EP3418412B1 - Stahl nützlich als material für ketten - Google Patents
Stahl nützlich als material für ketten Download PDFInfo
- Publication number
- EP3418412B1 EP3418412B1 EP16890566.9A EP16890566A EP3418412B1 EP 3418412 B1 EP3418412 B1 EP 3418412B1 EP 16890566 A EP16890566 A EP 16890566A EP 3418412 B1 EP3418412 B1 EP 3418412B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- content
- quenching
- tempering
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 171
- 239000010959 steel Substances 0.000 title claims description 171
- 239000000463 material Substances 0.000 title description 3
- 239000012535 impurity Substances 0.000 claims description 8
- 238000010791 quenching Methods 0.000 description 51
- 230000000171 quenching effect Effects 0.000 description 51
- 238000005496 tempering Methods 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 17
- 229910001567 cementite Inorganic materials 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 15
- 230000001965 increasing effect Effects 0.000 description 15
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 15
- 229910001566 austenite Inorganic materials 0.000 description 11
- 229910000734 martensite Inorganic materials 0.000 description 10
- 230000009471 action Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005553 drilling Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
Definitions
- the present invention relates to steel having a high strength and an excellent low-temperature toughness after quenching and tempering.
- Such chains are manufactured by cutting a hot rolled steel bar having a diameter of ⁇ 50 mm or more to a predetermined length, forming the steel bar to an annular shape, and welding butted end surfaces through flash butt welding. After flash butt welding, there are cases where a stud is press-fitted into the center of the annular chain. After that, the chain is quenched and tempered, thereby imparting a high strength and a high toughness to the chain.
- Patent Documents 1 to 6 and the like can be exemplified as invention examples of steel for a high strength and high toughness chain.
- all of the documents aim to provide a chain having a tensile strength of 800 MPa to 1,000 MPa and do not study a case where the strength of steel is set to 1,200 MPa or more.
- an increase in the strength of steel generally degrades the toughness of steel and thus decreases the impact value of steel.
- the strength of the steel having the chemical composition proposed by the above described documents is set to 1,200 MPa or more, it is not possible to obtain an intended impact value.
- An object of the present invention is to provide a steel having a high strength and an excellent low-temperature toughness (particularly, fracture toughness at a low temperature) after quenching and tempering.
- the object of the invention is to provide a steel in which the Charpy impact value at -20°C reaches 75 J/cm 2 or more, when quenching and tempering are carried out so that the tensile strength reaches 1,200 MPa or more.
- the present inventors have continued a variety of researches in order to realize steel having a high strength and an excellent low-temperature toughness, as a result, the present inventors obtained the following findings.
- the present inventors found a structural component having a high strength and a high low-temperature toughness, particularly, steel which can be used for manufacturing chains.
- steel according to the present embodiment is steel having an effect in which the tensile strength reaches 1,200 MPa or more and the Charpy impact value at - 20°C reaches 75 J/cm 2 or more after quenching and tempering
- the strength and the impact value before quenching and tempering are not particularly limited.
- description of mechanical properties such as strength and toughness relates to the steel according to the present embodiment after quenching and tempering.
- the unit "%" of the amounts of the alloying elements indicates mass%.
- the C is an important element that determines the strength of the steel.
- the lower limit of the C content is set to 0.08%.
- the upper limit of the C content is set to 0.12%.
- the upper limit of the C content is preferably 0.11%.
- the lower limit of the C content is preferably 0.09%.
- Si has an action of ensuring the strength of the steel and also an action as a deoxidizing agent.
- the Si content is less than 0.05%, the deoxidizing action cannot be sufficiently obtained, the number of non-metallic inclusions in the steel is increased, and the toughness of the steel is degraded.
- the Si content is more than 0.50%, Si causes the degradation in the toughness of the steel. Therefore, the Si content is set to 0.05% to 0.50%.
- the upper limit of the Si content is preferably 0.40%, 0.30%, or 0.20%.
- the lower limit of the Si content is preferably 0.06%, 0.07%, or 0.08%.
