EP3872206B1 - Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement - Google Patents
Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement Download PDFInfo
- Publication number
- EP3872206B1 EP3872206B1 EP21155199.9A EP21155199A EP3872206B1 EP 3872206 B1 EP3872206 B1 EP 3872206B1 EP 21155199 A EP21155199 A EP 21155199A EP 3872206 B1 EP3872206 B1 EP 3872206B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cold
- flat steel
- steel product
- rolling
- rolled flat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000010960 cold rolled steel Substances 0.000 title description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 121
- 239000010959 steel Substances 0.000 claims description 121
- 238000005096 rolling process Methods 0.000 claims description 49
- 238000001816 cooling Methods 0.000 claims description 23
- 229910000734 martensite Inorganic materials 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 229910000859 α-Fe Inorganic materials 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- 238000005097 cold rolling Methods 0.000 claims description 17
- 238000000137 annealing Methods 0.000 claims description 16
- 229910052804 chromium Inorganic materials 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 238000003618 dip coating Methods 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 238000003303 reheating Methods 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 238000005554 pickling Methods 0.000 claims description 2
- 239000011253 protective coating Substances 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims 2
- 239000000047 product Substances 0.000 description 67
- 238000005496 tempering Methods 0.000 description 29
- 230000000694 effects Effects 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000001887 electron backscatter diffraction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000000161 steel melt Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0268—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the invention relates to a cold-rolled flat steel product which has been post-treated to increase strength and has an increased yield strength and increased tensile strength, and a method for its manufacture.
- Flat steel products of the type in question are rolled products obtained by cold rolling, such as steel strips or sheets, as well as blanks and blanks made from them.
- High-strength flat steel products are becoming increasingly important, especially in the field of vehicle construction, since they enable the vehicle's dead weight to be reduced and the payload to be increased.
- a low weight not only contributes to the optimal use of the technical performance of the respective drive unit, but also supports resource efficiency, cost optimization and climate protection.
- a significant reduction in the dead weight of sheet steel constructions can be achieved by increasing the mechanical properties, in particular the strength of the processed flat steel product.
- a steel flat product consisting of a two-phase steel is known.
- the steel flat product is manufactured by hot and cold rolling. After cold rolling, it goes through an additional heat treatment to increase the yield strength.
- the steel flat product consists of a steel which (in % by weight) contains 0.05 - 0.20% C, 0.2 - 1.5% Si, 0.01 - 1.5% Al, 1.0 - 3.0% Mn, ⁇ 0.02% P, ⁇ 0.005% S, ⁇ 0.008% N, and optionally 0.05 - 1.0%, 0.05 - 0.2% Mo, 0.005 - 0.2 % Ti, 0.001 - 0.05% Nb, 0.0001 - 0.005% B, balance Fe and unavoidable impurities.
- the flat steel product has a microstructure consisting of (in area %) ⁇ 5% bainite, ⁇ 5% polygonal ferrite, ⁇ 90% martensite and ⁇ 2% by volume residual austenite, with at least half of the martensite being tempered martensite.
- a special heat treatment to achieve the mechanical properties and structure.
- the object of the invention was to specify a method for producing a flat steel product with a high yield point and a high tensile strength R m that can be carried out reliably and thereby leads to an optimal combination of properties of the flat steel product obtained.
- the yield point of a flat steel product is understood to mean the lower yield point R el if the flat steel product has a pronounced yield point. Otherwise (ie for flat steel products without a pronounced yield point), the yield point of the flat steel product is understood to mean the yield point R p02 for the purposes of this application.
- tensile strength and yield point are determined in accordance with DIN-EN ISO 6982-1, specimen form 2 (Annex B Tab. B1).
- a steel flat product of the same quality should be created in the same way.
- this object has been achieved by the invention in that the work steps specified in claim 1 are carried out when producing a cold-rolled flat steel product with a high yield point and a high tensile strength R m .
