EP3414406A1 - Rückbaufähiges wärmedämmverbundsystem und verfahren zu dessen herstellung und entfernung - Google Patents
Rückbaufähiges wärmedämmverbundsystem und verfahren zu dessen herstellung und entfernungInfo
- Publication number
- EP3414406A1 EP3414406A1 EP17705794.0A EP17705794A EP3414406A1 EP 3414406 A1 EP3414406 A1 EP 3414406A1 EP 17705794 A EP17705794 A EP 17705794A EP 3414406 A1 EP3414406 A1 EP 3414406A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- thermal insulation
- reinforcing layer
- composite system
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 129
- 239000002131 composite material Substances 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 27
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 72
- 239000011505 plaster Substances 0.000 claims abstract description 34
- 239000011248 coating agent Substances 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 193
- 239000000758 substrate Substances 0.000 claims description 36
- 239000004744 fabric Substances 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 7
- 239000003365 glass fiber Substances 0.000 claims description 5
- 239000011490 mineral wool Substances 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 4
- 239000012790 adhesive layer Substances 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 abstract description 6
- 239000004566 building material Substances 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000004567 concrete Substances 0.000 description 2
- 239000002920 hazardous waste Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/762—Exterior insulation of exterior walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/762—Exterior insulation of exterior walls
- E04B1/7629—Details of the mechanical connection of the insulation to the wall
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/02—Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/02—Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
- E04F13/04—Bases for plaster
Definitions
- the invention relates to a composite thermal insulation system comprising at least one heat-insulating sheath, at least one base coat layer applied to the thermal insulation layer, at least one reinforcing layer embedded or applied in or on the base plaster layer and at least one final coating ending the exterior of the thermal insulation composite system.
- the invention relates to a retrofittable and / or recyclable thermal insulation composite system and its production.
- the invention also relates to a method for producing a thermal insulation composite system, in particular a Wegbaudiren and / or recyclable ontodämmve bund system, preferably on a building wall, wherein on a substrate surface, in particular a building wall, a heat insulation layer is applied, then a GrundputzSchicht is applied to the heat insulation layer , Then embedded in or on the Grundputz slaughter a reinforcing layer and / or applied and the completion of the thermal insulation composite system to the outside a
- building wall may refer in the context of the invention in particular to a floor surface, a roof surface and / or a wall surface of a building.
- the invention also relates to a method for removing a mounted on a building wall thermal insulation composite system of the building wall.
- the subject of energy saving has not only become significant since the energy transition.
- thermal insulation composite systems In order to be able to heat buildings more energy- and resource-efficient, much has been invested in the thermal insulation of buildings in recent years.
- thermal insulation composite systems In order to be able to heat buildings more energy- and resource-efficient, much has been invested in the thermal insulation of buildings in recent years.
- thermal insulation composite systems to the exterior of building walls has resulted in reduced transmission heat loss.
- conventional thermal insulation composite systems have been used for this purpose which, although they allow adequate thermal insulation of the buildings, nevertheless bring about the disadvantages that have hitherto been less noticed.
- Thermal insulation composite systems used building materials in the recycling cycle is usually uneconomical or simply no longer possible.
- the building materials used themselves are often not recyclable and on the other hand, the building materials are often connected to each other, in particular glued, so that a separation into the possibly recyclable individual building materials is no longer reachable. For this reason, especially for the disposal of dismantled conventional thermal insulation composite systems can incur high costs.
- the prevented building materials are often uneconomical or simply no longer possible.
- the building materials used themselves are often not recyclable and on the other hand, the building materials are often connected to each other, in particular glued, so that a separation into the possibly recyclable individual building materials is no longer reachable. For this reason, especially for the disposal of dismantled conventional thermal insulation composite systems can incur high costs.
- the prevented thermal insulation composite systems can incur high costs.
- the invention proposes to solve the problem that the reinforcing layer - especially in the finished processed (ie installed) state - at least one protruding part and / or an attack point to the armor layer by means of a power transmission to the protruding part and / or the point of attack together with the / the plaster layer surrounding the reinforcing layer / plaster layers, in particular the base plaster layer and / or the final coating, to be able to detach from the thermal insulation layer attached to a substrate.