- Mn is an essential element for ensuring required hardenability.
- the lower limit of the Mn content is set to 1.50%.
- the upper limit of the Mn content is set to 3.00%.
- the upper limit of the Mn content is preferably 2.90%, 2.80%, or 2.70%.
- the lower limit of the Mn content is preferably 1.70%, 1.90%, or 2.00%.
- P is an impurity that is incorporated into the steel during the manufacturing process of the steel.
- the upper limit of the P content is preferably 0.030%, 0.025%, or 0.020%.
- the steel according to the present embodiment does not need P, and thus the lower limit of the P content is 0%; however, when the capability of a refining facility and the like are taken into account, the lower limit of the P content may be set to 0.001 %, 0.002%, or 0.003%.
- S is, similar to P, an impurity that is incorporated into the steel during the manufacturing process of the steel.
- S content exceeds 0.020%, S forms a large amount of MnS in the steel, and the toughness of the steel is degraded. Therefore, the S content is limited to 0.020% or less.
- the upper limit of the S content is preferably 0.015%, 0.012%, or 0.010%.
- the steel according to the present embodiment does not need S, and thus the lower limit of the S content is 0%; however, when the capability of a refining facility and the like are taken into account, the lower limit of the S content may be set to 0.001%, 0.002%, or 0.003%.
- the Cr has an action for enhancing the hardenability of the steel.
- the lower limit of the Cr content is set to 1.00%.
- the upper limit of the Cr content is set to 2.50%.
- the upper limit of the Cr content is preferably 2.40%, 2.30%, or 2.20%.
- the lower limit of the Cr content is preferably 1.30%, 1.40%, or 1.50%.
- the Cu is an effective element for improving the hardenability and corrosion resistance of the steel.
- the lower limit of the Cu content is set to 0.01%.
- the upper limit of the Cu content is set to 0.50%.
- the upper limit of the Cu content is preferably 0.40%, 0.30%, or 0.20%.
- the lower limit of the Cu content is preferably 0.02%, 0.03%, or 0.05%.
- Ni is an extremely effective element for improving the toughness of the steel and an essential element for increasing the toughness of the steel according to the present embodiment after quenching and tempering.
- the Ni content is less than 0.75%, it is difficult to sufficiently exhibit the effects.
- the Ni content is excessive, the amount of residual austenite is increased, and thus the low-temperature toughness is, conversely, degraded. Therefore, the upper limit of the Ni content is set to 1.60%.
- the upper limit of the Ni content is preferably 1.50%, 1.35%, or 1.20%.
- the lower limit of the Ni content is preferably 0.80%, 0.85%, or 0.90%.
- Mo has an effect for improving the low-temperature toughness of the steel. Mo miniaturizes cementite which acts as an origin of fracture and makes cementite harmless. In addition, Mo miniaturizes the block size of a martensite, decreases the ductile-brittle transition temperature of the steel, and thus prevents brittle fracture from easily occurring at a low temperature. When the Mo content is less than 0.10%, it is difficult to sufficiently exhibit the effects. On the other hand, when the Mo content exceeds 0.50%, the effect for improving toughness is saturated. Therefore, the Mo content is set to 0.10% to 0.50%. The upper limit of the Mo content is preferably 0.47%, 0.45%, or 0.42%. The lower limit of the Mo content is preferably 0.15%, 0.20%, or 0.25%.
- Al has an action for adjusting the crystal grain size of a metallographic structure and miniaturizing the metallographic structure when Al is precipitated as AlN.
- the Al content is less than 0.025%, it is not possible to obtain a sufficient miniaturizing effect, and thus the toughness of the steel is degraded.
- the Al content in the steel exceeds 0.050%, the amount of AlN precipitated is saturated, the number of alumina based non-metallic inclusions in the steel is increased, and the toughness of the steel is degraded. Therefore, the Al content is set to 0.025% to 0.050%.
- the upper limit of the Al content is preferably 0.045%, 0.042%, or 0.040%.
