which is greater than 10%.

Es ist ein Vorteil der Erfindung, dass die Stahlzwischenprodukte aufgrund der reduzierten Lüdersdehnung eine erhöhte technisch nutzbare Dehnung aufweisen.It is an advantage of the invention that the steel intermediate products have an increased technically usable elongation due to the reduced elastic expansion.

Die Erfindung kann eingesetzt werden, um z.B. Kaltband-Stahlprodukte in Form von kaltgewalztem Flachzeug (z.B. Coils) bereit zu stellen. Die Erfindung kann auch eingesetzt werden, um z.B. Feinbleche oder auch Draht und Drahtprodukte herzustellen.The invention can be used to e.g. To provide cold-rolled steel products in the form of cold-rolled flat materials (e.g. coils). The invention can also be used to e.g. To manufacture thin sheets or wire and wire products.

Die Erfindung kann auch eingesetzt werden, um Warmband-Stahlprodukte bereit zu stellen.The invention can also be used to provide hot-rolled steel products.

Weitere vorteilhafte Ausgestaltungen der Erfindung bilden die Gegenstände der abhängigen Ansprüche.Further advantageous embodiments of the invention form the subject of the dependent claims.

ZEICHNUNGENDRAWINGS

Ausführungsbeispiele der Erfindung werden im Folgenden unter Bezugnahme auf die Zeichnungen näher beschrieben.

FIG. 1
zeigt ein stark schematisiertes Diagramm, bei dem die (Mindest-) Bruchdehnung (A80) in Prozent über die Zugfestigkeit (Rm) in MPa für verschiedene Stähle für die Automobilindustrie aufgetragen sind;
FIG. 2
zeigt ein schematisiertes Spannungs-Dehnungs-Diagramm eines Stahlprodukts, das eine deutlich ausgeprägte Streckgrenze (Lüdersdehnung AL) aufweist;
FIG. 3
zeigt ein schematisiertes Diagramm, das die beiden Temperaturbehandlungsprozesse zeigt;
FIG. 4
zeigt in Form eines schematisierten Diagramms die kritische Temperatur TK und den Verlauf der entsprechenden kritischen Temperaturgrenze TKG;
FIG. 5
zeigt ein schematisiertes Diagramm, das einerseits die Lüdersdehnung AL in Prozent und andererseits auch die mittlere ursprüngliche Austenit-Korngrösse (DUAK M) als Funktion der ersten Glühtemperatur T1 darstellt, wobei in diesem Diagramm die entsprechenden Kurven von zwei unterschiedlichen Proben gezeigt sind;
FIG. 6
zeigt ein schematisiertes Diagramm, das die Spannung σ in MPa als Funktion der Dehnung ε in % zeigt (analog zu Fig. 2), wobei hier vier identische Legierungen vier verschiedenen Temperaturbehandlungsprozessen unterzogen wurden.
Exemplary embodiments of the invention are described in more detail below with reference to the drawings.
FIG. 1
shows a highly schematic diagram in which the (minimum) elongation at break (A 80 ) is plotted in percent over the tensile strength (R m ) in MPa for various steels for the automotive industry;
FIG. 2nd
shows a schematic stress-strain diagram of a steel product which has a clearly defined yield strength (elastic strain A L );
FIG. 3rd
shows a schematic diagram showing the two temperature treatment processes;
FIG. 4th
shows in the form of a schematic diagram the critical temperature T K and the course of the corresponding critical temperature limit T KG ;
FIG. 5
shows a schematic diagram which shows on the one hand the elongation A L in percent and on the other hand also the mean original austenite grain size (D UAK M ) as a function of the first annealing temperature T1, the corresponding curves of two different samples being shown in this diagram;
FIG. 6
shows a schematic diagram that shows the stress σ in MPa as a function of the elongation ε in% (analogous to Fig. 2 ), where four identical alloys were subjected to four different temperature treatment processes.

Detaillierte BeschreibungDetailed description

Gemäß Erfindung geht es um Stahlprodukte, respektive um Stahlzwischenprodukte, die sich durch eine spezielle Gefügekonstellation und Eigenschaften auszeichnen.According to the invention, it is a matter of steel products or steel intermediate products which are distinguished by a special structure and properties.

Teilweise ist im Folgenden von Stahlzwischenprodukten die Rede, wenn es darum geht zu betonen, dass es nicht um das fertige Stahlprodukt sondern um ein Vor- oder Zwischenprodukt in einem mehrstufigen Fertigungsprozess geht. Ausgangspunkt für solche Fertigungsprozesse ist meist eine Schmelze. Im Folgenden wird die Legierungszusammensetzung der Schmelze angegeben, da man auf dieser Seite des Fertigungsprozesses relativ genau auf die Legierungszusammensetzung Einfluss nehmen kann (z.B. durch Zuchargieren von Bestandteilen, wie Legierungselementen und optionalen Mikrolegierungselementen). Die Legierungszusammensetzung des Stahlzwischenprodukts weicht im Normalfall nur unwesentlich von der Legierungszusammensetzung der Schmelze ab.In the following, we sometimes speak of intermediate steel products when it is important to emphasize that it is not the finished steel product but rather a preliminary or intermediate product in a multi-stage manufacturing process. The starting point for such manufacturing processes is usually a melt. In the following, the alloy composition of the melt is given, because on this side of the manufacturing process you can influence the alloy composition relatively precisely (e.g. by adding components such as alloy elements and optional micro-alloy elements). The alloy composition of the steel intermediate normally deviates only insignificantly from the alloy composition of the melt.