- the substrate is a building wall, in particular a wall made of masonry or concrete, or an existing thermal insulation composite system, or at least the Dämmmaterial für thereof, on masonry or concrete. Due to the structure of the invention
- Thermal insulation composite system it is possible to separate the assembled layers of the thermal insulation composite system almost without residue from each other, so that they are traceable to the recycling cycle.
- the reinforcing layer can be removed, in particular stripped, together with the base plaster layer and all other layers applied to the base plaster layer. It can be provided that the thereby crumbling plaster is collected, whereby this is also recyclable.
- the heat-insulating material layer in the assembled state in particular exclusively by means of pin-like, preferably detachable and / or non-temperature-conductive, connecting elements attached to the substrate or attachable.
- Suitable fasteners may be, for example, screws, nails and / or rivets.
- the connecting elements are arranged sunk, so that an outwardly projecting side of each connecting element with a surface of the
- a particularly advantageous embodiment of the thermal insulation composite system according to the invention can provide that the reinforcing layer is made of a fabric, in particular of a tear-resistant fabric. It may be particularly advantageous if the reinforcing layer is configured from a glass fiber fabric. In order to achieve the best possible transfer of force and a uniform detachment of the reinforcing layer from the thermal insulation layer, it may be advantageous if the reinforcing layer is made at least partially from one or more fabric webs.
- the detachment takes place according to the invention preferably along the substrate applied to the thermal insulation composite system, the force or force transmission preferably at an angle of at least 10 or 20 or 30 or 40 or 50 or more degrees relative to the surface of the substrate, in particular substantially perpendicular thereto.
- the force or force transmission preferably at an angle of at least 10 or 20 or 30 or 40 or 50 or more degrees relative to the surface of the substrate, in particular substantially perpendicular thereto.
- at least one dimension of the reinforcing layer is greater in at least one direction than the corresponding dimension in this direction of at least one or all other layers of the thermal insulation composite system.
- at least a part of the reinforcing layer projects in the assembled state relative to at least one of the further layers of the thermal insulation composite system.
- At least the protruding part and / or the point of application of the reinforcing layer is not embedded or applied in or on the base plaster layer in the assembled state of the thermal insulation composite system.
- at least the protruding part and / or the point of attack is easier, in particular with a tool, grab or reach to transmit a force, in particular a tensile force, to the reinforcing layer.
- the protruding part and / or the point of application of the reinforcing layer is / are arranged at one end of a reinforcing layer designed as a fabric web.
- a particularly stable and yet easy to dismantle embodiment of the thermal insulation composite system according to the invention can provide that the GrundputzSchicht has a total layer thickness between 3 mm and 10 mm, in particular between 5 mm and 8 mm.
- the thermal insulation composite system according to the invention can therefore have the advantage over previously known thermal insulation composite systems that all components of the heat insulation composite system mounted on the substrate in the installed state can be rebuilt and / or recycled. It may be particularly advantageous if the thermal insulation layer is at least partially made of mineral wool.
- the thermal insulation layer is not adhesively attached to the substrate and / or, preferably exclusively, attached to the substrate by means of pin-like, in particular detachable and / or non-temperature-conductive, connecting elements becomes.
- the substrate is a building wall.
- Particularly suitable fasteners may be, for example, screws, nails and / or rivets.
- the Fasteners recessed mounted.
- the heat insulation layer is not attached to the substrate cohesively, the heat insulation layer can be completely removed without residue from the substrate, it should be necessary to dismantle a produced by the inventive process thermal insulation system.
- This has the advantage that a complex removal of the bonded thermal insulation layer is eliminated and the individual components of the thermal insulation composite system produced by the method according to the invention are easier to separate.
- a further, in particular independent, inventive proposal for achieving the above-mentioned object can provide that the reinforcing layer has an attack point in the assembled state and / or in at least one area relative to at least one, in particular the heat insulation layer and / or the base coat layer, or all Layers of the thermal insulation composite system is mounted projecting. It may be advantageous if the attack site is formed by the protruding part. By the attack point and / or the protruding part of a power transmission, in particular a tensile force can be exerted on the reinforcing layer. This can be done for example by tools and / or only with the hands.
- a first partial layer is first applied for application of the base plaster layer, then the reinforcing layer is applied to the first partial layer, and then the second partial layer is applied to the reinforcing layer, whereby the reinforcing layer is embedded between the two sublayers of the primer layer.
