EP3374129B1 - Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof - Google Patents

Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof Download PDF

Info

Publication number
EP3374129B1
EP3374129B1 EP16790612.2A EP16790612A EP3374129B1 EP 3374129 B1 EP3374129 B1 EP 3374129B1 EP 16790612 A EP16790612 A EP 16790612A EP 3374129 B1 EP3374129 B1 EP 3374129B1
Authority
EP
European Patent Office
Prior art keywords
abrasive element
flat
grinding
ceramic
geometrically structured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16790612.2A
Other languages
German (de)
French (fr)
Other versions
EP3374129A1 (en
Inventor
Jean-André Alary
Florent POLGE
Patrick Ronach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imertech SAS
Original Assignee
Imertech SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imertech SAS filed Critical Imertech SAS
Priority to PL16790612T priority Critical patent/PL3374129T3/en
Priority to SI201631173T priority patent/SI3374129T1/en
Publication of EP3374129A1 publication Critical patent/EP3374129A1/en
Application granted granted Critical
Publication of EP3374129B1 publication Critical patent/EP3374129B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels

Definitions

  • the present invention relates to a sintered, polycrystalline, flat, geometrically structured ceramic grinding element for use in synthetic resin-bonded grinding wheels, in particular cutting wheels.
  • the present invention also relates to a method for producing such a sintered, polycrystalline, flat, geometrically structured ceramic grinding element and its use.
  • a special form of synthetic resin-bonded grinding wheels are the synthetic resin-bonded cutting disks, which are used in the context of this application as examples of synthetic resin-bonded grinding wheels, but this does not mean that the invention is limited to cutting-off wheels. Rather, it has been found in the present work that the grinding elements according to the invention, which were originally designed for use in cutting wheels, are generally suitable for synthetic resin-bonded grinding wheels.
  • Cutting disks are flat circular disks that are mostly used to cut off sections of material. Different cutting discs are used for the different materials to be processed, such as metal, stainless steel, natural stone, concrete or asphalt, whereby the cutting discs can be divided into two main groups, namely synthetic resin-bonded cutting discs and diamond cutting discs.
  • synthetic resin-bonded cutting discs abrasive grains such as corundum or silicon carbide are mixed together with fillers, powder resin and liquid resin to form a mass, which is then pressed into cutting discs of various thicknesses and diameters in special machines. In doing so, the abrasive is made into a fabric Glass fiber embedded in order to be able to withstand the enormous centrifugal forces that occur when using the cutting discs.
  • diamond cutting discs which are used almost exclusively for use in natural stone, concrete or asphalt, diamond segments are applied to steel stems using various processes, such as sintering, soldering or laser welding.
  • the EP 1 007 599 B1 Cutting discs that have a mixture of different sol-gel corundums as abrasive grains.
  • the EP 0 620 082 B1 describes cutting discs which, in addition to highly abrasive components such as cubic boron nitride or diamond, have microcrystalline filament-shaped aluminum oxide particles with a uniform orientation, the abrasives being in the form of segments that are applied to a metal blade.
  • Ceramic abrasive grains in the form of tetrahedra or pyramids obtained via the sol-gel process are produced according to FIG U.S. Patent Application No. 2013/0040537 A1 used in a mixture with other high-quality abrasive grains in synthetic resin-bonded cutting discs. Similar synthetic resin-bonded cutting discs are used in the U.S. Patent Application No. 2013/0203328 A1 described, wherein ceramic abrasive grains obtained via sol-gel processes in the form of triangular platelets, prisms or truncated conical pyramids are used in turn alongside other high-quality abrasive grains in a mixture with phenolic resins, grinding aids, fillers and other additives.
  • the present invention is therefore based on the object of offering abrasives for use in synthetic resin-bonded grinding wheels, in particular cutting wheels, which have advantages over the prior art.
  • the object is achieved by sintered, polycrystalline, flat, geometrically structured ceramic grinding elements according to claim 1, which are intended to be installed in synthetic resin-bonded grinding wheels, in particular cutting wheels, instead of grinding grains.
  • the object of the present invention is also to provide a method for producing sintered, polycrystalline, flat, geometrically structured ceramic grinding elements for use in synthetic resin-bonded grinding wheels.
