EP3374129B1 - Élément abrasif céramique fritté, polycristallin, de forme plate et d'une certaine structure géométrique, procédé de fabrication dudit élément et son utilisation - Google Patents

Élément abrasif céramique fritté, polycristallin, de forme plate et d'une certaine structure géométrique, procédé de fabrication dudit élément et son utilisation Download PDF

Info

Publication number
EP3374129B1
EP3374129B1 EP16790612.2A EP16790612A EP3374129B1 EP 3374129 B1 EP3374129 B1 EP 3374129B1 EP 16790612 A EP16790612 A EP 16790612A EP 3374129 B1 EP3374129 B1 EP 3374129B1
Authority
EP
European Patent Office
Prior art keywords
abrasive element
flat
grinding
ceramic
geometrically structured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16790612.2A
Other languages
German (de)
English (en)
Other versions
EP3374129A1 (fr
Inventor
Jean-André Alary
Florent POLGE
Patrick Ronach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imertech SAS
Original Assignee
Imertech SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imertech SAS filed Critical Imertech SAS
Priority to SI201631173T priority Critical patent/SI3374129T1/sl
Priority to PL16790612T priority patent/PL3374129T3/pl
Publication of EP3374129A1 publication Critical patent/EP3374129A1/fr
Application granted granted Critical
Publication of EP3374129B1 publication Critical patent/EP3374129B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels

Definitions

  • the present invention relates to a sintered, polycrystalline, flat, geometrically structured ceramic grinding element for use in synthetic resin-bonded grinding wheels, in particular cutting wheels.
  • the present invention also relates to a method for producing such a sintered, polycrystalline, flat, geometrically structured ceramic grinding element and its use.
  • a special form of synthetic resin-bonded grinding wheels are the synthetic resin-bonded cutting disks, which are used in the context of this application as examples of synthetic resin-bonded grinding wheels, but this does not mean that the invention is limited to cutting-off wheels. Rather, it has been found in the present work that the grinding elements according to the invention, which were originally designed for use in cutting wheels, are generally suitable for synthetic resin-bonded grinding wheels.
  • Cutting disks are flat circular disks that are mostly used to cut off sections of material. Different cutting discs are used for the different materials to be processed, such as metal, stainless steel, natural stone, concrete or asphalt, whereby the cutting discs can be divided into two main groups, namely synthetic resin-bonded cutting discs and diamond cutting discs.
  • synthetic resin-bonded cutting discs abrasive grains such as corundum or silicon carbide are mixed together with fillers, powder resin and liquid resin to form a mass, which is then pressed into cutting discs of various thicknesses and diameters in special machines. In doing so, the abrasive is made into a fabric Glass fiber embedded in order to be able to withstand the enormous centrifugal forces that occur when using the cutting discs.
  • diamond cutting discs which are used almost exclusively for use in natural stone, concrete or asphalt, diamond segments are applied to steel stems using various processes, such as sintering, soldering or laser welding.
  • the EP 1 007 599 B1 Cutting discs that have a mixture of different sol-gel corundums as abrasive grains.
  • the EP 0 620 082 B1 describes cutting discs which, in addition to highly abrasive components such as cubic boron nitride or diamond, have microcrystalline filament-shaped aluminum oxide particles with a uniform orientation, the abrasives being in the form of segments that are applied to a metal blade.
  • Ceramic abrasive grains in the form of tetrahedra or pyramids obtained via the sol-gel process are produced according to FIG U.S. Patent Application No. 2013/0040537 A1 used in a mixture with other high-quality abrasive grains in synthetic resin-bonded cutting discs. Similar synthetic resin-bonded cutting discs are used in the U.S. Patent Application No. 2013/0203328 A1 described, wherein ceramic abrasive grains obtained via sol-gel processes in the form of triangular platelets, prisms or truncated conical pyramids are used in turn alongside other high-quality abrasive grains in a mixture with phenolic resins, grinding aids, fillers and other additives.
  • the present invention is therefore based on the object of offering abrasives for use in synthetic resin-bonded grinding wheels, in particular cutting wheels, which have advantages over the prior art.
  • the object is achieved by sintered, polycrystalline, flat, geometrically structured ceramic grinding elements according to claim 1, which are intended to be installed in synthetic resin-bonded grinding wheels, in particular cutting wheels, instead of grinding grains.
  • the object of the present invention is also to provide a method for producing sintered, polycrystalline, flat, geometrically structured ceramic grinding elements for use in synthetic resin-bonded grinding wheels.
  • Another object of the present invention is to provide improved synthetic resin-bonded grinding wheels, in particular cutting wheels.
  • This object is achieved by using sintered, polycrystalline, flat, geometrically structured ceramic grinding elements as a replacement of abrasive grains in synthetic resin-bonded grinding wheels, in particular cutting wheels, according to claim 10 or claim 11.
  • Said sintered, polycrystalline, flat, geometrically structured grinding elements are sintered molded bodies with a homogeneous microstructure, a chemical composition that is uniform over the entire area of the grinding element and a uniform geometric structure.
  • the sintered body has a first surface and a second surface which is opposite and parallel to the first surface. Both surfaces are separated from one another by a side wall with a thickness (t) between 50 ⁇ m and 2000 ⁇ m.
  • the ratio of diameter to thickness of the grinding element is greater than 30, preferably greater than 50.
  • the mean diameter of the crystals forming the homogeneous microstructure is less than 10 ⁇ m, preferably less than 5 ⁇ m.
  • the chemical composition of the sintered, polycrystalline, flat, geometrically structured ceramic grinding elements is preferably based on aluminum oxide and / or other chemical compounds selected from the group consisting of carbides, oxides, nitrides, oxy-carbides, oxy-nitrides and at least carbides one of the elements selected from the group consisting of Al, B, Si, Ti and Zr.
  • the sintered polycrystalline, flat, geometrically structured grinding elements preferably have a Vickers hardness Hv of at least 15 GPa, particularly preferably at least 18 GPa.
  • the density of the sintered, polycrystalline, flat, geometrically structured ceramic abrasive elements is at least 95% of the theoretical density, preferably at least 97.5% of the theoretical density.
  • the grinding elements are preferably circular disks or segments of a circle, the diameter and thickness of which are adapted to the cutting disks to be formed therefrom.
  • the grinding elements according to the invention are designed as perforated ceramic bodies provided with recesses.
