WO2016177420A1 - Produit laminé plat en acier et son procédé de fabrication - Google Patents

Produit laminé plat en acier et son procédé de fabrication Download PDF

Info

Publication number
WO2016177420A1
WO2016177420A1 PCT/EP2015/059968 EP2015059968W WO2016177420A1 WO 2016177420 A1 WO2016177420 A1 WO 2016177420A1 EP 2015059968 W EP2015059968 W EP 2015059968W WO 2016177420 A1 WO2016177420 A1 WO 2016177420A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
flat
temperature
product
content
Prior art date
Application number
PCT/EP2015/059968
Other languages
German (de)
English (en)
Inventor
Richard G. THIESSEN
Thomas Heller
Karsten MACHALITZA
Roland Sebald
Original Assignee
Thyssenkrupp Steel Europe Ag
Thyssenkrupp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag, Thyssenkrupp Ag filed Critical Thyssenkrupp Steel Europe Ag
Priority to PCT/EP2015/059968 priority Critical patent/WO2016177420A1/fr
Priority to EP16723293.3A priority patent/EP3292228B1/fr
Priority to KR1020177034819A priority patent/KR102594922B1/ko
Priority to JP2017557206A priority patent/JP6788612B2/ja
Priority to ES16723293T priority patent/ES2820348T3/es
Priority to CN201680026312.7A priority patent/CN107580634A/zh
Priority to MX2017014090A priority patent/MX2017014090A/es
Priority to US15/571,379 priority patent/US20190119774A1/en
Priority to PCT/EP2016/059960 priority patent/WO2016177763A1/fr
Publication of WO2016177420A1 publication Critical patent/WO2016177420A1/fr
Priority to ZA2017/07321A priority patent/ZA201707321B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a flat steel product having an optimized combination of strength and elongation.
  • the invention relates to a method for producing such a product.
  • CA 2 734 976 A1 discloses a steel with good toughness and deformability, which should have a tensile strength of at least 980 MPa.
  • the steel contains in addition to iron and unavoidable
  • Impurities 0.17-0.73% C, up to 3.0% Si, 0.5-3.0% Mn, up to 0.1% P, up to 0.07% S, up to 3.0% Al and up to 0.010% N.
  • the sum of the Al and Si contents should be at least 0.7%.
  • the proportion of arsenic in the microstructure of the steel is 10 - 90%, the proportion of retained austenite in the range of 5 - 50%, and the proportion of ferritic bainite derived from "upper bainite” is at least 5%, the term “upper bainite” being a bainite, in The fine carbide grains are evenly distributed, as they are not found in "lower bainite”
  • Steel flat product which has a tensile strength R m of at least 1200 MPa and consists of a steel, in addition to Fe and unavoidable impurities (in
  • C 0.10-0.50%
  • Si 0.1-2.5%
  • Mn 1.0-3.5%
  • Al up to 2.5%
  • P to to 0.020%
  • S up to 0.003%
  • N up to 0.02%
  • the flat steel product has a structure with (in area%) less than 5% ferrite, less than 10% bainite, 5-70% unan Stammten martensite, 5 - 30%
  • iron carbides have a size of less than 500 nm. Due to its minimized share of
  • Superior martensite has such a nature
  • composition with a heating rate ⁇ ⁇ ⁇ , ⁇ ⁇ 2 of at least 3 ° C / s heated to above the A 3 temperature of the steel of the flat steel product and at most 960 ° C amount austenitizing temperature T HZ .
  • Austenitmaschinesdauer t H z of 20 - kept s to be then cooled to a cooling stop temperature 180th This is greater than the martensite stop temperature and less than the martensite start temperature, wherein the cooling takes place at a cooling rate which is at least equal to one depending on the
  • Partitioning temperature to be heated This can be an isothermal hold the steel flat product in the
  • Partitioning temperature (so-called “isothermal")
  • Partitioning compared to the isothermal partitioning desired slower heating rate allows a particularly accurate control of each predetermined partitioning temperature with reduced energy use.