  • Another object of the present invention is to provide improved synthetic resin-bonded grinding wheels, in particular cutting wheels.
  • This object is achieved by using sintered, polycrystalline, flat, geometrically structured ceramic grinding elements as a replacement of abrasive grains in synthetic resin-bonded grinding wheels, in particular cutting wheels, according to claim 10 or claim 11.
  • Said sintered, polycrystalline, flat, geometrically structured grinding elements are sintered molded bodies with a homogeneous microstructure, a chemical composition that is uniform over the entire area of the grinding element and a uniform geometric structure.
  • the sintered body has a first surface and a second surface which is opposite and parallel to the first surface. Both surfaces are separated from one another by a side wall with a thickness (t) between 50 ⁇ m and 2000 ⁇ m.
  • the ratio of diameter to thickness of the grinding element is greater than 30, preferably greater than 50.
  • the mean diameter of the crystals forming the homogeneous microstructure is less than 10 ⁇ m, preferably less than 5 ⁇ m.
  • the chemical composition of the sintered, polycrystalline, flat, geometrically structured ceramic grinding elements is preferably based on aluminum oxide and / or other chemical compounds selected from the group consisting of carbides, oxides, nitrides, oxy-carbides, oxy-nitrides and at least carbides one of the elements selected from the group consisting of Al, B, Si, Ti and Zr.
  • the sintered polycrystalline, flat, geometrically structured grinding elements preferably have a Vickers hardness Hv of at least 15 GPa, particularly preferably at least 18 GPa.
  • the density of the sintered, polycrystalline, flat, geometrically structured ceramic abrasive elements is at least 95% of the theoretical density, preferably at least 97.5% of the theoretical density.
  • the grinding elements are preferably circular disks or segments of a circle, the diameter and thickness of which are adapted to the cutting disks to be formed therefrom.
  • the grinding elements according to the invention are designed as perforated ceramic bodies provided with recesses.
  • the perforation or the recesses of the ceramic body advantageously have a homogeneous geometric structure with geometrically shaped openings or recesses.
  • the volume ratio of the openings to the massive proportions of the grinding elements is preferably constant over the entire usable diameter of the grinding elements, the usable diameter being understood to mean the area of the grinding element that is used when working with the grinding element.
  • the sintered, polycrystalline, flat, geometrically structured ceramic grinding elements are porous ceramic bodies which either per se have sufficient porosity to guarantee the porosity required for the grinding wheels, or additionally likewise are perforated or have recesses, the perforation or the recesses, however, then being less pronounced.
  • Porous ceramic bodies in the context of the present invention are to be understood as those ceramic bodies which are interspersed with more or less small pores, while the above-mentioned perforations and recesses are large-volume and preferably geometrically structured.
  • the basis for the chemical composition of the abrasive elements is aluminum oxide, the chemical composition preferably at least 50% by weight aluminum oxide and optionally one or more of the oxides selected from the group consisting of SiO 2 , MgO, TiO 2 , Cr 2 O 3 , MnO 2 , Co 2 O 3 , Fe 2 O 3 , NiO, Cu 2 O, ZnO, ZrO 2 and the rare earth oxides.
  • the grinding elements according to the invention can be produced by different processes, in which case a moldable ceramic mass is first produced from which flat, geometrically structured precursors for ceramic grinding elements are formed, which are sintered to polycrystalline, flat geometrically structured ceramic grinding elements.
  • the ceramic mass or the ceramic precursor material can be added by wet grinding ⁇ -aluminum oxide with an average particle size of preferably less than 1 ⁇ m in a ball mill in the presence of a dispersant and subsequent addition of an organic binder and optionally a plasticizer and / or an antifoam agent the dispersion can be obtained.
  • the dispersion is mixed for several hours until a stable colloidal dispersion has formed, which is processed into a layer with a layer thickness of up to 3 mm using film casting.
  • the film-cast layer is dried and precursors of the flat, geometrically structured grinding elements are cut out, which are then calcined and sintered.
  • sol-gel processes are also very suitable for producing a moldable ceramic mass
  • the sol-gel compositions comprising a liquid carrier in which the ceramic precursor material is converted into a ceramic material, such as, for example, ⁇ -aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof, can be converted, dissolved or dispersed.
