EP3384514B1 - Schaltungsanordnung zum betrieb elektromagnetischer triebsysteme - Google Patents

Schaltungsanordnung zum betrieb elektromagnetischer triebsysteme Download PDF

Info

Publication number
EP3384514B1
EP3384514B1 EP16805829.5A EP16805829A EP3384514B1 EP 3384514 B1 EP3384514 B1 EP 3384514B1 EP 16805829 A EP16805829 A EP 16805829A EP 3384514 B1 EP3384514 B1 EP 3384514B1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
transformer
diode
drive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16805829.5A
Other languages
English (en)
French (fr)
Other versions
EP3384514A1 (de
Inventor
Burkhard Thron
Olaf Laske
Michael Naumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powertech Converter GmbH
Ellenberger and Poensgen GmbH
Original Assignee
Powertech Converter GmbH
Ellenberger and Poensgen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Converter GmbH, Ellenberger and Poensgen GmbH filed Critical Powertech Converter GmbH
Priority to PL16805829T priority Critical patent/PL3384514T3/pl
Publication of EP3384514A1 publication Critical patent/EP3384514A1/de
Application granted granted Critical
Publication of EP3384514B1 publication Critical patent/EP3384514B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H47/10Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current by switching-in or -out impedance external to the relay winding

Definitions

  • the present invention relates to a circuit arrangement for actuating an electromagnetic drive system for electomechanical devices and a method for operating a circuit arrangement for actuating an electromagnetic drive system for electomechanical devices.
  • Electromagnetic drive systems are often used in electrical engineering to apply force to moving mechanical components. Such systems use, for example, pull magnets or other assemblies working on an electromagnetic basis. These drive systems are used in various forms in contactors, circuit breakers, relays, solenoid valves, etc.
  • the FR 2 803 956 A1 a circuit arrangement for operating an electromagnetic drive system for electromechanical devices, with at least one control voltage source, with at least one regulating and control circuit, with at least one drive system, with at least one transformer, with at least one rectifier bridge, with at least one smoothing capacitor, with at least one main switching transistor, by means of whose drive system can be controlled in a characteristic pulse train system and where the main switching transistor is connected in series with a primary branch of the transformer, the transformer being connected to the supply voltage and the secondary side of the transformer supplying the rectifier bridge.
  • the DC output voltage of the rectifier bridge is smoothed by the smoothing capacitor, so that the DC voltage is supplied with a supply curve over time.
  • the DE 198 51 973 A1 a circuit arrangement for generating auxiliary energy for operating a control unit of a switching device from a current flowing through a main current path of the switching device is shown, characterized in that a DC supply voltage for the from a voltage dependent on the current in the main current path by clocking, transforming to the secondary side of a transformer and rectifying Control unit is obtained, said voltage being applied to a series circuit consisting of a transformer and a semiconductor switch that is pulse-width-modulated depending on its secondary voltage by a control circuit (PWM), and the control circuit (PWM) can be temporarily supplied with a starting DC voltage via a switch.
  • PWM control circuit
  • the DE 197 44 202 A1 a flyback converter circuit, fed from a particularly high-resistance voltage source, with a transformer, a switching transistor which is controlled by a pulse width modulator circuit, and with an output, with the reference to the input terminals of the flyback converter
  • the primary circuit of its transformer is galvanically connected in series with the output on the secondary side.
  • the JP 3 062707 B2 a drive circuit for an inductive load that must be stopped in order to reduce the delay in load operation.
  • a load When a load is operated, rectified output signals are generated and a high voltage obtained by summing both output signals is applied to the load.
  • the output from a differentiating circuit When a specified time has passed after the operation, the output from a differentiating circuit is stopped, and accordingly the rectified output is also stopped;
  • the load is operated at a low voltage resulting only from the rectified output. Therefore, when the load drive is stopped, the energy stored in the load is lower than the conventional one, which reduces the delay in stopping the operation.
  • Adding a Zener diode to a load supply circuit can further reduce the delay in stopping operation.
  • the actuation of the aforementioned drive systems by applying the available control voltage directly to the magnet systems has the disadvantage that the control current fed in, and thus the magnetic force, is usually not adapted to the existing force-displacement characteristic of the mechanical system being driven.
  • the known electronic ballasts for operating magnetic drive systems clock the magnet systems directly via one or more electronic switches.
  • the disadvantage here is that the existing control voltage can be reduced, but not increased.
  • ballasts are preferably used to operate switching devices in the form of contactors, in which the power requirement is initially high, but then decreases over time.
  • the direct timing of the electrical drive system also creates an interference voltage spectrum that can have a negative effect on other electronic systems.
  • the steepness of the pulses also causes an increased load on the winding structure of the magnet systems, which are mostly designed for direct voltage or low-frequency alternating voltage operation.
  • the clocked mode of operation can therefore cause damage to the winding of the magnet system.
  • a circuit arrangement for actuating an electromagnetic drive system for electomechanical devices, in particular with a mechanically locked end position , with at least one control voltage source, with at least one regulating and control circuit, with at least one drive system, with at least one transformer, with at least one rectifier bridge, with at least one smoothing capacitor, with at least one main switching transistor, by means of which the drive system can be controlled in a characteristic pulse train system and the main switching transistor being connected in series with a primary branch of the transformer, the transformer being connected to the supply voltage and the secondary side of the transformer supplying the rectifier bridge, d er output DC voltage is smoothed by the smoothing capacitor and added to the voltage of the control voltage source is, so that a supply with DC voltage takes place with a time supply curve.
  • the invention is based on the basic idea that a clocked transformer stage by means of a control and regulating circuit provides the electrical feed characteristics required for the specific operation of the electromagnetic drive system in the entire input voltage and temperature range without pulsed application of the drive system coils.
  • the disadvantages of the known controls identified from the prior art are avoided and a circuit arrangement is provided which operates the magnet system of the drive systems mentioned, in particular those with direct current magnet coils, in such a way that safe and mechanically gentle operation is guaranteed in the entire input voltage and temperature range without significant interference , and also allows the actuation of drive systems which, when actuated, have a force requirement that increases rapidly over time and also have a mechanically locked, stable end position.
  • a circuit arrangement which provides a regulated DC voltage with a supply curve that is beneficial for the drive system by means of a switching stage and transformer arrangement with a downstream rectifier and also enables the actuating voltage to be increased if necessary via the existing and possibly highly tolerant control voltage. This ensures that they can be switched on safely, as in the exemplary case of a battery circuit breaker with pull magnets in the drive system and battery-buffered power supply system when there is a large one Input voltage range guaranteed.
  • the circuit arrangement enables the mechanically moving parts to be operated in a manner that is gentle and therefore extends the service life. By supplying the drive systems with a direct voltage, the emission of interference is largely avoided, particularly when cables are laid between the described circuit arrangement and the drive system.
  • An additional diode can be provided which is connected on the anode side to the node transformer - main switching transistor and on the cathode side is connected to the node of the cathodes of the rectifier bridge.
  • the rectifier bridge can be formed by a plurality of diodes. These diodes can, for example, be fast diodes for output rectification.
  • a second transistor to be provided and for the switching arrangement to be switchable in such a way that a holding circuit can be activated by means of a second transistor in the power circuit with the aid of the reverse magnetization energy of the transformer for the switch-on time by processing a gate voltage, thereby driving the second transistor and after the switch-on time has elapsed, the main switching transistor is switched off and the magnetizing back energy is no longer available.
  • PWM pulse width modulation
  • the circuit arrangement has a microcontroller circuit and that the microcontroller circuit is used for the coordinated control and pulse processing.
  • thermal fuse in particular a reversible thermal fuse, and a series resistor for the control power supply, which are arranged in such a way that in the event of a fault in the main current path, the combination of the thermal fuse and the series resistor is arranged and switchable in such a way that the thermal Connection of thermal fuse and pre-resistor main current path is interruptible.