- the lower limit of the Al content is preferably 0.027%, 0.029%, or 0.030%.
- N has an action for precipitating AlN, which is effective for adjusting the crystal grain size of the metallographic structure, by bonding to Al.
- the N content is set to 0.0100% to 0.0200%.
- the upper limit of the N content is preferably 0.0180%, 0.0170%, or 0.0160%.
- the lower limit of the N content is preferably 0.0110%, 0.0120%, or 0.0130%.
- V 0.010% or less
- the V content, the Ti content and the Nb content are preferably small. This is because VN, NbC, and Ti(C, N) which are generated from V, Nb, and Ti degrade the low-temperature toughness of the steel.
- the present inventors found that, in order to prevent the degradation in the low-temperature toughness of the steel, it is necessary that to the V content is limited to 0.010% or less, the Ti content is limited 0.010% or less, and the Nb content is limited to 0.005% or less.
- the upper limit of the V content is preferably 0.009%, 0.007%, or 0.005%.
- the upper limit of the Ti content is preferably 0.009%, 0.007%, or 0.005%.
- the upper limit of the Nb content is preferably 0.004%, 0.003%, or 0.002%.
- the lower limits of the V content, the Ti content and the Nb content are 0%.
- the lower limit of the V content may be set to 0.003%, 0.002%, or 0.001%
- the lower limit of the Ti content may be set to 0.003%, 0.002%, or 0.001 %
- the lower limit of the Nb content may be set to 0.0010%, 0.0009%, or 0.0008%.
- the steel according to the present embodiment does not need Ca, Zr, and Mg. Therefore, the lower limits of the the Ca content, the Zr content, and the Mg content is 0%. However, all of Ca, Zr, and Mg have an effect for forming an oxide, acting as a crystallization nucleus of MnS, and uniformly and finely dispersing MnS so as to improve the impact value of the steel. Therefore, as an optional element, the steel may contain 0.0005% or more, 0.0010% or more, or 0.0015% or more of Ca, may contain 0.0005% or more, 0.0010% or more, or 0.0015% or more of Zr, and may contain 0.0005% or more, 0.0010% or more, or 0.0015% or more of Mg.
- the upper limits of each of the Ca content, the Zr content, and the Mg content is set to 0.0100% or less.
- the upper limit of the Ca content is preferably 0.0090%, 0.0070%, or 0.0050%
- the upper limit of the Zr content is preferably 0.0090%, 0.0070%, or 0.0050%
- the upper limit of the Mg content is preferably 0.0090%, 0.0070%, or 0.0050%.
- the remainder of the chemical composition of the steel according to the present embodiment consists of Fe and impurities.
- the impurities refer to elements which are incorporated by a raw material such as an ore or a scrap, or a variety of causes in the manufacturing process during the industrial manufacturing of the steel, and the impurities are permitted to an extent in which the steel according to the present embodiment is not adversely influenced.
- Ratio (Y value) of Al content to N content 2.6 or less
- the ratio (Y value) of the Al content to the N content is defined by the following Equation a.
- Y Al / N
- symbols in parentheses represent the amounts of elements relating to the symbols, by unit mass%.
- AlN has an effect for miniaturizing crystal grains and improving the low-temperature toughness of the steel.
- the ratio (Y value) of the Al content to the N content in the steel exceeds 2.6, the number of alumina based non-metallic inclusions in the steel is increased, and the steel becomes brittle, and thus, conversely, the low-temperature toughness is degraded. Therefore, the Y value is set to 2.6 or less.
- the upper limit of the Y value is preferably 2.55, 2.50, or 2.45.
- the lower limit of the Y value is not particularly limited; however, when the lower limit of the Al content and the upper limit of the N content which are described above are taken into account, the Y value does not become less than 1.25.
- the present inventors obtained the above described finding from an experiment that will be described below.
- the present inventors carried out quenching and tempering on a variety of steels having properties other than the Y value which are all in the specification ranges of the steel according to the present embodiment and different Y values under the following conditions and then carried out a Charpy impact test at -20°C.