  • the perforation or the recesses of the ceramic body advantageously have a homogeneous geometric structure with geometrically shaped openings or recesses.
  • the volume ratio of the openings to the massive proportions of the grinding elements is preferably constant over the entire usable diameter of the grinding elements, the usable diameter being understood to mean the area of the grinding element that is used when working with the grinding element.
  • the sintered, polycrystalline, flat, geometrically structured ceramic grinding elements are porous ceramic bodies which either per se have sufficient porosity to guarantee the porosity required for the grinding wheels, or additionally likewise are perforated or have recesses, the perforation or the recesses, however, then being less pronounced.
  • Porous ceramic bodies in the context of the present invention are to be understood as those ceramic bodies which are interspersed with more or less small pores, while the above-mentioned perforations and recesses are large-volume and preferably geometrically structured.
  • the basis for the chemical composition of the abrasive elements is aluminum oxide, the chemical composition preferably at least 50% by weight aluminum oxide and optionally one or more of the oxides selected from the group consisting of SiO 2 , MgO, TiO 2 , Cr 2 O 3 , MnO 2 , Co 2 O 3 , Fe 2 O 3 , NiO, Cu 2 O, ZnO, ZrO 2 and the rare earth oxides.
  • the grinding elements according to the invention can be produced by different processes, in which case a moldable ceramic mass is first produced from which flat, geometrically structured precursors for ceramic grinding elements are formed, which are sintered to polycrystalline, flat geometrically structured ceramic grinding elements.
  • the ceramic mass or the ceramic precursor material can be added by wet grinding ⁇ -aluminum oxide with an average particle size of preferably less than 1 ⁇ m in a ball mill in the presence of a dispersant and subsequent addition of an organic binder and optionally a plasticizer and / or an antifoam agent the dispersion can be obtained.
  • the dispersion is mixed for several hours until a stable colloidal dispersion has formed, which is processed into a layer with a layer thickness of up to 3 mm using film casting.
  • the film-cast layer is dried and precursors of the flat, geometrically structured grinding elements are cut out, which are then calcined and sintered.
  • sol-gel processes are also very suitable for producing a moldable ceramic mass
  • the sol-gel compositions comprising a liquid carrier in which the ceramic precursor material is converted into a ceramic material, such as, for example, ⁇ -aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof, can be converted, dissolved or dispersed.
  • a ceramic material such as, for example, ⁇ -aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof.
  • a ceramic material such as, for example, ⁇ -aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof.
  • Many of these for the production of ceramics based on Sols suitable for aluminum oxide are commercially available as boehmite sols under the brand names “Dispal”, “Disperal”, “Pural” or “Catapal”.
  • the sol-gel compositions can comprise modifying additives or precursors to modifying additives.
  • the function of these additives is to improve the desired properties of the sintered, flat, geometrically structured ceramic abrasive elements.
  • Typical modifying additives or precursors of modifying additives are oxides, carbides, nitrides, oxy-carbides, oxy-nitrides, carbon-nitrides or water-soluble salts of magnesium, zinc, iron, silicon, cobalt, nickel, zirconium, hafnium and rare earths.
  • the sol-gel composition can contain crystallization nuclei in order to accelerate the conversion of hydrogenated or calcined aluminum oxide into ⁇ -aluminum oxide and thus to limit crystal growth.
  • Suitable crystallization nuclei for this include fine particles of ⁇ -aluminum oxide, finely divided ⁇ -iron oxide or its precursors, titanium oxide and titanates, chromium oxide or other compounds which are able to promote the conversion to ⁇ -aluminum oxide.
  • the particular advantage of the sol-gel process is that grinding elements with a particularly fine crystalline structure, high hardness and extraordinary toughness can be obtained in this way.
  • layers are formed which are then dried.
  • the precursors of the flat, geometrically structured grinding elements are cut out of the dried layers and then sintered.
  • the gels obtained in the sol-gel process can also be placed directly in a corresponding mold, then dried and then sintered.
  • the Figure 1 shows a plan view of a radially designed round grinding element, in the center of which a circular recess 1 can be seen, which corresponds to the receptacle of the grinding wheel in which the grinding element is to be installed.
  • the body 2 of the grinding element is star-shaped, the ends of the rays 3 being perpendicular to the circular recess 1 and forming a circle whose diameter corresponds to the diameter of the grinding wheel for which the grinding element is intended.
  • Recesses 4 can be seen between the rays 3, which are suitable for providing the grinding wheel with the required porosity.
  • the recesses 4 are like this dimensioned so that the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process.
  • the Figures 2 and 3rd also show top views of radially designed grinding elements, the rays 3 in FIG Figure 2 Form an angle to the circular recess 1.
  • the rays 3 are additionally curved.
  • the recesses 4 are again dimensioned in such a way that the volume ratio of the recesses to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again determined by the ratio of the distances A / B and A '/ relating to the circumference. B 'is clarified.