  • a ceramic material such as, for example, ⁇ -aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof.
  • a ceramic material such as, for example, ⁇ -aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof.
  • Many of these for the production of ceramics based on Sols suitable for aluminum oxide are commercially available as boehmite sols under the brand names “Dispal”, “Disperal”, “Pural” or “Catapal”.
  • the sol-gel compositions can comprise modifying additives or precursors to modifying additives.
  • the function of these additives is to improve the desired properties of the sintered, flat, geometrically structured ceramic abrasive elements.
  • Typical modifying additives or precursors of modifying additives are oxides, carbides, nitrides, oxy-carbides, oxy-nitrides, carbon-nitrides or water-soluble salts of magnesium, zinc, iron, silicon, cobalt, nickel, zirconium, hafnium and rare earths.
  • the sol-gel composition can contain crystallization nuclei in order to accelerate the conversion of hydrogenated or calcined aluminum oxide into ⁇ -aluminum oxide and thus to limit crystal growth.
  • Suitable crystallization nuclei for this include fine particles of ⁇ -aluminum oxide, finely divided ⁇ -iron oxide or its precursors, titanium oxide and titanates, chromium oxide or other compounds which are able to promote the conversion to ⁇ -aluminum oxide.
  • the particular advantage of the sol-gel process is that grinding elements with a particularly fine crystalline structure, high hardness and extraordinary toughness can be obtained in this way.
  • layers are formed which are then dried.
  • the precursors of the flat, geometrically structured grinding elements are cut out of the dried layers and then sintered.
  • the gels obtained in the sol-gel process can also be placed directly in a corresponding mold, then dried and then sintered.
  • the Figure 1 shows a plan view of a radially designed round grinding element, in the center of which a circular recess 1 can be seen, which corresponds to the receptacle of the grinding wheel in which the grinding element is to be installed.
  • the body 2 of the grinding element is star-shaped, the ends of the rays 3 being perpendicular to the circular recess 1 and forming a circle whose diameter corresponds to the diameter of the grinding wheel for which the grinding element is intended.
  • Recesses 4 can be seen between the rays 3, which are suitable for providing the grinding wheel with the required porosity.
  • the recesses 4 are like this dimensioned so that the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process.
  • the Figures 2 and 3rd also show top views of radially designed grinding elements, the rays 3 in FIG Figure 2 Form an angle to the circular recess 1.
  • the rays 3 are additionally curved.
  • the recesses 4 are again dimensioned in such a way that the volume ratio of the recesses to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again determined by the ratio of the distances A / B and A '/ relating to the circumference. B 'is clarified.
  • rake angle ⁇ which corresponds to the inclination of the chip surface (contact surface) to the reference surface, which is arranged perpendicular to the tangent of the disk.
  • rake angle Y There are three different types of rake angle possible: positive, negative and exactly zero.
  • a positive rake angle ⁇ helps to reduce the cutting force and thus the energy requirement during cutting, whereas a negative rake angle Y increases the edge strength and the service life of the grinding element or grinding wheel.
  • the rake angle Y is also based on the Figures 3, 4 , 8th , 10a, 10b and 10c explained.
  • the grinding element according to Figure 3 has a positive rake angle Y of 18 °. During the grinding process, the rake angle Y falls back to zero with increasing wear (decreasing radius) of the grinding wheel.
  • the Figure 4 shows a circular disk-shaped grinding element, the body 2 of which has a circular recess 1 corresponding to the receptacle of the grinding disk.
  • the porosity of the grinding wheel is ensured in the present case with round holes 4, which become larger with increasing radius of the wheel, so that here too the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference.
  • the rake angle Y of the grinding element begins with + 29 ° and changes with decreasing grinding wheel radius after passing the zero in the negative range down to -90 °. In the next row of round holes 4, the rake angle starts with + 90 °, falls back to zero and then changes to the negative range down to -90 °. This process then repeats itself with each beginning row of holes.
  • the Figures 5 to 8 also show circular disk-shaped grinding elements that have perforations 4 in other geometric shapes.