  • the steels obtained and processed in the above-mentioned manner belong to the so-called “AHSS steels” (Advanced High Strength Steel).
  • Protective cover also has a structure, the one
  • the invention has achieved this object in that a
  • the solution according to the invention of the abovementioned object consists in that during the production of a flat steel product according to the invention at least the steps mentioned in claim 7 are completed.
  • a flat steel product according to the invention consists of a steel, in addition to iron and unavoidable impurities (in% by weight)
  • the invention is based on the recognition that by choosing a suitable alloy, a flat steel product can be obtained in which a high strength is achieved by a structure comprising at most minimal retained austenite contents and by a high proportion of tempered martensite and by finely divided non-tempered martensite is paired with a very good formability.
  • Flat steel products are at 950 - 1300 MPa with a yield strength of at least 800 MPa and can reach to the respective tensile strength.
  • the elongation A 50 of flat steel products according to the invention lies
  • Carbon has several important functions in the steel of the present invention.
  • the C content plays a major role in the formation of austenite and
  • Carbon equivalent CE has American Welding
  • the carbon equivalent should be CE
  • CE value is not more than 1.1 wt .-% to ensure good weldability.
  • a particularly good weldability can be ensured by the fact that the CE value is limited to at most 1.0 wt .-%.
  • the CE value should not be less than 0.254 wt% in order to calculate the effect of the present invention of the carbon equivalent CE
  • flat steel product is the production of cementite suppressed, would be bound by the carbon, which then no longer for the stabilization of the
  • Aluminum is added to the steel of a flat steel product according to the invention in the steelmaking process for deoxidizing and for setting any nitrogen present.
  • AI can also be used for the suppression of cementite.
  • the austenitizing temperature also increases. Therefore, the Al content is one for an invention
  • Steel flat product provided steel limited to 0.01 to 1.5 wt .-%. If low austenitizing temperatures are to be ensured, it may be expedient to limit the Al content to a maximum of 0.1% by weight.
  • PCT / EP2015 / 059968 the sum of the contents of AI and Si in the steel of a
  • flat steel product are limited to at most 1.7 wt .-%, with upper limits of at most 1.5 wt .-% have proven to be particularly favorable, especially with regard to an optimization of the weldability.
  • Manganese is important for the hardenability of the steel of a flat steel product according to the invention and also prevents the formation of unwanted perlite during the process
  • Mn content a range of 1.0 to 3.0 wt .-%, in particular at least 1.5 wt .-% or at most 2.4 wt .-% provided.
  • Phosphorus has an unfavorable effect on the weldability of a flat steel product according to the invention.
  • the P content should be as low as possible, in any case not exceed 0.02 wt .-%, in particular less than 0.02 wt .-% or less than 0.018 wt .-% amount.
  • the presence of effective levels of sulfur in the steel of a flat steel product according to the invention would lead to the formation of sulphides, in particular MnS or (Mn, Fe) S, which would have a negative effect on the elongation.
  • the S content of the steel should be kept as low as possible, but not higher than 0.005 wt .-%, in particular less than 0.005 wt .-% or less than 0.003 wt .-% amount.
  • the N content of the steel of a flat steel product according to the invention is limited to at most 0.008 wt .-%.
  • the N content should be avoided to avoid any negative
  • Chromium in amounts of up to 1.0 wt .-% can in
  • Steel provided according to the invention can optionally be used as an effective inhibitor of perlite and also contributes to the strength.
  • At contents of more than 1.0% by weight Cr there is the danger of pronounced grain boundary oxidation.
  • At least 0.05 wt .-% are required.
  • the presence of Cr in the steel has a particularly favorable effect
  • flat molybdenum product also contain molybdenum in amounts of 0.05 to 0.2 wt .-%. Mo in these grades
  • the steel of a flat steel product according to the invention may further optionally contain levels of one or more
  • Ti contents of at least 0.005 wt .-% and Nb contents of at least 0.001 wt .-% lead each alone or in combination with each other to freeze the grain and
  • Ti may also be used to set the nitrogen present in the steel to allow for the action of other alloying elements, particularly boron. Too high
  • the boron also optionally present in the steel of a flat steel product according to the invention segregates on the
  • the flat steel product according to the invention can be provided with a metallic protective coating. This can be applied in particular by hot dip coating.