  • rake angle ⁇ which corresponds to the inclination of the chip surface (contact surface) to the reference surface, which is arranged perpendicular to the tangent of the disk.
  • rake angle Y There are three different types of rake angle possible: positive, negative and exactly zero.
  • a positive rake angle ⁇ helps to reduce the cutting force and thus the energy requirement during cutting, whereas a negative rake angle Y increases the edge strength and the service life of the grinding element or grinding wheel.
  • the rake angle Y is also based on the Figures 3, 4 , 8th , 10a, 10b and 10c explained.
  • the grinding element according to Figure 3 has a positive rake angle Y of 18 °. During the grinding process, the rake angle Y falls back to zero with increasing wear (decreasing radius) of the grinding wheel.
  • the Figure 4 shows a circular disk-shaped grinding element, the body 2 of which has a circular recess 1 corresponding to the receptacle of the grinding disk.
  • the porosity of the grinding wheel is ensured in the present case with round holes 4, which become larger with increasing radius of the wheel, so that here too the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference.
  • the rake angle Y of the grinding element begins with + 29 ° and changes with decreasing grinding wheel radius after passing the zero in the negative range down to -90 °. In the next row of round holes 4, the rake angle starts with + 90 °, falls back to zero and then changes to the negative range down to -90 °. This process then repeats itself with each beginning row of holes.
  • the Figures 5 to 8 also show circular disk-shaped grinding elements that have perforations 4 in other geometric shapes.
  • trapezoidal holes 4 in which Figure 6 diamond-shaped holes 4 in which Figure 7 hexagonal, honeycomb-shaped holes 4 and in the Figure 8 triangular holes 4 can be seen.
  • the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference.
  • the rake angle ⁇ of the grinding element according to Figure 8 is 32 ° and remains constant during the entire grinding process.
  • the rake angle ⁇ is generally based on the Figures 10a to 10c explained, where Figure 10a shows a positive rake angle Y, the rake angle ⁇ according to Figure 10b is zero and Figure 10c shows a negative rake angle ⁇ -
  • the grinding element 7 produces a chip 6 on the workpiece 5, with a positive rake angle Y contributing to reducing the cutting force and thus the energy requirement during cutting, while a negative rake angle Y the edge strength and the service life of the Increased sanding element 7.
  • the geometric design of the grinding elements essentially depends on the field of application of the grinding wheel, with the person skilled in the art choosing the geometric shape with which the desired grinding conditions can best be set and which is also the easiest to manufacture.
  • An 80% ⁇ -aluminum oxide suspension with an average particle size D 50 of 0.144 ⁇ m was obtained by wet grinding an ⁇ -aluminum oxide starting powder with an average particle size of less than 1 ⁇ m.
  • the suspension was stabilized by adding 0.75% by weight of a polymethacrylate (KV5182, Zschimmer & Schwarz).
  • a latex binder (B-1000, Dow Chemicals) was then added to the stabilized suspension.
  • the precursors of the abrasive elements were dried, whereby due to the high aluminum oxide content only a slight contraction in volume and no cracking could be seen.
  • the dried precursors were heated to 600 ° C. at a heating rate of 1 ° C./min to remove the binder, and then sintered at a heating rate of 5 ° C./min up to a maximum temperature of 1600 ° C.
  • the holding time at 1600 ° C. was 30 minutes.
  • the flat, geometrically structured grinding elements obtained in this way have a density of 3.94 g / cm 3 (98.3% of the theoretical density), a Vickers hardness Hv of 18.4 GPa and a crystallite size of less than 2 ⁇ m.
  • a star-shaped, flat, geometrically structured grinding element according to FIG Figure 1 used with a thickness of 300 ⁇ m.
  • corundum was added to the resin as a filler.
  • a comparison disk with a single crystal corundum (TSCTSK, Imerys Fused Minerals) with the grain size F46 / 60 was used as the standard.
  • Table 1 example G ratio cm 2 / cm 2 Grinding performance (%) According to Figure 1 300 ⁇ m 3.41 112 Standard (comparison) TSCTSK 46/60 3.04 100
  • the example given above illustrates the potential of the abrasive elements of the invention.
  • tailor-made grinding elements can be made available for a wide variety of applications.
  • Grinding elements with high inherent porosity are, for example, porous oxide ceramics, the porosity of which can be set between 10% and 90% pore volume with the aid of known ceramic technologies.
  • An example of such a disk is a double-layer staggered cutting disk which has two flat, geometrically structured grinding elements, each of which is 150 ⁇ m thick.
  • the physical properties of the grinding elements can be changed by doping them.
  • the toughness and breaking strength of the grinding elements can be improved by adding zirconium oxide.
  • the choice of the starting materials and the production process offers further possibilities for variation and optimization approaches for the invention Grinding elements.
  • the sol-gel process can be used to produce particularly fine-crystalline grinding elements with known technologies, which have an average crystallite size in the range of 100 nm. Ceramic materials of this type have extraordinary toughness and hardness and are particularly suitable for machining high-alloy steels.
  • a particularly interesting field of application for the grinding elements according to the invention are thin synthetic resin-bonded disks with a thickness between 100 ⁇ m and 200 ⁇ m and a small diameter between 1 cm and 4 cm, as used in the dental field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Claims (11)