- the present inventors obtained a graph showing the relationship between the Y value and the impact value at -20°C ( Fig. 1 ). As shown in Fig. 1 , steels having a Y value of more than 2.6 did not have sufficient low-temperature toughness after quenching and tempering.
- Ratio (Z value) of Mn content to Ni content 1.5 or more and 3.0 or less
- the ratio (Z value) of the Mn content to the Ni content is defined by the following Equation b.
- Z Mn / Ni
- Ni improves the low-temperature toughness of the steel.
- the ratio (Z value) of the Mn content to the Ni content in the steel is less than 1.5, the number of residual austenite is increased, and the low-temperature toughness of the steel is impaired.
- the Z value exceeds 3.0 the ratio of the amount of solute Mn to the Ni content becomes excessive, the effect of Ni for improving low-temperature toughness is negated, the steel becomes brittle, and the low-temperature toughness is degraded. Therefore, the Z value is set to 1.5 or more and 3.0 or less.
- the upper limit of the Z value is preferably 2.9, 2.8, or 2.7.
- the lower limit of the Z value is preferably 1.6, 1.7, or 1.8.
- the present inventors obtained the above described finding from an experiment that will be described below.
- the present inventors carried out quenching and tempering on a variety of steels having properties other than the Z value which are all in the specification ranges of the steel according to the present embodiment and different Z values under the following conditions and then carried out a Charpy impact test at -20°C.
- the present inventors obtained a graph showing the relationship between the Z value and the impact value at -20°C ( Fig. 2 ). As shown in Fig. 2 , steels having a Z value of less than 1.5 or more than 3.0 did not have sufficient low-temperature toughness after quenching and tempering.
- the number density of AlN, the grain diameters, the dispersion state, and the like in the steel change depending on the conditions of a heat treatment (for example, quenching and tempering) that is carried out on the steel.
- a heat treatment for example, quenching and tempering
- AlN effectively functions during quenching and tempering under conditions which is selected so as to set a tensile strength of the steel to 1,200 MPa or more, and the toughness of the steel is improved.
- the object of the steel according to the present embodiment is to set a Charpy impact value at -20°C of the steel to 75 J/cm 2 or more after a heat treatment is carried out on the steel so that the tensile strength reaches 1,200 MPa, but the control of the state of AlN is not necessary to achieve the object of the steel according to the present embodiment. Therefore, in the steel according to the present embodiment, the state of AlN is not particularly specified. Meanwhile, from the result of the experiment, the present inventors assume that, when the steel is heated to 850°C to 900°C, AlN is preferably precipitated regardless of the state of the steel before heating, and, when the steel in this state is cooled, the structure is preferably miniaturized due to AlN.
- the steel according to the present embodiment is particularly preferably used as steel for quenching.
- the average grain size of cementite is 0.05 ⁇ m or less
- the average size of martensite blocks is 5.5 ⁇ m or less
- the amount of residual austenite is 5% or less.
- the steel according to the present embodiment contains 0.08% or more of C and thus has a tensile strength of 1,200 MPa or more when the heat treatment under the above described quenching and tempering conditions is carried out thereon.
- the tensile strength of the steel is 1,200 MPa or more, the low-temperature toughness (particularly, low-temperature toughness) is impaired.
- the steel according to the present embodiment contains 0.025% to 0.050% of Al, 0.0100% to 0.0200% of N, and 0.10% to 0.50% of Mo, and thus, even when the heat treatment under the above-described quenching and tempering conditions is carried out thereon, martensite blocks and cementite are sufficiently miniaturized, and the steel has the high low-temperature toughness.
- the steel according to the present embodiment contains 0.75% to 1.60% or Ni and thus has the high low-temperature toughness even when the heat treatment under the above-described quenching and tempering conditions is carried out thereon.
- the ratio of the Al content to the N content and the ratio of the Ni content and the Mn content are controlled, and thus the low-temperature toughness is not impaired.