  • the circuit arrangement further has a safety circuit with an optocoupler and with a Zener diode, which can be switched in such a way that, in the event of an interruption of the output load, an impermissibly high output voltage is avoided in that the safety circuit responds in such a way that The optocoupler is controlled via the Zener diode by the output voltage that is too high in the event of a fault and thus the output of the optocoupler acts on the control and regulation circuit and thus the switch-on time for the power transistor is reduced so that the output voltage remains limited to a permissible level .
  • the present invention also relates to a method for operating a circuit arrangement.
  • a second transistor is provided and that the switching arrangement is switched during operation in such a way that a holding circuit is activated by means of a second transistor in the power circuit with the aid of the reverse magnetization energy of the transformer for the switch-on time by processing a gate voltage, whereby a second The transistor is controlled and, after the switch-on time has elapsed, the main transistor is switched off and the reverse magnetization energy is no longer available.
  • the regulating and control circuit has a PWM circuit with a switch-on time limit and that a pulse pattern corresponding to the specifics of the drive system is stored by means of the PWM circuit, which pulse pattern can be assigned to the respective purpose by selecting it accordingly.
  • thermal fuse in particular a reversible thermal fuse, and a series resistor for the control power supply, which are arranged in such a way that in the event of a fault in the main current path, the combination of the thermal fuse and the series resistor is switched in such a way that the thermal connection of the thermal fuse and Vorwiderstad main current path is interrupted.
  • the circuit arrangement further has a safety circuit with an optocoupler and with a Zener diode, which in the event of a fault is switched in such a way that in the event of an interruption of the output load, an inadmissibly high output voltage is avoided by the safety circuit responding in such a way that the optocoupler is controlled by the excessively high output voltage in the event of a fault via the Z-diode and thus the output of the optocoupler acts on the control and regulation circuit and thus the switch-on time for the power transistor is reduced so that the output voltage remains limited to a permissible level .
  • Fig. 1 shows a basic circuit diagram of an embodiment of a circuit arrangement, designed here as a battery circuit breaker with a pull magnet, the circuit and functional principle in Fig. 1 and is shown in more detail below.
  • the circuit arrangement has a regulating and control circuit 1, which in detail includes a stabilization circuit for the internal control voltage U s with ZD 1.1, measured value acquisition 1.2, a PWM circuit (pulse width modulation circuit) with switch-on limitation t 1.3 and a driver circuit 1.4 for the power switch (VT2).
  • the switching arrangement also has an electromagnetic drive system 2.
  • the switching arrangement is connected to a control voltage source with an operating voltage (U B ).
  • the reference symbol MB denotes the negative potential (main current).
  • the switching arrangement has a switch-on button S1, a series resistor R1 for the power supply U s , a gate discharge resistor R2 for the switching transistor VT1, a discharge resistor R3 in the discharge network from the switch-on transistor for the self-holding circuit VT2, a gate leakage resistor R4 for the switch-on transistor VT2 and a steady resistor R5 for detecting the main current to generate the controlled variable.
  • a current limiting resistor R6, an overvoltage protection R7, a low-inductance intermediate circuit capacitor C1, an intermediate circuit capacitor C2 with a higher storage capacity, a smoothing capacitor C3, a capacitor C4 of the DRC relief network for the switch-on transistor VT2, and a smoothing capacitor C5 for the output load are also provided.
  • the switching arrangement VD1 has a false-polarity diode and freewheeling diode VD1, a fast diode VD2 of the DRC network for the switch-on transistor VT2, a gate voltage limiter VD3, a fast rectifier diode VD4 for processing the gate voltage for the switching transistor VT1, fast diodes for the output rectification VD5, VD6, VD7 and VD8 as well as a freewheeling diode VD9 for the switching transistor VT1, an input choke L1 (inrush current limitation), a thermal fuse F1 and an overcurrent fuse F2.
  • the additional diode VD9 is connected on the anode side to the node transformer T1 - switching transistor VT2 and on the cathode side is connected to the node of the cathodes VD6, VD8 of the rectifier bridge, which is formed by the diodes VD5, VD6, VD7, VD8.
  • terminals 1/2 which represent connections for the switch-on button, a terminal 3 as a feed input for the control power supply, a terminal 4 for the connection for the control of the switching transistor VT1, a terminal 5 as negative potential of the control voltage level, terminals 6/7 as a shunt voltage supply for the control circuit with the measuring field detection 1.2, terminals 8/9 as connection for the output load 2 of the electromagnetic drive system 2.
  • the reference symbol t A is the on-time and designated t dead, the dead time.
  • the proposed arrangement must ensure that in spite of the greatly increasing power requirement - in contrast to the generally known contactors - sufficient energy is provided for the magnet system at the end of the actuation time.
  • the switch-on process is started via the start button S1, so that the transistor VT1, which is in the blocking state, is bridged and the regulating and control circuit is activated via the series resistor R1; the control voltage preparation 1.1 is symbolized by ZD.
  • a pulse-width-modulated signal with a constant base frequency of 40 kHz is generated to create the pulse train.
  • the on-time t A is so dimensioned that under all environmental conditions the necessary pull-in time is observed in consideration of the allowable operating time for the pull magnets, as shown in Fig. 2 shown.
  • the pull magnets 2 are designed for short-term operation; Inadmissibly long operating times lead to destruction. Should the permissible operating time be exceeded in the event of a fault, the thermal fuse F1 trips as a result of the thermal coupling with the resistor R1.
  • Series resistor R1 and the reversible thermal fuse have the same basic housing shape (TO220) and are mechanically connected to one another at the thermal contact surfaces of these housings, so that reliable triggering in a defined manner is guaranteed in the event of a fault. By the choice of the resistor size results in an approximately thermally equivalent behavior to the pull magnets 2.
  • the transistor VT2 is activated by the regulation and control circuit 1 within the time t Ein of 1.6 s of the PWM circuit, a voltage is added to the control (input) voltage U B according to the transmission ratio of the transformer T1, which is formed by the rectifier bridge with VD5 to VD8 and smoothed by C5. This arrangement ensures that, by varying the PWM duty cycle, the voltage on the pull magnets can be brought to a value both below and above the control voltage.
  • the switch S1 can be opened again after closing; the self-holding circuit with VT1 continues to supply the circuit in that the reverse magnetization voltage from T1 is fed to the gate of VT1 via the diode VD4, the current limiting resistor R6 of the limiter and stabilization circuit with VD3, R2 and C3, so that it switches on.
  • the stage clocks with VT2 the power circuit remains switched on via VT1.
  • the stage switches off with VT2 and the power circuit is interrupted.
  • the switching process can be restarted. The dead time t tot prevents the drive system coils from being overloaded due to improper use.
  • the internal control voltage conditioning 1.1 also uses its own timer to ensure that the stabilization ZD is not overloaded by improperly pressing the on button S1 (continuous pressing); in such a case, 1.1 is forcibly switched off after a predetermined time which is longer than the normal operating time of the device.
  • the capacitors C1 and C2 are provided for adequate decoupling from the inherent resistances of the feeding source U B , whereby the low-inductance capacitor C1 feeds from VT2 at the moment of switch-on and takes over the alternating current component of the intermediate circuit capacitor C2 with the much higher capacitance and the higher internal resistance.
  • the choke L1 is intended to limit the inrush current and to discharge switch S1 in terms of current.
  • the circuit is equipped with a current control;
  • the main current in the power circuit is recorded via the shunt resistor R5 and fed to the measured value recording 1.2.
  • the measured value acquisition 1.2 provides the signals for the control and regulation circuit 1.3, which processes the pulse width pattern according to the specific characteristics of the electromagnetic drive system 2.
  • a number of specific feed characteristics can be stored in the control and regulating circuit 1.3, which can be selected in a corresponding manner and thus correspond to the respective purpose.
  • control and regulating circuit 1.3 will limit the output voltage.
  • the force-displacement characteristic is such that when the switching device 2 is transferred from one of the first switching position s 0 corresponding to the open position to a second switching position s End corresponding to the closed position via the travel s, a comparatively low initial force F Anf is initially required , which increases from a pressure point s 1 up to a maximum point of s 2 on a maximum force Fmax and after the maximum point of s 2 to the second switching position drops s end to end force F End.
  • the actuating force F is generated on the pull magnet ZM1, ZM2, so that the actuating force F is adapted to the force-displacement characteristic of the switching device 2.
  • actuating force F By adapting the actuating force F to the force-displacement characteristic of the switching device 2, mechanically gentle operation of the switching device 2 is ensured. In particular, an excessive actuating force F is avoided, which could lead to wear or even damage to the switching device 2 if mechanically operated components strike.

