EP3374172A1 - Als pressblech ausgebildetes presswerkzeug - Google Patents

Als pressblech ausgebildetes presswerkzeug

Info

Publication number
EP3374172A1
EP3374172A1 EP16797793.3A EP16797793A EP3374172A1 EP 3374172 A1 EP3374172 A1 EP 3374172A1 EP 16797793 A EP16797793 A EP 16797793A EP 3374172 A1 EP3374172 A1 EP 3374172A1
Authority
EP
European Patent Office
Prior art keywords
press
tool according
press plate
structuring
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16797793.3A
Other languages
English (en)
French (fr)
Other versions
EP3374172B1 (de
Inventor
Rolf Espe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hueck Rheinische GmbH
Original Assignee
Hueck Rheinische GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hueck Rheinische GmbH filed Critical Hueck Rheinische GmbH
Priority to PL16797793T priority Critical patent/PL3374172T3/pl
Publication of EP3374172A1 publication Critical patent/EP3374172A1/de
Application granted granted Critical
Publication of EP3374172B1 publication Critical patent/EP3374172B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/20Moulding or pressing characterised by using platen-presses
    • B27N3/203Moulding or pressing characterised by using platen-presses with heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/20Moulding or pressing characterised by using platen-presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • B27N7/005Coating boards, e.g. with a finishing or decorating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/062Press plates