- the V content is controlled to 0.010% or less
- the Ti content is controlled to 0.010% or less
- the Nb content is controlled to 0.005% or less, and thus, even when the heat treatment under the above described quenching and tempering conditions is carried out on the steel, the precipitation of inclusions is suppressed, and the steel has the high low-temperature toughness.
- quenching and tempering treatment according to the above described conditions is simply an example of the use of the steel according to the present embodiment.
- a heat treatment under random conditions can be carried out on the steel according to the present embodiment.
- the properties of the steel according to the present embodiment on which the heat treatment is carried out on the basis of an example of the above described quenching and tempering conditions do not limit the technical scope of the steel according to the present embodiment.
- the object of the steel according to the present embodiment is to obtain a Charpy impact value at -20°C of 75 J/cm 2 or more after a heat treatment is carried out so that the tensile strength reaches 1,200 MPa or more.
- the steel according to the present embodiment has a high tensile strength and an excellent low-temperature toughness after quenching and tempering and is thus capable of exhibiting particularly excellent effects, when the steel according to the present embodiment is used as a material for chains for mooring offshore oil-drilling rigs.
- V-notch Charpy impact test pieces were produced from a 1/4D portion (a region at a depth of approximately 1/4 of a diameter D of the round steel bar from the surface of the round steel bar) of a C cross section of this round steel bar.
- a tensile test was carried out at normal temperature and a rate of 20 mm/min according to JIS Z 2241.
- a Charpy impact test was carried out at -20°C according to JIS Z 2242.
- a 10 mm x 10 mm sample was cut out from the 1/4D portion of the C cross section of the quenched and tempered round steel bar, the cross section of the sample was corroded with a nital etching solution, five structural photographs of the cross section of the sample were captured using a scanning electron microscope at a magnification of 5,000 times, and the average grain size of the cementite included in the photographs was obtained by means of an image analysis using Luzex (registered trademark) and considered as the average grain size of cementite in the round steel bar.
- Luzex registered trademark
- Table 1-1, Table 1-2, and Table 2 show the chemical compositions of example steels and comparative example steels
- Table 2 shows the tensile strengths, the impact values, the average grain sizes of cementite, the average sizes of martensite blocks, and the amounts of residual austenite in the example steels and the comparative example steels after quenching and tempering under the above described conditions were carried out.
- Table 1-2 values outside the specification ranges of the present invention are underlined.
- Comparative Example No. 24 the C content was insufficient, and thus a necessary tensile strength could not be obtained after quenching and tempering.
- Comparative Example No. 25 the C content was excessive, and thus the tensile strength became excessively high after quenching and tempering, and the low-temperature toughness was insufficient.
- Comparative Example No. 26 the Si content was excessive, in Comparative Example No. 27, the Mn content was excessive, and, in Comparative Example No. 34, the Cr content was excessive. These excessive Si, Mn, and Cr degraded the toughness of the steel, and thus the low-temperature toughness was insufficient in Comparative Examples Nos. 26, 27, and 34 after quenching and tempering.
- Comparative Example No. 35 the Ni content was insufficient, and the effect of Ni for improving low-temperature toughness was small, and thus the low-temperature toughness was insufficient.