- a flat steel product that achieves the above-mentioned object according to the invention has the features specified in claim 8 .
- the temper rolling takes place at room temperature, although the flat steel product usually heats up to a certain extent as a result of the temper rolling.
- the yield point can be increased both by plastic deformation during re-rolling and by tempering.
- plastic deformation new dislocations occur in the lattice structure, which contribute to the increase in strength.
- Tempering leads to the formation and growth of precipitations that prevent dislocations from sliding.
- the subsequent tempering must be designed in such a way that sufficient thermal energy is introduced to enable the local recovery processes, but not too much thermal energy, otherwise global microstructure formation will occur.
- afterglow temperatures in the range of 100° to 400°C have proven to be appropriate.
- the afterglow temperature is preferably greater than 130°C and/or less than 330°C.
- the annealing time is expediently 0.2-25 hours.
- the tempering provided according to the invention after the skin-pass rolling is carried out as batch annealing.
- the alloy of the steel from which the flat steel products to be processed according to the invention are made is selected in such a way that optimal mechanical properties are achieved under the influence of the additional post-treatment step.
- C is present in the steel of a cold rolled steel flat product processed in accordance with the present invention at levels of 0.05-0.25% by weight to produce sufficient martensite to increase strength. At higher C contents, too little ferrite occurs. In addition, too high a C content has a negative effect on weldability.
- the C content is preferably at most 0.20% by weight, particularly preferably at most 0.18%. On the other hand, if the C content is less than 0.05%, the desired strength is not obtained.
- the C content is preferably at least 0.08% by weight, particularly preferably at least 0.12% by weight.
- Si is present in the steel of a cold-rolled flat steel product processed according to the invention in contents of 0.05-0.6% in order to increase the strength by solid solution hardening without impairing the ductility.
- Si serves as a ferrite former. Excessively high Si contents can impair the surface finish, for example as a result of adherent scale or grain boundary oxidation.
- the Si content can be limited to a maximum of 0.6% by weight.
- the Si content is preferably at most 0.42%.
- the Si content can be set to at least 0.24% by weight.
- Mn is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 1.0-3.0% by weight in order to promote solid solution strengthening as well as martensite formation to increase strength. This is done by Mn stabilizing the austenite from which the martensite is formed. The volume fraction of the martensite is therefore adjusted by targeted adjustment of the Mn content.
- the Mn content is preferably at least 1.5% by weight, in particular at least 1.7% by weight.
- an excessive addition of Mn leads to an insufficient proportion of the martensite phase. Therefore, the Mn content is preferably at most 2.4% by weight.
- Al is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 0.02-1.5% by weight, on the one hand to serve as a deoxidizing agent and to bind nitrogen during melting and on the other hand to ensure the sufficient amount of ferrite and thus the ductility increase.
- the maximum content of 1.5% by weight should not be exceeded. Compliance with an upper limit of 0.9% by weight has proven to be particularly advantageous.
- N is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention must therefore be at most 0.02% by weight. Too high an N content impairs the workability and, if B and/or Al is also present, can lead to the formation of harmful nitrides and thus prevent the effectiveness of these elements.
- the N content is preferably at most 0.01% by weight. Optimally, it is limited to at most 0.008% by weight, especially at most 0.006% by weight.
- P is an undesirable alloying component attributable to unavoidable impurities. Excessive addition of P can lead to embrittlement and thus to reduced crash properties. In addition, the weldability is impaired by the P content. For these reasons, the P content should not exceed 0.2% by weight.
- the P content is preferably at most 0.05%, in particular at most 0.03%.
- S is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention may therefore not be more than 0.05% by weight. In order to ensure good ductility of the steel product, the formation of MnS or (Mn,Fe)S must be kept as low as possible.
- the S content is preferably at most 0.01% by weight, particularly preferably at most 0.005% by weight.
- Cr and Mo contribute to increasing the strength. They favor the formation of martensite by shifting the ferrite-pearlite transformation zones during heat treatment.