Definitions

  • the invention relates to a pressing die designed as a press tool for coating wood-based panels in hydraulic press lines.
  • the coated wood tool boards are used, for example, as furniture panels or floor panels whose surfaces are equipped with synthetic resin films.
  • the synthetic resin films generally consist of printed or unicoloured high-grade paper and are soaked in so-called impregnation systems with the precondensed resins and then further condensed in a heated drying zone, up to a certain moisture content of about 8%.
  • the synthetic resin films consist for example of so-called aminoplast resins based on melamine and formaldehyde or else of mixed resins of melamine / urea and formaldehyde. These mixtures are first precondensed at a certain condensation temperature and a pH in a reaction vessel with stirrer until they have reached the desired viscosity and the degree of crosslinking.
  • precondensates are used for paper impregnation.
  • the impregnation of the papers is done by impregnation.
  • This is followed by drying in horizontal carrying air ducts at approx. 125 to 155 ° C.
  • This process step initially represents another polycondensation which is interrupted after the drying zone.
  • the synthetic resin films are initially solid and easy to transport, so that they can be processed well in the hydraulic press lines.
  • the coating of the wood-based panels, which are formulated as MDF, HDF, chipboard or plywood panels, takes place in so-called hydraulically heated press systems.
  • the hotplates are fixed with corresponding press plates whose surfaces are structured or smoothly equipped with different degrees of gloss.
  • press pads made of elastic materials are used, which serve to equalize the pressure and to compensate for the thickness tolerances of the press plates and press line.
  • the coating material which consists of the synthetic resin films and the wood-based panels, is retracted in the heated press units, the system is closed and subjected to the corresponding required pressing pressure.
  • the pre-condensed aminoplast resins become liquid again, the condensation of the resins and thus the spatial crosslinking progresses further. It increases while the viscosity of the resins until they are transferred after a certain time in the solid and irreversible state. In this process, the surface of the resins is also formed and it takes over exactly the corresponding surface of the press plates used in structure and gloss.
  • metallic pressing plates are generally used which consist of a brass material of the material group MS 64 or chrome steels according to DIN 1.4024 according to AISI 410 or DIN 1.4542 according to AISI 630.
  • Other metallic materials can not be used as press plates due to their purity, surface formation or their technical data.
  • the chromium steels used must not have voids so that no defects occur during subsequent surface treatment.
  • the listed chrome steels are melted vacuum and therefore show a uniform and clean metal structure during the rolling process.
  • the rolled blank sheets must first be ground to achieve a certain thickness tolerance.
  • an etching reserve is first applied to the prepared sheet surface by screen printing, roller printing or digitally with an ink jet printhead.
  • An older method with a photo layer which is subsequently exposed and fixed is hardly used today.
  • the sheet is treated in an acid bath with FeCh accordingly.
  • the free unprinted surfaces are attacked without ⁇ tzreserve of the acid and there is a metal removal corresponding to the desired structure depth.
  • the structures can be rounded or configured accordingly.
  • the gloss level setting of structured sheet metal surfaces are made in a blasting process with different blasting media and blasting dusts, according to the desired degree of gloss.
  • the final step in the process is the subsequent chrome plating to protect the sheet surfaces against abrasion and to achieve a good release effect compared to the aminoplast resins.
  • the structure fabrication after the chemical etching process is a complex and difficult production process, since the structure depths are not measurable during the etching process, for example. Therefore, it depends on the etching time and assumes that the structure depth will then always be the same. In practice, however, it has been shown that this is not the case, since various parameters have a considerable influence on the etching rate and thus on the etching depth of the structure. Acid temperature, acid pressure in the spray etch, acid concentration are all factors that influence the etching process. Another disadvantage of FeCb is the harmfulness to health, it irritates the skin and there is a risk of serious eye damage.
  • Steel or brass sheets can be due to their weight fix poorly in the press lines, especially in the upper sheets you need very high clamping pressures. High clamping pressures can also lead to distortion of the sheets if they are installed improperly in the systems. Due to the heaviness of the sheets, a large amount of sag is created; when the press is closed, they are forced into a horizontal position, which causes them to expand. Further expansion is under pressure because the Schuplattentemperatur is much higher than the sheet temperature. Can the plates in the jigs, which are located outside of the heating plates, do not expand, it comes to the known plastic plate strains. When cold, the sheets are no longer flat and therefore can not be worked up again and must be scrapped.
  • the invention is therefore based on the object of specifying an improved pressing tool designed as a press plate.
  • the object of the invention is achieved by a pressing tool for coating wood-based panels in hydraulic heating presses, which is formed as a press plate made of a high temperature resistant plastic of provenance polyetheretherketone PEEK and its surface is structured or smoothly equipped with different gloss levels.
  • the object of the invention is achieved in particular by a press mold designed as a press plate for coating wood-based panels in hydraulic heating presses whose surface is structured or smoothly equipped with different gloss levels, the press plate is made of a high temperature resistant plastic provenance polyetheretherketone PEEK and its softening over the processing temperature of the press lines is.
  • Polyetheretherketones are relatively light and more advantageous in their handling, there are several processes available for structuring which are more health-friendly and process-reliable, and the negative properties of the metallic press plates can thus be eliminated.