- the substrate is initially provided with holes, in each case a dowel is used and attached the heat insulation layer with screws screwed into the dowel screws on the ground becomes.
- the screws used are not designed to be heat-conductive, for example by coating or using a non-heat-conducting material, such as plastic.
- the screws can be recessed or be attached. So that the protruding part and / or the point of attack does not adversely affect the overall aesthetic impression of a surface clad with the thermal insulation system / and / or to avoid a possibly unwanted force on the protruding part and / or the point of attack, it may be advantageous if the reinforcing layer is attached to the substrate in such a way that its roof-side end and / or its bottom-side end project / protrude.
- the protruding part is covered by a roof edge and / or by a base closure. It can thereby be achieved that, in an assembled state of the thermal insulation composite system produced by means of the method according to the invention, the protruding part and / or the point of engagement is shielded, and therefore imperceptible especially to an untrained eye. This makes it possible to avoid vandalism by misuse of the rebuild function of the thermal insulation composite system according to the invention.
- a building wall or a part thereof is to be insulated, which has a window
- the base plaster is applied in a total layer thickness of between 3 mm and 10 mm, in particular between 5 mm and 8 mm.
- the thermal insulation layer is at least partially made of mineral wool.
- the reinforcement layer of a thermal insulation composite system is of crucial importance for the quality of the entire insulation system. As a rule, it ensures an areal distribution of tensions from the plaster, whereby, for example, cracks in the base plaster layer and / or the final coating can be avoided. These cracks can be caused, for example, by the fact that the individual plaster layers of the external thermal insulation composite system cure at different speeds, whereby tensile stresses arise with a corresponding risk of cracking.
- the reinforcing layer assumes a further object.
- the reinforcing layer is made of a fabric, in particular a tear-resistant fabric.
- the reinforcing layer is at least partially made of fabric webs.
- a particularly suitable fabric may be, for example, a glass fiber fabric.
- the invention also relates to a method for removing a heat-insulating composite system mounted on a substrate, in particular a composite thermal insulation system according to the invention as described and claimed herein and / or a thermal insulation composite system produced by the inventive method, as described and claimed herein, from the substrate ,
- a force in particular a tensile force
- a protruding part and / or on a point of application of a reinforcing layer preferably all of the plaster layers surrounding the reinforcing layer are detached from an underlying thermal insulating layer of the external thermal insulation composite system.
- a heat-insulating layer applied to the substrate in particular completely, can be separated from a base-coat layer and / or adhesive layer applied to this heat-insulating-material layer.
- one or the thermal insulation layer is removed from the substrate by releasing one or more connecting elements, in particular removed without residue.
- the connecting elements may be, for example, screws, nails and / or rivets.
- Fig. 3 shows the embodiment of Figures 1 and 2, wherein by applying force to the reinforcing layer, the plaster layers are detached from the thermal insulation layer.
- a specific embodiment of a thermal insulation composite system is shown, which is referred to as a whole as 1.
- the thermal insulation composite system 1 according to the invention is attached to a substrate.
- the underground is here a building wall 8, which consists of masonry.
- the inventive thermal insulation composite system 1 has a heat insulation layer 2, which is fixed or fixable by screwing to the building wall 8.
- the building wall was provided with boreholes in which dowels 11 were used or can be used.
- the thermal insulation layer 2 is fixed or fixable by screwing the screws 10 in the dowel 11 through the thermal insulation layer on the building wall 8.
- a first partial layer 12 of a base plaster layer 3 is applied.
- a reinforcing layer 4 is applied to the first partial layer 12 of the base plaster layer 3.
- a second sub-layer 13 of the base coat layer 3 which is applied to the reinforcing layer 14, the reinforcing layer is thus embedded in the base coat layer 3.
- a final coating 5 is also applied, which serves to complete the external thermal insulation composite system 1 to the outside.
- the top coat 5 may for example be a suitable finishing coat.
- the reinforcing layer 4 of the thermal insulation composite system 1 according to the invention has at least one protruding part 6.
- the protruding part 6 forms in the embodiment according to the figures 1 to 3 an attack point 7.
- the reinforcing layer 4 with together with the reinforcing layer 4 surrounding plaster layers 3, 5 are detached from the attached to the building wall 8 heat insulation layer 2.
- the heat insulation layer 2 is fixed or fixable in the assembled state, as can be seen in Figure 1, only by means of the connecting elements formed as screws 10 9 on the building wall.