  • coatings based on Zn are suitable for a flat steel product according to the invention.
  • the method according to the invention for producing a high-strength steel flat product comprises the following
  • Austenitizing temperature T H z wherein the heating up to a 200 - 400 ° C amounting inflection point temperature T w with a heating rate ⁇ ⁇ ⁇ of 5 - 25 K / s and then to Austenitmaschinestemperatur T HZ with a heating rate ⁇ ⁇ 2 of at least 2 - 10 ° K / s takes place; c) holding the flat steel product in the
  • Cooling time t k from 50 - 300 s to one
  • Cooling stop temperature T Q for which applies:
  • Total treatment time t B of 10 - 1000 s at a treatment temperature T B which is at least equal to the cooling stop temperature T Q and not higher than 550 ° C, in particular not higher than 500 ° C, is maintained. or g.2) the flat steel product starting from the
  • Cooling stop temperature T Q is heated to a 450 - 500 ° C treatment temperature T B , the steel flat product then optionally at this treatment temperature T B over a
  • Holding period t B is held isothermally, wherein the heating to the treatment temperature T B with a heating rate ⁇ ⁇ ⁇ of less than 80 ° K / s and takes place as the sum of the heating time required for the heating t BR and the Holding time t B i formed total treatment time t B T is 10 - 1000 s, and wherein the
  • Steel flat product is passed through a melt bath after being treated to coat it with a Zn-based metallic protective coating; h) from the treatment temperature T B outgoing cooling at a cooling rate ⁇ ⁇ 2 of more than 5 K / s.
  • step a) becomes a flat steel product
  • provided flat steel product may be
  • Austenitizing temperature T H z (step b)) are basically two interruption-free successive steps possible, the flat steel product in the first step with a heating rate ⁇ ⁇ ⁇ of
  • the heating to the austenitizing temperature can also be in a course with a 5-10 K / s constant amounts
  • Heating rates ⁇ ⁇ ⁇ and ⁇ ⁇ 2 in step b) are then the same.
  • the austenitizing temperature T H z must be above the A 3 temperature.
  • the A 3 temperature is
  • a 3 [° C] 910 - 203V% C - 15, 2% +44, 7% Si + 31, 5% Mo-21, 1% Mn with% C: C content of the steel,
  • the alloy of the steel selected according to the invention makes it possible to limit the austenitizing temperature T H z to a maximum of 950 ° C., and thus allows for the
  • Austenitizing t H z may be less than 15 s to avoid any unwanted grain growth.
  • step d) follows one of the
  • Cooling can be about 50 - 300 seconds and extend must end at an intermediate temperature T K, which is not lower than 680 ° C in order to avoid the undesirable formation of ferrite. Up is the
  • the steel flat product is quenched in step e) with a high cooling rate 0 Q to an analysis-dependent cooling stop temperature T Q.
  • the high cooling rate 9 Q can be achieved, for example, with a modern Gasj etkühlung.
  • the minimum cooling rate Q 9 which is necessary in order to avoid the ferritic and bainitic transformation, is more than 30 K / s.
  • Cooling stop temperature T Q is, is up by the martensite start temperature T MS , and down by a 175 ° C below the martensite start temperature T M s temperature (T (T MS -175 ° C) ⁇ T Q ⁇ T MS ).
  • the martensite start temperature can be estimated by the following equation (alloy contents
  • step f the flat steel product over a holding time t Q of 10 - 60 seconds on the
  • step g) completed heat treatment of
  • Essentially consists of two different types of martensite, namely tempered martensite and unannealed martensite.
  • step g) comprises two
  • the temperature control in both variants g.l), g.2) of step g) is in each case selected such that the retained austenite present in the structure with carbon from the supersaturated martensite is enriched.