  • the PEEK sheets showed high strength despite much lower density of 1.31 kg / dm 3 and PEEK with 30% CA of 1.41 kg / dm 3 .
  • a steel sheet of the quality DIN 1.4542 or AISI 630 shows a density of 7.8 kg / dm 3 .
  • the press pads are protected against abrasion. protects and thus extends the life of the pads.
  • different production processes are available for the plastic sheets. Since they are not treated with caustic media such as FeCb, the methods are environmentally friendly and not harmful to health.
  • One type of structuring is the Fused Deposition Modeling FDM method also referred to as Fusion Fused Filament Fabrication FFF.
  • melt layer method first, as in a normal printer, a grid of dots applied to a surface, the points by the liquefaction of a wire-shaped plastic by heating, the application by extrusion through a nozzle, and a subsequent hardening by cooling at the ge - Want to arise position in a grid of the working plane.
  • the structure of the structure is carried out as usual by traversing a work plane line by line and then the working plane is stacked upwards, so that a structure is formed in layers.
  • the layer thicknesses are depending on the desired structure depth between 25 to 1250 ⁇ .
  • the data transfer is done using CAD technology.
  • the press plate can be made of polyetheretherketone PEEK with at least 10 to 50% enriched with a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.
  • the press sheet may consist of a polyimide PI, a polyamide imide PAI, a polyether ketone PEK, a polyether ketone ether ketone ketone PEKEKK, a polyphenylene sulfide PPS, a polyaryletherketone PAEK, a polybenzimidazole PBI or a liquid crystal polymer LCP. Another technology of the structure production offers the laser technology.
  • the PEEK plate can be equipped with a CC laser that has significantly higher ablation times than a metal ablation.
  • structuring by means of a laser is proposed according to EP 2 289 708 B1, the laser being a pulsed fiber laser.
  • the C0 2 laser is based on the fact that a so-called laser-active medium, in this case carbon dioxide C0 2 , is pumped by external energy supply. In the medium itself then run off atomic processes, which take advantage of a complex device structure ultimately cause a chain reaction and thus the emission of laser light.
  • the CO2 laser is also called a gas laser.
  • the gas laser it is much easier to realize a larger volume of the laser-active material than, for example, in the case of a fixed laser, by simply dimensioning the container large enough and allowing a correspondingly large amount of gas to flow in.
  • the volume has a direct influence on the achievable intensity of the laser, thereby also high performance can be achieved.
  • the CC laser has a long wavelength, so it is well absorbed by plastics while metal surfaces reflect and therefore erosion is less. A power of 200 to 300 watts is already sufficient for plastics to achieve good removal rates.
  • the laser is controlled in an x- and a y-coordinate. The depth determines the z-coordinate of the 3-D topography perpendicular to the surface structure.
  • Another structural production variant is the die pressing.
  • structures can be produced by the effect of temperature and pressure on plastics.
  • a negative structure serving as a master pattern is produced.
  • This master pattern serves as a structurator for all other plastic press plates.
  • the negative structure Under pressure and temperature below the melting point of the plastic, but still above the softening point, the negative structure is impressed into the plastic sheet and thus receives a positive structure.
  • the material to be pressed is cooled until just below the softening point of the plastic used and then takes the pressed material.
  • the sheet surfaces can also be further processed as in the metallic press plates.
  • the gloss level adjustment takes place by means of blasting media at a certain jet pressure, depending on the desired degree of gloss.
  • the plastic sheets can also be chrome-plated, but it is advisable to apply a Cu coating beforehand. This can be done for example by a reductive copper plating for plastics or it applies the electroless copper plating of plastics, with the products Baymetec and Baycoflex.
  • the usual chrome plating can be done in galvanic baths. It has been shown in the tests that not every plastic is suitable for the use of press plates in hydraulic heating presses for plastic coating. The softening point of the plastics must be far above the processing temperature prevailing in the heating presses. This is usually between 190 and 220 ° C.
  • the plastic polyetheretherketone PEEK with an enrichment of about 30% carbon fiber or graphite has surprisingly well suited for the production of press plates.
  • plastics have a lower thermal conductivity than metals, these differences could be largely compensated by enriching a carbon fiber or graphite powder.
  • the plastic sheets show due to their ease better and closer fixation on the heating plates, so that the heat loss of the metallic press plates, due to the large sag, occurs, does not take place here. These advantages also compensate for the different thermal conductivities.
  • the different gloss levels can also be achieved by various coatings of the surface of the press plate made of a high-temperature resistant plastic of provenance polyetheretherketone, similar to that described in EP 2 060 658 Bl.
  • An embodiment of the invention is shown in the accompanying schematic figure, which shows a press tool 1 formed as a pressing tool.
  • the press plate 1 is made of a high temperature polyetheretherketone plastic and comprises a surface 2, which is structured or smoothly equipped with different gloss levels.
  • the press plate 1 is enriched with at least 10 to 50% of a carbon fiber or with at least 10 to 50% of a graphite powder or with at least 10 to 50% of a thermally conductive material.
  • the press plate 1 can consist, for example, of a polyimide, a polyamideimide, a polyether ketone, a polyether ketone ether ketone ketone, a polyphenylene sulfide, a polyaryl ether ketone, a polybenzimidazole, or a Liquid Cristal Polymer LCP.
  • the structuring of the surface 2 of the press plate 1 was produced in the case of the present embodiment by means of a C0 2 laser 3.
  • digitized data from a 3-D topography of a previously acquired structure associated with surface 2 has been used to control X, Y, and Z coordinates of C0 2 laser 3.
  • the structuring of the surface 2 of the press plate 3 can also be carried out by means of a die pressing or produced according to the fused depostion modeling method,