- there is no cohesive connection for example by gluing.
- the detachable connecting elements 9 can therefore be easily removed if necessary, whereby the fixation of the thermal insulation layer on the building wall can be canceled.
- the reinforcing fabric 4 is in the embodiment according to the figures 1 to 3 of a tear-resistant fabric.
- a suitable tissue may be, for example, a glass fiber fabric.
- the fabric is designed as a continuous fabric web, so that a withdrawal as a whole, in particular along an overall extent of the building wall 8, is possible.
- the longitudinal dimension of the fabric layer formed as a reinforcement layer 4 is longer than the corresponding dimension of all remaining layers 2, 3, 5 of the thermal insulation system 1 and / or Building wall 8. Therefore, the point of attack 7 of the reinforcing layer 4 is not embedded or applied in or on the base plaster layer 3 in the assembled state.
- the total layer thickness 16 of the base plaster layer 3 is between 5 mm and 8 mm. All components of the mounted in the installed state on the building wall 8 thermal insulation system 1 are rebuilt and / or recyclable.
- the thermal insulation layer 2 is at least partially made of mineral wool. Furthermore, it may be expedient if the thermal insulation layer 2 is formed of several, mutually adjacent insulation slats.
- FIG. 3 shows how the reinforcing layer 4, together with all the plaster layers 3, 5 surrounding the reinforcing layer 4, is peeled off or can be pulled off by the heat insulating material layer 2 fixed or fixable on the building wall 8 by exerting force on the reinforcing layer 4 at the point of application.
- an almost complete removal of all plaster layers from the thermal insulation layer 2 can be achieved, so that the individual components of the thermal insulation composite system 1 according to the invention are more easily separable and can thus be returned to the recycling loop.
- the reinforcing layer 4 may be advantageous if the protruding part 6 at one end, in particular at a longitudinal end, the reinforcing layer 4 is arranged. Furthermore, provision may be made for the reinforcing layer 4 to have two or more engagement points 7. As can be seen in FIGS. 1 to 3, the reinforcing layer 4 has an engagement point 7 arranged on the roof-side end 17 and on the bottom-side end 18.
- the trained as projecting part 6 attack points 7 can for example be covered by a roof edge and a base closure or be covered. Furthermore, it can be provided that these in the region of a window are arranged or can be arranged under a sill and / or on or in a roller shutter box or are covered by it or can be covered.
- the thermal insulation composite system 1 After deducting the reinforcing layer 4 of the thermal insulation layer 2, the thermal insulation composite system 1 by removing the Kauselernente 9 and removing the thermal insulation layer 2 of the building wall 8 completely be dismantled. Due to the inventive design of the thermal insulation composite system 1, it is also possible to separate the individual components of the thermal insulation composite system 1 almost without residue from each other, so that little or no hazardous waste in the disposal of the thermal insulation composite system 1 according to the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Building Environments (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
- Processing Of Solid Wastes (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17705794T PL3414406T3 (pl) | 2016-02-12 | 2017-02-09 | Demontowalny system zespolonej izolacji cieplnej i sposób jego wytwarzania i usuwania |
SI201730317T SI3414406T1 (sl) | 2016-02-12 | 2017-02-09 | Kompozitni toplotno izolacijski sistem, ki ga je mogoče odstraniti in postopek njegove izdelave in odstranjevanja |
RS20200803A RS60584B1 (sr) | 2016-02-12 | 2017-02-09 | Demontažni kompozitni sistem toplotne izolacije i postupak za njegovu proizvodnju i uklanjanje |