  • Total treatment time t B deliberately suppressed This is 10 - 1000 seconds to a sufficient
  • treating the flat steel product in the step g) comprises an over the total processing time t B T extending holding the flat steel product at a treatment temperature T B which is at least equal to the cooling stop temperature T Q, and not higher than 550 ° C, wherein a cooling stop temperature T Q of at most 500 ° C has proven to be particularly favorable.
  • the treatment temperature T B may also be higher than the cooling stop temperature T Q.
  • the steel flat product starting from the cooling stop temperature T Q to the respective
  • Heating rate ⁇ ⁇ 1 should be done.
  • step g the flat steel product with a
  • T B treatment temperature
  • the formation of carbides and the decomposition of retained austenite is targeted by the inventive limitation of the total treatment time t BT
  • Step g) from the time required for the heating heating time t B R and the holding time t B i composed over which the flat steel product isothermally in the
  • Temperature T B is maintained. At a sufficiently slow rate of heating ⁇ ⁇ ⁇ the isothermal holding can also be omitted, so the holding time t B i be equal to "0".
  • the flat steel product passes through the following
  • Treatment temperature T B a hot-dip coating in which it is coated with a Zn coating.
  • the treatment temperature T B can be chosen so that it corresponds to the inlet temperature with which the
  • Steel flat product is to enter into the respective melt bath. Typically, this is the
  • Treatment temperatures T B in the range of 450 - 500 ° C.
  • the flat steel product according to the invention has a structure that
  • microstructure of a flat steel product according to the invention is very fine with an average particle size of less than 2 ⁇ and can hardly be assessed by means of conventional optical microscopy. Therefore, a judgment by means of scanning electron microscopy (SEM) and a
  • the maximum permissible residual austenite content can only be determined with difficulty at high magnification by light microscopy or scanning electron microscopy. Therefore, a quantitative determination of retained austenite by means of X-ray diffraction (XRD) is recommended (according to ASTM E975), according to which the retained austenite content is given in% by volume.
  • XRD X-ray diffraction
  • the distortion of the crystal lattice can also be used. This lattice distortion is very important for the initial resistance to plastic deformation.
  • Lattice distortion is the electron backscatter diffraction (EBSD).
  • EBSD electron backscatter diffraction
  • Measuring point is compared with the neighboring points.
  • the KAM is evaluated by the third neighbor points.
  • An inventive flat steel product must have a KAM average of a
  • the invention is based on
  • Samples 1-43 are conventionally produced steel sheets
  • CE % C + (% Si +% n) / 5 + (% Cr +% Mo) / 6 with% C the respective C-, with% Si the respective Si, with% Mn the respective Mn-, with% Cr the respective Cr, with% Mo the respective Mo and with% A1 the respective Al content of the steels A - G have been calculated.
  • the steels E, F and G therefore did not fulfill the requirements for the coordination of the alloying elements and austenitic alloy elements which are determined by the factor ⁇ according to the invention.
  • Cooling rate 9 Q were used in which the samples 1 - 43 have been cooled to a cooling stop temperature T Q , which was lower by up to 175 ° C than the martensite TMS of the respective steel A - G of the samples 1 - 43. At the cooling stop temperature T Q , the samples 1 - 43 have been held for a holding period t Q of 10 - 60 s, followed by a
  • Elongation at break A 50 (according to DIN EN ISO 6892, sample form 1), the product Rm * A 50 , and the hole spreading ratios ⁇ , ⁇ 2 (according to ISO 16630) have been determined.
  • the microstructural fractions of ferrite "F”, tempered martensite “AM”, retained austenite “RA”, unannealed martensite “M” and bainite “B”, and the kernel average misorientation value "KAM” were determined.
  • the respective property values are given in Table 3 for each of Samples 1-43.
  • Formability can adversely affect.