- the Mo content is at least 0.005% by weight, preferably at least 0.005% by weight.
- the Cr content is at least 0.2% by weight, preferably at least 0.3% by weight. If the Cr or Mo content is too high, however, undesirable carbides can form. In addition, the alloy cost increases excessively.
- the Mo content is therefore at most 1.0% by weight, preferably at most 0.3% by weight.
- the Cr content is at most 1.5% by weight, preferably at most 0.8% by weight.
- Ti, B and Nb contribute to the increase in strength and lead to a finer microstructure.
- B enables a higher proportion of martensite by suppressing the formation of ferrite and bainite, but can only develop its full effect through the additional addition of Ti, which prevents the formation of unwanted boron nitrides by forming fine Ti(C,N) precipitations.
- This increase in strength due to the formation of precipitates is favored or reinforced by the additional addition of Nb. It has been shown that the sum of the contents of Ti, Nb and 15 times the content of B should be at least 0.02% by weight in order to achieve these properties (i.e. Ti+Nb+15 ⁇ B >_ 0 .02% by weight).
- the boron content is less than 0.005% by weight, preferably less than 0.003% by weight.
- V in the steel of the cold-rolled steel flat product processed according to the present invention results in an improvement in workability and an improved resistance to delayed cracking through a finer microstructure.
- a V content in the range of 0.0005-0.05% by weight should be chosen, in particular it should be at least 0.005% by weight.
- the Cu and Ni contribute to strengthening in the steel of the cold-rolled flat steel product processed according to the present invention, and may be added singly or in combination.
- the Cu content is at least 0.0001% by weight, preferably at least 0.001% by weight. However, the Cu content should not exceed 0.5% by weight, preferably 0.08% by weight.
- the Ni content is at least 0.002% by weight, preferably at least 0.01% by weight. At maximum, the Ni content should be no greater than 0.2% by weight, preferably no greater than 0.1% by weight.
- the addition of Ca in the steel of the cold-rolled flat steel product processed according to the invention leads to a finer distribution of inclusions in the steel and forms spherical sulfides, which can reduce disadvantages of other harmful sulfides in further processing.
- the Ca content should be at least 0.0005% by weight. However, since too high a Ca content can have adverse effects on castability and hot workability, it should be at most 0.007% by weight, preferably at most 0.005% by weight.
- the steel has a carbon equivalent C eq of between 0.3% and 1.3%.
- the carbon equivalent is well suited to characterizing the subsequent workability of the steel flat product. With values in the range of 0.3% to 1.3%, the steel flat product can both be welded and coated without any problems compared to other steel alloys with a similar strength and a higher proportion of alloying elements.
- the carbon equivalent is preferably at most 0.7% for this. More preferably, the carbon equivalent is at least 0.3%.
- a cold-rolled flat steel product is preferably used as the starting material for the post-treatment process according to the invention, the structure of which consists of at least two phases, of which martensite and ferrite are the dominant phases, with more than 10% by volume martensite and more than 60% by volume ferrite available.
- the ferrite content is preferably more than 70% by volume, in particular more than 80%.
- the remainder may contain bainite or precipitates.
- the structure of the steel flat product should contain at least 60% by volume of ferrite in order to be able to set the necessary elongation. At least 10% by volume of martensite should also be present in the structure of the flat steel product according to the invention in order to achieve the strength and to enable a tempering effect.
- the post-treated microstructure consists of at least two phases, of which ferrite and martensite are the dominant phases.
- the martensite is now tempered martensite.
- the ferrite phase shows slightly stretched grains, any previously present residual austenite has disintegrated.
- the other phase components are unchanged compared to the starting product.
- the post-treated flat steel product thus has a structure consisting of at least two phases which (in vol%) more than 10% tempered martensite and more than 60% ferrite.
- the ferrite content is preferably more than 70% by volume, in particular more than 80%.