- Comparative Example No. 36 the Ni content was large, and the amount of residual austenite increased after quenching and tempering, and thus the low-temperature toughness was insufficient after quenching and tempering.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Claims (2)
- Ein Stahl, umfassend, in der Einheit Massen-%,
C: 0,08% bis 0,12%;
Si: 0,05 % bis 0,50 %;
Mn: 1,50% bis 3,00%;
P: 0,040% oder weniger;
S: 0,020% oder weniger;
V: 0,010% oder weniger;
Ti: 0,010% oder weniger;
Nb: 0,005% oder weniger;
Cr: 1,00 % bis 2,50 %;
Cu: 0,01% bis 0,50%;
Ni: 0,75 % bis 1,60 %;
Mo: 0,10% bis 0,50%,
Al: 0,025% bis 0,050%;
N: 0,0100% bis 0,0200%;
Ca: 0% bis 0,0100%;
Zr: 0% bis 0,0100%;
Mg: 0% bis 0,0100%; und
den Rest bestehend aus Fe und Verunreinigungen,
wobei ein Y-Wert, definiert durch die Gleichung (a), 2,6 oder weniger beträgt, und
ein Z-Wert, definiert durch die Gleichung (b), 1,5 oder mehr und 3,0 oder weniger beträgt, - Der Stahl nach Anspruch 1, umfassend, in Einheit Massen-%, eines oder mehrere ausgewählt aus der Gruppe bestehend aus
Ca: 0,0005% bis 0,0100%;
Zr: 0,0005% bis 0,0100%; und
Mg: 0,0005% bis 0,0100%.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/054853 WO2017141425A1 (ja) | 2016-02-19 | 2016-02-19 | 鋼 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3418412A1 EP3418412A1 (de) | 2018-12-26 |
EP3418412A4 EP3418412A4 (de) | 2019-08-21 |
EP3418412B1 true EP3418412B1 (de) | 2021-04-07 |
Family
ID=59624857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16890566.9A Active EP3418412B1 (de) | 2016-02-19 | 2016-02-19 | Stahl nützlich als material für ketten |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200165711A1 (de) |
EP (1) | EP3418412B1 (de) |
JP (1) | JP6590001B2 (de) |
KR (1) | KR102113045B1 (de) |
CN (1) | CN108603259B (de) |
WO (1) | WO2017141425A1 (de) |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822361A (ja) | 1981-07-31 | 1983-02-09 | Nippon Steel Corp | フラッシュバット溶接性のすぐれた高張力鋼 |
SE430424B (sv) | 1981-11-24 | 1983-11-14 | Uddeholms Ab | Ketting |
JPS59159972A (ja) | 1983-03-02 | 1984-09-10 | Sumitomo Metal Ind Ltd | 高強度高靭性チエ−ン用鋼材 |
JPS59159969A (ja) | 1983-03-03 | 1984-09-10 | Sumitomo Metal Ind Ltd | 高強度高靭性チエ−ン用鋼材 |
JPS62202052A (ja) | 1986-02-28 | 1987-09-05 | Sumitomo Metal Ind Ltd | 高強度高破壊靭性チエ−ン用鋼材 |
JPS63203752A (ja) | 1987-02-18 | 1988-08-23 | Sumitomo Metal Ind Ltd | 高強度低降伏比チエ−ン用鋼材 |
JP2001073033A (ja) * | 1999-09-03 | 2001-03-21 | Nisshin Steel Co Ltd | 局部延性に優れた中・高炭素鋼板の製造方法 |
JP3508715B2 (ja) * | 2000-10-20 | 2004-03-22 | 住友金属工業株式会社 | 高Cr鋼鋳片および継目無鋼管 |
JP4677714B2 (ja) * | 2003-05-15 | 2011-04-27 | 住友金属工業株式会社 | 海浜耐候性に優れた橋梁用鋼材およびそれを用いた構造物 |
EP1683885B1 (de) * | 2003-10-31 | 2013-05-29 | JFE Steel Corporation | Rohr aus hochfestem nichtrostendem stahl mit hervorragender korrosionsbeständigkeit und herstellungsverfahren dafür |
DE502004003457D1 (de) * | 2004-02-05 | 2007-05-24 | Edelstahlwerke Suedwestfalen G | Stahl zur Herstellung von hochfesten Bauteilen mit herausragender Tieftemperaturzähigkeit und Verwendungen eines solchen Stahls |
JP4408386B2 (ja) * | 2004-04-19 | 2010-02-03 | 新日本製鐵株式会社 | 結晶粒の微細な複合組織高張力鋼 |