  • Comparative Examples F39-F42 show the effects of a too low ⁇ -factor, which also leads to deviations from the desired microstructure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention concerne un produit laminé plat en acier, possédant une résistance à la traction Rm≥ 950 MPa, une limite d'élasticité ≥ 800 MPa et un allongement à la rupture A50 ≥ 8 %. Ce produit laminé plat en acier est constitué d'un acier qui contient (en % en poids) 0,05 - 0,20 % C, 0,2 - 1,5 % Si, 0,01 - 1,5 % Al, 1,0 - 3,0 % Mn, ≤ 0,02 % P, ≤ 0,005 % S, ≤ 0,008 % N, ainsi que respectivement de manière facultative 0,05 - 1,0 %, 0,05 - 0,2 % Mo, 0,005 - 0,2 % Ti, 0,001 - 0,05 % Nb, 0,0001 - 0,005 % B, le reste étant constitué de Fe et d'impuretés inévitables. Selon l'invention, 1,5 ≤ ψ ≤ 3, avec ψ=(%C+%Mn/5+%Cr/6)/(%Al+%Si) et %C, %Mn, %Cr, %Al, %Si représentant respectivement la teneur en C, Mn, Cr, Al et Si de l'acier. Ce produit laminé plat en acier présente une structure constituée de (en % surfacique) ≤ 5 % de bainite, ≤ 5 % de ferrite polygonale, ≥ 90 % de martensite et ≤ 2 % en volume d'austénite résiduelle, au moins la moitié de la martensite étant de la martensite revenue. L'invention concerne en outre un procédé de fabrication d'un tel produit laminé plat en acier.
PCT/EP2015/059968 2015-05-06 2015-05-06 Produit laminé plat en acier et son procédé de fabrication WO2016177420A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/EP2015/059968 WO2016177420A1 (fr) 2015-05-06 2015-05-06 Produit laminé plat en acier et son procédé de fabrication
EP16723293.3A EP3292228B1 (fr) 2015-05-06 2016-05-04 PRODUIT EN ACIER PLAT ET PROCÉDÉ DE FABRICATION DE
CELLE-CI
KR1020177034819A KR102594922B1 (ko) 2015-05-06 2016-05-04 평강 제품 및 그의 제조 방법
JP2017557206A JP6788612B2 (ja) 2015-05-06 2016-05-04 平鋼製品およびその製造方法
ES16723293T ES2820348T3 (es) 2015-05-06 2016-05-04 Producto plano de acero y procedimiento para su fabricación
CN201680026312.7A CN107580634A (zh) 2015-05-06 2016-05-04 扁钢产品及其生产方法
MX2017014090A MX2017014090A (es) 2015-05-06 2016-05-04 Producto plano de acero y procedimiento para su fabricacion.
US15/571,379 US20190119774A1 (en) 2015-05-06 2016-05-04 Flat steel product and method for the production thereof
PCT/EP2016/059960 WO2016177763A1 (fr) 2015-05-06 2016-05-04 Produit laminé plat en acier et son procédé de fabrication
ZA2017/07321A ZA201707321B (en) 2015-05-06 2017-10-27 Flat steel product and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2015/059968 WO2016177420A1 (fr) 2015-05-06 2015-05-06 Produit laminé plat en acier et son procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2016177420A1 true WO2016177420A1 (fr) 2016-11-10

Family

ID=53267305

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2015/059968 WO2016177420A1 (fr) 2015-05-06 2015-05-06 Produit laminé plat en acier et son procédé de fabrication
PCT/EP2016/059960 WO2016177763A1 (fr) 2015-05-06 2016-05-04 Produit laminé plat en acier et son procédé de fabrication

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/059960 WO2016177763A1 (fr) 2015-05-06 2016-05-04 Produit laminé plat en acier et son procédé de fabrication

Country Status (9)

Country Link
US (1) US20190119774A1 (fr)
EP (1) EP3292228B1 (fr)
JP (1) JP6788612B2 (fr)
KR (1) KR102594922B1 (fr)
CN (1) CN107580634A (fr)
ES (1) ES2820348T3 (fr)
MX (1) MX2017014090A (fr)
WO (2) WO2016177420A1 (fr)
ZA (1) ZA201707321B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095340A (ko) * 2016-12-14 2019-08-14 티센크루프 스틸 유럽 악티엔게젤샤프트 열간 압연 평탄형 강 제품 및 그 제조 방법
EP3561119A4 (fr) * 2016-12-23 2019-10-30 Posco Acier martensitique trempé ayant une faible limite d'élasticité et un excellent allongement uniforme et son procédé de fabrication
WO2019238741A1 (fr) * 2018-06-12 2019-12-19 Thyssenkrupp Steel Europe Ag Produit plat en acier et procédé de fabrication
CN110651377A (zh) * 2017-05-18 2020-01-03 蒂森克虏伯钢铁欧洲股份公司 电池壳体
WO2020064096A1 (fr) * 2018-09-26 2020-04-02 Thyssenkrupp Steel Europe Ag Procédé pour la préparation d'un produit plat en acier revêtu et produit plat en acier revêtu
EP3872206A1 (fr) * 2020-02-28 2021-09-01 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
EP4095272A4 (fr) * 2020-01-22 2023-07-26 Nippon Steel Corporation Tôle d'acier et son procédé de production

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2019004535A (es) * 2017-01-31 2019-06-12 Nippon Steel & Sumitomo Metal Corp Lamina de acero.