- the cold-rolled flat steel product is coated between temper rolling and tempering. Coating has the advantage that protection against corrosion is guaranteed.
- the cold-rolled flat steel product is coated, in particular electrolytically coated, between re-rolling and tempering.
- the advantage of a coating between re-rolling and tempering is that any hydrogen absorbed during the coating is removed again during tempering. Hydrogen can lead to hydrogen embrittlement and should therefore be avoided if possible.
- An electrolytic coating has the advantage that the flat steel product is not overheated, for example in comparison to hot-dip coating. Excessive heating during coating could affect the structure and thus the mechanical properties.
- the cooling of the cold-rolled flat steel product to room temperature has two intermediate steps.
- the cold-rolled flat steel product is cooled to a first cooling temperature T 1 in the first intermediate step and is held at the first cooling temperature T 1 for a first holding time t 1 .
- the cold-rolled flat steel product is then cooled to a second cooling temperature T 2 in the second intermediate step and is held at the second cooling temperature T 2 for a second holding time t 2 .
- This two-stage cooling process has the advantage that ferrite is formed in the first intermediate step and the proportion of bainite and residual austenite is adjusted in the second intermediate step.
- the cooling can also take place in a single cooling step to room temperature.
- the cold-rolled flat steel product that has been post-treated to increase strength can be provided with a metallic protective coating.
- a metallic protective coating This is example useful if components are made from the steel flat product that are exposed to a corrosive environment in practical use.
- the metallic coating can be applied in any suitable manner, application by hot-dip coating being particularly suitable here, for example in a continuous hot-dip coating plant.
- a post-treated, cold-rolled flat steel product has a yield strength of at least 1000 MPa if the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction).
- the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction).
- the after-treatment steps according to the invention regularly result in a yield strength of at least 1000 MPa; preferred variants have a yield strength of at least 1200 MPa, in particular at least 1400 MPa.
- a tensile strength of at least 1100 MPa is also achieved, with preferred embodiment variants having a tensile strength of at least 1200 MPa, in particular at least 1400 MPa.
- the alloy-independent tensile strength R m is at least 400 MPa, preferably at least 450 MPa.
- the high tensile strength is therefore not achieved by high alloying with elements that contribute to hardening (C, Si, Mn, Cr, Mo), but rather by the post-treatment steps of temper rolling and tempering according to the invention.
- the cold-rolled steel flat product, which has been post-treated to increase strength, has the advantage that high strength can be achieved without excessive alloying. It is therefore correspondingly cheaper to produce.
- the negative effects of the high alloy content on later processing steps such as welding or coating are eliminated. In this regard, low-alloy steels are easier to process.
- the sum of the grain boundary lengths for small-angle grain boundaries of a square measuring field of 50 ⁇ m*50 ⁇ m in a longitudinal section is greater than 10 mm, preferably greater than 15 mm, particularly preferably greater than 20 mm.
- the sum of the grain boundary lengths is determined using the EBSD method.
- the EBSD method (electron backscattering diffraction) is one of the electron microscopic examination methods. The information from the electrons backscattered by the sample is used. The electron beam scans the surface of the sample during an analysis. The impinging electrons are scattered in the sample. Some of these hit lattice surfaces of the examined grain under Bragg conditions and are diffracted. The resulting diffraction pattern (Kikuchi pattern) is recorded using a phosphor screen and processed and interpreted by software.
- the Kikuchi patterns contain information about the existing crystal symmetries, which allow conclusions to be drawn about the investigated crystallographic phases and the orientation of the examined grain, as well as lattice distortions, misorientation of grain boundaries, etc. If you now look at a square measuring field of 50 ⁇ m*50 ⁇ m on the surface of a section taken along the rolling direction (longitudinal section), it is possible to add up the total length of the small-angle grain boundaries which separate orientation differences of the lattice of ⁇ 15°.