Mengen oder Anteilsangaben werden hier grossteils in Gewichtsprozent (kurz Gew.%) gemacht, soweit nichts anderes erwähnt ist. Wenn Angaben zur Zusammensetzung der Legierung, respektive des Stahlprodukts gemacht werden, dann umfasst die Zusammensetzung neben den explizit aufgelisteten Materialien bzw. Stoffen als Grundstoff Eisen (Fe) und sogenannte unvermeidbare Verunreinigungen, die immer im Schmelzbad auftreten und die sich auch in dem daraus entstehenden Stahlzwischenprodukt zeigen. Alle Gew.%-Angaben sind also stets auf 100 Gew.% zu ergänzen und alle Vol.%-Angaben sind stets auf 100 % des Gesamtvolumens zu ergänzen.Quantities or proportions are mostly given in percent by weight (short% by weight), unless otherwise stated. If information is given on the composition of the alloy or steel product, then the composition includes iron (Fe) and so-called unavoidable in addition to the explicitly listed materials Contamination that always occurs in the weld pool and that is also evident in the resulting steel intermediate. All percentages by weight must therefore always be supplemented to 100 percent by weight and all percentages by volume must always be supplemented to 100 percent of the total volume.

Neben der speziellen Kombination der Legierungselemente, kommt ein speziell optimiertes Verfahren zur Temperaturbehandlung zum Einsatz. Ein entsprechendes Diagramm ist in Fig. 3 gezeigt und wird im Folgenden näher erläutert.In addition to the special combination of the alloy elements, a specially optimized process for temperature treatment is used. A corresponding diagram is in Fig. 3 shown and is explained in more detail below.

Das Temperaturbehandeln des Stahlzwischenprodukts umfasst einen ersten Temperaturbehandlungsprozess S.1 und einen nachfolgenden zweiten Temperaturbehandlungsprozess S.2. Diese beiden Temperaturbehandlungsprozesse S.1 und S.2 sind in Fig. 3 in zwei nebeneinander gezeigten Temperatur-Zeit-Diagrammen dargestellt.The heat treatment of the intermediate steel product comprises a first temperature treatment process S.1 and a subsequent second temperature treatment process S.2. These two temperature treatment processes S.1 and S.2 are in Fig. 3 shown in two side-by-side temperature-time diagrams.

Bei dem ersten Temperaturbehandlungsprozess S.1 handelt es sich um ein Hochtemperaturverfahren, bei dem das Stahlzwischenprodukt während einer ersten Haltedauer Δ1 einer ersten Glühtemperatur T1 ausgesetzt wird (dieser Schritt wird auch als Halten H1 bezeichnet). Die Glühtemperatur T1 liegt während des Haltens H1 oberhalb einer kritischen Temperaturgrenze TKG.The first temperature treatment process S.1 is a high-temperature process in which the steel intermediate product is exposed to a first annealing temperature T1 for a first holding period Δ1 (this step is also referred to as holding H1). The annealing temperature T1 is above a critical temperature limit T KG during the holding H1.

Der Verlauf dieser kritischen Temperaturgrenze TKG ist (unter anderem) abhängig vom Mangananteil Mn der Legierung des Mangan-Stahlzwischenprodukts, wie anhand zahlreicher Untersuchungen ermittelt werden konnte. In Fig. 4 sind die kritische Temperatur TK (dargestellt durch die Gerade 7) und der Verlauf der entsprechenden kritischen Temperaturgrenze TKG (dargestellt durch die Gerade 8) gezeigt.The course of this critical temperature limit T KG depends (among other things) on the manganese content Mn of the alloy of the manganese steel intermediate, as has been determined on the basis of numerous studies. In Fig. 4 the critical temperature TK (represented by straight line 7) and the course of the corresponding critical temperature limit T KG (represented by straight line 8) are shown.

Auf der horizontalen Achse ist der Manganbereich MnB in Gewichtsprozent aufgetragen. Wie bereits erwähnt, liefert die Erfindung vor allem bei einem Mangananteil im folgenden Manganbereich MnB hervorragende Ergebnisse: 3 Gew.% ≤ Mn ≤ 12 Gew.%. Dieser Manganbereich MnB ist in Fig. 4 durch zwei vertikale Grenzlinien bei Mn = 3 Gew.% und Mn = 12 Gew.% gezeigt.The manganese range MnB is plotted in percent by weight on the horizontal axis. As already mentioned, the invention delivers excellent results especially with a manganese content in the following manganese range MnB: 3% by weight M Mn 12 12% by weight. This manganese area MnB is in Fig. 4 shown by two vertical boundary lines at Mn = 3% by weight and Mn = 12% by weight.

In Fig. 4 sind beispielhaft die Messergebnisse von vier Proben anhand kleiner Kreissymbole gezeigt. Weitere Details zu diesen vier beispielhaft zu verstehenden Proben und zu weiteren Proben der Erfindung sind den Tabellen 1 und 2 zu entnehmen. Tabelle 1 Legierung C Mn Al Nb S.1 S.2 Typ1 0,096 5,08 Kont. Glühen Haube Typ2 0,097 5,13 0,09 Kont. Glühen Haube Typ3 0,100 6,38 Kont. Glühen Haube Typ4 0,106 3,53 Kont. Glühen Haube Typ5 0,110 3,56 0,095 Kont. Glühen Haube Typ6 0,148 7,73 2,09 Kont. Glühen Kont. Glühen Typ7 0,098 9,95 Kont. Glühen Haube

Figure imgb0001
In Fig. 4 the measurement results of four samples are shown using small circle symbols. Further details on these four samples to be understood as examples and on further samples of the invention can be found in Tables 1 and 2. Table 1 alloy C. Mn Al Nb P.1 P.2 Type 1 0.096 5.08 Cont. Glow Hood Type 2 0.097 5.13 0.09 Cont. Glow Hood Type 3 0.100 6.38 Cont. Glow Hood Type 4 0.106 3.53 Cont. Glow Hood Type 5 0.110 3.56 0.095 Cont. Glow Hood Type 6 0.148 7.73 2.09 Cont. Glow Cont. Glow Type 7 0.098 9.95 Cont. Glow Hood
Figure imgb0001

Die Legierungszusammensetzung des jeweiligen Typs ist der Tabelle 1 zu entnehmen, wobei hier nur die wesentlichen Legierungsbestandteile genannt sind. Zu jedem Typ gibt es eine Reihe von Ausführungsbeispielen, die getestet wurden. Die entsprechenden Beispiele sind in der linken Spalte in Tabelle 2 mit den Zahlen 1 bis 26 nummeriert.The alloy composition of the respective type can be found in Table 1, only the essential alloy components being mentioned here. There are a number of exemplary embodiments that have been tested for each type. The corresponding examples are numbered 1 to 26 in the left column in Table 2.