EP3688203B1 (fr) * 2017-09-28 2022-04-27 ThyssenKrupp Steel Europe AG Produit d'acier plat et son procédé de fabrication
CN108359895A (zh) * 2018-03-14 2018-08-03 河钢股份有限公司 一种抗拉强度950MPa级别的热成形钢及其热轧工艺
US20210189517A1 (en) * 2018-05-22 2021-06-24 Thyssenkrupp Steel Europe Ag Sheet Metal Part Formed from a Steel Having a High Tensile Strength and Method for Manufacturing Said Sheet Metal Part
CN109266956B (zh) * 2018-09-14 2019-08-06 东北大学 一种汽车b柱加强板用钢及其制备方法
WO2020067752A1 (fr) 2018-09-28 2020-04-02 주식회사 포스코 Tôle d'acier laminée à froid à haute résistance ayant un rapport d'expansion de trou élevé, tôle d'acier galvanisée à chaud par trempe à haute résistance, et procédés de fabrication associés
KR102276741B1 (ko) * 2018-09-28 2021-07-13 주식회사 포스코 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
EP3754037B1 (fr) * 2019-06-17 2022-03-02 Tata Steel IJmuiden B.V. Procédé de traitement thermique d'une bande d'acier laminée à froid à haute résistance
WO2021176249A1 (fr) * 2020-03-02 2021-09-10 Arcelormittal Tôle d'acier laminée à froid à haute résistance et recuite après galvanisation et son procédé de fabrication
CN114107794B (zh) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 一种980MPa级超低碳马氏体加残奥型超高扩孔钢及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108152A (ja) * 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP3374659B2 (ja) * 1995-06-09 2003-02-10 日本鋼管株式会社 超高張力電縫鋼管およびその製造方法
JP2003138316A (ja) * 1995-06-09 2003-05-14 Nkk Corp 超高張力電縫鋼管の製造方法
WO2010029983A1 (fr) 2008-09-10 2010-03-18 Jfeスチール株式会社 Plaque d'acier à haute résistance et son procédé de fabrication
JP2010236053A (ja) * 2009-03-31 2010-10-21 Kobe Steel Ltd 曲げ加工性に優れた高強度冷延鋼板
EP2258887A1 (fr) * 2008-01-31 2010-12-08 JFE Steel Corporation Tôle d'acier à haute résistance et son procédé de production
EP2267176A1 (fr) * 2008-02-08 2010-12-29 JFE Steel Corporation Tôle d'acier galvanisée à chaud à résistance élevée présentant une excellente aptitude au traitement et son procédé de fabrication
US20110168301A1 (en) * 2008-09-23 2011-07-14 Postech Academy-Industry Foundation Ultrahigh strength hot dip galvanized steel sheet having martensitic structure as matrix, and manufacturing method thereof
EP2524970A1 (fr) 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Produit plat en acier hautement résistant et son procédé de fabrication
JP2013227657A (ja) * 2012-03-29 2013-11-07 Kobe Steel Ltd 鋼板形状に優れた高強度冷延鋼板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826401B2 (ja) * 1990-12-29 1996-03-13 日本鋼管株式会社 加工性及び衝撃特性に優れた超高強度冷延鋼板の製造法
JP2826058B2 (ja) * 1993-12-29 1998-11-18 株式会社神戸製鋼所 水素脆化の発生しない超高強度薄鋼板及び製造方法
JP5315956B2 (ja) * 2008-11-28 2013-10-16 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5906154B2 (ja) * 2012-07-20 2016-04-20 株式会社神戸製鋼所 耐遅れ破壊性に優れた高強度鋼板およびその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108152A (ja) * 1992-09-30 1994-04-19 Kobe Steel Ltd 曲げ加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP3374659B2 (ja) * 1995-06-09 2003-02-10 日本鋼管株式会社 超高張力電縫鋼管およびその製造方法
JP2003138316A (ja) * 1995-06-09 2003-05-14 Nkk Corp 超高張力電縫鋼管の製造方法