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Laser Beam Processing (AREA)

Abstract

Die Erfindung betrifft ein Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Heizpressen, das als ein Pressblech (1) aus einem hochtemperaturbeständigen Kunststoff der Provenienz Polyetheretherketon PEEK ausgebildet ist und dessen Oberfläche (2) strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet ist.

Description

Als Pressblech ausgebildetes Presswerkzeug
Die Erfindung betrifft ein als Pressblech ausgebildetes Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Pressenanlagen.
Die beschichteten Holzwerkzeugplatten werden zum Beispiel als Möbelplatten oder Fußbodenplatten eingesetzt, deren Oberflächen mit Kunstharzfilmen ausgerüstet sind. Die Kunst- harzfilme bestehen in der Regel aus bedruckten oder unifarbigen Edelzellstoffpapieren und werden in sogenannten Imprägnierungsanlagen mit den vorkondensierten Harzen durchtränkt und anschließend in einer beheizten Trockenzone weiter kondensiert, bis zu einem bestimmten Feuchtigkeitsgehalt der bei ca. 8% liegt. Die Kunstharzfilme bestehen z.B. aus sogenannten Aminoplastharzen auf Basis von Melamin und Formaldehyd oder auch aus Mischharzen von Melamin/Harnstoff und Formaldehyd. Diese Mischungen werden bei einer bestimmten Kondensationstemperatur und einem pH- Wert in einem Reaktionsbehälter mit Rührwerk zunächst vorkondensiert, bis sie die gewünschte Viskosität und den Vernetzungsgrad erreicht haben. Diese sogenannten Vorkondensate werden für die Papierimprägnierung eingesetzt. Die Imprägnierung der Papiere erfolgt im Tränkverfahren. Daran schließt sich die Trocknung in horizontalen Tragluftkanälen bei ca. 125 bis 155°C an. Dieser Prozessschritt stellt zunächst eine weitere Polykondensation dar die nach der Trocknungszone unterbrochen wird. Die Kunstharzfilme sind zunächst fest und gut transportierbar, sodass man sie in den hydraulischen Pressenanlagen gut verarbeiten kann. Die Beschichtung der Holzwerkstoffplatten die als MDF-, HDF-, Span- oder Sperrholzplatten formuliert sind, geschieht in sogenannten hydraulisch, beheizbaren Pressenanlagen. Die Heizplatten werden mit entsprechenden Pressble- chen, deren Oberflächen strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet sind fixiert. Zwischen den Heizplatten und den Pressblechen werden Presspolster aus elastischen Materialien eingesetzt, die zum Druckausgleich dienen und die Dickentoleranzen der Pressbleche und Pressenanlage ausgleichen sollen. Das Beschichtungsgut, welches aus den Kunstharzfilmen und den Holzwerkstoffplatten besteht, wird in den aufgeheizten Pressenanla- gen eingefahren, die Anlage schließt und wird mit dem entsprechend benötigten Pressdruck beaufschlagt. Dabei werden die vorkondensierten Aminoplastharze wieder flüssig, die Kondensation der Harze und somit die räumliche Vernetzung schreitet weiter fort. Es erhöht sich dabei die Viskosität der Harze, bis sie nach einer bestimmten Zeit in den festen und irreversiblen Zustand überführt sind. Bei diesem Vorgang wird ebenfalls die Oberfläche der Harze ausgebildet und sie übernimmt genau die entsprechende Oberfläche der eingesetzten Pressbleche in Struktur und Glanzgrad. Nach dem Stand der Technik werden grundsätzlich metalli- sehe Pressbleche eingesetzt, die aus einem Messingwerkstoff der Werkstoffgruppe MS 64 o- der aus Chromstählen nach DIN 1.4024 entsprechend AISI 410 oder DIN 1.4542 entsprechend AISI 630 bestehen. Andere metallische Werkstoffe lassen sich aufgrund ihrer Reinheit, Oberflächenausbildung oder deren technischen Daten nicht als Pressbleche einsetzen. Bei der Oberflächenbearbeitung spielt zum Beispiel die Reinheit des Materials eine ganz entschei- dende Rolle. Die eingesetzten Chromstähle dürfen keine Lunker aufweisen damit bei der späteren Oberflächenbearbeitung keine Fehlerstellen auftreten. Die aufgeführten Chromstähle sind Vakuum erschmolzen und zeigen daher beim Walzprozess einheitliches und sauberes Metallgefüge. Für die Herstellung der Pressbleche müssen die gewalzten Rohbleche zunächst geschliffen werden, um eine bestimmte Dickentoleranz zu erreichen. Die sollte nach Möglich- keit klein sein, in der Regel werden Toleranzen von 0,10 bis 0,15 mm erzielt. Weitere Stufen der Bearbeitung sind danach der Pflock- oder Feinstschliff um die Schleifriefen des Toleranzschliffs möglichst zu eliminieren. Eine anschließende Politur bildet die Vorbereitungsstufe für die Oberflächenausgestaltung. Will man die Oberfläche mit einer Struktur versehen, so können diese nach dem Stand der Technik in einem chemischen Ätzverfahren mit einer Ätzsäure bestehend aus FeCb hergestellt werden. Es ist aber auch der Metallabtrag, der zur Strukturierung notwendig wird, mittels eines Lasers möglich. Dazu werden Feststofflaser eingesetzt, wobei die Ablationszeiten sehr lang sind und daher für die großen Blechformate zur Zeit noch unwirtschaftlich sind. Eine weitere theoretische Methode ist der Metallauftrag und damit der Strukturauftrag im 3D-Druckverfahren denkbar. Beide aufgeführten Methoden werden zur Zeit noch nicht angewandt. Daher bleibt die Ätzmethode die zur Zeit produktive Methode.
Bei dem chemischen Ätzverfahren wird zunächst auf der vorbereiteten Blechoberfläche eine Ätzreserve mittels Siebdruck, Walzendruck oder digital mit einem Tintenstrahldruckkopf aufgetragen. Eine ältere Methode mit einer Photoschicht die anschließend belichtet und fixiert wird, ist heute kaum noch in Gebrauch. Nachdem die Ätzreserve aufgetragen ist, wird das Blech in einem Säurebad mit FeCh entsprechend behandelt. Dabei werden die freien unbedruckten Flächen ohne Ätzreserve von der Säure angegriffen und es erfolgt ein Metallabtrag entsprechend der gewünschten Strukturtiefe. In weiteren Prozessschritten können die Strukturen noch verrundet oder entsprechend ausgestaltet werden. Die Glanzgradeinstellung der strukturierten Blechoberflächen erfolgt in einem Strahlverfahren mit unterschiedlichen Strahlmedien und Strahldücken, entsprechend des gewünschten Glanzgrades.