  1. Élément abrasif céramique géométriquement structuré, plat, polycristallin et fritté, constitué en un corps conformé fritté avec
    - une microstructure homogène,
    - une composition chimique régulière à travers l'élément abrasif entier et
    - une structure géométrique uniforme,
    où le corps fritté dispose d'une première surface et d'une deuxième surface parallèle et opposée à la première surface, où les deux surfaces sont séparées l'une de l'autre par une paroi latérale avec une épaisseur entre 50 µm et 2000 µm, et le rapport entre le diamètre et l'épaisseur de l'élément abrasif est supérieur à 30,
    caractérisé en ce que
    le diamètre moyen des cristaux formant la microstructure homogène est inférieur à 10 µm, et en ce que
    l'élément abrasif est un corps céramique perforé.
  2. Élément abrasif selon la revendication 1,
    caractérisé en ce que
    la composition chimique de l'élément abrasif est à base d'alumine et/ou d'autres composés chimiques sélectionnés parmi le groupe constitué en les carbures, les oxydes, les nitrures, les oxycarbures, les oxynitrures et les carbo-nitrures d'au moins un des éléments sélectionnés parmi le groupe constitué en Al, B, S, Zr et Ti.
  3. Élément abrasif selon la revendication 1 ou 2,
    caractérisé en ce que
    l'élément abrasif est un disque ou un segment circulaire.
  4. Élément abrasif selon la revendication 3,
    caractérisé en ce que
    la perforation du corps céramique a une structure géométrique homogène avec des ouvertures géométriquement façonnées.
  5. Élément abrasif selon une des revendications 1 à 4,
    caractérisé en ce que
    l'élément abrasif est un corps céramique poreux.
  6. Élément abrasif selon une des revendications 1 à 5,
    caractérisé en ce que
    le rapport volumique des ouvertures par rapport aux parties massives de l'élément abrasif est constant à travers tout le diamètre utilisable de l'élément abrasif.
  7. Élément abrasif selon une des revendications 1 à 6,
    caractérisé en ce que
    la composition chimique de l'élément abrasif est au moins 50 pour cent en poids d'alumine et éventuellement un ou plusieurs oxydes sélectionnés parmi le groups constitué en SiO2, MgO, TiO2, Cr2O3, MnO2, Co2O3, Fe2O3, NiO, Cu2O, ZnO, ZrO2 et les oxydes des terres rares.
  8. Procédé de production d'un élément abrasif céramique géométriquement structuré et plat d'une des revendications 1 à 6, comprenant les étapes de :
    - produire une masse façonnable d'un matériau précurseur céramique ;
    - façonner un précurseur pour un élément abrasif céramique géométriquement structuré et plat de la masse façonnable ; et
    - calciner et fritter ledit précurseur pour obtenir un élément abrasif céramique géométriquement structuré et plat.
  9. Procédé selon la revendication 8,
    caractérisé en outre par les étapes de :
    - produire une dispersion d'a-alumine dans l'eau par broyage humide d'a-alumine avec un taille de particules moyenne de moins de 1 µm en présence d'un dispersant ;
    - ajouter un liant organique et éventuellement un plastifiant et/ou un agent anti-mousse à la dispersion ;
    - mélanger la dispersion pendant plusieurs heures, pour obtenir une dispersion colloïdale stable ;
    - couler en feuille la dispersion colloïdale stable en une couche d'une épaisseur jusqu'à 3 mm ;
    - sécher la couche coulée en feuille ;
    - découper des précurseurs d'un élément abrasif céramique géométriquement structuré et plat ; et
    - calciner et fritter le précurseur pour obtenir des éléments abrasifs céramiques géométriquement structurés et plats.
  10. Utilisation d'éléments abrasifs céramiques géométriquement structurés et plats d'une des revendications 1 à 6 pour la production de meules liés par résine synthétique.
  11. Scies circulaires, comprenant des éléments abrasifs céramiques géométriquement structurés et plats d'une des revendications 1 à 6.
EP16790612.2A 2015-11-09 2016-11-03 Élément abrasif céramique fritté, polycristallin, de forme plate et d'une certaine structure géométrique, procédé de fabrication dudit élément et son utilisation Active EP3374129B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI201631173T SI3374129T1 (sl) 2015-11-09 2016-11-03 Sintrani polikristalni ploščati keramični brusilni element določene geometrijske strukture, postopek za njegovo izdelavo in njegova uporaba
PL16790612T PL3374129T3 (pl) 2015-11-09 2016-11-03 Spiekany, polikrystaliczny, płasko ukształtowany ceramiczny element szlifierski o geometrycznej strukturze, sposób jego wytwarzania i jego zastosowanie