In Fig. 4 sind durch die erwähnten Kreissymbole die folgenden vier Proben gezeigt: Typ4, 18; Typ1, 1; Typ3, 14 und Typ7, 24 (die Bezeichnung Typ4, 18 steht beispielweise für die Legierungszusammensetzung vom Typ4, Beispiel Nr. 18).In Fig. 4 the following four samples are shown by the circle symbols mentioned: type 4, 18; Type1, 1; Type 3, 14 and Type 7, 24 (the designation Type 4, 18 stands for example for the alloy composition of Type 4, Example No. 18).

Wenn man die Kreissymbole der Fig. 4, respektive die Messergebnisse durch eine Gerade interpoliert, so ergibt sich eine konstant abfallende Gerade 7, wie in Fig. 4 gezeigt. Diese Gerade 7 kann durch folgende Gleichung (1) umschrieben werden, wobei TK in Grad Celsius angegeben ist: T K = 866 S K Mangananteil

Figure imgb0002
If you look at the circular symbols of the Fig. 4 , or the measurement results interpolated by a straight line, results in a constantly decreasing straight line 7, as in Fig. 4 shown. This straight line 7 can be described by the following equation (1), where T K is given in degrees Celsius: T K = 866 - S K Manganese content
Figure imgb0002

Der absolute Wert 866 in Grad Celsius definiert der Schnittpunkt mit der vertikalen Achse und der Wert SK definiert die Steigung. SK wird daher auch als Steigungswert bezeichnet.The absolute value 866 in degrees Celsius defines the point of intersection with the vertical axis and the value S K defines the slope. S K is therefore also referred to as the slope value.

Die Untersuchungen haben ergeben, dass der Steigungswert SK vorzugsweise bei allen Ausführungsformen = 7,83±10% beträgt.The investigations have shown that the slope value S K is preferably = 7.83 ± 10% in all embodiments.

Außerdem konnte gezeigt werden, dass die kritische Temperatur TK für erfindungsgemässe Legierungszusammensetzungen stets oberhalb einer unteren kritischen Temperaturgrenze TKG liegt. Diese untere kritische Temperaturgrenze TKG ist in Fig. 4 als Gerade 8 dargestellt.It was also possible to show that the critical temperature TK for alloy compositions according to the invention is always above a lower critical temperature limit T KG . This lower critical temperature limit T KG is in Fig. 4 shown as straight line 8.

Diese Gerade 8 kann durch folgende Gleichung (2) umschrieben werden, wobei TKG in Grad Celsius angegeben ist: T KG = 856 S K Mangananteil

Figure imgb0003
This straight line 8 can be described by the following equation (2), where T KG is given in degrees Celsius: T KG = 856 - S K Manganese content
Figure imgb0003

Die Gerade 8 liegt parallel zu der Geraden 7.The straight line 8 is parallel to the straight line 7.

Es kann die folgende Bedingung postuliert werden: Bei Stahllegierungen des Mangan-Stahlzwischenprodukts, wie bereits definiert, muss die erste Glühtemperatur T1 stets oberhalb der unteren kritischen Temperaturgrenze TKG liegen, um zu gewährleisten, dass man ein Mangan-Stahlzwischenprodukt erhält, bei dem die Lüdersdehnung AL geringer ist als 3%.The following condition can be postulated: In the case of steel alloys of the manganese steel intermediate, as already defined, the first annealing temperature T1 must always be above the lower critical temperature limit T KG in order to ensure that a manganese steel intermediate is obtained in which the fatigue expansion occurs A L is less than 3%.

Es konnte gezeigt werden, dass auch der zweite Temperaturbehandlungsprozess S.2 einen Einfluss auf die Lüdersdehnung hat. Um die Korngrösse der Austenitkörner im Gefüge zu erhalten, muss die zweite Glühtemperatur T2 in jedem Fall niedriger sein als die erste Glühtemperatur T1. Da die erste Glühtemperatur T1 stets oberhalb der unteren kritischen Temperaturgrenze TKG liegt, kann daraus geschlossen werden, dass die zweite Glühtemperatur T2 vorzugsweise unterhalb der unteren kritischen Temperaturgrenze TKG liegen sollte.It could be shown that the second temperature treatment process S.2 also has an influence on the elongation. In order to maintain the grain size of the austenite grains in the structure, the second annealing temperature T2 must in any case be lower than the first annealing temperature T1. Since the first annealing temperature T1 is always above the lower critical temperature limit T KG , it can be concluded that the second annealing temperature T2 should preferably be below the lower critical temperature limit T KG .

Anhand des schematischen Beispiels der Fig. 3 ist zu erkennen, dass die erste Glühtemperatur T1 oberhalb der Temperaturgrenze TKG liegt und dass die zweite Glühtemperatur T2 im Bereich zwischen A1 und A3 liegt. Die zweite Temperaturbehandlung S.2 wird in diesem Fall auch als interkritisches Glühen bezeichnet.Using the schematic example of the Fig. 3 it can be seen that the first annealing temperature T1 is above the temperature limit T KG and that the second annealing temperature T2 is in the range between A 1 and A 3 . In this case, the second temperature treatment S.2 is also referred to as intercritical annealing.

Die erste Haltedauer Δ1 beträgt bei allen Ausführungsformen vorzugsweise mindestens 10 Sekunden und vorzugsweise zwischen 10 Sekunden und 6000 Minuten.In all embodiments, the first holding period Δ1 is preferably at least 10 seconds and preferably between 10 seconds and 6000 minutes.