- the steel melts 1-17 have been cast into slabs for the subsequent tests 1-17.
- the slabs cast from the steel melts were reheated to a reheating temperature of 1260-1300°C and then hot-rolled in a conventional manner at a hot-rolling finish temperature of 880-990°C, each into a hot strip having a thickness of 2-3 mm.
- the hot strips obtained were cooled to a coiling temperature of 525-585° C. and coiled at this coiling temperature to form a coil.
- the hot strips were cold-rolled in a similarly conventional manner with an overall degree of cold-rolling of 20-60% on average, which was achieved by cold-rolling, to form cold-rolled steel strips.
- the cold-rolled steel strips then underwent continuous annealing at an annealing temperature of 816-916°C.
- the steel strips were cooled to room temperature in two intermediate steps.
- the steel strips were cooled to a first cooling temperature T 1 with 650° C. ⁇ T 1 ⁇ 800° C. and held at the first cooling temperature for a first holding time t 1 with 0s ⁇ t 1 ⁇ 20 s.
- the steel strips were then cooled to a second cooling temperature T 2 and held at the second cooling temperature T 2 for a second holding time t 2 .
- the following applied to the second cooling temperature T 2 and the second holding time t 2 450 ° C ⁇ T 2 ⁇ 550 ° C and 60 s ⁇ t 2 ⁇ 500 s
- All of the steel strips produced in this way had a structure with more than 10% martensite and more than 60% ferrite.
- Each of the cold-rolled steel strips obtained in the tests described above was then first subjected to temper rolling with a temper rolling degree W G2 and then to an additional tempering anneal carried out as a batch annealing, during which it was held at a temperature T G2 for more than 20 minutes .
- cold-rolled steel strips according to the invention are optimally suited for the production of components which have high strength but do not have the high-alloy chemical analysis typical of this strength. This reduces the associated welding problems and the cost of the alloying components.
- FIGs 1 and 2 show, as an example for the steel from example no. 13 described above (see Table 1), the increase in yield strength through temper rolling without tempering ( figure 1 ) and by tempering without prior temper rolling ( figure 2 ).
- the difference in yield strength between the condition after re-rolling or tempering and the initial condition is plotted in each case. In all cases, the yield point was determined perpendicular to the rolling direction.
- figure 1 shows this difference as a function of the degree of rolling.
- figure 2 shows the difference as a function of the glow temperature during the initial glow. The annealing time was 20 minutes in each case. Both figures show a clear increase in the yield strength due to the respective post-treatment.
- Figure 13 shows the synergistic effect of temper rolling and tempering on strength for steel #13.
- the difference in yield strength between the condition after temper rolling and tempering and the condition after temper rolling without tempering is plotted.
- a degree of rolling of 0% means the case without temper rolling. If the two effects (tempering and tempering) on the strength were independent of one another, there should not be any dependency on the degree of rolling, since the effect of rolling has just been subtracted. For all three afterglow temperatures (200°C, 300°C and 400°C) there should be a curve parallel to the x-axis. Instead, however, an increase with increasing degree of rolling can be seen for all three afterglow temperatures. The overall effect therefore goes beyond the sum of the two individual effects.
- FIGs 4 and 5 show light microscopic longitudinal sections of steel no. 13 after nital etching.
- the high ferrite content of more than 60% by volume can be clearly seen in both figures.
- figure 4 shows the steel in its initial state without post-treatment.
- steel No. 13 is shown after post-treatment to increase strength as shown in Table 2, in which the steel was first temper rolled to a degree of rolling of 30% and then tempered at 300° C. for more than 20 minutes. The rolling direction is included figure 5 in the plane of the drawing and runs horizontally.