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015119213 2015-11-09
DE102016120863.9A DE102016120863A1 (de) 2015-11-09 2016-11-02 Gesintertes, polykristallines, flach ausgebildetes, geometrisch strukturiertes keramisches Schleifelement, Verfahren zu seiner Herstellung und seine Verwendung
PCT/EP2016/076496 WO2017080897A1 (fr) 2015-11-09 2016-11-03 Élément abrasif céramique fritté, polycristallin, de forme plate et d'une certaine structure géométrique, procédé de fabrication dudit élément et son utilisation

Publications (2)

Publication Number Publication Date
EP3374129A1 EP3374129A1 (fr) 2018-09-19
EP3374129B1 true EP3374129B1 (fr) 2021-03-03

Family

ID=58584976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16790612.2A Active EP3374129B1 (fr) 2015-11-09 2016-11-03 Élément abrasif céramique fritté, polycristallin, de forme plate et d'une certaine structure géométrique, procédé de fabrication dudit élément et son utilisation

Country Status (12)

Country Link
US (1) US11618129B2 (fr)
EP (1) EP3374129B1 (fr)
JP (1) JP6909796B2 (fr)
KR (1) KR102639639B1 (fr)
CN (1) CN108430700B (fr)
DE (1) DE102016120863A1 (fr)
ES (1) ES2873826T3 (fr)
HU (1) HUE054381T2 (fr)
PL (1) PL3374129T3 (fr)
PT (1) PT3374129T (fr)
SI (1) SI3374129T1 (fr)
WO (1) WO2017080897A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120863A1 (de) 2015-11-09 2017-05-11 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Gesintertes, polykristallines, flach ausgebildetes, geometrisch strukturiertes keramisches Schleifelement, Verfahren zu seiner Herstellung und seine Verwendung
CN108687680A (zh) * 2018-04-17 2018-10-23 株洲钻石切削刀具股份有限公司 一种用于粗磨硬质合金刀具容屑槽的成型砂轮
JP7145494B2 (ja) * 2018-09-26 2022-10-03 株式会社ナノテム 砥石
CN111451506A (zh) * 2020-05-27 2020-07-28 中南大学 一种金属陶瓷结合剂cbn超薄切割片的3d打印制作工艺
CN111660212A (zh) * 2020-07-02 2020-09-15 江苏超峰工具有限公司 一种热压烧结磨轮及其工艺
KR102279391B1 (ko) * 2020-09-14 2021-07-21 (주)대경셈코 반도체 노광 장비용 세라믹 부재 및 동 부재의 제조방법