Die zweite Haltedauer Δ2 beträgt bei allen Ausführungsformen mindestens 10 Sekunden. In Fig. 3 sind die beiden Haltedauern Δ1 und Δ2 nur beispielhaft gezeigt. Der Zeitabstand zwischen dem ersten Temperaturbehandlungsprozess S.1 und dem zweiten Temperatur-behandlungsprozess S.2 kann nach Bedarf gewählt werden. Typischerweise wird der zweite Temperaturbehandlungsprozess S.2 kurz nach dem ersten Temperaturbehandlungsprozess S.1 durchgeführt.The second holding period Δ2 is at least 10 seconds in all embodiments. In Fig. 3 the two holding times Δ1 and Δ2 are only shown as examples. The time interval between the first temperature treatment process S.1 and the second temperature treatment process S.2 can be selected as required. The second temperature treatment process S.2 is typically carried out shortly after the first temperature treatment process S.1.

Bevorzugt sind Ausführungsformen, bei denen der erste Temperaturbehandlungsprozess S.1 inklusive des Erwärmens E1 des Stahlzwischenprodukts, des Haltens H1 der ersten Glühtemperatur T1 und des Abkühlens Ab1 des Stahlzwischenprodukts weniger als 7000 Minuten dauert.Embodiments are preferred in which the first temperature treatment process S.1, including heating E1 of the intermediate steel product, holding H1 of the first annealing temperature T1 and cooling Ab1 of the intermediate steel product, takes less than 7000 minutes.

Bevorzugt sind Ausführungsformen, bei denen der zweite Temperaturbehandlungsprozess S.2 inklusive des Erwärmens E2 des Stahlzwischenprodukts, des Haltens H2 der zweiten Glühtemperatur T2 und des Abkühlens Ab2 des Stahlzwischenprodukts weniger als 6000 Minuten und vorzugsweise weniger als 5000 Minuten dauert.Embodiments are preferred in which the second temperature treatment process S.2, including heating E2 of the steel intermediate, maintaining H2 of the second annealing temperature T2 and cooling Ab2 of the steel intermediate, takes less than 6000 minutes and preferably less than 5000 minutes.

Weiterhin konnte gezeigt werden, dass die deutliche Reduzierung der Lüdersdehnung AL davon unabhängig ist, ob der erste Temperaturbehandlungsprozess S.1 und/oder der zweite Temperaturbehandlungsprozess S.2 in einer kontinuierlichen Bandanlage (zum Beispiel in einer Kontianlage) oder in einer diskontinuierlich arbeitenden Anlage (zum Beispiel in einer Haubenglühe) durchgeführt werden/wird.It could also be shown that the significant reduction in the elongation A L is independent of whether the first temperature treatment process S.1 and / or the second temperature treatment process S.2 in a continuous belt system (for example in a continuous system) or in a discontinuously operating system (for example in a bell annealer).

Die Erfindung kann sowohl auf Kaltband-Zwischenprodukte als auch auf Warmband-Zwischenprodukte angewendet werden. In beiden Fällen zeigt sich eine deutliche Reduktion der Lüdersdehnung AL.The invention can be applied both to cold strip intermediate products and to hot strip intermediate products. In both cases there is a significant reduction in the elongation A L.

Das Erhöhen der ersten Glühtemperatur T1 auf einen Wert oberhalb der kritischen Temperaturgrenze TKG führt klar zu einer Vergrößerung der mittleren ursprünglichen Austenit-Korngrösse und zu einer deutlichen Reduktion der Lüdersdehnung AL.Increasing the first annealing temperature T1 to a value above the critical temperature limit T KG clearly leads to an increase in the mean original austenite grain size and to a significant reduction in the elongation under stress A L.

Fig. 5 zeigt sowohl die Reduktion der Lüdersdehnung AL in Prozent als auch die Abhängigkeit der mittleren ursprünglichen Austenitkorngröße (DUAK M) in µm mit zunehmender Glühtemperatur T1 für zwei beispielhafte Proben vom Typ1 und Typ2 (siehe auch Tabelle 1), wie folgt. Fig. 5 shows both the reduction in the elongation A L in percent and the dependence of the mean original austenite grain size (D UAK M ) in µm with increasing annealing temperature T1 for two exemplary samples of type 1 and type 2 (see also Table 1) as follows.

Chemische Zusammensetzung der Legierungsproben vom Typ1 ohne Mikrolegierung:

  • Mn = 5,08 Gew.%,
  • C = 0,096 Gew.%,
Rest Eisen Fe und unvermeidbare Verunreinigungen.Chemical composition of type 1 alloy samples without microalloy:
  • Mn = 5.08% by weight,
  • C = 0.096% by weight,
Balance iron Fe and unavoidable impurities.

Chemische Zusammensetzung der Legierungsproben vom Typ2 mit Mikrolegierung:

  • Mn = 5,13 Gew.%,
  • C = 0,097 Gew.%,
  • Nb = 0,90 Gew.%,
Rest Eisen Fe und unvermeidbare Verunreinigungen.Chemical composition of type 2 alloy samples with microalloy:
  • Mn = 5.13% by weight,
  • C = 0.097% by weight,
  • Nb = 0.90% by weight,
Balance iron Fe and unavoidable impurities.

Man kann der Fig. 5 entnehmen, dass bei der untersuchten Legierungszusammensetzung vom Typ1 (dargestellt durch die Kurve 9), die kritische Temperaturgrenze TKG1 ∼820°C beträgt, wenn man für diese Legierungszusammensetzung vom Typ1 eine Lüdersdehnung erreichen möchte, die kleiner als 3% ist. Die Kurve 10 zeigt den dazugehörigen Verlauf der mittlerem ursprünglichem Austenitkorngrenze DUAK M 1, in Abhängigkeit von der Temperatur T1. Für das Beispiel Typ1 ergibt sich eine Korngröße hierfür mit >3µm.You can do that Fig. 5 derive from the fact that the critical temperature limit T KG1 ∼820 ° C is for the examined alloy composition of type 1 (represented by curve 9), if one wants to achieve an elongation at break for this type composition 1 which is less than 3%. Curve 10 shows the associated course of the mean original austenite grain boundary D UAK M 1 , as a function of temperature T1. For the Type 1 example, this results in a grain size of> 3 µm.