Description

  • Die vorliegende Erfindung betrifft eine Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems für elektomechanische Vorrichtungen sowie ein Verfahren zum Betrieb einer Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems für elektomechanische Vorrichtungen.
  • Elektromagnetische Triebsysteme werden in der Elektrotechnik häufig eingesetzt, um eine Kraftbeaufschlagung beweglicher mechanischer Bauteile zu realisieren. Solche Systeme verwenden bespielsweise Zugmagnete oder auch andere auf elektromagnetischer Basis arbeitende Baugruppen. Diese Triebsysteme werden unter anderem in Schützen, Schutzschaltern, Relais, Magnetventilen usw. in viefältiger Form eingesetzt.
  • Bei der Betätigung solcher Triebsysteme wird üblicherweise das magnetische System durch die Steuerspannungsquelle direkt erregt; dabei findet eine Beschleunigung mechanischer Bauteile, wie z. B. Anker oder auch Hebelsysteme, statt. Diese bewirken z. B. das Schließen vonSchaltkontakten. Kraftverlauf und Schließgeschwindigkeit sind in diesem Fall jedoch von der Höhe der angelegten Spannung abhängig.
  • Bekannt ist aber auch, daß die Energieversorgung der Triebsysteme oft mittels elektronischer Anordnungen (Vorschaltgeräte) so gesteuert wird, daß bei der Betätigung die Weg-Zeit-Charakteristik des Kraftverlaufs optimal den Erfordernissen des mechanischen Systems entspricht.
  • Aus der DE 20 2011 051 972 U1 ist bereits eine Schaltungsanordnung zum Ansteuern eines Schaltgerätes, welches eine erste Schaltstellung und eine zweite Schaltstellung aufweist und zwischen der ersten Schaltstellung und der zweiten Schaltstellung schaltbar ist, mit zumindest einer elektromagnetischen Betätigungseinrichtung zum Erzeugen einer Stellkraft zum Schalten des Schaltgeräts zwischen der ersten Schaltstellung und der zweiten Schaltstellung und einer Ansteuerschaltung zum Ansteuern der elektromagnetischen Betätigungseinrichtung, bekannt.
  • Ferner offenbart die FR 2 803 956 A1 eine Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems für elektromechanische Vorrichtungen, mit wenigstens einer Steuerspannungsquelle, mit wenigstens einer Regel- und Steuerschaltung, mit wenigstens einem Triebsystem, mit wenigstens einem Übertrager, mit wenigstens einer Gleichrichterbrücke, mit wenigstens einem Glättungskondensator, mit wenigstens einem Hauptschalttransistor, mittels dessen das Triebsystem in einem charakteristischen Pulsfolgesystem ansteuerbar ist und wobei der Hauptschalttransistor mit einem Primärzweig des Übertragers in Reihe geschaltet ist, wobei der Übertrager mit der speisenden Spannung verbunden ist und die Sekundärseite des Übertragers die Gleichrichterbrücke speist. Ferner wird die Ausgangsgleichspannung der Gleichrichterbrücke durch den Glätungskondensator geglättet, so dass eine Speisung mit Gleichspannung mit einem zeitlichen Speiseverlauf erfolgt.
  • Außerdem ist in der DE 198 51 973 A1 eine Schaltungsanordnung zur Gewinnung von Hilfsenergie zum Betrieb einer Steuereinheit eines Schaltgeräts aus einem durch einen Hauptstrompfad des Schaltgeräts fließenden Strom gezeigt, dadurch gekennzeichnet, daß aus einer vom Strom im Hauptstrompfad abhängigen Spannung durch Takten, Transformieren auf die Sekundärseite eines Übertragers und Gleichrichten eine Versorgungsgleichspannung für die Steuereinheit gewonnen wird, wobei die genannte Spannung an einer Reihenschaltung aus einem Übertrager und einem in Abhängigkeit von dessen Sekundärspannung durch eine Ansteuerschaltung (PWM) pulsbreitenmoduliert gesteuerten Halbleiterschalter angelegt ist, und die Ansteuerschaltung (PWM) über einen Schalter zeitweise mit einer Startgleichspannung beaufschlagbar ist.
  • Des Weiteren zeigt die DE 197 44 202 A1 eine Sperrwandlerschaltung, gespeist aus einer insbesondere hochohmigen Spannungsquelle, mit einem Transformator einem Schalttransistor, der durch eine Pulsweiten-Modulatorschaltung gesteuert ist, und mit einem Ausgang, wobei bezogen auf die Eingangsanschlüsse des Sperrwandlers der Primärstromkreis seines Transformators mit dem sekundärseitigen Ausgang galvanisch in Reihe geschaltet ist.
  • Im Übrigen betrifft die JP 3 062707 B2 eine Ansteuerschaltung für eine induktive Last, die angehalten werden muss, um die Verzögerung des Lastbetriebs zu reduzieren. Wenn eine Last betätigt wird, werden gleichgerichtete Ausgangssignale erzeugt, und eine hohe Spannung, die durch Summieren beider Ausgangssignale erhalten wird, wird der Last zugeführt. Wenn eine spezifizierte Zeit nach der Betätigung verstrichen ist, wird die Ausgabe von einer Differenzierschaltung gestoppt und demzufolge wird auch die gleichgerichtete Ausgabe gestoppt; Die Last wird auf einer niedrigen Spannung betrieben, die nur von dem gleichgerichteten Ausgang herrührt. Wenn der Lastantrieb gestoppt wird, ist daher die in der Last gespeicherte Energie niedriger als die herkömmliche, was die Verzögerung des Betriebsstopps reduziert. Das Einfügen einer Zener-Diode in eine Lastversorgungsschaltung kann die Verzögerung des Betriebsstopps weiter reduzieren.
  • Die Betätigung vorgenannter Triebsysteme durch direkte Beaufschlagung der Magnetsysteme mit der zur Verfügung stehenden Steuerspannung besitzt den Nachteil, dass der eingespeiste Steuerstrom und damit die Magnetkraft in der Regel nicht der vorliegenden Kraft-Weg-Charakteristik des angetriebenen mechanischen Systems angepasst ist.
  • Die bekannten elektronischen Vorschaltgeräte zum Betrieb von magnetischen Triebsystemen takten die Magnetsysteme direkt über einen oder mehrere elektonische Schalter. Nachteilig dabei ist, dass die vorhandene Steuerspannung zwar reduziert, aber nicht erhöht werden kann.
  • In einer Reihe von Einsatzfällen dieser Triebsysteme ist es jedoch vorteilhaft, die Steuerspannung zur Betätigung erforderlichenfalls auch erhöhen zu können. Sonst ist in diesen Einsatzfällen - zum Beispiel in Unterspannungssituationen - eine sichere Betätigung nicht möglich.
  • Desweitern dienen diese Vorschaltgeräte vorzugsweise der Betätigung von Schaltgeräten in Form von Schützen, bei denen der Kraftbedarf zunächst hoch, dann aber zeitlich abfallend ist.
  • Durch die direkte Taktung des elektrischen Triebsystems entsteht außerdem ein Störspannungsspektrum, welches sich negativ auf andere elektronische Systeme auswirken kann. Auch bewirkt die Steilheit der Impulse eine erhöhte Belastung des Wicklungsaufbaus der Magnetsysteme, die meistens für den Gleichspannungs- oder den niederfrequenten Wechselspannungsbetrieb konzipiert sind. Die getaktete Betriebsweise kann somit Schäden an der Wicklung des Magnetsystems hervorrufen.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, eine Schaltungsanordnung und ein Verfahren zum Betrieb einer Schaltungsanordnung in vorteilhafter Weise weiterzubilden, insbesondere dahingehend, dass im gesamten Eingangsspannungs- und Temperaturbereich ein sicherer und mechanisch schonender Betrieb ohne wesentliche Störaussendung gewährleistet ist, und es möglich ist, solche Triebsysteme zu betätigen, die bei der Betätigung einen zeitlich stark ansteigenden Kraftbedarf sowie auch eine mechisch verriegelte, stabile Endlage aufweisen.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch eine Schaltungsanordnung mit den Merkmalen des Anspruchs 1 oder des Anspruchs 12, oder durch ein Verfahren gemäß Anspruch 7. Danach ist vorgesehen, dass eine Schaltungsanordnung bereitgestellt wird zur Betätigung eines elektromagnetisches Triebsysteme für elektomechanische Vorrichtungen, insbesondere mit mechanisch verriegelter Endlage, mit wenigstens einer Steuerspannungsquelle, mit wenigstens einer Regel- und Steuerschaltung, mit wenigstens einem Triebsystem, mit wenigstens einem Übertrager, mit wenigstens einer Gleichrichterbrücke, mit wenigstens einem Glättungskondensator, mit wenigstens einem Hauptschalttransistor, mittels dessen das Triebsystem in einem charakteristischen Pulsfolgesystem ansteuerbar ist und wobei der Hauptschalttransistor mit einem Primärzweig des Übertragers in Reihe geschaltet ist, wobei der Übertrager mit der speisenden Spannung verbunden ist und die Sekundärseite des Übertragers die Gleichrichterbrücke speist, deren Ausgangsgleichspannung durch den Glättungskondensator geglättet und zur Spannung der Steuerspannungsquelle addiert wird, so dass eine Speisung mit Gleichspannung mit einem zeitlichen Speiseverlauf erfolgt.
  • Die Erfindung basiert auf dem Grundgedanken, dass eine getaktete transformatorische Wandlerstufe mittels einer Steuer- und Regelschaltung die für den spezifischen Betrieb des elektromagnetischen Triebsystems erforderliche elektrische Speisecharakteristik im gesamten Eingangsspannungs- und Temperaturbereich ohne gepulste Beaufschlagung der Triebsystemspulen bereitstellt. Die aus dem Stand der Technik aufgezeigten Nachteile der bekannten Ansteuerungen werden vermieden und eine Schaltungsanordnung bereitgestellt, welche das Magnetsystem genannter Triebsysteme, insbesondere jene mit Gleichstrommagnetspulen, so betreibt, dass im gesamten Eingangsspannungs- und Temperaturbereich ein sicherer und mechanisch schonender Betrieb ohne wesentliche Störaussendung gewährleistet ist, und auch erlaubt, solche Triebsysteme zu betätigen, die bei der Betätigung einen zeitlich stark ansteigenden Kraftbedarf sowie auch eine mechisch verriegelte, stabile Endlage aufweisen.
  • Bei dem Betrieb von Schaltgeräten mit elektromagnetischem Triebsystem, beispielsweise Batterieschutzschaltern mit Zugmagneten im Triebsystem und mechanisch verriegelter Endlage, Schütz- und Relaisspulen sowie Magnetventilen mit elektromagnetischer Ventilsteuerung, ergeben sich durch den inneren Aufbau eingeschränkte Betriebsspannungsbereiche und ein erhöhter Verschleiß der mechanisch bewegten Komponenten. Bei Betrieb mit einer getakteten Spannung entsteht eine Störaussendung, die elektronische Schaltungen beeinflussen können.
  • Zur Vermeidung dieser Nachteile ist nun erfindungsgemäß eine Schaltungsanordnung bereitgestellt, die eine geregelte Gleichspannung mit einer dem für das Triebsystem zuträglichen Speiseverlauf mittels einer Schaltstufe und Übertrageranordnung mit nachgeschaltetem Gleichrichter bereitstellt und auch ermöglicht, erforderlichenfalls die Betätigungsspannung über die vorhandene und gegebenfalls stark toleranzbehaftete Steuerspannung zu erhöhen. Damit wird deren sichere Einschaltung, wie im beispielhaften Fall eines Batterieschutzschalters mit Zugmagneten im Triebsystem und batteriegepufferter Stromversorgungsanlage bei Vorliegen eines weiten Eingangsspannungsbereiches gewährleistet. Darüber hinaus ermöglicht die Schaltungsanordnung eine schonende und damit lebensdauerverlängernde Betriebsweise der mechanisch bewegten Teile. Durch die Speisung der Triebsysteme mit einer Gleichspannug wird die Störaussendung, insbesondere bei längeren Leitungsverlegungen zwischen der beschriebenen Schaltungsanordnung und dem Triebsystem, weitgehend vermieden.
  • Es kann eine Zusatzdiode vorgesehen sein, die anodenseitig mit dem Knoten Übertrager - Hauptschalttransistor verbunden und kathodenseitig mit dem Knoten der Kathoden der Gleichrichterbrücke verbunden ist.
  • Die Gleichrichterbrücke kann durch mehrere Dioden ausgebildet sein. Diese Dioden können beispielsweise schnelle Dioden für die Ausgangsgleichrichtung sein.
  • Des Weiteren kann vorgesehen sein, dass ein zweiter Transistor vorgesehen ist und dass die Schaltanordnung derart schaltbar ist, dass eine Halteschaltung mittels eines zweiten Transistors im Leistungskreis aktivierbar ist mithilfe der Rückmagnetisierungsenergie des Übertragers für die Einschaltzeit durch die Aufbereitung einer Gatespannung, wodurch der zweite Transistor angesteuert und nach Ablauf der Einschaltzeit durch das Abschalten des Hauptschalttransistors und dem Fortfall der Rückmagnetisierungsenergie gesperrt wird.
  • Darüber hinaus ist möglich, dass die Regel- und Steuerschaltung eine PWM-Schaltung (PWM = Pulsweistenmodulation) mit Einschaltzeitbegrenzung aufweist und dass mittels der PWM-Schaltung eine der Spezifik des Triebsystems entsprechendes Impulsmuster abgespeichert ist, welches durch eine entsprechende Anwahl dem jeweiligen Verwendungszweck zugeteilt werden kann.
  • Außerdem kann vorgesehen sein, dass die Schaltungsanordnung eine Microcontrollerschaltung aufweist und dass für die koordinierte Steuerung und Impulsaufbereitung die Microcontrollerschaltung eingesetzt wird.
  • Zudem ist es möglich, dass eine Thermosicherung, insbesondere eine reversible Thermosicherung, und ein Vorwiderstand für die Steuerstromversorgung, die derart angeordnet sind, dass für den Fehlerfall im Hauptstrompfad die Kombination aus der Thermosicherung und dem Vorwiderstad derart angeordnet und schaltbar ist, dass die durch thermische Verbindung von Thermosicherung und Vorwiderstad Hauptstrompfad unterbrechbar ist.
  • Des Weiteren kann vorgesehen sein, dass die Schaltungsanordnung weiter eine Sicherheitsschaltung mit einem Optokoppler und mit einer Z-Diode aufweist, die derart schaltbar ist, dass im Falle der Unterbrechung der Ausgangslast eine unzulässig hohe Ausgangsspannung dadurch vermieden wird, dass die Sicherheitsschaltung dergestalt anspricht, dass der Optokoppler über die Z-Diode von der zu hohen Ausgangsspannung im Fehlerfall angesteuert wird und somit der Ausgang des Optokopplers auf die Steuer- und Regelschaltung wirkt und somit die Einschaltdauer für den Leistungstransistor so reduziert wird, dass die Ausgangsspannung auf eine zu lässige Höhe begrenzt bleibt.
  • Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zum Betrieb einer Schaltungsanordnung.
  • Dabei wird bei einem Verfahren zum Betrieb einer Schaltungsanordnung zur Betätigung eines elektromagnetisches Triebsysteme für elektomechanische Vorrichtungen, insbesondere mit mechanisch verriegelter Endlage, mit wenigstens einer Steuerspannungsquelle, mit wenigstens einer Regel- und Steuerschaltung, mit wenigstens einem Triebsystem, mit wenigstens einem Übertrager, mit wenigstens einer Gleichrichterbrücke, mit wenigstens einem Glättungskondensator, mit wenigstens einem Hauptschalttransistor, mittels dessen das Triebsystem in einem charakteristischen Pulsfolgesystem in wenigstens einem Betriebszustand angesteuert wird und wobei der Hauptschalttransistor mit einem Primärzweig des Übertragers in Reihe geschaltet ist, derart verfahren, dass der Übertrager mit der speisenden Spannung verbunden ist und die Sekundärseite des Übertragers die Gleichrichterbrücke speist, deren Ausgangsgleichspannung durch den Glättungskondensator geglättet und zur Spannung der Steuerspannungsquelle addiert wird, so dass eine Speisung mit Gleichspannung mit einem zeitlichen Speiseverlauf erfolgt.