  • trapezoidal holes 4 in which Figure 6 diamond-shaped holes 4 in which Figure 7 hexagonal, honeycomb-shaped holes 4 and in the Figure 8 triangular holes 4 can be seen.
  • the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference.
  • the rake angle ⁇ of the grinding element according to Figure 8 is 32 ° and remains constant during the entire grinding process.
  • the rake angle ⁇ is generally based on the Figures 10a to 10c explained, where Figure 10a shows a positive rake angle Y, the rake angle ⁇ according to Figure 10b is zero and Figure 10c shows a negative rake angle ⁇ -
  • the grinding element 7 produces a chip 6 on the workpiece 5, with a positive rake angle Y contributing to reducing the cutting force and thus the energy requirement during cutting, while a negative rake angle Y the edge strength and the service life of the Increased sanding element 7.
  • the geometric design of the grinding elements essentially depends on the field of application of the grinding wheel, with the person skilled in the art choosing the geometric shape with which the desired grinding conditions can best be set and which is also the easiest to manufacture.
  • An 80% ⁇ -aluminum oxide suspension with an average particle size D 50 of 0.144 ⁇ m was obtained by wet grinding an ⁇ -aluminum oxide starting powder with an average particle size of less than 1 ⁇ m.
  • the suspension was stabilized by adding 0.75% by weight of a polymethacrylate (KV5182, Zschimmer & Schwarz).
  • a latex binder (B-1000, Dow Chemicals) was then added to the stabilized suspension.
  • the precursors of the abrasive elements were dried, whereby due to the high aluminum oxide content only a slight contraction in volume and no cracking could be seen.
  • the dried precursors were heated to 600 ° C. at a heating rate of 1 ° C./min to remove the binder, and then sintered at a heating rate of 5 ° C./min up to a maximum temperature of 1600 ° C.
  • the holding time at 1600 ° C. was 30 minutes.
  • the flat, geometrically structured grinding elements obtained in this way have a density of 3.94 g / cm 3 (98.3% of the theoretical density), a Vickers hardness Hv of 18.4 GPa and a crystallite size of less than 2 ⁇ m.
  • a star-shaped, flat, geometrically structured grinding element according to FIG Figure 1 used with a thickness of 300 ⁇ m.
  • corundum was added to the resin as a filler.
  • a comparison disk with a single crystal corundum (TSCTSK, Imerys Fused Minerals) with the grain size F46 / 60 was used as the standard.
  • Table 1 example G ratio cm 2 / cm 2 Grinding performance (%) According to Figure 1 300 ⁇ m 3.41 112 Standard (comparison) TSCTSK 46/60 3.04 100
  • the example given above illustrates the potential of the abrasive elements of the invention.
  • tailor-made grinding elements can be made available for a wide variety of applications.
  • Grinding elements with high inherent porosity are, for example, porous oxide ceramics, the porosity of which can be set between 10% and 90% pore volume with the aid of known ceramic technologies.
  • An example of such a disk is a double-layer staggered cutting disk which has two flat, geometrically structured grinding elements, each of which is 150 ⁇ m thick.
  • the physical properties of the grinding elements can be changed by doping them.
  • the toughness and breaking strength of the grinding elements can be improved by adding zirconium oxide.
  • the choice of the starting materials and the production process offers further possibilities for variation and optimization approaches for the invention Grinding elements.
  • the sol-gel process can be used to produce particularly fine-crystalline grinding elements with known technologies, which have an average crystallite size in the range of 100 nm. Ceramic materials of this type have extraordinary toughness and hardness and are particularly suitable for machining high-alloy steels.
  • a particularly interesting field of application for the grinding elements according to the invention are thin synthetic resin-bonded disks with a thickness between 100 ⁇ m and 200 ⁇ m and a small diameter between 1 cm and 4 cm, as used in the dental field.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung betrifft ein gesintertes, polykristallines, flach ausgebildetes, geometrisch strukturiertes keramisches Schleifelement für den Einsatz in kunstharzgebundenen Schleifscheiben, insbesondere Trennscheiben. Die vorliegende Erfindung betrifft auch ein Verfahren zur Herstellung eines solchen gesinterten, polykristallinen, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelements und seine Verwendung.The present invention relates to a sintered, polycrystalline, flat, geometrically structured ceramic grinding element for use in synthetic resin-bonded grinding wheels, in particular cutting wheels. The present invention also relates to a method for producing such a sintered, polycrystalline, flat, geometrically structured ceramic grinding element and its use.