Man kann der Fig. 5 entnehmen, dass bei der untersuchten Legierungszusammensetzung vom Typ2 (dargestellt durch die Kurve 11), die kritische Temperaturgrenze TKG2 ∼970°C beträgt, wenn man für diese Legierungszusammensetzung vom Typ2 eine Lüdersdehnung erreichen möchte, die kleiner als 3% ist. Die Kurve 12 zeigt den dazugehörigen Verlauf der mittleren ursprünglichen Austenitkorngrenze DUAK M, in Abhängigkeit von der Temperatur T1. Für das Beispiel Typ2 ergibt sich eine Korngröße hierfür mit >8µm. Das Mikrolegierungselement Niob (Nb) hat einen erkennbaren Einfluss, der sich als Verschiebung von TKG2 (im Vergleich zu TKG1) zu einer höheren kritischen Temperatur für AL < 3% zeigt.You can do that Fig. 5 derive from the fact that the critical temperature limit T KG2 is ∼970 ° C for the examined alloy composition of type 2 (represented by curve 11), if one wants to achieve a fatigue strain which is less than 3% for this type 2 alloy composition. Curve 12 shows the associated course of the mean original austenite grain boundary D UAK M , depending on the temperature T1. For the Type 2 example, this results in a grain size of> 8 µm. The microalloying element niobium (Nb) has a noticeable influence, which is shown as a shift from T KG2 (compared to T KG1 ) to a higher critical temperature for A L <3%.

Die Kurven 10 und 12 in Fig. 5 zeigen, dass die ursprüngliche AustenitKorngröße mit zunehmender Temperatur T1 steigt.Curves 10 and 12 in Fig. 5 show that the original austenite grain size increases with increasing temperature T1.

Anhand der zuvor genannten Gleichung (2), kann für die Legierungszusammensetzungen vom Typ1 die untere kritische Temperaturgrenze TKG1 wie folgt ermittelt werden: T KG 1 = 856 7,83 5 = 817 ° C

Figure imgb0004
Using the aforementioned equation (2), the lower critical temperature limit T KG1 can be determined as follows for the alloy compositions of type 1: T KG 1 = 856 - 7.83 5 = 817 ° C.
Figure imgb0004

In Fig. 5 ist die entsprechende untere kritische Temperaturgrenze TKG1 als strichlierte vertikale Linie eingezeichnet. Man kann erkennen, dass die Legierungszusammensetzungen vom Typ1 ab einer Glühtemperatur T1 > TKG1 eine mittlere Korngrösse aufweisen, die > 3 µm beträgt. Die untere kritische Temperaturgrenze TKG1 ist in Fig. 4 durch ein kleines schwarzes Dreieck gekennzeichnet.In Fig. 5 the corresponding lower critical temperature limit T KG1 is shown as a dashed vertical line. It can be seen that the alloy compositions of type 1 have an average grain size which is> 3 μm from an annealing temperature T1> T KG1 . The lower critical temperature limit T KG1 is in Fig. 4 identified by a small black triangle.

Anhand der Gleichung (2) kann für die Legierungszusammensetzungen vom Typ2 die untere kritische Temperaturgrenze TKG2 wie folgt ermittelt werden: T KG 2 = 856 7,83 5 = 817 ° C = T KG 1

Figure imgb0005
The lower critical temperature limit T KG2 can be determined as follows for the type 2 alloy compositions using equation (2): T KG 2nd = 856 - 7.83 5 = 817 ° C. = T KG 1
Figure imgb0005

Bei Legierungszusammensetzungen, die einen Nb-Anteil enthalten, führt die Mikrolegierung zu einer Erhöhung der kritischen Temperaturgrenze TKG. In Fig. 5 ist am Beispiel Typ2 zu erkennen, dass die kritische Temperaturgrenze TKG2 um ca. 150°C höher liegt als bei den Legierungszusammensetzungen vom Typ1. In Fig. 5 ist die entsprechende effektive untere kritische Temperaturgrenze T*KG2 als strichlierte vertikale Linie eingezeichnet. Bei Legierungszusammensetzungen vom Typ2 muss die Glühtemperatur T1 > T*KG2 = TKG2 + 150°C sein. Die sich daraus ergebende mittlere ursprüngliche austenitische Korngröße liegt in diesem Fall ≥ 8 µm.In alloy compositions containing an Nb content, the microalloy leads to an increase in the critical temperature limit T KG . In Fig. 5 can be seen from the example of type 2 that the critical temperature limit T KG2 around is approx. 150 ° C higher than with Type 1 alloy compositions. In Fig. 5 the corresponding effective lower critical temperature limit T * KG2 is shown as a dashed vertical line. For Type 2 alloy compositions, the annealing temperature must be T1> T * KG2 = T KG2 + 150 ° C. In this case, the resulting mean original austenitic grain size is ≥ 8 µm.

Fig. 6 zeigt ein schematisiertes Diagramm, das die Spannung σ in MPa als Funktion der Dehnung ε in % zeigt. Die Darstellung der Fig. 6 ist mit der Darstellung der Fig. 2 zu vergleichen, wobei Fig. 6 nur einen kleinen Ausschnitt zeigt. Fig. 6 shows a schematic diagram showing the stress σ in MPa as a function of the elongation ε in%. The representation of the Fig. 6 is with the representation of the Fig. 2 to compare, being Fig. 6 shows only a small section.