DE102005034140A1 (de) * | 2005-07-19 | 2007-01-25 | Rud-Kettenfabrik Rieger & Dietz Gmbh U. Co. | Hochfeste Stahlkette für den Tieftemperaturbereich |
JP4381355B2 (ja) * | 2005-07-22 | 2009-12-09 | 新日本製鐵株式会社 | 耐遅れ破壊特性に優れた引張強さ1600MPa級以上の鋼およびその成型品の製造方法 |
EP2010754A4 (de) * | 2006-04-21 | 2016-02-24 | Shell Int Research | Einstellende legierungszusammensetzungen für ausgewählte eigenschaften in temperaturbegrenzten heizern |
ES2576453T3 (es) * | 2007-04-13 | 2016-07-07 | Sidenor Investigación Y Desarrollo, S.A. | Acero endurecido y revenido y procedimiento de obtención de piezas de dicho acero |
JP5145793B2 (ja) * | 2007-06-29 | 2013-02-20 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
KR101042434B1 (ko) * | 2007-10-29 | 2011-06-16 | 현대제철 주식회사 | 냉연강판 및 그의 제조방법 |
JP5669339B2 (ja) * | 2007-11-02 | 2015-02-12 | 山陽特殊製鋼株式会社 | 高強度浸炭部品の製造方法 |
KR101482258B1 (ko) * | 2007-12-26 | 2015-01-13 | 주식회사 포스코 | 열간성형 가공성이 우수한 고강도 열연강판 및 이를 이용한성형품 및 그 제조방법 |
JP5176885B2 (ja) * | 2008-11-10 | 2013-04-03 | 新日鐵住金株式会社 | 鋼材及びその製造方法 |
BR112013001864B1 (pt) * | 2010-07-28 | 2019-07-02 | Nippon Steel & Sumitomo Metal Corporation | Chapa de aço laminada a quente, chapa de aço laminada a frio, chapa de aço galvanizada e método de produção das mesmas |
KR101355321B1 (ko) * | 2010-10-06 | 2014-01-23 | 신닛테츠스미킨 카부시키카이샤 | 표면경화강 및 그 제조 방법 |
JP2012149277A (ja) * | 2011-01-17 | 2012-08-09 | Daido Steel Co Ltd | プラスチック成形金型用鋼の製造方法 |
CN103492600B (zh) * | 2011-04-27 | 2015-12-02 | 新日铁住金株式会社 | 热冲压部件用钢板及其制造方法 |
EP2690184B1 (de) * | 2012-07-27 | 2020-09-02 | ThyssenKrupp Steel Europe AG | Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung |
CN103060678B (zh) * | 2012-12-25 | 2016-04-27 | 钢铁研究总院 | 一种中温形变纳米奥氏体增强增塑钢及其制备方法 |
CA3023415A1 (en) * | 2013-01-11 | 2014-10-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Weld metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding |
JP6226542B2 (ja) * | 2013-03-22 | 2017-11-08 | 株式会社神戸製鋼所 | 溶接熱影響部の靭性に優れた鋼材 |
-
2016
- 2016-02-19 US US16/071,283 patent/US20200165711A1/en not_active Abandoned
- 2016-02-19 EP EP16890566.9A patent/EP3418412B1/de active Active
- 2016-02-19 KR KR1020187022742A patent/KR102113045B1/ko active IP Right Grant
- 2016-02-19 CN CN201680081304.2A patent/CN108603259B/zh active Active
- 2016-02-19 JP JP2017567914A patent/JP6590001B2/ja active Active
- 2016-02-19 WO PCT/JP2016/054853 patent/WO2017141425A1/ja active Application Filing
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
KR102113045B1 (ko) | 2020-05-20 |
JP6590001B2 (ja) | 2019-10-16 |
KR20180099881A (ko) | 2018-09-05 |
EP3418412A4 (de) | 2019-08-21 |
WO2017141425A1 (ja) | 2017-08-24 |
US20200165711A1 (en) | 2020-05-28 |
CN108603259B (zh) | 2020-11-06 |
JPWO2017141425A1 (ja) | 2018-11-08 |
CN108603259A (zh) | 2018-09-28 |
EP3418412A1 (de) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2980250B1 (de) | Abriebfeste stahlplatte mit ausgezeichneter niedertemperaturzähigkeit und verfahren zu ihrer herstellung | |
EP2942415B1 (de) | Abriebfeste stahlplatte mit tieftemperaturzähigkeit und beständigkeit gegen wasserstoffversprödung sowie herstellungsverfahren dafür | |
CN110546290B (zh) | 奥氏体系耐磨钢板 | |
CN111727267B (zh) | 奥氏体耐磨钢板 | |