HRP20201037TT HRP20201037T1 (hr) | 2016-02-12 | 2020-07-01 | Kompozitni sustav toplinske izolacije koji se može rastaviti i postupak za njegovu proizvodnju i uklanjanje |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016001563.2A DE102016001563A1 (de) | 2016-02-12 | 2016-02-12 | Rückbaufähiges Wärmedämmverbundsystem und Verfahren zu dessen Herstellung und Entfernung |
PCT/EP2017/000183 WO2017137164A1 (de) | 2016-02-12 | 2017-02-09 | Rückbaufähiges wärmedämmverbundsystem und verfahren zu dessen herstellung und entfernung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3414406A1 true EP3414406A1 (de) | 2018-12-19 |
EP3414406B1 EP3414406B1 (de) | 2020-04-15 |
Family
ID=58057081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17705794.0A Active EP3414406B1 (de) | 2016-02-12 | 2017-02-09 | Rückbaufähiges wärmedämmverbundsystem und verfahren zu dessen herstellung und entfernung |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP3414406B1 (de) |
CN (1) | CN108699835B (de) |
BR (1) | BR112018015930B1 (de) |
CL (1) | CL2018002289A1 (de) |
CY (1) | CY1123131T1 (de) |
DE (2) | DE102016001563A1 (de) |
DK (1) | DK3414406T3 (de) |
ES (1) | ES2802427T3 (de) |
HR (1) | HRP20201037T1 (de) |
HU (1) | HUE050139T2 (de) |
LT (1) | LT3414406T (de) |
PL (1) | PL3414406T3 (de) |
PT (1) | PT3414406T (de) |
RS (1) | RS60584B1 (de) |
RU (1) | RU2734410C2 (de) |
SA (1) | SA518392169B1 (de) |
SI (1) | SI3414406T1 (de) |
WO (1) | WO2017137164A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111780200B (zh) * | 2020-06-30 | 2021-03-02 | 厦门经济特区房地产开发集团有限公司 | 一种实现温泉石板功能的高效导热型飘窗 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3444815A1 (de) * | 1984-12-08 | 1986-06-12 | Wolfgang 4600 Dortmund Nohlen | Gebaeudewand- bzw. -deckenaufbau |
RU2157351C1 (ru) * | 1999-04-01 | 2000-10-10 | Товарищество с ограниченной ответственностью "Эверест" | Композиция для герметизации межпанельных швов и теплоизоляции строительных конструкций и теплоизоляционная система |
RU2171340C1 (ru) * | 2000-12-19 | 2001-07-27 | Акционерное общество закрытого типа "КомПроМИС" | Способ наружного утепления фасада здания |
DE10138069A1 (de) * | 2001-08-03 | 2003-02-20 | Saint Gobain Isover G & H Ag | Putzträger-Fassadendämmplatte |
RU53331U1 (ru) * | 2005-08-30 | 2006-05-10 | Лев Давидович Евсеев | Наружная стена многоэтажного здания (варианты) |
CN200978468Y (zh) * | 2006-11-24 | 2007-11-21 | 陈尚 | 一种外墙外保温复合层及采用其的外墙外保温系统 |
KR100796019B1 (ko) * | 2007-04-19 | 2008-01-21 | 김기철 | 자착식 복합방수시트 및 이를 이용한 지하 외벽의 방수방법 |
EP2180104A1 (de) * | 2008-10-21 | 2010-04-28 | Rockwool International A/S | Fassadenisolierungssystem |
CN101736820B (zh) * | 2009-12-31 | 2012-09-19 | 宫海西 | 一种带柔性定位件的保温构件 |
DE202010007659U1 (de) * | 2010-06-07 | 2010-10-14 | Zimmermann & Reichel Farbenfabrik Gmbh | Dämmplatte und Wärmedammwand mit einer solchen Dämmplatte |
CN102002989A (zh) * | 2010-11-03 | 2011-04-06 | 上海一金节能科技有限公司 | 机械锚固网格加强筋矿物棉板的外保温墙体及施工工艺 |
CN103403273B (zh) * | 2011-01-31 | 2016-05-25 | 罗克伍尔国际公司 | 用于覆盖建筑物的立面的隔离系统 |
RU129532U1 (ru) * | 2013-03-20 | 2013-06-27 | Общество с ограниченной ответственностью "ЛИТОКол" | Система фасадная теплоизоляционная композиционная |
CN204804107U (zh) * | 2015-04-14 | 2015-11-25 | 安东 | 一种装饰保温模板一体化结构及结构墙 |
-
2016
- 2016-02-12 DE DE102016001563.2A patent/DE102016001563A1/de not_active Ceased
-
2017
- 2017-02-09 DE DE202017104261.8U patent/DE202017104261U1/de active Active
- 2017-02-09 BR BR112018015930-1A patent/BR112018015930B1/pt active IP Right Grant
- 2017-02-09 RS RS20200803A patent/RS60584B1/sr unknown
- 2017-02-09 SI SI201730317T patent/SI3414406T1/sl unknown
- 2017-02-09 PT PT177057940T patent/PT3414406T/pt unknown
- 2017-02-09 PL PL17705794T patent/PL3414406T3/pl unknown
- 2017-02-09 DK DK17705794.0T patent/DK3414406T3/da active
- 2017-02-09 EP EP17705794.0A patent/EP3414406B1/de active Active
- 2017-02-09 RU RU2018128611A patent/RU2734410C2/ru active
- 2017-02-09 CN CN201780010755.1A patent/CN108699835B/zh active Active
- 2017-02-09 LT LTEP17705794.0T patent/LT3414406T/lt unknown
- 2017-02-09 WO PCT/EP2017/000183 patent/WO2017137164A1/de active Application Filing
- 2017-02-09 ES ES17705794T patent/ES2802427T3/es active Active
- 2017-02-09 HU HUE17705794A patent/HUE050139T2/hu unknown
-
2018