Die letzte Bearbeitungsstufe ist die anschließende Verchromung, um die Blechoberflächen ge- gen Abrieb zu schützen und gegenüber den Aminoplastharzen eine gute Trennwirkung zu erzielen. Die Strukturherstellung nach dem chemischen Ätzverfahren ist ein komplexes und schwieriges Produktionsverfahren, da die Strukturtiefen zum Beispiel während des Ätzprozesses nicht messbar sind. Man richtet sich daher nach der Ätzzeit und nimmt an, dass die Strukturtiefe dann entsprechend immer gleich sein wird. In der Praxis hat sich aber gezeigt, dass dieses nicht der Fall ist, denn verschiedene Parameter haben einen erheblichen Einfluss auf die Ätzgeschwindigkeit und somit auf die Ätztiefe der Struktur. Säuretemperatur, Säuredruck bei der Sprühätzung, Säurekonzentration sind alles Faktoren die den Ätzprozess beeinflussen. Ein weiterer Nachteil von FeCb ist die Gesundheitsschädlichkeit, es reizt stark die Haut und besteht die Gefahr ernster Augenschäden.
Stahl- oder Messingbleche lassen sich aufgrund ihres Gewichtes schlecht in den Pressenanlagen fixieren, speziell bei den Oberblechen benötigt man sehr hohe Spanndrücke. Hohe Spanndrücke können aber auch zu Verspannungen der Bleche führen, wenn sie unsachgemäß in den Anlagen eingebaut werden. Bedingt durch die Schwere der Bleche entsteht ein großer Durch- hang, beim Schließen der Presse werden sie in die waagerechte Haltung gezwungen und erleiden dadurch eine Ausdehnung. Eine weitere Ausdehnung erfolgt unter Druck da die Heizplattentemperatur wesentlich höher ist als die Blechtemperatur. Können sich die Bleche in den Spannvorrichtungen, die sich außerhalb der Heizplatten befinden, nicht ausdehnen, kommt es zu den bekannten plastischen Blechverspannungen. Im kalten Zustand sind die Bleche nicht mehr plan und können deshalb auch nicht wieder aufgearbeitet und müssen verschrottet werden. Beim Einsatz von Stahlblechen hat sich gezeigt, dass der Verschleiß der Presspolster sehr ungünstig ist. Die Rückseiten der Stahlbleche weisen eine bestimmte Rauhigkeit auf, da während des Pressvorgangs Relativbewegungen auftreten, reiben die Blechrückseiten über die Presspolster die mit weichen Metallfäden in Form von Cu- oder Ms-Fäden ausgerüstet sind. Die Metallfäden sind notwendig um den Wärmetransport von Heizplatte über das Pressblech auf das Pressgut zu übertragen. Der Abrieb führt dann zu dünnen Metallfäden, die die hohen Zugspannungen innerhalb der Polster nicht mehr auffangen können und zerreißen. Die Polster werden dadurch unbrauchbar. Der Einsatz von metallischen Pressblechen bei der Beschich- tung von Holzwerkstoffplatten ist daher nicht zufriedenstellend.
Der Erfindung liegt daher die Aufgabe zugrunde, ein verbessertes, als Pressblech ausgebilde- tes Presswerkzeug anzugeben.
Die Aufgabe der Erfindung wird gelöst durch ein Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Heizpressen, das als ein Pressblech aus einem hochtemperaturbeständigen Kunststoff der Provenienz Polyetheretherketon PEEK ausgebildet ist und des- sen Oberfläche strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet ist. Die Aufgabe der Erfindung wird insbesondere gelöst durch ein als Pressblech ausgebildetes Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Heizpressen, deren Oberfläche strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet ist, wobei das Pressblech aus einem hochtemperaturbeständigen Kunststoff der Provenienz Polyetherether- keton PEEK besteht und deren Erweichungspunkt über die Verarbeitungstemperatur der Pressenanlagen liegt.
Polyetheretherketone sind relativ leicht und in ihrer Handhabung vorteilhafter, für die Strukturierung stehen mehrere Prozesse zur Verfügung, die gesundheitsfreundlicher und prozesssi- cherer sind und die negativen Eigenschaften der metallischen Pressbleche damit eliminiert werden können. Überraschenderweise zeigten die PEEK Bleche eine hohe Festigkeit trotz wesentlich geringerer Dichte von 1,31 kg/dm3 und PEEK mit 30% CA von 1,41 kg/dm3. Ein Stahlblech der Qualität DIN 1.4542 oder AISI 630 zeigt eine Dichte von 7,8 kg/dm3. Das bedeutet ein Pressblech von dem Format 6200 x 2400 mm in 5 mm Dicke, ergibt ein Gesamtge- wicht von ca. 580 kg, während ein PEEK Blech in gleicher Größenordnung hingegen nur 97 kg bzw. ein PEEK Blech mit 30% CA 105 kg wiegt. Man sieht, dass das Stahlblech fast 6 mal schwerer ist als ein Kunststoffblech. Daher lassen sich die Kunststoffbleche wesentlich leichter in der Pressenanlage mechanisch fixieren und führen nicht zu den beschriebenen Problemen, die bei den metallischen Pressblechen auftreten können. Es ist aber auch möglich die Kunststoffbleche in der Pressenanlage direkt mit den Presspolstern über einen chemischen
Mechanismus zu fixieren. Bedingt durch den geringen Durchhang der Bleche und den günstigen Reibungsfaktor werden die Presspolster, speziell deren Metallfäden gegen Abrieb ge- schützt und somit die Lebensdauer der Polster verlängert. Bei der Strukturierung der Oberflächen stehen bei den Kunststoffblechen verschiedene Produktionsprozesse zur Verfügung. Da sie nicht mit Ätzmedien wie zum Beispiel FeCb behandelt werden, sind die Methoden umweltfreundlich und nicht gesundheitsgefährlich. Eine Strukturierungsart ist die Fused Deposi- tion Modeling FDM Methode auch als Schmelzschichtung Fused Filament Fabrication FFF bezeichnet. Im Schmelzschichtverfahren wird zunächst, ähnlich wie bei einem normalen Drucker, ein Raster von Punkten auf eine Fläche aufgetragen, wobei die Punkte durch die Verflüssigung eines drahtförmigen Kunststoffs durch Erwärmung, der Aufbringung durch Extrudieren mittels einer Düse, sowie einer anschließenden Erhärtung durch Abkühlung an der ge- wünschten Position in einem Raster der Arbeitsebene entstehen. Der Aufbau der Struktur erfolgt üblich indem wiederholt, jeweils zeilenweise eine Arbeitsebene abgefahren und dann die Arbeitsebene stapelnd nach oben verschoben wird, sodass eine Struktur schichtweise entsteht. Die Schichtdicken liegen je nach gewünschter Strukturtiefe zwischen 25 bis 1250 μιη. Die Datenübertagung geschieht mittels CAD Technologie.
Das Pressblech kann aus Polyetheretherketon PEEK mit mindestens 10 bis 50% mit einer Karbonfaser oder mit mindestens 10 bis 50% eines Graphitpulvers oder mit mindestens 10 bis 50% eines wärmeleitfähigen Materials angereichert sein. Das Pressblech kann aus einem Polyimid PI, einem Polyamidimid PAI, einem Polyetherketon PEK, einem Polyetherketonetherketonketon PEKEKK, einem Polyphenylensulfid PPS, einem Polyaryletherketon PAEK, einem Polybenzimidazol PBI oder einem Liquid Cristal Polymer LCP bestehen. Eine weitere Technologie der Strukturherstellung bietet die Lasertechnologie. Anders als bei der metallischen Pressblechherstellung kann bei dem PEEK-Blech ein CC -Laser eingesetzt werden, der wesentlich höhere Ablationszeiten hat als bei einem metallischen Abtrag. Bei der metallischen Blechherstellung wird laut der EP 2 289 708 Bl die Strukturierung mittels eines Lasers vorgeschlagen, wobei der Laser ein gepulster Faserlaser ist. In der Praxis hat sich aber gezeigt, dass die Abtraggeschwindigkeit bei dem gepulsten Faserlaser sehr klein ist. Wie jeder Laser basiert auch der C02-Laser darauf, dass ein sogenanntes laseraktives Medium, in diesem Fall Kohlendioxid C02, durch äußere Energiezufuhr gepumpt wird. Im Medium selber laufen dann atomare Prozesse ab, welche unter Ausnutzung eines komplexen Geräteaufbaus letztendlich eine Kettenreaktion und damit die Emission von Laserlicht bewirken. Den CO2- Laser bezeichnet man auch als Gaslaser. Beim Gaslaser lässt sich wesentlich leichter, als beispielsweise beim Festlaser, ein größeres Volumen des laseraktiven Materials realisieren, indem man einfach das Behältnis dafür groß genug dimensioniert und entsprechend viel Gas einströmen lässt. Das Volumen hat direkten Einfluss auf die erreichbare Intensität des Lasers, dadurch können auch hohe Leistungen erreicht werden. Der CC -Laser besitzt eine lange Wellenlänge, daher wird er von Kunststoffen gut absorbiert während Metalloberflächen stärken reflektieren und daher der Abtrag geringer ist. Eine Leistung von 200 bis 300 Watt ist schon für Kunststoffe ausreichend um gute Abtragsraten zu erzielen. Mittels Erstellung digita- lisierten Daten einer 3-D Topographie einer zuvor abgenommenen Struktur, wird die Steuerung des Lasers in einer x- und einer y-Koordinate vorgenommen die Tiefe bestimmt die z- Koordinate der 3-D Topographie senkrecht zur Oberflächenstruktur.
Eine weitere Strukturherstellungsvariante ist die Matrizenpressung. Anders als bei Metallen können bei Kunststoffen Strukturen durch Temperatur- und Druckeinwirkung hergestellt werden. Zunächst wird in einem Stahlblech eine negative Struktur die als Urmuster dient hergestellt. Dieses Urmuster dient als Strukturgeber für alle weiteren Kunststoffpressbleche. Unter Druck und Temperatur die unter dem Schmelzpunkt des Kunststoffes liegt, aber noch über den Erweichungspunkt, wird die Negativstruktur in das Kunststoffblech eingeprägt und erhält somit eine Positivstruktur. Unter Druck kühlt man das Pressgut soweit bis kurz unter dem Erweichungspunkt des eingesetzten Kunststoffes ab und entnimmt dann das Pressgut.
Es können nach dieser Methode reproduzierbare Strukturen hergestellt werden. Entgegen der Strukturherstellung bei metallischen Pressblechen im chemischen Ätzverfahren sind diese Strukturen alle identisch und zeigen keine Abweichungen. Auf diese Art und Weise wird eine Strukturherstellung möglich, die prozesssicher ist und keine Gesundheitsgefährdung darstellt. Nach der Strukturierung können die Blechoberflächen ebenfalls wie bei den metallischen Pressblechen weiterbearbeitet werden. Die Glanzgradeinstellung erfolgt mittels Strahlmedien bei einem bestimmten Strahldruck, je nach gewünschtem Glanzgrad. Zum Schutz der Oberflä- chen können die Kunststoffbleche ebenfalls verchromt werden, es empfiehlt sich aber vorher eine Cu-Schicht aufzutragen. Diese kann zum Beispiel durch eine reduktive Verkupferung für Kunststoffe erfolgen oder man wendet die stromlose Verkupferung von Kunststoffen an, mit den Produkten Baymetec und Baycoflex. Nach der Verkupferung kann die übliche Verchromung in galvanischen Bädern erfolgen. Es hat sich in den Versuchen gezeigt, dass nicht jeder Kunststoff für den Einsatz von Pressblechen in hydraulischen Heizpressen zur Kunststoffbe- schichtung geeignet ist. Der Erweichungspunkt der Kunststoffe muss weit über die Verarbei- tungstemperatur die in den Heizpressen vorherrschen liegen. Diese beträgt in der Regel zwischen 190 und 220°C. Der Kunststoff Polyetheretherketon PEEK mit einer Anreicherung von ca. 30% Karbonfaser oder Graphit hat sich überraschenderweise gut für die Herstellung von Pressblechen geeignet. Obwohl Kunststoffe gegenüber Metallen über eine schlechtere Wärmeleitfähigkeit verfügen, konnten diese Unterschiede durch eine Anreicherung einer Karbon- faser oder durch Graphitpulver weitestgehend kompensiert werden. Weiterhin zeigen die Kunststoffbleche bedingt durch ihre Leichtigkeit eine bessere und engere Fixierung an den Heizplatten, sodass der Wärmeverlust der bei den metallischen Pressblechen, bedingt durch den großen Durchhang, auftritt, hier nicht stattfindet. Diese Vorteile kompensieren ebenfalls die unterschiedlichen Wärmeleitzahlen.
Die verschiedenen Glanzgrade können auch durch verschiedene Beschichtungen der Oberfläche des Pressbleches aus einem hochtemperaturbeständigen Kunststoff der Provenienz Polyetheretherketon erreicht werden, ähnlich wie in der EP 2 060 658 Bl beschrieben. Ein Ausführungsbeispiel der Erfindung ist in der beigefügten schematischen Figur gezeigt, die ein als Pressblech 1 ausgebildetes Presswerkzeug zeigt.
Das Pressblech 1 besteht aus einem hochtemperaturbeständigen Polyetheretherketon Kunststoff und umfasst eine Oberfläche 2, die strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet ist.
Im Falle des vorliegenden Ausführungsbeispiels ist das Pressblech 1 mit mindestens 10 bis 50% einer Karbonfaser oder mit mindestens 10 bis 50% eines Graphitpulvers oder mit mindestens 10 bis 50% eines wärmeleitfähigen Materials angereichert.
Das Pressblech 1 kann beispielsweise aus einem Polyimid, einem Polyamidimid, einem Po- lyetherketon, einem Polyetherketonetherketonketon, einem Polyphenylensulfid, einem Polya- ryletherketon, einem Polybenzimidazol, oder einem Liquid Cristal Polymer LCP bestehen. Die Strukturierung der Oberfläche 2 des Pressblechs 1 wurde im Falle des vorliegenden Ausführungsbeispiels mittels eines C02-Lasers 3 hergestellt. Insbesondere wurden digitalisierte Daten einer 3-D Topographie einer zuvor abgenommenen, der Strukturierung der Oberfläche 2 zugeordneten Struktur für eine Steuerung von X-, Y- und Z-Koordinaten des C02-Lasers 3 verwendet werden.
Die Strukturierung der Oberfläche 2 des Pressblechs 3 kann auch mittels einer Matrizenpressung durchgeführt oder nach der Fused Depostion Modeling Methode hergestellt worden sein,

Claims

P a t e n t a n s p r ü c h e
1. Presswerkzeug zur Beschichtung von Holzwerkstoffplatten in hydraulischen Heizpressen, das als ein Pressblech (1) aus einem hochtemperaturbeständigen Kunststoff der Proveni- enz Polyetheretherketon PEEK ausgebildet ist und dessen Oberfläche (2) strukturiert oder glatt mit verschiedenen Glanzgraden ausgerüstet ist.
2. Presswerkzeug nach Anspruch 1, wobei das Pressblech (1) aus Polyetheretherketon PEEK mit mindestens 10 bis 50% mit einer Karbonfaser oder mit mindestens 10 bis 50% ei- nes Graphitpulvers oder mit mindestens 10 bis 50% eines wärmeleitfähigen Materials angereichert ist.
3. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Polyimid PI besteht.
4. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Poly- amidimid PAI besteht.
5. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Po- lyetherketon PEK besteht.
6. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Po- lyetherketonetherketonketon PEKEKK besteht.
7. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Polyphe- nylensulfid PPS besteht.
8. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Polya- ryletherketon PAEK besteht.
9. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Polyben- zimidazol PBI besteht.
10. Presswerkzeug nach Anspruch 1 oder 2, wobei das Pressblech (1) aus einem Liquid Cristal Polymer LCP besteht.
11. Presswerkzeug nach einem der Ansprüchen 1 bis 11 , wobei die Strukturierung der Oberfläche (2) des Pressblechs (1) mittels einer Matrizenpressung durchgeführt ist.
12. Presswerkzeug nach einem der Ansprüchen 1 bis 11, wobei die Strukturierung der Oberfläche (2) des Pressblechs (1) nach der Fused Depostion Modeling FDM Methode hergestellt ist.
13. Presswerkzeug nach einem der Ansprüchen 1 bis 11, wobei die Strukturierung der Oberfläche (2) des Pressblechs (1) mittels eines C02-Lasers (3) hergestellt ist und digitalisierte Daten einer 3-D Topographie einer zuvor abgenommenen, der Strukturierung der Oberfläche (2) zugeordneten Struktur für eine Steuerung von X-, Y- und Z-Koordinaten des C02- Lasers (3) verwendet werden.
EP16797793.3A 2015-11-10 2016-11-08 Als pressblech ausgebildetes presswerkzeug Active EP3374172B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16797793T PL3374172T3 (pl) 2015-11-10 2016-11-08 Narzędzie do prasowania utworzone jako blacha do prasowania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202015007762.5U DE202015007762U1 (de) 2015-11-10 2015-11-10 Presswerkzeug als Pressblech ausgebildet, das aus einem nichtmetallischen Werkstoff besteht
PCT/EP2016/076984 WO2017081008A1 (de) 2015-11-10 2016-11-08 Als pressblech ausgebildetes presswerkzeug

Publications (2)

Publication Number Publication Date
EP3374172A1 true EP3374172A1 (de) 2018-09-19
EP3374172B1 EP3374172B1 (de) 2020-04-01

Family

ID=55274276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16797793.3A Active EP3374172B1 (de) 2015-11-10 2016-11-08 Als pressblech ausgebildetes presswerkzeug

Country Status (14)

Country Link
US (1) US20190077043A1 (de)
EP (1) EP3374172B1 (de)
JP (1) JP2019507684A (de)
CN (1) CN108349188B (de)
AU (1) AU2016353972B2 (de)
BR (1) BR112018008253B1 (de)
CA (1) CA3001639A1 (de)
CL (1) CL2018001060A1 (de)
DE (1) DE202015007762U1 (de)
DK (1) DK3374172T3 (de)
ES (1) ES2801075T3 (de)
PL (1) PL3374172T3 (de)
RU (1) RU2726133C2 (de)
WO (1) WO2017081008A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202016000367U1 (de) * 2016-01-20 2016-02-05 Rolf Espe Presspolster für Ein- und Mehretagenpressen deren Polsterschicht aus Silikonelastomer im 3D-Druckverfahren aufgetragen wird.
DE102019127659A1 (de) * 2019-10-15 2021-04-15 Hueck Rheinische Gmbh Presswerkzeug und Verfahren zum Herstellen eines Presswerkzeugs
WO2022010408A1 (en) * 2020-07-09 2022-01-13 Välinge Innovation AB Glossy printing
RU2769396C1 (ru) * 2020-11-19 2022-03-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ получения аппрета, аппретированный полиэфирэфиркетонный композит и способ его получения
CN113978072B (zh) * 2021-10-22 2023-06-30 山西省安瑞风机电气股份有限公司 用于风机叶轮的形状记忆弹性复合材料及其制造设备
DE102021131838A1 (de) 2021-12-02 2023-06-07 Hueck Rheinische Gmbh Verfahren und Druckervorrichtung zum Herstellen eines Presswerkzeugs

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03169550A (ja) * 1989-11-28 1991-07-23 Dainippon Printing Co Ltd ワイピング化粧材の製造方法
DE69419631T2 (de) * 1993-02-18 2000-01-13 Eidai Co Ltd Verfahren zur Stabilisierung eines Lignocellulosematerials und Vorrichtung dafür
JP3107490B2 (ja) * 1993-11-25 2000-11-06 永大産業株式会社 木質材の圧密化方法
JPH11158388A (ja) * 1997-11-26 1999-06-15 Asahi Chem Ind Co Ltd レーザ印刷に適したプラスチックフィルム
US6187234B1 (en) * 1998-06-23 2001-02-13 Masonite Corporation Method for steam pressing composite board having at least one finished surface
US20040072518A1 (en) * 1999-04-02 2004-04-15 Applied Materials, Inc. Platen with patterned surface for chemical mechanical polishing
JP2001018242A (ja) * 1999-07-05 2001-01-23 Ichikawa Woolen Textile Co Ltd 成形プレス用耐熱クッション材
CN1437525B (zh) * 2000-04-20 2013-09-04 梅森奈特公司 木材复合制品和制造反向模制的木材复合制品的方法
JP4597685B2 (ja) * 2005-01-14 2010-12-15 ヤマウチ株式会社 熱プレス用クッション材およびその製造方法ならびに積層板の製造方法
US7451696B2 (en) * 2005-09-28 2008-11-18 Weyerhaeuser Company Press unit for a manufactured wood product press
RU2322341C2 (ru) * 2006-05-10 2008-04-20 Владимир Борисович Борноволоков Способ изготовления плит
US8580174B2 (en) * 2006-12-29 2013-11-12 Sabic Innovative Plastics Ip B.V. Method for texturing polymeric films and articles comprising the same
WO2008152737A1 (ja) * 2007-06-15 2008-12-18 Kitagawa Seiki Kabushiki Kaisha 基板成形プレス装置及び基板成形プレス方法
CN201235623Y (zh) * 2008-08-01 2009-05-13 佛山市科达石材机械有限公司 压板设备
US8299159B2 (en) * 2009-08-17 2012-10-30 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
SI2289708T1 (sl) 2009-08-26 2012-04-30 Indaffil Holding Ag Postopek za izdelavo povrĺˇinske strukture kovinske potisne ploĺˇäśe, brezkonäśnega traku ali reliefnega valja
US9278878B2 (en) * 2011-02-23 2016-03-08 Corning Incorporated Methods and apparatus for scoring thin glass
DE102011007837A1 (de) * 2011-04-21 2012-10-25 Evonik Degussa Gmbh Kleberloser Verbund aus einer Polyarylenetherketon- und einer Metallfolie
CN102602080B (zh) * 2012-03-13 2015-04-08 大连路阳科技开发有限公司 一种钢基聚醚醚酮复合板及其制备方法
CN104723577A (zh) * 2015-03-15 2015-06-24 吉林大学 一种碳纤维织物增强聚醚醚酮聚合物复合材料的制备方法