EP2799571B1 (de) | Austenitischer stahl mit hervorragender bearbeitbarkeit und tieftemperaturzähigkeit in den von schweisshitze betroffenen zonen, und herstellungsverfahren dafür | |
JP2007031734A (ja) | 耐遅れ破壊特性に優れた高強度ボルトおよびその製造方法 | |
WO2006054430A1 (ja) | マルテンサイト系ステンレス鋼 | |
EP3418411B1 (de) | Stahl als material für ketten | |
JP7135465B2 (ja) | 耐摩耗厚鋼板 | |
WO2017154930A1 (ja) | 耐水素誘起割れ性に優れた高強度平鋼線 | |
WO2017145766A1 (ja) | 強度-低温靱性バランスに優れたCu含有低合金鋼およびその製造方法 | |
JP4645307B2 (ja) | 低温靭性に優れた耐摩耗鋼およびその製造方法 | |
WO2016079922A1 (ja) | 油井用高強度ステンレス継目無鋼管の製造方法 | |
JP6206423B2 (ja) | 低温靭性に優れた高強度ステンレス厚鋼板およびその製造方法 | |
EP3418412B1 (de) | Stahl nützlich als material für ketten | |
JP4952708B2 (ja) | マルテンサイト系ステンレス鋼およびその製造方法 | |
JP4645306B2 (ja) | 低温靭性に優れた耐摩耗鋼およびその製造方法 | |
JP2009024213A (ja) | 破断分離性に優れる高炭素鋼およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180816 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NIPPON STEEL CORPORATION |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20190719 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/00 20060101AFI20190715BHEP Ipc: C22C 38/58 20060101ALI20190715BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200331 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016055895 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C22C0038000000 Ipc: C22C0038020000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/18 20060101ALI20200826BHEP Ipc: C22C 38/46 20060101ALI20200826BHEP Ipc: C22C 38/48 20060101ALI20200826BHEP Ipc: C22C 38/04 20060101ALI20200826BHEP Ipc: C21D 9/46 20060101ALN20200826BHEP Ipc: C22C 38/00 20060101ALI20200826BHEP Ipc: C22C 38/06 20060101ALI20200826BHEP Ipc: C22C 38/58 20060101ALI20200826BHEP Ipc: C22C 38/44 20060101ALI20200826BHEP Ipc: C22C 38/40 20060101ALI20200826BHEP Ipc: C22C 38/02 20060101AFI20200826BHEP Ipc: C22C 38/50 20060101ALI20200826BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/48 20060101ALI20200923BHEP Ipc: C21D 9/46 20060101ALN20200923BHEP Ipc: C22C 38/46 20060101ALI20200923BHEP Ipc: C22C 38/18 20060101ALI20200923BHEP Ipc: C22C 38/00 20060101ALI20200923BHEP Ipc: C22C 38/04 20060101ALI20200923BHEP Ipc: C22C 38/44 20060101ALI20200923BHEP Ipc: C22C 38/50 20060101ALI20200923BHEP Ipc: C22C 38/58 20060101ALI20200923BHEP Ipc: C22C 38/06 20060101ALI20200923BHEP Ipc: C22C 38/02 20060101AFI20200923BHEP Ipc: C22C 38/40 20060101ALI20200923BHEP |
|
INTG | Intention to grant announced |
Effective date: 20201022 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1379775 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016055895 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210407 Ref country code: AT Ref legal event code: MK05 Ref document number: 1379775 Country of ref document: AT Kind code of ref document: T Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210708 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210809 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016055895 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016055895 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220219 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220219 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220901 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231228 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |