EP3406547B1 - Filter monitoring in pneumatic transport systems - Google Patents
Filter monitoring in pneumatic transport systems Download PDFInfo
- Publication number
- EP3406547B1 EP3406547B1 EP17172335.6A EP17172335A EP3406547B1 EP 3406547 B1 EP3406547 B1 EP 3406547B1 EP 17172335 A EP17172335 A EP 17172335A EP 3406547 B1 EP3406547 B1 EP 3406547B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pneumatic
- filter
- transport system
- pressure
- transport
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims description 36
- 239000012530 fluid Substances 0.000 claims description 19
- 230000009471 action Effects 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 12
- 230000032258 transport Effects 0.000 description 42
- 239000003570 air Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000013056 hazardous product Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N15/082—Investigating permeability by forcing a fluid through a sample
- G01N15/0826—Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G43/00—Control devices, e.g. for safety, warning or fault-correcting
- B65G43/02—Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G51/00—Conveying articles through pipes or tubes by fluid flow or pressure; Conveying articles over a flat surface, e.g. the base of a trough, by jets located in the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/34—Details
- B65G53/60—Devices for separating the materials from propellant gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G53/00—Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
- B65G53/34—Details
- B65G53/66—Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2203/00—Indexing code relating to control or detection of the articles or the load carriers during conveying
- B65G2203/02—Control or detection
- B65G2203/0266—Control or detection relating to the load carrier(s)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2207/00—Indexing codes relating to constructional details, configuration and additional features of a handling device, e.g. Conveyors
- B65G2207/40—Safety features of loads, equipment or persons
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/08—Investigating permeability, pore-volume, or surface area of porous materials
- G01N2015/084—Testing filters
Definitions
- the present disclosure relates generally to pneumatic transport systems. More specifically, the present disclosure relates to filter monitoring in pneumatic transport systems such as in vacuum conveying systems.
- Pneumatic transport systems are well-known for the transport of pneumatic transportable material between, for example, a first location and a second destination of a plurality of interconnected pipes.
- a typical pneumatic transport system includes a number of pneumatic pipes interconnected to a conveying line such as a pipe-line to transport pneumatically transportable material therein.
- a material transport carrier for instance a fluid such as air flowing in the pipe-line is used as a carrier for transporting the pneumatic transportable material within the pipeline.
- the pneumatic transport system transports material under fluid pressure, being positive, negative or vacuum pressure. Often vacuum is used as conveyor in these pneumatic transport systems and they are therefore sometimes simply referred to as "vacuum conveying".
- one or more filters are used to separate conveyed material and the material transport carrier.
- these filters are referred to as "separating filters”.
- the separating filters used in the described transport systems are essential to obtain over time lasting functionality and performance in the transport system.
- the one or more separating filter(s) will be contaminated and typically over time an undesirable pressure drop over the filter will build up typically with a decreasing transport capacity as a result.
- some kind of conventional filter cleaning system is provided.
- a pressure drop over the one or more separating filter(s) will build up as a result of the filter(s) being used over time and will typically cause a negative effect on the performance/function in the transport system.
- the increasing pressure drop over the filter is because of particles of a substance (of a material) entering a structure or sticking to a surface of the separating filter and not being removed by the conventional filter cleaning system. Lack of replacement or at least proper maintenance such as cleaning of the separating filter can in worst case even result in a broken separating filter. If the separating filter breaks, the transported material, substance will for instance be blown out through an exhaust port of an ejector and contaminate the ambient environment. In the case of handling a hazardous material containing hazardous substances this can even be fatal for the operator.
- CA2852703 discloses a pneumatic transport system according to the preamble of claim 1.
- An object of the present invention is to monitor filter performance of a separating filter in a vacuum conveying system in an improved way compared to conventional technology and methods used.
- filter performance is monitored, in particular a pressure drop over the separating filter is monitored, which makes it possible to take actions to reduce this pressure drop to maintain capacity requirement over time.
- a pneumatic transport system according to claim 1 is provided.
- the term "material transport carrier” is capable to transport or convey transportable material in a pneumatic system.
- the material transport carrier can be a fluid such as air, nitrogen or any other suitable agent that can be used at least in a vacuum conveying system, or a similar conveying system using positive pressure.
- the pressure-drop monitoring element is a pressure sensor and typically adapted to measure and capture data of an initial negative pressure behaviour.
- a controller connectable to and adapted to communicate with the pressure sensor is adapted to collect and store data in a store.
- the pneumatic device is an ejector driven by pressurized air and the pneumatic transport system is a conveying system using a carrier fluid having negative pressure.
- the pneumatic transport system is a conveying system using air of vacuum pressure as the transport carrier fluid. Both also other fluids such as nitrogen can be used instead.
- the controller is adapted to take action, such as automated filter cleaning, due to a particular measured too high pressure drop over the one or more separating filter(s).
- action such as automated filter cleaning
- An advantage with this embodiment is that it will monitor and take actions to reduce this too high filter drop(s) to maintain capacity requirement over time.
- the controller is adapted to automatically stop a potential dangerous operation of the transport system due to a particular too low, or essentially missing measured pressure drop over the one or more separating filter(s).
- An advantage with this embodiment is that it can be used to stop a potential dangerous operation due to an emergency stop action triggered by the too low, or essentially missing pressure drop in the event a separating filter is being damaged.
- pneumatic transportable material is related to any material that can be transported by means of a fluid of negative or positive pressure, such as air or nitrogen of negative or positive pressure.
- fluid includes air, or nitrogen, but is not limited to these fluids.
- pneumatic device is typically an ejector-pump, or an electric vacuum pump but is not limited to these.
- FIG. 1 illustrates one embodiment of a pneumatic transport system 10 according to the invention.
- the pneumatic transport system 10 comprises at least one pneumatic device 1a, herein an ejector (but can alternatively be another type of vacuum pump such as an electrical vacuum pump), for transporting a pneumatic transportable material M in the pneumatic system 10 by means of a carrier fluid, such as a fluid having negative pressure P - , for instance air of vacuum pressure, for transporting the pneumatic transportable material M.
- the ejector 1a provides a force (see direction of flow in conveying line CL illustrated by an arrow) affecting the carrier fluid, such as air, flowing in the pipes to transport the pneumatic transportable material within the pipes 13.
- the pneumatic transport system 10 transports material under fluid pressure or vacuum.
- negative pressure in particular vacuum is provided by the ejector 1a.
- the pneumatic transportable material M is shown just before it is transported in the pneumatic transport system 10.
- the pneumatic transport system 10 typically comprises a plurality of interconnected pipes 13.
- the pipes 13 may as an example, but not limited there to, be circular in cross-section.
- the pipes 13 can be made of stainless-steel for instance, or any other suitable material depending on application, together forming a continuous pneumatic transport path CL, sometimes also referred to as a conveying line, for transporting the pneumatic transportable material M.
- a pressure-drop monitoring element 3a is provided on a clean side 16a of a separating filter 16 and is adapted to monitor filter performance of the separating filter 16 provided in the continuous transport path CL.
- clean side means the side of the separating filter that is not contaminated with the transported material M.
- transportable and “transported” material are both used depending on where the material M is located.
- transported indicates the location of the transported material at the separating filter 16.
- the separating filter 16 is provided and adapted to separate the carrier fluid and the transportable material M in the transport path CL at the ejector 1a.
- One or more (even though only one is shown in FIG. 1 ) separating filters 16 can be mounted. In operation, the separating filter 16 will be contaminated (typically on the side 16b opposite to the clean side 16a) and over time of operation an undesirable pressure drop over the separating filter 16 will build up over time with a decreasing capacity over time as a result.
- the pressure-drop monitoring element 3a is a vacuum pressure sensor, if the carrier fluid is air of vacuum pressure, which is connected to the conveying line(s) CL and adapted to sense the system pressure P - .
- the vacuum pressure sensor 3a generates a sensor signal S sensor indicative of a particular negative system pressure P - on the clean side 16a of the separating filter 16.
- the vacuum pressure sensor 3a can be more or less sophisticated able also to capturing data in addition to monitoring data.