  • Des Weiteren kann vorgesehen sein, dass ein zweiter Transistor vorgesehen ist und dass die Schaltanordnung im Betrieb derart geschaltet wird, daß eine Halteschaltung mittels eines zweiten Transistors im Leistungskreis aktiviert wird mithilfe der Rückmagnetisierungsenergie des Übertragers für die Einschaltzeit durch die Aufbereitung einer Gatespannung, wodurch ein zweiter Transistor angesteuert und nach Ablauf der Einschaltzeit durch das Abschalten des Haupttransistors und dem Fortfall der Rückmagnetisierungsenergie gesperrt wird.
  • Darüber hinaus kann vorgesehen sein, dass die Regel- und Steuerschaltung eine PWM-Schaltung mit Einschaltzeitbegrenzung aufweist und dass mittels der PWM-Schaltung eine der Spezifik des Triebsystems entsprechendes Impulsmuster abgespeichert ist, welches durch eine entsprechende Anwahl dem jeweiligen Verwendungszweck zugeteilt werden kann.
  • Außerdem ist möglich, dass eine Thermosicherung, insbesondere eine reversible Thermosicherung, und ein Vorwiderstand für die Steuerstromversorgung, die derart angeordnet sind, dass für den Fehlerfall im Hauptstrompfad die Kombination aus der Thermosicherung und dem Vorwiderstand derart geschaltet wird, dass die durch thermische Verbindung von Thermosicherung und Vorwiderstad Hauptstrompfad unterbrochen wird.
  • Zudem kann vorgesehen sein, dass die Schaltungsanordnung weiter eine Sicherheitsschaltung mit einem Optokoppler und mit einer Z-Diode aufweist, die im Fehlerfall derart geschaltet wird, dass im Falle der Unterbrechung der Ausgangslast eine unzulässig hohe Ausgangsspannung dadurch vermieden wird, dass die Sicherheitsschaltung dergestalt anspricht, dass der Optokoppler über die Z-Diode von der zu hohen Ausgangsspannung im Fehlerfall angesteuert wird und somit der Ausgang des Optokopplers auf die Steuer-und Regelschaltung wirkt und somit die Einschaltdauer für den Leistungstransistor so reduziert wird, dass die Ausgangsspannung auf eine zulässige Höhe begrenzt bleibt.
  • Weitere Einzelheiten und Vorteile der Erfindung sollen nun anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert werden.
  • Es zeigen:
  • Fig. 1
    ein Prinzipschaltbild für ein Ausführungsbeispiel einer Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems sowie ein entsprechendes Verfahren hierzu; und
    Fig. 2
    den quantitativen Verlauf der Kraft-Weg-Charakteristik des Einschaltmechanismus der Schaltanordnung gemäß Fig. 1.
  • Fig. 1 zeigt ein Prinzipschaltbild eines Ausführungsbeispiels einer Schaltungsanordnung, hier ausgeführt als Batterieschutzschalter mit einem Zugmagneten, dessen Schaltungs- und Funktionsprinzip in Fig. 1 sowie nachstehend näher dargestellt ist.
  • Die Schaltungsanordnung weist eine Regel- und Steuerschaltung 1 auf, die im Einzelnen eine Stabilisierungsschaltung für die interne Steuerspannung Us mit ZD 1.1, eine Messwerterfassung 1.2, eine PWM-Schaltung (Pulsweitenmodulations-Schaltung) mit Einschaltbegrenzung t 1.3 sowie eine Treiberschaltung 1.4 für den Leistungsschalter (VT2) aufweist.
  • Des Weiteren weist die Schaltanordnung ein elektromagnetisches Triebsystem 2 auf.
  • Die Schaltanordnung ist an eine Steuerspannungsquelle mit einer Betriebsspannung (UB) angeschlossen.
  • Mit dem Bezugszeichen MB ist das Minuspotential (Hauptstrom) bezeichnet.
  • Des Weiteren weist die Schaltanordnung einen Einschalttaster S1, einen Vorwiderstand R1 für die Stromversorgung Us, einen Gateableitwiderstand R2 für den Schalttransistor VT1, einen Entladewiderstand R3 im Entlastungsnetzwerk vom Einschalttransistor für die Selbsthalteschaltung VT2, einen Gateableitwiderstand R4 für den Einschalttransistor VT2 sowie einen Standwiderstand R5 zur Erfassung des Hauptstroms zur Generierung der Regelgröße auf. Weiter sind ein Strombegrenzungswiderstand R6, ein Überspannungsschutz R7, ein niederinduktiver Zwischenkreiskondensator C1, ein Zwischenkreiskondensator C2 mit höherer Speicherkapazität, ein Glättungskondensator C3, ein Kondensator C4 des DRC-Entlastungsnetzwerks für den Einschalttransistor VT2, ein Glättungskondensator C5 für die Ausgangslast vorgesehen. Außerdem weist die Schaltanordnung VD1 eine Falschpoldiode und Freilaufdiode VD1, eine schnelle Diode VD2 des DRC-Netzwerks für den Einschalttransistor VT2, eine Gatespannungsbegrenzung VD3, eine schnelle Gleichrichterdiode VD4 zur Aufbereitung der Gatespannung für den Schalttransistor VT1, schnelle Dioden für die Ausgangsgleichrichtung VD5, VD6, VD7 und VD8 sowie eine Freilaufdiode VD9 für den Schalttransistor VT1, eine Eingangsdrossel L1 (Einschaltstrombegrenzung), eine Thermoschmelzsicherung F1 sowie eine Überstromsicherung F2 auf.
  • Die Zusatzdiode VD9 ist anodenseitig mit dem Knoten Übertrager T1 - Schalttransistor VT2 verbunden und kathodenseitig mit dem Knoten der Kathoden VD6, VD8 der Gleichrichterbrücke, die durch die Dioden VD5, VD6, VD7, VD8 ausgebildet ist, verbunden ist.
  • Ferner sind Klemmen 1/2, die Anschlüsse für den Einschalttaster darstellen, eine Klemme 3 als Speiseeingang für die Steuerstromversorgung, eine Klemme 4 für den Anschluss für die Ansteuerung des Schalttransistors VT1, eine Klemme 5 als Minuspotential der Steuerspannungsebene, Klemmen 6/7 als Shuntspannungszuführung für die Regelschaltung mit der Messfelderfassung 1.2, Klemmen 8/9 als Anschluss für die Ausgangslast 2 des elektromagnetischen Triebsystems 2.
  • Mit dem Bezugszeichen tEin ist die Einschaltzeit und mit ttot die Totzeit bezeichnet.
  • Die Funktionsweise der Steueranordnung und das erfindungsgemäße Verfahren werden nun wie nachstehend erläutert:
    Der Batterieschutzschalter erreicht im eingeschalteten Zustand eine mechanisch verriegelte, stabile Endlage. Die Funktion des sicheren Anzuges der Zugmagnete und des zuverlässigen Erreichens der mechanisch fixierten Endlage des Batterieschutzschalters muss in einem Spannungsbereich von 65 V bis 150 V gewährleistet sein, wobei die Nennsteuerspannung 110V beträgt.
  • Bei dieser Anwendung muss die vorgeschlagene Anordnung absichern, daß trotz stark ansteigendem Kraftbedarf - im Gegensatz zu den allgemein bekannten Schützen - am Ende der Betätigungszeit ausreichend Energie für das Magnetsystem bereitgestellt wird.
  • Über den Starttaster S1 wird der Einschaltvorgang gestartet, so dass der im Sperrzustand befindliche Transistor VT1 überbrückt und die Regel- und Steuerschaltung über den Vorwiderstand R1 aktiviert wird; die Steuerspannungsaufbereitung 1.1 ist durch ZD symbolisiert. Für die Bildung der Impulsfolge wird ein impulsweitenmoduliertes Signal mit einer konstanten Grundfrequenz von 40 kHz erzeugt.
  • Die Einschaltzeit tEin ist so bemessen, daß unter allen Umgebungsbedingungen die erforderliche Anzugszeit unter Berücksichtigung der zulässigen Betriebszeit für die Zugmagnete eingehalten wird, wie in Fig.2 dargestellt.
  • Die Zugmagnete 2 sind für den Kurzzeitbetrieb ausgelegt; unzulässig lange Betriebszeiten führen zur Zerstörung. Sollte im Fehlerfall die zulässige Betriebszeit überschritten werden, löst die Thermoschmelzsicherung F1 infolge der thermischen Kopplung mit dem Widerstand R1 aus. Vorwiderstand R1 und die reversible Thermosicherung weisen die gleiche Gehäusegrundform (TO220) auf und sind an den thermischen Kontaktflächen dieser Gehäuse mechanisch miteinander verbunden, so dass im Fehlerfall eine sichere Auslösung in definierter weise gewährleistet ist. Durch die Wahl der Widerstandsbaugröße entsteht ein annähernd thermisch äquivalentes Verhalten zu den Zugmagneten 2.
  • Der Transistor VT2 wird durch die Regel und Steuerschaltung 1 innerhalb der Zeit tEin von 1,6 s der PWM-Schaltung angesteuert, dabei wird zu der Steuer - (Eingangs-) spannung UB entsprechend des Übersetzungsverhältnisses des Übertragers T1 eine Spannug addiert, die durch die Gleichrichterbrücke mit VD5 bis VD8 gebildet und durch C5 geglättet wird. Durch diese Anornung wird erreicht, dass durch Variation des PWM-Tastverhältnisses die Spannung an den Zugmagneten auf einen Wert sowohl unterhalb als auch oberhalb der Steuerspannung gebracht werden kann. Der Schalter S1 kann nach dem Schließen wieder geöffnet werden; die Selbshalteschaltung mit VT1 versorgt die Schaltung weiter, indem die Rückmagnetisierungsspannung von T1 über die Diode VD4, dem Strombegrenzungswiderstand R6 der Begrenzer- und Stabilisierungsschaltung mit VD3, R2 und C3 dem Gate von VT1 zugeführt wird, so dass dieser einschaltet. Solange die Stufe mit VT2 taktet, bleibt der Leistungskreis über VT1 eingeschaltet. Nach dem Aublauf der Zeit tEin schaltet die Stufe mit VT2 ab, der Leistungskreis wird unterbrochen. Nach Ablauf einer Totzeit ttot kann der Schaltvorgang erneut gestartet werden. Die Totzeit ttot verhindert, dass durch unsachgemässen Gebrauch die Triebsystemspulen überlastet werden.
  • Die interne Steuerspannungsaufbereitung 1.1 sichert außerdem durch eine eigene Zeitstufe ab, dass durch eine unsachgemäße Betätigung des Ein-Tasters S1 (Dauereintastung) die Stabilisierung ZD nicht überlastet wird; in einem solchen Fall wird 1.1 nach einer vorgegebenen Zeit, die über der normalen Betriebszeit der Einrichtung liegt, zwangsweise abgeschaltet.
  • Für eine ausreichende Entkopplung von den inherenten Widerständen der speisenden Quelle UB sind die Kondensatoren C1 und C2 vorgesehen, wobei durch niederinduktiven Kondensator C1 im Einschaltmoment von VT2 speist und darüber den Wechselstromanteil des Zwischenkreiskondensators C2 mit der wesentlich höheren Kapazität und dem höheren Innenwiderstand übernimmt.
  • Die Drossel L1 ist für die Einschaltstrombegrenzung und die strommäßige Entlastung von Schalter S1 vorgesehen.
  • Die Schaltung ist mit einer Stromregelung ausgestattet; über den Shuntwiderstand R5 wird der Hauptstrom im Leistungskreis erfasst und der Messwerterfassung 1.2 zugeführt. Die Messwerterfassung 1.2 stellt die Signale für die Steuer- und Regelschaltung 1.3 bereit, die das Impulsweitenmuster entsprechend der spezifischen Charakteristik des elektromagnetischen Triebsystems 2 aufbereitet. In der Steuer- und Regelschaltung 1.3 können eine Reihe von spezifischen Speisecharakteristiken hinterlegt sein, die in entsprechender Weise angewählt werden können und somit dem jeweiligen Verwendungszweck entsprechen.
  • Falls durch einen Fehler beim Einsatz keine Verbindung von den Ausgangsklemmen 8 u. 9 zum Schutzschalter 2 bestehen sollte, wird durch die Steuer- und Regelschaltung 1.3 eine Ausgangsspannungsbegrenzung vorgenommen.
  • Wie aus Figur 2 ersichtlich, ist die Kraft-Weg-Charakteristik derart, dass beim Überführen des Schaltgeräts 2 von einer der geöffneten Stellungen entsprechenden ersten Schaltstellung s0 in eine der geschlossenen Stellung entsprechende zweite Schaltstellung sEnd über den Stellweg s zunächst eine vergleichsweise niedrige Anfangskraft FAnf erforderlich ist, die ab einem Druckpunkt s1 bis hin zu einem Maximalpunkt s2 auf eine Maximalkraft Fmax anwächst und nach dem Maximalpunkt s2 bis in die zweite Schaltstellung sEnd auf eine Endkraft FEnd abfällt. Entsprechend der Kurve dieser Kraft-Weg-Charakteristik wird die Stellkraft F an dem Zugmagneten ZM1, ZM2 erzeugt, so dass die Stellkraft F der Kraft-Weg-Charakteristik des Schaltgeräts 2 angepasst ist.
  • Durch Anpassen der Stellkraft F an die Kraft-Weg-Charakteristik des Schaltgeräts 2 wird ein mechanisch schonender Betrieb des Schaltgeräts 2 gewährleistet. Insbesondere wird eine überhöhte Stellkraft F vermieden, die bei einem Anschlagen von mechanisch betätigten Bauteilen zu einer Abnutzung oder gar Beschädigung des Schaltgerätes 2 führen könnte.
  • Zudem wird durch Anpassen der Stellkraft F an die Kraft-Weg-Charakteristik des Schaltgerätes 2 gewährleistet, dass unabhängig von der konkret zur Verfügung stehenden Steuerspannung UDauer ein zuverlässiges Schalten des Schaltgerätes 2 erfolgt. Insbesondere wird durch das Wandeln der Steuerspannung UDauer in die Zwischenkreisspannung UZK und das Anpassen der Stellkraft F an die Kraft-Weg-Charakteristik des Schaltgeräts 2 über den gesamten Spannungsbereich der Steuerspannung UDauer gewährleistet, dass genügend Energie zum Schalten des Schaltgeräts 2 vorhanden ist und zudem ein Prellen von mechanisch betätigten Bauteilen des Schaltgeräts 2 ausgeschlossen ist.
  • BEZUGSZEICHENLISTE
    • 1 - Regel- und Steuerschaltung
    • 1.1 - Stabilisierungsschaltung für die interne Steuerspannung Us mit ZD
    • 1.2 - Messwerterfassung
    • 1.3 - PWM-Schaltung mit Einschaltscheitbegrenzung t
    • 1.4 - Treiberschaltung für Leistungsschalter (VT2)
    • 2 - Elektromagnetisches Triebsystem
    • UB - Betriebsspannung
    • MB - Minuspotential (Hauptstrom)
    • S1 - Einschalttaster
    • R1 - Vorwiderstand für die Steuerstromversorgung Us
    • R2 - Gateableitwiderstand für VT1
    • R3 - Entladewiderstand im Entlastungsnetzwerk von VT2
    • R4 - Gateableitwiderstand für VT2
    • R5 - Shuntwiderstand zur Erfassung des Hauptstromes zur Generierung der Regel
      größe
    • R6 - Strombegrenzungswiderstand
    • R7 - Überspannungsschutz
    • C1 - Niederinduktiver Zwischenkreiskondensator
    • C2 - Zwischenkreiskondensator mit höherer Speicherkapazität
    • C3 - Glättungskondensator
    • C4 - Kondensator des DRC-Entlastungsnetzwerkes für VT2
    • C5 - Glättungskondensator für die Ausgangslast
    • VD1 - Falschpoldiode und Freilaufdiode
    • VD2 - Schnelle Diode des DRC-Netzwerkes für VT2
    • VD3 - Gatespannungsbegrenzung
    • VD4 - Schnelle Gleichrichterdiode zur Aufbereitung der Gatespannung für VT1
    • VD5 bis VD8 - Schnelle Diode für die Ausgangsgleichrichtung
    • VD9 - Freilaufdiode für T1
    • VT1 - Schalttransistor
    • VT2 Einschalttransistor für Selbsthalteschaltung
    • L1 Eingangsdrossel (Einschaltstrombegrenzung)
    • F1 Thermoschmelzsicherung
    • F2 Überstromsicherung
    • Klemmen:
      • 1/2 Anschlüsse für Einschalttaster
      • 3 Speiseeingang für Steuerstromversorgung
      • 4 Anschluss für Ansteuerung von VT1
      • 5 Minuspotential (Steuerspannungsebene)
      • 6/7 Shuntspannungszuführung für die Regelschaltung mit 1.2
      • 8/9 Anschluss für die Ausgangslast 2
    • tEin Einschaltzeit
    • ttot Totzeit
    • F Stellkraft
    • FAnf Stellkraft im Einschaltmoment
    • Fmax Stellkraft am Druckpunkt
    • FEnd Stellkraft am Ende des Stellweges
    • s Ankerweg des Zugmagneten
    • s0 Ausschaltlage
    • s1 Distanz zwischen Ausschaltlage und Druckpunkt
    • s2 Distanz zwischen Ausschaltlage und dem erforderlichen Kraftmaximum
    • sEnd Distanz zwischen Ausschalt- und Endlage