Konkret wurden hier vier identische Proben (Typ3 Legierungen der Tabelle 1) miteinander verglichen. Auch die Legierungen vom Typ3 entsprechen den Vorgaben der Erfindung. Alle vier Proben wurden je einem ersten Temperaturbehandlungsprozess S.1 und einem nachfolgenden zweiten Temperaturbehandlungsprozess S.2 unterzogen. Dabei waren alle Prozessparameter identisch, ausser dass beim ersten Temperaturbehandlungsprozess S.1 die erste Glühtemperatur T1 wie folgt variiert wurde (siehe Spalte 2 der folgenden Tabelle 3): Tabelle 3 Legierung T1 [°C] T2 [°C] Kurve Typ3 810 640 13.1 Typ3 850 640 13.2 Typ3 900 640 13.3 Typ3 950 640 13.4 Specifically, four identical samples (type 3 alloys in Table 1) were compared here. Type 3 alloys also meet the requirements of the invention. All four samples were each subjected to a first temperature treatment process S.1 and a subsequent second temperature treatment process S.2. All process parameters were identical, except that in the first temperature treatment process S.1, the first annealing temperature T1 was varied as follows (see column 2 of the following Table 3): Table 3 alloy T1 [° C] T2 [° C] Curve Type 3 810 640 13.1 Type 3 850 640 13.2 Type 3 900 640 13.3 Type 3 950 640 13.4

Die Legierungen vom Typ3 hatten bei diesen Versuchen die folgende Hauptzusammensetzung :

  • Mn = 6,38 Gew.%,
  • C= 0,1 Gew.%,
Rest Eisen Fe und unvermeidbare Verunreinigungen.The Type 3 alloys had the following main composition in these tests:
  • Mn = 6.38% by weight,
  • C = 0.1% by weight,
Balance iron Fe and unavoidable impurities.

Die durchgezogene Kurve 13.1 der Fig. 6 (Typ3, 14 der Tabelle 2) zeigt eine deutlich sichtbare ausgeprägte Streckgrenze und weist eine Lüdersdehnung von AL∼2,6% auf. Die Temperatur T1 lag hier bei 810°C, was bei einer Legierung vom Typ3 und einem Steigungswert SK=7,83 ein Stück weit über der unteren kritischen Temperaturgrenze TKG liegt.The solid curve 13.1 Fig. 6 (Type 3, 14 of Table 2) shows a clearly visible pronounced yield point and has an elongation of A L ∼2.6%. The temperature T1 here was 810 ° C., which for a type 3 alloy and a slope value S K = 7.83 is a bit above the lower critical temperature limit T KG .

Die Kurve 13.2 repräsentiert eine weitere beispielhafte Probe (Typ3, 15 der Tabelle 2) vom Typ3, wobei hier Streckgrenze immer noch leicht ausgeprägt ist.Curve 13.2 represents another exemplary sample (type 3, 15 of table 2) of type 3, the yield strength here still being slightly pronounced.

Eine weitere identische Probe (siehe die strichpunktierte Kurve 13.3 in Fig. 6) wurde bei einer höheren Temperatur T1 = 900°C (d.h. bei T1 > TKG) temperaturbehandelt und es ist keine ausgeprägte Streckgrenze mehr sichtbar. Es handelt sich hier um Typ3, 16 der Tabelle 2.Another identical sample (see dash-dotted curve 13.3 in Fig. 6 ) was temperature-treated at a higher temperature T1 = 900 ° C (ie at T1> T KG ) and no pronounced yield point is visible. This is type 3, 16 of table 2.

Die Kurve 13.4 repräsentiert eine weitere beispielhafte Probe vom Typ3, wobei auch hier keine ausgeprägte Streckgrenze mehr sichtbar ist. Es handelt sich hier um Typ3, 17 der Tabelle 2.Curve 13.4 represents another exemplary sample of type 3, with no pronounced yield point being visible here either. This is type 3, 17 of table 2.

Wenn man nun die Mangan-Stahlzwischenprodukte der Erfindung im Zusammenhang mit der Abbildung Fig. 1 betrachtet, so liegen die entsprechenden Messwerte (z.B. für die Legierungszusammensetzungen vom Typ1, Typ2 und Typ3) im Bereich von ca. 700 bis 1000 MPa und mit einer Bruchdehnung A80 im Bereich von ca. 20 bis 40%. Bezugszeichen TRIP Stähle 1 Q&P und TBF - Stähle 2 Medium-Mangan-Stähle 3 Zugkurve 4 Zwischenmaximum 5 Plateau 6 Gerade 7 Gerade 8 Kurve 9 Kurve 10 Kurve 11 Kurve 12 Kurven 13.1, 13.2, 13.3, 13.4 Starttemperatur der Austenitisierung A1 Starttemperatur der Vollaustenitisierung A3 Bruchdehnung A80 Lüdersdehnung AL erstes Abkühlen Ab1 zweites Abkühlen Ab2 mittlere ursprüngliche Austenitkorngrenze DUAK M erste Haltedauer Δ1 zweite Haltedauer Δ2 erstes Erwärmen E1 zweites Erwärmen E2 Dehnung ε erstes Halten H1 zweites Halten H2 Manganbereich MnB Restaustenitgehalt RA obere Streckgrenze ReH untere Streckgrenze ReL Zugfestigkeit Rm 0,2%-Dehngrenze Rp0.2 erster Temperaturbehandlungsprozess S.1 zweiter Temperaturbehandlungsprozess S.2 Spannung σ Steigungswert SK erste Glühtemperatur T1 zweite Glühtemperatur T2 kritische Temperaturgrenze TKG kritische Temperaturgrenze TKG1 kritische Temperaturgrenze TKG2 effektive kritische Temperaturgrenze T*KG2 Considering the manganese steel intermediates of the invention in connection with the figure Fig. 1 considered, the corresponding measurement values (eg for the alloy compositions of type 1, type 2 and type 3) are in the range from approx. 700 to 1000 MPa and with an elongation at break A 80 in the range from approx. 20 to 40%. Reference numerals TRIP steels 1 Q&P and TBF steels 2nd Medium manganese steels 3rd Tensile curve 4th Intermediate maximum 5 plateau 6 Just 7 Just 8th Curve 9 Curve 10th Curve 11 Curve 12 Curves 13.1, 13.2, 13.3, 13.4 Austenitization start temperature A 1 Start temperature of the full austenitization A 3 Elongation at break A 80 Stretching A L first cooling From1 second cooling Starting at 2 Mean original austenite grain limit D UAK M first holding period Δ1 second holding period Δ2 first warming up E1 second heating E2 strain ε first stop H1 second hold H2 Manganese area MnB Residual austenite content RA upper yield point R eH lower yield strength R eL tensile strenght R m 0.2% proof stress R p0.2 first temperature treatment process P.1 second temperature treatment process P.2 tension σ Slope value S K first annealing temperature T1 second annealing temperature T2 critical temperature limit T KG critical temperature limit T KG1 critical temperature limit T KG2 effective critical temperature limit T * KG2

Claims (14)

  1. Method for temperature-treating a manganese steel intermediate product whose alloy comprises:
    ∘ a manganese content (Mn), which lies in the following manganese range (MnB):
    3 wt.% ≤ Mn ≤12 wt.%,
    ∘ a content of one or more alloying elements of the group:
    silicon (Si), aluminum (Al), nickel (Ni), chromium (Cr), molybdenum (Mo), phosphorus (P), sulfur (S), nitrogen (N), copper (Cu), boron (B), tungsten (W), cobalt (Co),
    ∘ an optional carbon content (C) of less than 1 wt.%,
    ∘ an optional content of one or more microalloying elements, wherein the total content of the micro-alloying elements is less than 0.45 wt.%; and
    ∘ as a remainder an iron content (Fe) and unavoidable impurities, wherein the temperature-treating of the steel intermediate product comprises a first temperature treatment process (S.1) and a subsequent second temperature treatment process (S. 2), characterized in that
    - the first temperature treatment process (S.1) is a high-temperature process in which the steel intermediate product is subjected during a first holding period (Δ1) to a first annealing temperature (T1) which lies above a critical temperature limit (TKG), which is defined as follows: TKG = (856 - SK manganese content) degrees Celsius, wherein SK is a slope value, and wherein said slope value SK = 7.83 ±10%, preferably SK = 7.83,
    - the second temperature treatment process (S.2) is an annealing process in which the steel intermediate product is subjected to a second annealing temperature (T2) which is lower than the first annealing temperature (T1).
  2. Method according to claim 1, characterized in that the first annealing temperature (T1) in said manganese range (MnB) has a dependence defined as follows: T1 ≈ (866 - SK manganese content) degrees Celsius.
  3. Method according to claim 1 or 2, characterized in that the first holding period (Δ1) is at least 10 seconds and preferably between 10 seconds and 6000 minutes.
  4. Method according to one of the claims 1 to 4, characterized in that the second annealing temperature (T2) is in the range between the temperatures A1 and A3, wherein A1 is the start temperature of austenitization and A3 is the start temperature of full austenitization.
  5. Method according to claim 1, characterized in that the second annealing temperature (T2) is in the range of 630°C to 675°C.
  6. Method according to one of the claims 1 to 5, characterized in that within the scope of the second temperature treatment process (S.2), the second annealing temperature (T2) is held during a second holding period (Δ2) of at least 10 seconds.
  7. Method according to one of the claims 1 to 5, characterized in that the second temperature treatment process (S.2), including a heating process (E2) of the steel intermediate product, the holding (H2) of the second annealing temperature (T2) and a cooling process (A2) of the steel intermediate product, takes less than 6000 minutes and preferably less than 5000 minutes.
  8. Method according to one of the claims 1 to 7, characterized in that the content of the one or more alloying elements is in the following range:
    - silicon (Si) ≤ 3 wt.%, and preferably ≤ 2 wt.%,
    - aluminum (Al) ≤ 8 wt.%, and preferably ≤ 6 wt.%,
    - nickel (Ni) ≤ 2 wt.%, and preferably ≤ 1 wt.%,
    - chromium (Cr) ≤ 2 wt.%, and preferably ≤ 0.5 wt.%,
    - molybdenum (Mo) ≤ 0.5 wt.%, and preferably ≤0.25 wt.%,
    - phosphorus (P) ≤ 0.05 wt.%, and preferably ≤ 0.025 wt.%,
    - sulfur (S) ≤ 0.03 wt.%, and preferably ≤ 0.01 wt.%,
    - nitrogen (N) ≤ 0.05 wt.%, and preferably ≤ 0.025 wt.%,
    - copper (Cu) ≤ 1 wt.%, and preferably ≤ 0.5 wt.%,
    - boron (B) ≤ 0.005 wt.%, and preferably ≤ 0.0035 wt.%,
    - tungsten (W) ≤ 1 wt.%, and preferably ≤ 0.5 wt.%,
    - cobalt (Co) ≤ 2 wt.%, and preferably ≤ 1 wt.%.
  9. Method according to one of the claims 1 to 7, characterized in that the micro-alloying elements are elements of the group: titanium (Ti), niobium (Nb), vanadium (V).
  10. Method according to one of the claims 1 to 9, characterized in that the first temperature treatment process (S.1) is a process which is carried out in a continuous strip plant or in a discontinuously operating plant.
  11. Method according to one of the claims 1 to 10, characterized in that the second temperature treatment process (S.2) is a process which is carried out in a continuous strip plant or in a discontinuously operating plant, wherein the steel intermediate product in this plant is exposed in the annealing process to a protective gas atmosphere.
  12. Method according to claim 11, characterized in that a hood-type annealing device is used as a discontinuously operating plant.
  13. Method according to one of the claims 1 to 12, characterized in that the steel intermediate product is subjected to a skin-pass rolling process in a step which is downstream of the second temperature treatment process (S.2), wherein this skin-pass rolling process is primarily directed to condition the surface of the steel intermediate product.
  14. Method according to one of the claims 1 to 12, characterized in that the first temperature treatment process (S.1) is carried out during a hot rolling process, wherein said hot rolling process is carried out with a rolling end temperature which lies in the range above the critical temperature limit (TKG).
EP17709124.6A 2016-03-23 2017-03-10 Method for temperature-treating a manganese steel intermediate product. Active EP3433386B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16162073.7A EP3222734A1 (en) 2016-03-23 2016-03-23 Method for temperature treating a manganese steel interim product and steel interim product put through corresponding temperature treatment
PCT/EP2017/055714 WO2017162450A1 (en) 2016-03-23 2017-03-10 Method for temperature-treating a manganese steel intermediate product, and steel intermediate product which has been temperature-treated in a corresponding manner

Publications (2)

Publication Number Publication Date
EP3433386A1 EP3433386A1 (en) 2019-01-30
EP3433386B1 true EP3433386B1 (en) 2020-06-17