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314827A (en) * 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
US5654246A (en) * 1985-02-04 1997-08-05 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
JPH01164562A (ja) * 1987-12-18 1989-06-28 Brother Ind Ltd 研削砥石及びその製造方法
US5035723A (en) * 1989-04-28 1991-07-30 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
ATE186939T1 (de) * 1992-09-25 1999-12-15 Minnesota Mining & Mfg Seltenes erdoxid enthaltendes schleifkorn
US5443418A (en) 1993-03-29 1995-08-22 Norton Company Superabrasive tool
JPH0789759A (ja) * 1993-07-27 1995-04-04 Sumitomo Chem Co Ltd テープキャスト用アルミナ、アルミナ組成物、アルミナグリーンシート、アルミナ焼結板およびその製造方法
DE19503854C2 (de) 1995-02-06 1997-02-20 Starck H C Gmbh Co Kg Verfahren zur Herstellung gesinterter alpha-Al¶2¶O¶3¶-Körper sowie deren Verwendung
WO1998021009A1 (fr) * 1996-11-13 1998-05-22 Rappold International Sales Ag Corps abrasif et son procede de fabrication
US5876470A (en) 1997-08-01 1999-03-02 Minnesota Mining And Manufacturing Company Abrasive articles comprising a blend of abrasive particles
CN2355847Y (zh) * 1999-03-15 1999-12-29 金东燮 多气孔槽型断续磨削砂轮
JP2002036121A (ja) 2000-07-27 2002-02-05 Mitsubishi Materials Corp 薄刃砥石
DE10202953A1 (de) * 2002-01-26 2003-08-14 Arno Friedrichs Scheibenförmiges Hartmetall- oder Keramikwerkzeug
JP2004017263A (ja) * 2002-06-20 2004-01-22 Toshiba Ceramics Co Ltd 多孔質研削砥石
EP2542386B1 (fr) * 2010-03-03 2019-06-12 3M Innovative Properties Company Meule abrasive liée
CA2797096C (fr) 2010-04-27 2018-07-10 3M Innovative Properties Company Particules ceramiques abrasives conformees, procedes de fabrication associes et articles abrasifs contenant ces particules
WO2014003953A1 (fr) * 2012-06-27 2014-01-03 3M Innovative Properties Company Article abrasif
CN102896590B (zh) * 2012-09-21 2015-03-11 南京航空航天大学 钎焊超硬磨料船体打磨盘磨料排布工艺
CN104647228A (zh) * 2013-11-21 2015-05-27 江苏苏北砂轮厂有限公司 陶瓷开槽砂轮
CN203936807U (zh) * 2014-05-30 2014-11-12 谢杨莎 带有散热装置的研磨轮
DE102016120863A1 (de) 2015-11-09 2017-05-11 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Gesintertes, polykristallines, flach ausgebildetes, geometrisch strukturiertes keramisches Schleifelement, Verfahren zu seiner Herstellung und seine Verwendung
CN206084802U (zh) * 2016-07-06 2017-04-12 广东奔朗新材料股份有限公司 复合片金刚石磨轮