Claims (12)

  1. Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems für elektromechanische Vorrichtungen, insbesondere mit mechanisch verriegelter Endlage, mit wenigstens einer Steuerspannungsquelle mit einer speisenden Spannung (UB), mit wenigstens einer Regel- und Steuerschaltung (1), mit wenigstens einem Triebsystem (2), mit wenigstens einem Übertrager (T1), mit wenigstens einer Gleichrichterbrücke (VD5, VD6, VD7, VD8), mit wenigstens einem Glättungskondensator (C5), mit wenigstens einem Hauptschalttransistor (VT2), mittels dessen das Triebsystem (2) in einem charakteristischen Pulsfolgesystem ansteuerbar ist und wobei der Hauptschalttransistor (VT2) mit einem Primärzweig des Übertragers (T1) in Reihe geschaltet ist, wobei der Übertrager (T1) mit der speisenden Spannung (UB) verbunden ist und die Sekundärseite des Übertragers (T1) die Gleichrichterbrücke (VD5, VD6, VD7,VD8) speist, dadurch gekennzeichnet, dass die Ausgangsgleichspannung der Gleichrichterbrücke (VD5, VD6, VD7, VD8) durch den Glättungskondensator (C5) geglättet und zur speisenden Spannung (UB) der Steuerspannungsquelle addiert wird, so dass eine Speisung mit Gleichspannung mit einem zeitlichen Speiseverlauf erfolgt.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass ein zweiter Transistor (VT1) vorgesehen ist und dass die Schaltanordnung derart schaltbar ist, dass eine Halteschaltung mittels eines zweiten Transistors (VT1) im Leistungskreis aktivierbar ist mithilfe der Rückmagnetisierungsenergie des Übertragers (T1) für die Einschaltzeit (tEin) durch die Aufbereitung einer Gatespannung (VD4, R6, VD3, R2, C3), wodurch der zweite Transistor (VT1) angesteuert und nach Ablauf der 25 Einschaltzeit (tEin) durch das Abschalten des Hauptschalttransistors (VT2) und dem Fortfall der Rückmagnetisierungsenergie gesperrt wird.
  3. Schaltungsanordnung nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass die Regel- und Steuerschaltung (1) eine PWM-Schaltung (1.3) mit Einschaltzeitbegrenzung (1.3) aufweist und daß mittels der PWM-Schaltung (1.3) ein der Spezifik des Triebsystems entsprechendes Impulsmuster abgespeichert ist, welches durch eine entsprechende Anwahl dem jeweiligen Verwendungszweck zugeteilt werden kann.
  4. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltungsanordnung eine Microcontrollerschaltung aufweist und dass für die koordinierte Steuerung und Impulsaufbereitung die Microcontrollerschaltung eingesetzt wird.
  5. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Thermosicherung (F1), insbesondere eine reversible Thermosicherung, und ein Vorwiderstand für die Steuerstromversorgung (R1), die derart angeordnet sind, dass für den Fehlerfall im Hauptstrompfad die Kombination aus der Thermosicherung und dem Vorwiderstand derart angeordnet und schaltbar ist, dass die durch thermische Verbindung von Thermosicherung und Vorwiderstand Hauptstrompfad unterbrechbar ist.
  6. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schaltungsanordnung weiter eine Sicherheitsschaltung mit einem Optokoppler und mit einer Z-Diode aufweist, die derart schaltbar ist, dass im Falle der Unterbrechung der Ausgangslast des Triebsystems (2) eine unzulässig hohe Ausgangsspannung dadurch vermieden wird, dass die Sicherheitsschaltung dergestalt anspricht, dass der Optokoppler über die Z-Diode von der zu hohen Ausgangsspannung im Fehlerfall angesteuert wird und somit der Ausgang des Optokopplers auf die Steuer-und Regelschaltung (1) wirkt und somit die Einschaltdauer für den Hauptschalttransistor (VT2) so reduziert wird, dass die Ausgangsspannung auf eine zulässige Höhe begrenzt bleibt.
  7. Verfahren zum Betrieb einer Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems für elektromechanische Vorrichtungen, insbesondere mit mechanisch verriegelter Endlage, mit wenigstens einer Steuerspannungsquelle mit einer speisenden Spannung (UB), mit wenigstens einer Regel- und Steuerschaltung (1), mit wenigstens einem Triebsystem (2), mit wenigstens einem Übertrager (T1), mit wenigstens einer Gleichrichterbrücke (VD5, VD6, VD7,VD8), mit wenigstens einem Glättungskondensator (C5), mit wenigstens einem Hauptschalttransistor (VT2), mittels dessen das Triebsystem (2) in einem charakteristischen Pulsfolgesystem in wenigstens einem Betriebszustand angesteuert wird und wobei der Hauptschalttransistor (VT2) mit einem Primärzweig des Übertragers (T1) in Reihe geschaltet ist, wobei der Übertrager (T1) mit der speisenden Spannung (UB) verbunden ist und die Sekundärseite des Übertragers (T1) die Gleichrichterbrücke (VD5, VD6, VD7,VD8) speist, dadurch gekennzeichnet, dass die Ausgangsgleichspannung der Gleichrichterbrücke (VD5, VD6, VD7, VD8) durch den Glättungskondensator (C5) geglättet und zur speisenden Spannung (UB) der Steuerspannungsquelle addiert wird, so dass eine Speisung mit Gleichspannung mit einem zeitlichen Speiseverlauf erfolgt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein zweiter Transistor (VT1) vorgesehen ist und dass die Schaltanordnung im Betrieb derart geschaltet wird, dass eine Halteschaltung mittels eines zweiten Transistors (VT1) im Leistungskreis aktiviert wird mithilfe der Rückmagnetisierungsenergie des Übertragers (T1) für die Einschaltzeit (tEin) durch die Aufbereitung einer Gatespannung (VD4, R6, VD3, R2, C3), wodurch der zweite Transistor (VT1) angesteuert und nach Ablauf der Einschaltzeit (tEin) durch das Abschalten des Hauptschalttransistors (VT2) und dem Fortfall der Rückmagnetisierungsenergie gesperrt wird.
  9. Verfahren nach Anspruch 7 oder Anspruch 8, dadurch gekennzeichnet, dass die Regel- und Steuerschaltung (1) eine PWM-Schaltung (1.3) mit Einschaltzeitbegrenzung (1.3) aufweist und dass mittels der PWM-Schaltung (1.3) ein der Spezifik des Triebsystems entsprechendes Impulsmuster abgespeichert ist, welches durch eine entsprechende Anwahl dem jeweiligen Verwendungszweck zugeteilt werden kann.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass eine Thermosicherung (F1), insbesondere eine reversible Thermosicherung, und ein Vorwiderstand für die Steuerstromversorgung (R1), die derart angeordnet sind, dass für den Fehlerfall im Hauptstrompfad die Kombination aus der Thermosicherung und dem Vorwiderstand derart geschaltet wird, dass die durch thermische Verbindung von Thermosicherung und Vorwiderstand Hauptstrompfad unterbrochen wird.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Schaltungsanordnung weiter eine Sicherheitsschaltung mit einem Optokoppler und mit einer Z-Diode aufweist, die im Fehlerfall derart geschaltet wird, dass im Falle der Unterbrechung der Ausgangslast des Triebsystems (2) eine unzulässig hohe Ausgangsspannung dadurch vermieden wird dass die Sicherheitsschaltung dergestalt anspricht, dass der Optokoppler über die Z-Diode von der zu hohen Ausgangsspannung im Fehlerfall angesteuert wird und somit der Ausgang des Optokopplers auf die Steuer-und Regelschaltung (1) wirkt und somit die Einschaltdauer für den Hauptschalttransistor (VT2) so reduziert wird, dass die Ausgangsspannung auf eine zulässige Höhe begrenzt bleibt.
  12. Schaltungsanordnung zur Betätigung eines elektromagnetischen Triebsystems für elektromechanische Vorrichtungen, insbesondere mit mechanisch verriegelter Endlage,
    mit wenigstens einer Steuerspannungsquelle mit einer speisenden Spannung (UB), mit wenigstens einer Regel- und Steuerschaltung (1),
    mit wenigstens einem Triebsystem (2),
    mit wenigstens einem Übertrager (T1),
    mit wenigstens einer Gleichrichterbrücke (VD5, VD6, VD7, VD8),
    mit wenigstens einem Glättungskondensator (C5),
    mit wenigstens einem Hauptschalttransistor (VT2), mittels dessen das Triebsystem (2) in einem charakteristischen Pulsfolgesystem ansteuerbar ist und wobei der Hauptschalttransistor (VT2) mit einem Primärzweig des Übertragers (T1) in Reihe geschaltet ist, wobei der Übertrager (T1) mit der speisenden Spannung (UB) verbunden ist und die Sekundärseite des Übertragers (T1) die Gleichrichterbrücke (VD5, VD6, VD7,VD8) speist, dadurch gekennzeichnet, dass die Ausgangsgleichspannung der Gleichrichterbrücke (VD5, VD6, VD7, VD8) durch den Glättungskondensator (C5) geglättet und zur speisenden Spannung (UB) der Steuerspannungsquelle addiert wird, so dass eine Speisung mit Gleichspannung mit einem zeitlichen Speiseverlauf erfolgt, wobei die Schaltungsanordnung mit einem zweiten Transistor (VT1) versehen ist, der zwischen der Steuerspannungsquelle und einem ersten Knoten angeschlossen ist,
    wobei der Primärzweig des Übertragers (T1) zwischen dem ersten Knoten und einem zweiten Knoten angeschlossen ist,
    wobei der Hauptschalttransistor (VT2) zwischen dem zweiten Knoten und einem ersten Minuspotential (MB) angeschlossen ist, wobei der Hauptschalttransistor (VT2) über einen Shuntwiderstand (R5), eine Eingangsdrossel (L1), eine Thermoschmelzsicherung (F1) und eine Überstromsicherung (F2) mit einem Minuspotential (MB) verbunden ist,
    wobei die Sekundärseite des Übertragers (T1) zwischen dem zweiten Knoten und einem dritten Knoten angeschlossen ist,
    wobei die Gleichrichterbrücke (VD5, VD6, VD7, VD8) durch eine erste Diode (VD5), eine zweite Diode (VD6), eine dritte Diode (VD7) und vierte Diode (VD8) ausgebildet ist,
    wobei die erste Diode (VD5) und die dritte Diode (VD7) anodenseitig jeweils mit einem vierten Knoten verbunden sind,
    wobei die zweite Diode (VD6) und die vierte Diode (VD8) kathodenseitig jeweils mit einem fünften Knoten verbunden sind,
    wobei die erste Diode (VD5) kathodenseitig mit dem dritten Knoten verbunden ist und die zweite Diode (VD6) anodenseitig mit dem dritten Knoten verbunden ist,
    wobei die dritte Diode (VD7) kathodenseitig mit dem ersten Knoten verbunden ist und die vierte Diode (VD8) anodenseitig mit dem ersten Knoten verbunden ist, und
    wobei der Glättungskondensator (C5) zwischen dem vierten und dem fünften Knoten angeschlossen ist.
EP16805829.5A 2015-12-04 2016-12-05 Schaltungsanordnung zum betrieb elektromagnetischer triebsysteme Active EP3384514B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16805829T PL3384514T3 (pl) 2015-12-04 2016-12-05 Układ obwodu do obsługi elektromagnetycznych układów napędowych

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015015580.6A DE102015015580A1 (de) 2015-12-04 2015-12-04 Schaltungsanordnung zum Betrieb elektromagnetischer Triebsysteme
PCT/EP2016/079706 WO2017093552A1 (de) 2015-12-04 2016-12-05 Schaltungsanordnung zum betrieb elektromagnetischer triebsysteme

Publications (2)

Publication Number Publication Date
EP3384514A1 EP3384514A1 (de) 2018-10-10
EP3384514B1 true EP3384514B1 (de) 2021-07-21

Family

ID=57482426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16805829.5A Active EP3384514B1 (de) 2015-12-04 2016-12-05 Schaltungsanordnung zum betrieb elektromagnetischer triebsysteme

Country Status (13)

Country Link
US (1) US10755881B2 (de)
EP (1) EP3384514B1 (de)
JP (1) JP6900391B2 (de)
KR (1) KR20180112767A (de)
CN (1) CN108701567B (de)
AU (1) AU2016362010B2 (de)
BR (1) BR112018011283B1 (de)
CA (1) CA3006630C (de)
DE (1) DE102015015580A1 (de)
ES (1) ES2893243T3 (de)
PL (1) PL3384514T3 (de)
PT (1) PT3384514T (de)
WO (1) WO2017093552A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016125031A1 (de) * 2016-12-20 2018-06-21 Pilz Gmbh & Co. Kg Sicherheitsschaltanordnung zum fehlersicheren Abschalten einer elektrisch angetriebenen Anlage
DE102018109594A1 (de) 2018-04-20 2019-10-24 Ellenberger & Poensgen Gmbh Batteriemanagementsystem, insbesondere für ein Schienenfahrzeug
US10674585B1 (en) * 2019-04-30 2020-06-02 Ledvance Llc Reliability of hardware reset process for smart light emitting diode (LED) bulbs
KR102154635B1 (ko) * 2019-08-26 2020-09-10 엘에스일렉트릭(주) 코일 구동 장치
CN112366121B (zh) * 2020-10-15 2024-02-09 国网山东省电力公司枣庄供电公司 一种电力电源保护开关
DE102020131819A1 (de) 2020-12-01 2022-06-02 PTC Rail Services GmbH Schaltungsanordnung und Verfahren zum energieoptimierten Betrieb elektromagnetischer Triebsysteme

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070852U (de) * 1973-10-31 1975-06-23
JPS5875724A (ja) * 1981-10-13 1983-05-07 エルイン・シツク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・オプテイ−ク−エレクトロニク リレ−回路に結合される二値出力を有する入力段を備える電子式装置
US4777556A (en) * 1986-08-22 1988-10-11 Datatrak Solenoid activation circuitry using high voltage
US4859921A (en) * 1988-03-10 1989-08-22 General Electric Company Electronic control circuits, electronically commutated motor systems, switching regulator power supplies, and methods
DE4015672A1 (de) * 1990-05-16 1991-11-21 Ant Nachrichtentech Verfahren zur beeinflussung des anlaufverhaltens eines schaltreglers sowie schaltregler und anwendung
JP3062707B2 (ja) 1992-01-14 2000-07-12 日本信号株式会社 負荷駆動回路
EP0810616B1 (de) * 1992-01-14 1999-10-27 The Nippon Signal Co. Ltd. Steuerschaltung für induktive Last
DE4329917A1 (de) * 1993-09-04 1995-03-09 Bosch Gmbh Robert Schaltungsanordnung zur getakteten Versorgung eines elektromagnetischen Verbrauchers
DE19744202A1 (de) 1997-09-30 1999-04-01 Siemens Ag Sperrwandlerschaltung, insbesondere in einer Stromwandlereinrichtung für elektronische Auslöseschaltung mit Schaltnetzteil eingesetzt
DE19851973A1 (de) 1998-09-25 2000-04-06 Siemens Ag Schaltungsanordnung zur Gewinnung von Hilfsenergie zum Betrieb einer Steuereinheit
EP0989653B1 (de) * 1998-09-25 2008-08-20 Siemens Aktiengesellschaft Schaltungsanordnung zur Gewinnung von Hilfsenergie zum Betrieb einer Steuereinheit
FR2803956B3 (fr) 2000-01-13 2002-06-14 Systemes Et Conversion Ind D E Dispositif et procede pour alimenter une bobine de commande d'un contacteur electrique, notamment d'un contacteur de puissance
HK1049265A2 (en) * 2002-02-27 2003-04-11 Easy Charm Ltd A two-wire power switch with line-powered switch controlling means
CN2757191Y (zh) * 2004-11-16 2006-02-08 路放鸣 由微处理器组成的电动自行车直流电机控制器
US20080211347A1 (en) * 2007-03-02 2008-09-04 Joshua Isaac Wright Circuit System With Supply Voltage For Driving An Electromechanical Switch
DE102008064659B4 (de) * 2008-07-03 2013-05-29 Fujitsu Technology Solutions Intellectual Property Gmbh Schaltungsanordnung und Ansteuerschaltung für ein Netzteil, Computernetzteil und Verfahren zum Schalten eines Netzteils
DE202011051972U1 (de) 2011-11-15 2012-01-23 Pcs Power Converter Solutions Gmbh Schaltungsanordnung zum Ansteuern eines Schaltgerätes
AU2014305640B2 (en) * 2013-08-09 2016-06-30 Hendon Semiconductors Pty Ltd An electrical relay drive arrangement for energising and de- energising the electrical coil of an electro-mechanical relay

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108701567A (zh) 2018-10-23
BR112018011283B1 (pt) 2023-01-17
PT3384514T (pt) 2021-10-19
JP2019504461A (ja) 2019-02-14
US20180366288A1 (en) 2018-12-20
AU2016362010A1 (en) 2018-06-21
DE102015015580A1 (de) 2017-06-08
WO2017093552A1 (de) 2017-06-08
KR20180112767A (ko) 2018-10-12
CA3006630A1 (en) 2017-06-08
EP3384514A1 (de) 2018-10-10
BR112018011283A2 (pt) 2018-11-27
JP6900391B2 (ja) 2021-07-07
PL3384514T3 (pl) 2021-12-27
CA3006630C (en) 2023-11-21
US10755881B2 (en) 2020-08-25
ES2893243T3 (es) 2022-02-08
AU2016362010B2 (en) 2021-08-05
CN108701567B (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
EP3384514B1 (de) Schaltungsanordnung zum betrieb elektromagnetischer triebsysteme
EP2888800B1 (de) Notlichtgerät
EP1527470B1 (de) Steueranordnung für einen elektromagnetischen antrieb
WO2010000544A2 (de) Schaltungsanordnung und ansteuerschaltung für ein netzteil, computernetzteil und verfahren zum schalten eines netzteils
EP1211794B1 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
EP0136968A2 (de) Schaltungsanordnung zur Speisung eines Elektromagneten mit einem Anzugsstrom und einem nachfolgenden Haltestrom
AT504010A1 (de) Zündeinrichtung für eine brennkraftmaschine
WO2018072953A1 (de) Gleichspannungswandler und verfahren zur ansteuerung eines gleichspannungswandlers
DE4331952A1 (de) Einrichtung zum Starten und Betreiben einer Gasentladungslampe in Kraftfahrzeugen
WO2017089548A1 (de) Schaltgerät und verfahren zum ansteuern einer schalteinrichtung
WO2005096327A1 (de) Verfahren und schaltungsanordnung zum betreiben eines magnetantriebes
EP2503682B1 (de) Schaltungsanordnung
DE102010041018A1 (de) Vorrichtung zum Ansteuern eines Schützes
DE69914053T2 (de) Einrichtung zur Steuerung eines Elektromagneten, mit Erfassung von unbeabsichtigtem Bewegen des beweglichen Kerns eines Elektromagneten
DE10201453A1 (de) Verfahren und Steuersystem zum Betreiben eines Magnetventiles für pneumatische Bremszylinder
DE10357250A1 (de) Elektronische Schaltungseinrichtung mit Überstromsicherung und Steuerverfahren
WO2015185371A1 (de) Relais
EP2449239A1 (de) Ansteuerschaltung für mehrere induktive lasten und verfahren für eine ansteuerung von induktiven lasten
EP3641115A1 (de) Sperrwandler mit hohem wirkungsgrad
DE102004058159B4 (de) Schaltungsanordnung zur Betätigung eines Ventils
EP2992738B1 (de) Fehlererkennung für led
EP1107414B1 (de) Verfahren zur Unterspannungs-Ueberwachung einer Netzspannung und Unterspannungsausloeser
DE202011051972U1 (de) Schaltungsanordnung zum Ansteuern eines Schaltgerätes
DE102006033348B4 (de) Resonanzwandler
WO2007051749A1 (de) Vorrichtung zum betreiben mindestens einer entladungslampe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190514

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELLENBERGER & POENSGEN GMBH

Owner name: POWERTECH CONVERTER GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013459

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1413364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3384514

Country of ref document: PT

Date of ref document: 20211019

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20211011

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 38448

Country of ref document: SK

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2893243

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013459

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

26N No opposition filed

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210721

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 38448

Country of ref document: SK

Effective date: 20211205

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230119

Year of fee payment: 7

Ref country code: CH

Payment date: 20230103

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231127

Year of fee payment: 8

Ref country code: PT

Payment date: 20231128

Year of fee payment: 8

Ref country code: NO

Payment date: 20231218

Year of fee payment: 8

Ref country code: NL

Payment date: 20231219

Year of fee payment: 8

Ref country code: FR

Payment date: 20231220

Year of fee payment: 8

Ref country code: DE

Payment date: 20231024

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231122

Year of fee payment: 8

Ref country code: AT

Payment date: 20231214

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240110

Year of fee payment: 8