- the slightly stretched grains of the ferrite phase can be clearly seen.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Claims (9)
- Procédé de production d'un produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance, procédé dans lequel un produit plat en acier laminé à froid est fourni, le produit plat en acier fourni étant réalisé à l'aide des étapes de travail suivantes :- couler sous la forme d'une brame un acier dont la composition en % en poids est la suivante :- C : 0,05 à 0,25 %,- Si : 0,05 à 0,6 %,- Mn : 1,0 à 3,0 %,- Al : 0,02 à 1,5 %,- N : moins de 0,02 %,- P : 0,005 à 0,2 %,- S : moins de 0,05 %- un ou plusieurs éléments du groupe « Cr, Mo » avec la condition suivante :- Cr : 0,2 à 1,5 %,- Mo : 0,005 à 1,0 %,- éventuellement un ou plusieurs éléments du groupe « Ti, Nb, B » avec la condition suivante :- B : moins de 0,005 %- Ti+Nb+15*B : 0,02 à 0,15 %- et éventuellement un ou plusieurs éléments du groupe « V, Cu, Ni, Ca » avec la condition suivante :- V : 0,0005 à 0,05 %- Cu : 0,0001 à 0,5 %- Ni : 0,002 à 0,2 %- Ca : 0,0005 à 0,007 %- le reste étant du fer et des impuretés inévitables ;- réchauffer la brame à une température de réchauffage de 1200 à 1300 °C ;- laminer à chaud la brame réchauffée sous la forme d'une bande chaude, la température de fin de laminage à chaud de la bande à chaud à la fin du laminage à chaud étant de 800 à 1000 °C ;- bobiner la bande chaude à une température de bobinage de 400 à 700 °C ;- décaper la bande chaude ;- laminer à froid la bande chaude dans une ou plusieurs étapes de laminage à froid pour former un produit plat en acier laminé à froid, le degré de laminage à froid obtenu par le laminage à froid étant de 20 à 80 % au total ;- recuire en continu le produit plat en acier laminé à froid à une température de recuit continu de 700 à 950 °C ;- refroidir le produit plat en acier laminé à froid à la température ambiante ;caractérisé en ce que le produit plat en acier laminé à froid fourni est soumis à un post-traitement pour augmenter la résistance, les étapes de travail suivantes étant réalisées :- effectuer un laminage de finition sur le produit plat en acier laminé à froid, le degré de laminage WG2 atteint par le laminage de finition étant de 8 à 40 % au total ;- recuire le produit plat en acier soumis à un laminage de finition à une température de recuit TG2 de 100 à 400 °C sur une durée de recuit de 0,2 à 25 heures.
- Procédé selon la revendication 1, caractérisé en ce que l'acier a un équivalent carbone Cäq obtenu avecTG2 : température de recuit dans l'unité °CWG2 : degré de laminage lors du laminage de finition en %Cäq : équivalent carbone en %K : constante d'une valeur de 10 °C
- Procédé selon l'une des revendications 1 à 2, caractérisé en ce que l'acier présente une structure à au moins deux phases qui contient en % en vol. plus de 10 % de martensite recuite et plus de 60 % de ferrite.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le produit plat en acier laminé à froid est pourvu d'un revêtement, notamment par voie électrolytique, entre le laminage de finition et le recuit.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le refroidissement du produit plat en acier laminé à froid à la température ambiante comporte deux étapes intermédiaires, le produit plat en acier laminé à froid étant refroidi à la première température de refroidissement T1 dans la première étape intermédiaire et un premier temps de maintien t1 étant maintenu à la première température de refroidissement T1, et le produit plat en acier laminé à froid étant refroidi à une deuxième température de refroidissement T2 dans la deuxième étape intermédiaire et un deuxième temps de maintien t2 étant maintenu à la deuxième température de refroidissement T2, ce qui suit s'appliquant aux températures de refroidissement T1, T2 :
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le produit plat en acier laminé à froid prévu pour la trempe est pourvu d'un revêtement protecteur métallique qui est appliqué notamment par revêtement par immersion à chaud.
- Produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance, lequel- comprend un acier dont la composition en % en poids est la suivante :- C : 0,05 à 0,25 %,- Si : 0,05 à 0,6 %,- Mn : 1,0à 3,0 %,- Al : 0,02 à 1,5 %,- N : moins de 0,02 %,- P : 0,005 à 0,2 %,- S : moins de 0,05 %- un ou plusieurs éléments du groupe « Cr, Mo » avec la condition suivante :- Cr : 0,2 à 1,5 %,- Mo : 0,005 à 1,0 %,- éventuellement un ou plusieurs éléments du groupe « Ti, Nb, B » avec la condition suivante :- B : moins de 0,005 %- Ti+Nb+15*B : 0,02 à 0,15 %- et éventuellement un ou plusieurs éléments du groupe « V, Cu, Ni, Ca » avec la condition suivante :et- V : 0,0005 à 0,05 %- Cu : 0,0001 à 0,5 %- Ni : 0,002 à 0,2 %- Ca : 0,0005 à 0,007 %- le reste étant du fer et des impuretés inévitables ;- présente une limite d'élasticité d'au moins 1000 MPa et une résistance à la traction Rm d'au moins 1100 MPa, déterminées selon DIN-EN ISO 6982-1, modèle d'essai 2 (Annexe B Tab. B1),- la résistance à la traction R̃m indépendante de l'alliage étant d'au moins 400 MPa, avec- et l'acier ayant une structure qui comprend au moins deux phases et en % en volume plus de 10 % de martensite recuite et plus de 60 % de ferrite.
- Produit plat en acier laminé à froid qui a été soumis à un post-traitement pour augmenter la résistance selon l'une des revendications 7 à 8, caractérisé en ce que la somme des longueurs de joint de grain pour des joints de grain aux petits angles d'une zone de mesure carrée de 50 µm*50 µm dans un polissage longitudinal est supérieure à 10 mm, de préférence supérieure à 15 mm, de manière particulièrement préférée supérieure à 20 mm.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20160000 | 2020-02-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3872206A1 EP3872206A1 (fr) | 2021-09-01 |
EP3872206B1 true EP3872206B1 (fr) | 2023-06-21 |
Family
ID=69845829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21155199.9A Active EP3872206B1 (fr) | 2020-02-28 | 2021-02-04 | Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP3872206B1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115948692B (zh) * | 2022-09-22 | 2024-06-14 | 马鞍山钢铁股份有限公司 | 一种抗拉强度450MPa级汽车用冷轧罩式退火高强钢及其制造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2684975T3 (pl) * | 2012-07-10 | 2017-08-31 | Thyssenkrupp Steel Europe Ag | Produkt stalowy płaski, walcowany na zimno i sposób jego wytwarzania |
WO2015158731A1 (fr) | 2014-04-15 | 2015-10-22 | Thyssenkrupp Steel Europe Ag | Procédé de production d'un produit plat en acier laminé à froid à limite d'élasticité élevée et produit plat en acier laminé à froid |
WO2016177420A1 (fr) * | 2015-05-06 | 2016-11-10 | Thyssenkrupp Steel Europe Ag | Produit laminé plat en acier et son procédé de fabrication |
-
2021
- 2021-02-04 EP EP21155199.9A patent/EP3872206B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP3872206A1 (fr) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2710158B1 (fr) | Produit plat en acier hautement résistant et son procédé de fabrication | |
EP2855717B1 (fr) | Tôle d'acier et méthode pour son obtention | |
DE60125253T2 (de) | Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften | |
EP3292228B1 (fr) | PRODUIT EN ACIER PLAT ET PROCÉDÉ DE FABRICATION DE
CELLE-CI | |
DE60121233T2 (de) | Hochfestes Kaltgewalztes Stahlblech mit hoch r-Wert, exzellenter Reckalterungseigenschaften und Alterungsbeständigkeit sowie Verfahren zur dessen Herstellung | |
EP3535431B1 (fr) | Produit d'acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication | |
EP3221484B1 (fr) | Procédé de production d'une bande en acier polyphasé, durcissant à l'air, ayant une haute résistance et ayant d'excellentes propriétés de mise en oeuvre | |
DE69708832T2 (de) | Kaltgewalztes Stahlblech und sein Herstellungsverfahren | |
DE112005003112T5 (de) | Hochfestes Stahlblech und Verfahren zu dessen Herstellung | |
EP3688203B1 (fr) | Produit d'acier plat et son procédé de fabrication | |
EP2374910A1 (fr) | Acier, produit plat en acier, composant en acier et procédé de fabrication d'un composant en acier | |
EP3692178B1 (fr) | Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance | |
DE69228403T2 (de) | Hochfestes, kaltgewalztes, bei Raumtemperatur alterungsbeständiges, tiefziehbares Stahlblech und Herstellungsverfahren | |
WO2020239905A1 (fr) | Composant réalisé par formage d'un larget de tôle d'acier et procédé de réalisation correspondant | |
WO2022180146A1 (fr) | Produit plat en acier laminé à chaud à haute résistance ayant une aptitude au formage à froid locale élevée et procédé de production d'un tel produit plat en acier | |
EP3872206B1 (fr) | Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement | |
WO2023025635A1 (fr) | Produit plat en acier laminé à froid et son procédé de production | |
WO2020038883A1 (fr) | Produit plat en acier laminé à chaud n'ayant pas subi un traitement par trempe et revenu, laminé à chaud ayant subi un traitement par trempe et revenu, ainsi que procédé de production associé | |
EP3469108B1 (fr) | Procédé de fabrication d'une bande d'acier laminée à froid présentant des propriétés trip à partir d'un acier à résistance élevée contenant du manganèse | |
DE69012073T2 (de) | Hochfestes kaltgewalztes Stahlblech, entweder feuerverzinkt oder nicht, mit verbesserten Streckbördeleigenschaften und Herstellungsverfahren. | |
EP4261309A1 (fr) | Produit plat en acier laminé à froid et procédé de fabrication de produit plat en acier laminé à froid | |
DE3441087C2 (fr) | ||
WO2024115199A1 (fr) | Produit plat en acier laminé à froid et son procédé de fabrication | |
DE102022125128A1 (de) | Verfahren zur Herstellung eines Stahlbandes aus einem hochfesten Mehrphasenstahl und entsprechendes Stahlband | |
DE102022102418A1 (de) | Hochfestes schmelztauchbeschichtetes Stahlband mit durch Gefügeumwandlung bewirkter Plastizität und Verfahren zu dessen Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211111 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DREWES, KAROLINE Inventor name: FERKEL, HANS Inventor name: SEBALD, ROLAND Inventor name: BAEUMER, ANNETTE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 9/46 20060101ALI20230208BHEP Ipc: C21D 8/02 20060101ALI20230208BHEP Ipc: C22C 38/40 20060101ALI20230208BHEP Ipc: C22C 38/38 20060101ALI20230208BHEP Ipc: C22C 38/32 20060101ALI20230208BHEP Ipc: C22C 38/28 20060101ALI20230208BHEP Ipc: C22C 38/26 20060101ALI20230208BHEP Ipc: C22C 38/24 20060101ALI20230208BHEP Ipc: C22C 38/22 20060101ALI20230208BHEP Ipc: C22C 38/20 20060101ALI20230208BHEP Ipc: C22C 38/06 20060101ALI20230208BHEP Ipc: C22C 38/04 20060101ALI20230208BHEP Ipc: C22C 38/02 20060101ALI20230208BHEP Ipc: C22C 38/00 20060101AFI20230208BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230220 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502021000889 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1580933 Country of ref document: AT Kind code of ref document: T Effective date: 20230715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230620 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231023 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231021 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502021000889 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240219 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
26N | No opposition filed |
Effective date: 20240322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240222 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230621 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240204 |