- filter performance of the separating filter 16 is monitored, in particular a pressure drop over the separating filter 16 is monitored, and captured, which makes it possible to take actions to reduce this pressure drop to maintain capacity requirement over time.
- the vacuum pressure P- on the clean side 16a of the separating filter 16 is measured, collected and stored over a time frame.
- a controller 4 adapted to control including to monitor and to take actions to reduce pressure-drop of the separating filter 16 is connectable to and adapted to communicate via a communication line 3 with the pressure sensor 3a and is furthermore is adapted to collect and store data in a store 4a, which is typically part of the controller 4 or part of the sensor 3a.
- the controller 4 is adapted to take action, such as providing automated filter cleaning, due to a particular measured too high pressure drop over the separating filter 16.
- An advantage with this is that the controller 4 will monitor and take actions to reduce this too high pressure drop over the separating filter to maintain capacity requirement over time. This can be provided by the controller 4 signaling 5a to a filter cleaner unit 2a to clean the filter 16.
- the controller 4 is adapted to automatically stop a potential dangerous operation of the transport system 10 due to a particular too low measured pressure drop over the filter 16 possibly indicating hole in filter 16.
- FIG. 2A illustrates a whole graph of vacuum system pressure vs. time for different measured pressure drops over a separating filter
- FIG. 2B is an enlargement of the first part of the graph illustrated in FIG 2A .
- Mainly is referred to FIG. 2B , since this figure illustrates the most relevant part of the whole graph for explaining the invention.
- the vacuum sensor 3a will be used to collect data of an initial vacuum behavior.
- the vacuum level P - on the clean side 16a of the filter 16a is measured by means of the pressure sensor 3a and collected over a certain time frame.
- the data will be stored and an average initial vacuum characteristic (a graph) of the transport system 10 will be created from a defined number of cycles, say 1-5 cycles.
- the data collected which is typically collected by the controller 4 and stored in the store 4a into a software, is used to set up a start-up graph, denoted "1" as illustrated in FIG. 2B describing the total initial pressure drop characteristics of the application including the initial pressure drop "1" over the filter 16. This initial pressure drop "1" (see FIG. 2B ) will then be used to compare later graphs "2", or "3" to determine the increasing pressure drop over the filter 16.
- the filter cleaning process can be repeated at a certain pressure drop level (see “2" in FIG. 2B ). For instance, if the pressure drop increases beyond this level (see “2" in FIG. 2B ) the filter 16 needs to be automatically cleaned, or alternatively manually disassembled and cleaned, to reduce the filter drop. After a given number of cleaning cycles made, reaching the maximum pressure drop (see “3" in FIG. 2B ), used filters need to be replaced with new ones.
- the characteristics (graph) will differ from the average characteristics (graph) in an opposite way (see “4" in FIG. 2B ) compared to "1", “2" or “3”, namely in that the vacuum (or negative pressure) will not build up because of the vacuum flow is directed through an unknown opening towards the ejector 1a.
- This opening will probably consist of a broken filter 16 or a broken bottom valve (not shown). In this case both deviations are severe and will typically result in an emergency stop operation of the transport system 10. This emergency stop operation can be provided by means of the controller 4.
- the invention can be used also to stop a potential dangerous operation due to the emergency stop action expedient by the missing pressure drop in the event of a filter being damaged.
- the user of the vacuum conveying system will gain a number of benefits.
- the most important one is the safety created from the automated emergency stop operation in the event of a filter being damaged. This can prevent human injury because of the prevention of dust of potential hazardous particles in the ambient air being avoided.
- the capacity of the conveyed material M can be maintained for an extended period of time compared to a conventional system without this invention.
- the event of cleaning or changing filters proposed by the system based on the measures and comparison by the software will save a lot of time that were used before in trouble shooting the root cause of the decreasing capacity.
- the pneumatic device 1a can instead of a fluid driven ejector be an electric driven vacuum-pump.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Air Transport Of Granular Materials (AREA)
- Manipulator (AREA)
- Jet Pumps And Other Pumps (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17172335.6A EP3406547B1 (en) | 2017-05-23 | 2017-05-23 | Filter monitoring in pneumatic transport systems |
US15/983,636 US10422735B2 (en) | 2017-05-23 | 2018-05-18 | Filter monitoring in pneumatic transport systems |
JP2018098348A JP7163067B2 (ja) | 2017-05-23 | 2018-05-22 | 空気圧輸送システムにおけるフィルタ監視 |
CN201810503660.XA CN108928640B (zh) | 2017-05-23 | 2018-05-23 | 气动运输系统中的过滤器监控 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17172335.6A EP3406547B1 (en) | 2017-05-23 | 2017-05-23 | Filter monitoring in pneumatic transport systems |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3406547A1 EP3406547A1 (en) | 2018-11-28 |
EP3406547B1 true EP3406547B1 (en) | 2020-08-05 |
Family
ID=58772420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17172335.6A Active EP3406547B1 (en) | 2017-05-23 | 2017-05-23 | Filter monitoring in pneumatic transport systems |
Country Status (4)
Country | Link |
---|---|
US (1) | US10422735B2 (ja) |
EP (1) | EP3406547B1 (ja) |
JP (1) | JP7163067B2 (ja) |
CN (1) | CN108928640B (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3530599A1 (en) * | 2018-02-27 | 2019-08-28 | Piab Ab | Vacuum conveyor system |
BR112022000678A2 (pt) | 2019-07-16 | 2022-03-03 | Daniel Hunzeker | Montagem de gaiolas para deslocamento de acúmulo de material em sistemas de transporte pneumático e métodos associados |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3069205A (en) * | 1959-12-03 | 1962-12-18 | Systems Engineering & Mfg Co I | Conveying of solids |
US3186770A (en) * | 1962-01-03 | 1965-06-01 | Neal & Causey O | Condition responsive control, method and apparatus |
US3898018A (en) * | 1973-04-30 | 1975-08-05 | Ecodyne Corp | Pneumatic ejector |
DD141240A3 (de) * | 1977-08-09 | 1980-04-23 | Peter Goehler | Behaelterschleuse zur ueberfuehrung staubhaltiger und staubfoermiger gueter in ein system hoeheren druckes |
US4863316A (en) * | 1987-07-01 | 1989-09-05 | The Perkin-Elmer Corporation | Closed loop powder flow regulator |
US4900199A (en) * | 1988-10-21 | 1990-02-13 | The Perkin-Elmer Corporation | High pressure power feed system |
JPH04361922A (ja) * | 1991-06-05 | 1992-12-15 | Colby Eng Pty Ltd | 乾燥粉末の運搬方法および装置並びに速度感知器 |
DE4125938A1 (de) * | 1991-08-05 | 1993-02-11 | Siemens Ag | Verfahren und vorrichtung zum foerdern von pulver |
JP2000255776A (ja) * | 1999-03-08 | 2000-09-19 | Sanwa:Kk | 粉砕した粒子を押出機へ注入する際の自動制御装置 |
JP2002167041A (ja) * | 2000-11-29 | 2002-06-11 | Mitsubishi Plastics Ind Ltd | 集塵機の運転方法及び集塵機の制御装置 |
DE20020587U1 (de) * | 2000-12-05 | 2001-02-22 | Feldbinder & Beckmann Fahrzeugbau GmbH & Co KG, 21423 Winsen | Filter mit Schauglas / FFB-Luftbatterie |
US7846399B2 (en) * | 2004-03-23 | 2010-12-07 | W.R. Grace & Co.-Conn. | System and process for injecting catalyst and/or additives into a fluidized catalytic cracking unit |
US7488141B2 (en) * | 2004-07-14 | 2009-02-10 | Halliburton Energy Services, Inc. | Automated control methods for dry bulk material transfer |
DE102005013566B4 (de) * | 2005-03-23 | 2009-12-10 | Airbus Deutschland Gmbh | Anordnung zur Lärmreduzierung in Vakuumsystemen für ein Luftfahrzeug |
CN101712414A (zh) * | 2008-10-08 | 2010-05-26 | 兰州交通大学 | 气动力管道运输系统 |
JP5744464B2 (ja) * | 2010-10-19 | 2015-07-08 | Necエナジーデバイス株式会社 | 粉体の空気輸送装置 |
ES2708394T3 (es) * | 2011-10-18 | 2019-04-09 | Grace W R & Co | Sistema y método para la inyección de catalizadores y/o aditivos en una unidad de craqueo catalítico fluidizado |
ITPD20130142A1 (it) * | 2013-05-22 | 2014-11-23 | Moretto Spa | Sistema di trasporto pneumatico di materiale granulare e metodo di controlllo di tale sistema |
WO2016148779A1 (en) * | 2015-03-19 | 2016-09-22 | Ipeg, Inc. | Material delivery system |
US10112333B2 (en) * | 2015-04-20 | 2018-10-30 | Schenck Process Llc | Sanitary extruder hood |
EP3100968A1 (en) * | 2015-06-01 | 2016-12-07 | Xerex Ab | Device and system for pneumatic transport of material |
-
2017
- 2017-05-23 EP EP17172335.6A patent/EP3406547B1/en active Active
-
2018
- 2018-05-18 US US15/983,636 patent/US10422735B2/en active Active
- 2018-05-22 JP JP2018098348A patent/JP7163067B2/ja active Active
- 2018-05-23 CN CN201810503660.XA patent/CN108928640B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3406547A1 (en) | 2018-11-28 |
CN108928640A (zh) | 2018-12-04 |
US10422735B2 (en) | 2019-09-24 |
JP2019011195A (ja) | 2019-01-24 |
US20180340877A1 (en) | 2018-11-29 |
CN108928640B (zh) | 2022-03-22 |
JP7163067B2 (ja) | 2022-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10512871B2 (en) | Dust collector control system | |
US9611106B2 (en) | Device and system for pneumatic transport of material | |
US10422735B2 (en) | Filter monitoring in pneumatic transport systems | |
KR102324738B1 (ko) | 호스 필터 설비의 가압 가스 기반 세정 프로세스의 모니터링 | |
JPWO2009005058A1 (ja) | 吸着センサコントローラおよびそれを用いた吸着搬送装置 | |
KR102139147B1 (ko) | 여과 집진기의 모니터링 시스템 | |
CN108032324A (zh) | 一种机械手及机械手系统 | |
WO2019111469A1 (ja) | 集塵装置および集塵装置におけるフィルタの破損検出方法 | |
EP3838377A1 (en) | A filter system and a sensor arrangement configured to monitor performance of filter elements | |
JP3846320B2 (ja) | 電子部品実装装置および電子部品実装装置におけるエアブロー回路の異常検出方法 | |
US10315262B2 (en) | Wire electrode storage device for wire electrical discharge machine | |
JP3460991B2 (ja) | 多室バグフィルターのパルス洗浄方法 | |
JPS63176217A (ja) | 空気搬送システムにおける被搬送物の失速方法及び装置 | |
CN105764593B (zh) | 具有自调节清洁系统的过滤器设备 | |
CN111132745B (zh) | 脉冲喷气式集尘装置 | |
KR20170028526A (ko) | 반도체 공장 배기덕트로부터 분진 포집, 이송 및 배출 시스템 | |
JP2009115663A (ja) | 搬送装置、ハンドラおよび試験装置 | |
CN218471176U (zh) | 烟草物料风选系统 | |
EP4100146B1 (en) | Apparatus for the suction and collection of processing waste | |
US20230025083A1 (en) | Vacuum cup damage detection system | |
KR102686631B1 (ko) | 비산물 오염 방지 시스템 | |
JP3103365U (ja) | シール剤のつまり及び気泡検出装置 | |
JP4683848B2 (ja) | 集塵機のフィルタの再生方法および集塵機 | |
JP6413875B2 (ja) | 圧縮空気コンプレッサーのトラブル停止時における圧縮空気供給方法 | |
JPH1019533A (ja) | 外観検査装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190508 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200316 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1298434 Country of ref document: AT Kind code of ref document: T Effective date: 20200815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017020860 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200805 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1298434 Country of ref document: AT Kind code of ref document: T Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201106 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201105 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201207 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017020860 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
26N | No opposition filed |
Effective date: 20210507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210523 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210523 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240520 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240517 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200805 |