Family

ID=55640576

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16162073.7A Withdrawn EP3222734A1 (en) 2016-03-23 2016-03-23 Method for temperature treating a manganese steel interim product and steel interim product put through corresponding temperature treatment
EP17709124.6A Active EP3433386B1 (en) 2016-03-23 2017-03-10 Method for temperature-treating a manganese steel intermediate product.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16162073.7A Withdrawn EP3222734A1 (en) 2016-03-23 2016-03-23 Method for temperature treating a manganese steel interim product and steel interim product put through corresponding temperature treatment

Country Status (7)

Country Link
US (1) US20190071748A1 (en)
EP (2) EP3222734A1 (en)
JP (1) JP6945545B2 (en)
KR (1) KR102246704B1 (en)
CN (1) CN108884507B (en)
ES (1) ES2816065T3 (en)
WO (1) WO2017162450A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034890A (en) * 2017-12-13 2018-05-15 天津市宝月钢制品有限公司 Manganese wear-resistant steel hot rolled plate and preparation method in low-alloy
EP3594368A1 (en) * 2018-07-13 2020-01-15 voestalpine Stahl GmbH Medium manganese steel intermediate product with reduced carbon content and method for providing such a steel intermediate product

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588421B2 (en) * 1988-04-11 1997-03-05 日新製鋼株式会社 Method for producing ultra-high strength steel with excellent ductility
JPH05163533A (en) * 1991-12-12 1993-06-29 Kobe Steel Ltd Manufacture of baking hardening type steel sheet with composite structure suitable for deep drawing
JP2876968B2 (en) * 1993-12-27 1999-03-31 日本鋼管株式会社 High-strength steel sheet having high ductility and method for producing the same
US6390201B1 (en) * 2000-07-05 2002-05-21 Shell Oil Company Method of creating a downhole sealing and hanging device
AT411904B (en) * 2003-03-24 2004-07-26 Ebner Ind Ofenbau Batch-type annealing furnace for annealing steel strip or wire bundles has a protective hood positioned over an annular flange in a gas-tight manner with a heat exchanger lying above the flange
CN101560597B (en) * 2009-05-27 2010-08-11 东北大学 Flexible annealing method for eliminating ferritic stainless steel cold-reduced sheet strip Luders strain
JP2013237923A (en) * 2012-04-20 2013-11-28 Jfe Steel Corp High strength steel sheet and method for producing the same
EP2746409A1 (en) * 2012-12-21 2014-06-25 Voestalpine Stahl GmbH Method for the heat treatment a manganese steel product and manganese steel product with a special alloy
JP5862833B2 (en) * 2013-08-12 2016-02-16 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
CN106164313B (en) * 2014-03-31 2018-06-08 杰富意钢铁株式会社 High yield ratio and high-strength cold-rolled steel sheet and its manufacturing method
KR101677396B1 (en) * 2015-11-02 2016-11-18 주식회사 포스코 Ultra high strength steel sheet having excellent formability and expandability, and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2816065T3 (en) 2021-03-31
EP3433386A1 (en) 2019-01-30
CN108884507B (en) 2020-06-16
CN108884507A (en) 2018-11-23
US20190071748A1 (en) 2019-03-07
JP2019516857A (en) 2019-06-20
JP6945545B2 (en) 2021-10-06
EP3222734A1 (en) 2017-09-27
WO2017162450A1 (en) 2017-09-28
KR102246704B1 (en) 2021-04-30
KR20180127435A (en) 2018-11-28

Similar Documents

Publication Publication Date Title
DE19947393B4 (en) Steel wire for high strength springs and process for its manufacture
EP3083239B1 (en) Flat steel product for components of a car body for a motor vehicle
EP2855717B1 (en) Steel sheet and method to manufacture it
DE60319534T2 (en) HIGH-FIXED COLD-ROLLED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
DE69828865T2 (en) HIGH-RESISTANCE, EXCELLENTLY WORKABLE COLD-ROLLED STEEL PLATE WITH EXCELLENT IMPACT RESISTANCE
EP2935635B1 (en) Method for the heat treatment of a manganese steel product and manganese steel product
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
EP3788176A1 (en) Medium manganese cold-rolled steel intermediate product having a reduced carbon fraction, and method for providing such a steel intermediate product
DE3401406A1 (en) Process for the manufacture of steel plates of high tensile strength
EP0352597A1 (en) Process for producing hot-rolled strip or heavy plates
EP3724359B1 (en) High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential and method for producing a flat steel product of this kind
EP2009120B1 (en) Use of an extremely resistant steel alloy for producing steel pipes with high resistance and good plasticity
EP3512968B1 (en) Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product
EP3029162A1 (en) Method for the heat treatment a manganese steel product and manganese steel product
DE2427038A1 (en) STAINLESS STEEL AND THE METHOD OF MANUFACTURING IT
EP3433386B1 (en) Method for temperature-treating a manganese steel intermediate product.
DE112020006043T5 (en) ULTRA HIGH STRENGTH COLD ROLLED STEEL PLATE AND ITS PRODUCTION PROCESS
EP3853385A1 (en) Method of producing ultrahigh-strength steel sheets and steel sheet therefor
EP1352982A2 (en) Stainless steel, method for manufacturing of stress cracking free workpieces and product made thereof
EP3872206B1 (en) Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product
DE69123134T2 (en) Process for manufacturing a high-strength, electro-resistance welded steel pipe
EP3122910A2 (en) Components made of a steel alloy and method for producing high-strength components
DE2049916A1 (en) Steel alloy
EP1664357B1 (en) Use of a steel for the manufacturing of chains, method for producing a chain and chain produced by said method
DE1807992B2 (en) Heat treatment process to achieve a bainitic structure in a high-strength steel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180925

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190718

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005743

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1281368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005743

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2816065

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

26N No opposition filed

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210310

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210310

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1281368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220310

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170310

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230403

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 8

Ref country code: GB

Payment date: 20240327

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240321

Year of fee payment: 8

Ref country code: FR

Payment date: 20240325

Year of fee payment: 8