- 2018-08-08 SA SA518392169A patent/SA518392169B1/ar unknown
- 2018-08-10 CL CL2018002289A patent/CL2018002289A1/es unknown
-
2020
- 2020-07-01 HR HRP20201037TT patent/HRP20201037T1/hr unknown
- 2020-07-13 CY CY20201100645T patent/CY1123131T1/el unknown
Also Published As
Publication number | Publication date |
---|---|
RU2734410C2 (ru) | 2020-10-16 |
CN108699835B (zh) | 2020-10-02 |
WO2017137164A1 (de) | 2017-08-17 |
BR112018015930B1 (pt) | 2023-02-23 |
PT3414406T (pt) | 2020-07-16 |
HRP20201037T1 (hr) | 2020-10-16 |
RU2018128611A (ru) | 2020-03-12 |
BR112018015930A2 (pt) | 2018-12-26 |
CY1123131T1 (el) | 2021-10-29 |
SA518392169B1 (ar) | 2021-12-13 |
DK3414406T3 (da) | 2020-07-20 |
RU2018128611A3 (de) | 2020-04-24 |
SI3414406T1 (sl) | 2020-09-30 |
ES2802427T3 (es) | 2021-01-19 |
CN108699835A (zh) | 2018-10-23 |
DE102016001563A1 (de) | 2017-08-17 |
LT3414406T (lt) | 2020-07-27 |
CL2018002289A1 (es) | 2019-02-01 |
HUE050139T2 (hu) | 2020-11-30 |
EP3414406B1 (de) | 2020-04-15 |
PL3414406T3 (pl) | 2020-11-16 |
RS60584B1 (sr) | 2020-08-31 |
DE202017104261U1 (de) | 2017-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1318250A2 (de) | Dübel und Verfahren zur Montage von Dämmstoffplatten | |
CH637724A5 (de) | Isolierte aussenbekleidung fuer gebaeudewaende. | |
EP1088945B1 (de) | Fassadendämmelement | |
DE19962812A1 (de) | Verfahren und Vorrichtung zum Schließen von Fugen | |
DE102007048801A1 (de) | Dämmelement | |
AT411077B (de) | Verfahren zum befestigen von wärmedämmplatten an einer wand oder einer decke | |
EP2295660B1 (de) | Verfahren zur installation von dämmplatten | |
EP3426855A1 (de) | Abstandshalter und befestiger für durch eine fassade hindurch am gebäude zu befestigenden teile | |
EP3098365A1 (de) | Fliesenverlegeverfahren und zugehörige abziehleiste | |
EP3414406B1 (de) | Rückbaufähiges wärmedämmverbundsystem und verfahren zu dessen herstellung und entfernung | |
DE3787538T2 (de) | Befestigungsvorrichtung. | |
DE2604533C3 (de) | Auflagerkonstruktion für ein auf einem Mauerwerk mit gegebenenfalls bewehrter Abglättschicht gleitend gelagertes Stahlbeton-Bauteil, wie Massivdachplatte o.dgl., von Gebäuden | |
EP3354812B1 (de) | System zur befestigung einer dämmplatte | |
EP2878834B1 (de) | Befestigungs-Anker zum Anbringen in einem porösen Werkstoff, Anordnung mit einem Verankerungs-Element eines derartigen Befestigungs-Ankers und Verfahren zum Anbringen eines derartigen Befestigungs-Ankers in einem Bohrloch eines porösen Werkstoffs | |
EP2610413B1 (de) | Dübel mit Spannhülse | |
EP0627534A2 (de) | Kantenschutzschiene für Stufen | |
DE102020003996A1 (de) | Wandsystem, Wandelement und Träger bzw. Verbinder | |
EP1548197A1 (de) | Anordnung und Verfahren zum Abdichten von Fugen an Bauwerken, insbesondere von Dehnfugen in einer Aussenfassade | |
DE4022463A1 (de) | Fassade aus einem mineralischen daemmstoff und einem verputz sowie verfahren zu ihrer herstellung | |
EP2543793B1 (de) | Verfahren zur Herstellung und zum Verlegen einer Fußbodenleiste | |
DE102006023087A1 (de) | Verbundplatte für den Innenausbau | |
DE19701582A1 (de) | Verfahren zur Gestaltung von Fassaden | |
DE102023108875A1 (de) | Verfahren zum Herstellen einer Holz-Beton-Verbunddecke, Holz-Beton-Verbunddecke, Schraube und Markierungsteil | |
WO2024179992A1 (de) | Verfahren zum herstellen einer holz-beton-verbunddecke, holz-beton-verbunddecke, schraube und markierungsteil | |
DE10250259B4 (de) | Schutzhülse für Montagestopfen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180912 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191119 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017004748 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1257441 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MAUCHER JENKINS PATENTANWAELTE AND RECHTSANWAE, DE |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20201037 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3414406 Country of ref document: PT Date of ref document: 20200716 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200710 Ref country code: FI Ref legal event code: FGE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20200415 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E019481 Country of ref document: EE Effective date: 20200714 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20200401898 Country of ref document: GR Effective date: 20200916 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20201037 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 34960 Country of ref document: SK |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E050139 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017004748 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2802427 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210119 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20201037 Country of ref document: HR Payment date: 20210129 Year of fee payment: 5 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210118 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20201037 Country of ref document: HR Payment date: 20220131 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20220127 Year of fee payment: 6 Ref country code: IE Payment date: 20220216 Year of fee payment: 6 Ref country code: HU Payment date: 20220205 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SM Payment date: 20220218 Year of fee payment: 6 Ref country code: NL Payment date: 20220216 Year of fee payment: 6 Ref country code: MT Payment date: 20220222 Year of fee payment: 6 Ref country code: MK Payment date: 20220128 Year of fee payment: 6 Ref country code: MC Payment date: 20220216 Year of fee payment: 6 Ref country code: LU Payment date: 20220214 Year of fee payment: 6 Ref country code: HR Payment date: 20220131 Year of fee payment: 6 Ref country code: GR Payment date: 20220216 Year of fee payment: 6 Ref country code: EE Payment date: 20220216 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LV Payment date: 20230104 Year of fee payment: 7 Ref country code: IS Payment date: 20230105 Year of fee payment: 7 Ref country code: CY Payment date: 20230301 Year of fee payment: 7 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230424 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20201037 Country of ref document: HR Effective date: 20230209 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MM4D Effective date: 20230209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AL Payment date: 20230206 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E019481 Country of ref document: EE Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230905 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230301 Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230210 Ref country code: HR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230906 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231229 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240307 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240125 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240126 Year of fee payment: 8 Ref country code: FI Payment date: 20240213 Year of fee payment: 8 Ref country code: DE Payment date: 20231229 Year of fee payment: 8 Ref country code: CZ Payment date: 20240118 Year of fee payment: 8 Ref country code: BG Payment date: 20240125 Year of fee payment: 8 Ref country code: GB Payment date: 20240108 Year of fee payment: 8 Ref country code: PT Payment date: 20240209 Year of fee payment: 8 Ref country code: SK Payment date: 20240115 Year of fee payment: 8 Ref country code: CH Payment date: 20240301 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SI Payment date: 20240116 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240208 Year of fee payment: 8 Ref country code: SE Payment date: 20240103 Year of fee payment: 8 Ref country code: RS Payment date: 20240125 Year of fee payment: 8 Ref country code: PL Payment date: 20240208 Year of fee payment: 8 Ref country code: NO Payment date: 20240208 Year of fee payment: 8 Ref country code: IT Payment date: 20240111 Year of fee payment: 8 Ref country code: DK Payment date: 20240214 Year of fee payment: 8 Ref country code: BE Payment date: 20240105 Year of fee payment: 8 |