Also Published As

Publication number Publication date
AU2016353972A1 (en) 2018-06-14
AU2016353972B2 (en) 2021-08-19
CL2018001060A1 (es) 2018-06-15
ES2801075T3 (es) 2021-01-08
CN108349188A (zh) 2018-07-31
WO2017081008A1 (de) 2017-05-18
EP3374172B1 (de) 2020-04-01
CN108349188B (zh) 2020-11-03
PL3374172T3 (pl) 2020-10-19
DK3374172T3 (da) 2020-07-13
BR112018008253B1 (pt) 2021-11-30
DE202015007762U1 (de) 2016-01-18
RU2726133C2 (ru) 2020-07-09
CA3001639A1 (en) 2017-05-18
US20190077043A1 (en) 2019-03-14
BR112018008253A2 (pt) 2018-10-23
RU2018118006A (ru) 2019-12-16
JP2019507684A (ja) 2019-03-22
RU2018118006A3 (de) 2020-02-17

Similar Documents

Publication Publication Date Title
EP3374172B1 (de) Als pressblech ausgebildetes presswerkzeug
EP3140129B1 (de) Verfahren zur herstellung eines dekorierten wand- oder bodenpaneels
EP2242646A1 (de) Verfahren zur herstellung eines laminats
DE2722262A1 (de) Verfahren zur kontinuierlichen herstellung von laminaten
EP2829415A1 (de) Verfahren zur Herstellung eines dekorierten Wand-und Bodenpaneels
WO2016174021A1 (de) Verfahren zur herstellung von strukturierten oberflächen und derart strukturierte gegenstände
EP3558677B1 (de) Verfahren zur herstellung eines verbundwerkstoff-bauteils
WO2011042090A1 (de) Verfahren und vorrichtung zur herstellung eines formteils mittels generativen auftragens
EP3147135A1 (de) Verfahren zur herstellung eines dekorierten wand- oder bodenpaneels
EP3405334A1 (de) Presspolster für eine hydraulische heizpresse und verfahren zu dessen herstellung
WO2017055535A1 (de) Ein- oder mehretagenheizpresse, verfahren zur herstellung eines presspolsters sowie verwendung desselben
DE10156956A1 (de) Verfahren zur Herstellung von Bauplatten, insbesondere Fußbodenplatten
DE102011051266A1 (de) Presskörper zur Herstellung eines Laminats sowie Verfahren zur Herstellung eines Presskörpers
EP3568298B1 (de) Verfahren zur herstellung eines laminats für einen fussbodenbelag
EP1063443A1 (de) Verfahren und Vorrichtung zum Herstellen eines Bremsbelags
AT409612B (de) Plattenförmiges presswerkzeug und verfahren zu dessen herstellung
DE3634957C2 (de)
EP2995467A1 (de) Verfahren zum herstellen eines schichtstoffes und struktur gebende folie
EP2921293B1 (de) Holzwerkstoffplatten-Heißpresse
DE10316882B4 (de) Verfahren zur Herstellung einer Verkleidungsplatte
DE202015005608U1 (de) Ausrüstung einer metallischen Pressblech- und Endlosband-Oberfläche mit einer tribologisch positiven Schicht, um den vorzeitigen Verschleiß der Oberflächen entgegenzuwirken
DE202020101130U1 (de) Doppelbandpresse
WO2016071299A1 (de) Walze und verfahren zur herstellung einer solchen walze
DE3818943C2 (de) Verfahren zur Herstellung von duroplastischen, chemisch beständigen Apparaten, Behältern, Rohren und dgl.
EP3536517A1 (de) Trägermaterial auf mineralbasis für dekorierte wand- oder bodenpaneele

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1250842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009405

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABP PATENT NETWORK AG, CH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200707

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2801075

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009405

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230928

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230928

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231114

Year of fee payment: 8

Ref country code: LU

Payment date: 20231107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231205

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231025

Year of fee payment: 8

Ref country code: MT

Payment date: 20231025

Year of fee payment: 8

Ref country code: IT

Payment date: 20231115

Year of fee payment: 8

Ref country code: FR

Payment date: 20231009

Year of fee payment: 8

Ref country code: FI

Payment date: 20231108

Year of fee payment: 8

Ref country code: DK

Payment date: 20231003

Year of fee payment: 8

Ref country code: DE

Payment date: 20231017

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231003

Year of fee payment: 8

Ref country code: CH

Payment date: 20231201

Year of fee payment: 8

Ref country code: AT

Payment date: 20231004

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231023

Year of fee payment: 8

Ref country code: BE

Payment date: 20231009

Year of fee payment: 8