EP2258887A1 (fr) * 2008-01-31 2010-12-08 JFE Steel Corporation Tôle d'acier à haute résistance et son procédé de production
EP2267176A1 (fr) * 2008-02-08 2010-12-29 JFE Steel Corporation Tôle d'acier galvanisée à chaud à résistance élevée présentant une excellente aptitude au traitement et son procédé de fabrication
WO2010029983A1 (fr) 2008-09-10 2010-03-18 Jfeスチール株式会社 Plaque d'acier à haute résistance et son procédé de fabrication
CA2734976A1 (fr) 2008-09-10 2010-03-18 Jfe Steel Corporation Plaque d'acier a haute resistance et son procede de fabrication
US20110168301A1 (en) * 2008-09-23 2011-07-14 Postech Academy-Industry Foundation Ultrahigh strength hot dip galvanized steel sheet having martensitic structure as matrix, and manufacturing method thereof
JP2010236053A (ja) * 2009-03-31 2010-10-21 Kobe Steel Ltd 曲げ加工性に優れた高強度冷延鋼板
EP2524970A1 (fr) 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Produit plat en acier hautement résistant et son procédé de fabrication
JP2013227657A (ja) * 2012-03-29 2013-11-07 Kobe Steel Ltd 鋼板形状に優れた高強度冷延鋼板の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371113B2 (en) 2016-12-14 2022-06-28 Evonik Operations Gmbh Hot-rolled flat steel product and method for the production thereof
JP2020509161A (ja) * 2016-12-14 2020-03-26 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 熱延平鋼生産物およびその生産方法
JP7193454B2 (ja) 2016-12-14 2022-12-20 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 熱延平鋼生産物およびその生産方法
KR102478025B1 (ko) * 2016-12-14 2022-12-15 티센크루프 스틸 유럽 악티엔게젤샤프트 열간 압연 평탄형 강 제품 및 그 제조 방법
KR20190095340A (ko) * 2016-12-14 2019-08-14 티센크루프 스틸 유럽 악티엔게젤샤프트 열간 압연 평탄형 강 제품 및 그 제조 방법
EP3561119A4 (fr) * 2016-12-23 2019-10-30 Posco Acier martensitique trempé ayant une faible limite d'élasticité et un excellent allongement uniforme et son procédé de fabrication
CN110651377A (zh) * 2017-05-18 2020-01-03 蒂森克虏伯钢铁欧洲股份公司 电池壳体
US11245153B2 (en) 2017-05-18 2022-02-08 Thyssenkrupp Ag Battery housing
WO2019238741A1 (fr) * 2018-06-12 2019-12-19 Thyssenkrupp Steel Europe Ag Produit plat en acier et procédé de fabrication
US11597986B2 (en) 2018-06-12 2023-03-07 Thyssenkrupp Steel Europe Ag Flat steel product and method for producing same
JP2021530624A (ja) * 2018-09-26 2021-11-11 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG コーティングされた平鋼生産物を製造する方法及びコーティングされた平鋼生産物
JP7029574B2 (ja) 2018-09-26 2022-03-03 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト コーティングされた平鋼生産物を製造する方法及びコーティングされた平鋼生産物
EP4083236A1 (fr) * 2018-09-26 2022-11-02 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un produit plat en acier revêtu et produit plat en acier revêtu
CN112789358A (zh) * 2018-09-26 2021-05-11 蒂森克虏伯钢铁欧洲股份公司 制造经涂覆的扁钢产品的方法和经涂覆的扁钢产品
WO2020064096A1 (fr) * 2018-09-26 2020-04-02 Thyssenkrupp Steel Europe Ag Procédé pour la préparation d'un produit plat en acier revêtu et produit plat en acier revêtu
EP4095272A4 (fr) * 2020-01-22 2023-07-26 Nippon Steel Corporation Tôle d'acier et son procédé de production
EP3872206A1 (fr) * 2020-02-28 2021-09-01 ThyssenKrupp Steel Europe AG Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement

Also Published As

Publication number Publication date
EP3292228B1 (fr) 2020-08-12
US20190119774A1 (en) 2019-04-25
CN107580634A (zh) 2018-01-12
MX2017014090A (es) 2018-03-01
EP3292228A1 (fr) 2018-03-14
KR102594922B1 (ko) 2023-10-27
ES2820348T3 (es) 2021-04-20
KR20180003581A (ko) 2018-01-09
JP2018518593A (ja) 2018-07-12
ZA201707321B (en) 2022-11-30
WO2016177763A1 (fr) 2016-11-10
JP6788612B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
EP3292228B1 (fr) PRODUIT EN ACIER PLAT ET PROCÉDÉ DE FABRICATION DE
CELLE-CI
EP3555337A1 (fr) Produit plat en acier laminé à chaud et son procédé de fabrication
DE102012002079B4 (de) Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
EP2684975B1 (fr) Produit plat en acier laminé à froid et son procédé de fabrication
WO2012156428A1 (fr) Produit plat en acier à haute résistance mécanique et son procédé de fabrication
EP2855718A1 (fr) Acier, produit en acier plat et procédé de fabrication d'un produit en acier plat
EP3688203B1 (fr) Produit d'acier plat et son procédé de fabrication
EP3320120A1 (fr) Acier multiphase à haute résistance et procédé de fabrication d'une bande d'acier laminée à froid composée dudit acier
EP3797176A1 (fr) Pièce façonnée en tôle composée d'acier et présentant une résistance élevée à la traction, et procédé de fabrication de ladite pièce
DE102013013067A1 (de) Siliziumhaltiger, mikrolegierter hochfester Mehrphasenstahl mit einer Mindestzugfestigkeit von 750 MPa und verbesserten Eigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
EP3788176A1 (fr) Produit intermédiaire en acier laminé à froid medium manganèse ayant un taux de carbone réduit et procédé pour la fourniture d'un tel produit intermédiaire en acier
EP3692178B1 (fr) Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance
EP3221478A1 (fr) Acier multiphasé à haute résistance durcissant à l'air qui présente d'excellentes propriétés de traitement et procédé de fabrication d'une bande à partir de cet acier
EP3976838A1 (fr) Composant réalisé par formage d'un larget de tôle d'acier et procédé de réalisation correspondant
DE102014017274A1 (de) Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
WO2015024903A1 (fr) Procédé permettant de produire un élément structural en acier
EP3807429A1 (fr) Produit plat en acier et procédé de fabrication
WO2020038883A1 (fr) Produit plat en acier laminé à chaud n'ayant pas subi un traitement par trempe et revenu, laminé à chaud ayant subi un traitement par trempe et revenu, ainsi que procédé de production associé
EP3872206B1 (fr) Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
WO2021063746A1 (fr) Procédé de fabrication d'un produit en acier et produit en acier correspondant
WO2024068957A1 (fr) Procédé de fabrication d'une bande d'acier à partir d'un acier multiphase à haute résistance et bande d'acier correspondante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15724530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15724530

Country of ref document: EP

Kind code of ref document: A1