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PT3374129T (pt) 2021-04-05
CN108430700A (zh) 2018-08-21
PL3374129T3 (pl) 2021-09-20
KR20180081100A (ko) 2018-07-13
DE102016120863A1 (de) 2017-05-11
EP3374129A1 (fr) 2018-09-19
WO2017080897A1 (fr) 2017-05-18
HUE054381T2 (hu) 2021-09-28
ES2873826T3 (es) 2021-11-04
KR102639639B1 (ko) 2024-02-21
JP2018534166A (ja) 2018-11-22
US11618129B2 (en) 2023-04-04
JP6909796B2 (ja) 2021-07-28
SI3374129T1 (sl) 2021-08-31
CN108430700B (zh) 2021-07-27
US20200254587A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
EP3374129B1 (fr) Élément abrasif céramique fritté, polycristallin, de forme plate et d'une certaine structure géométrique, procédé de fabrication dudit élément et son utilisation
DE69021923T2 (de) Gebundene Schleifprodukte.
DE69029421T2 (de) Gesintertes Filament auf Sol-Gel-Aluminiumoxidbasis und Verfahren und dessen Verwendung
AT515258B1 (de) Verfahren zur Herstellung von Schleifkörpern
DE69400547T2 (de) Verfahren zur Herstellung eines Schleifkörpers
DE102012023688A1 (de) Geometrisch bestimmtes Schleifkorn, Verfahren zur Herstellung derartiger Schleifkörner und deren Verwendung in einer Schleifscheibe oder in einem Schleifmittel auf Unterlage
DE102013212644A1 (de) Verfahren zur Herstellung eines Schleifmittels
DD297595A5 (de) Schleifkoerper und verfahren zu seiner herstellung
EP2523906B1 (fr) Solides d'al2o3 polycristallins à base d'oxyde d'aluminium fondu
DE68909746T2 (de) Zusammensengesetztes Schneidmittel mit einem ultraharten Aktivteil und Verfahren zur Herstellung dieses Schneidmittels.
DE202015009584U1 (de) Polykristalliner Diamantkörper, Schneidwerkzeug, verschleißfestes Werkzeug und Schleifwerkzeug
DE4217720C1 (de) Gesinterte verbundschleifkoerper, verfahren zu ihrer herstellung sowie deren verwendung
DE19805889C2 (de) Sinterkörper auf der Basis von Korund mit einer geschlossenen Zellstruktur, dessen Herstellung und Verwendung
CH701596B1 (de) Abrichtwerkzeug.
DE102013111006A1 (de) Polykristalline poröse Al2O3-Körper auf Basis von geschmolzenem Aluminiumoxid mit erhöhter Zähigkeit, Verfahren zu ihrer Herstellung sowie ihre Verwendung
EP1218310A1 (fr) NANO-GRAINS ABRASIFS COMPOSITES DE SiC-A1 2?O 3?/SiC, LEUR PROCEDE DE PRODUCTION ET LEUR UTILISATION
EP3590658B1 (fr) Procédé de fabrication de corps abrasif fin
DE10221483C1 (de) Verfahren zur Herstellung frei gesinterter ringförmiger Schleifbeläge für Schleifscheiben
DE812294C (de) Schleifkoerper mit Bindung aus feinverteilten Oxyden
DE102020115476A1 (de) Schleifmittel mit Abrasivskelett
EP3360944A2 (fr) Matière abrasive
DE2329896A1 (de) Verfahren zum herstellen keramischer pulver
EP1355757A1 (fr) Outil de honage avec agent abrasif et liant
EP1866126A1 (fr) Outil pour l'usinage d'oxyde de zirconium
DE102013206837A1 (de) Schleifkörper

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMERTECH SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1366685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012526

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3374129

Country of ref document: PT

Date of ref document: 20210405

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210326

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054381

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012526

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231020

Year of fee payment: 8

Ref country code: SI

Payment date: 20231026

Year of fee payment: 8

Ref country code: SE

Payment date: 20231020

Year of fee payment: 8

Ref country code: PT

Payment date: 20231019

Year of fee payment: 8

Ref country code: IT

Payment date: 20231019

Year of fee payment: 8

Ref country code: HU

Payment date: 20231030

Year of fee payment: 8

Ref country code: FR

Payment date: 20231019

Year of fee payment: 8

Ref country code: DE

Payment date: 20231019

Year of fee payment: 8

Ref country code: CH

Payment date: 20231202

Year of fee payment: 8

Ref country code: AT

Payment date: 20231023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231025

Year of fee payment: 8

Ref country code: BE

Payment date: 20231019

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303