STAND DER TECHNIKSTATE OF THE ART

Eine Sonderform der kunstharzgebundenen Schleifscheiben sind die kunstharzgebundenen Trennscheiben, die im Rahmen dieser Anmeldung als Beispiele für kunstharzgebunden Schleifscheiben herangezogen werden, was jedoch nicht bedeutet, dass die Erfindung auf Trennscheiben beschränkt ist. Vielmehr hat sich bei den vorliegenden Arbeiten herausgestellt, dass die erfindungsgemäßen Schleifelemente, die ursprünglich für den Einsatz in Trennscheiben konzipiert waren, allgemein für kunstharzgebundene Schleifscheiben geeignet sind.A special form of synthetic resin-bonded grinding wheels are the synthetic resin-bonded cutting disks, which are used in the context of this application as examples of synthetic resin-bonded grinding wheels, but this does not mean that the invention is limited to cutting-off wheels. Rather, it has been found in the present work that the grinding elements according to the invention, which were originally designed for use in cutting wheels, are generally suitable for synthetic resin-bonded grinding wheels.

Trennscheiben sind flache kreisförmige Scheiben, die meist zum Abtrennen von Materialabschnitten eingesetzt werden. Für die verschiedenen zu bearbeitenden Materialien, wie z.B. Metall, Edelstahl, Naturstein, Beton oder Asphalt werden unterschiedliche Trennscheiben eingesetzt, wobei sich die Trennscheiben in zwei Hauptgruppen einteilen lassen, nämlich kunstharzgebundene Trennscheiben und Diamanttrennscheiben. Zur Herstellung von kunstharzgebundenen Trennscheiben werden Schleifkörner, wie z.B. Korund oder Siliziumcarbid, zusammen mit Füllstoffen, Pulverharz und Flüssigharz zu einer Masse gemischt, die dann in speziellen Maschinen zu Trennscheiben in verschiedenen Stärken und Durchmessern gepresst werden. Dabei wird das Schleifmittel in ein Gewebe aus Glasfaser eingebettet, um den enormen Fliehkräften, die beim Einsatz der Trennscheiben auftreten, standhalten zu können. Bei den Diamanttrennscheiben, die fast ausschließlich für den Einsatz in Naturstein, Beton oder Asphalt genutzt werden, werden Diamantsegmente mittels verschiedener Verfahren, wie z.B. Sintern, Löten oder Laserschweißen, auf Stahlstammblätter aufgebracht.Cutting disks are flat circular disks that are mostly used to cut off sections of material. Different cutting discs are used for the different materials to be processed, such as metal, stainless steel, natural stone, concrete or asphalt, whereby the cutting discs can be divided into two main groups, namely synthetic resin-bonded cutting discs and diamond cutting discs. To produce synthetic resin-bonded cutting discs, abrasive grains such as corundum or silicon carbide are mixed together with fillers, powder resin and liquid resin to form a mass, which is then pressed into cutting discs of various thicknesses and diameters in special machines. In doing so, the abrasive is made into a fabric Glass fiber embedded in order to be able to withstand the enormous centrifugal forces that occur when using the cutting discs. With diamond cutting discs, which are used almost exclusively for use in natural stone, concrete or asphalt, diamond segments are applied to steel stems using various processes, such as sintering, soldering or laser welding.

Die Schleifmittelindustrie suchte in den vergangenen Jahren beständig nach Wegen zur Verbesserung der Leistung von Trennscheiben, wobei man sich insbesondere auf den Einsatz von hochwertigen Schleifkörnern konzentrierte. So beschreibt die EP 1 007 599 B1 Trennscheiben, die eine Mischung aus unterschiedlichen Sol-Gel-Korunden als Schleifkörner aufweisen. Die EP 0 620 082 B1 beschreibt Trennscheiben, die neben hochabrasiven Komponenten, wie z.B. kubisches Bornitrid oder Diamant, mikrokristalline filament-förmige Aluminiumoxidpartikel mit einer einheitlichen Ausrichtung aufweisen, wobei die Schleifmittel in Form von Segmenten vorliegen, die auf einem Metallstammblatt aufgebracht sind.The abrasives industry over the past few years has constantly sought ways to improve the performance of cut-off wheels, with a particular focus on the use of high quality abrasive grains. So describes the EP 1 007 599 B1 Cutting discs that have a mixture of different sol-gel corundums as abrasive grains. The EP 0 620 082 B1 describes cutting discs which, in addition to highly abrasive components such as cubic boron nitride or diamond, have microcrystalline filament-shaped aluminum oxide particles with a uniform orientation, the abrasives being in the form of segments that are applied to a metal blade.

Über Sol-Gel-Verfahren erhaltene keramische Schleifkörner in Form von Tetraedern oder Pyramiden werden gemäß der US-Patentanmeldung Nr. 2013/0040537 A1 in einer Mischung mit anderen hochwertigen Schleifkörnern in kunstharzgebundenen Trennscheiben eingesetzt. Ähnliche kunstharzgebundene Trennscheiben werden in der US-Patentanmeldung Nr. 2013/0203328 A1 beschrieben, wobei über Sol-Gel-Verfahren erhaltene keramische Schleifkörner in Form von dreieckigen Plättchen, Prismen oder kegelstumpfartigen Pyramiden wiederum neben anderen hochwertigen Schleifkörnern in einer Mischung mit Phenolharzen, Schleifhilfsmitteln, Füllstoffen und sonstigen Additiven eingesetzt werden.Ceramic abrasive grains in the form of tetrahedra or pyramids obtained via the sol-gel process are produced according to FIG U.S. Patent Application No. 2013/0040537 A1 used in a mixture with other high-quality abrasive grains in synthetic resin-bonded cutting discs. Similar synthetic resin-bonded cutting discs are used in the U.S. Patent Application No. 2013/0203328 A1 described, wherein ceramic abrasive grains obtained via sol-gel processes in the form of triangular platelets, prisms or truncated conical pyramids are used in turn alongside other high-quality abrasive grains in a mixture with phenolic resins, grinding aids, fillers and other additives.

Mit Hilfe solcher Schleifkornmischungen, bei denen Schleifkörner mit definierten Formen eingesetzt werden, konnten nicht nur in kunstharzgebundenen Trennscheiben, sondern allgemein in kunstharzgebundenen Schleifscheiben, im Vergleich zu Schleifscheiben mit hochwertigen Schleifkörnern mit undefinierten Schneiden erstaunlich hohe Leistungssteigerungen erreicht werden.With the help of such abrasive grain mixtures, in which abrasive grains with defined shapes are used, astonishingly high increases in performance could be achieved not only in synthetic resin-bonded cutting discs, but also generally in synthetic resin-bonded grinding wheels, compared to grinding wheels with high-quality abrasive grains with undefined cutting edges.

DARSTELLUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION

Angespornt durch solche Ergebnisse, ist die Schleifmittelindustrie auch weiterhin auf der Suche nach Verbesserungen der Leistungen von kunstharzgebundenen Schleifscheiben, insbesondere Trennscheiben.Spurred on by such results, the abrasives industry continues to seek improvements in the performance of synthetic resin-bonded grinding wheels, especially cut-off wheels.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, Schleifmittel für den Einsatz in kunstharzgebundenen Schleifscheiben, insbesondere Trennscheiben, anzubieten, die Vorteile gegenüber dem Stand der Technik haben.The present invention is therefore based on the object of offering abrasives for use in synthetic resin-bonded grinding wheels, in particular cutting wheels, which have advantages over the prior art.

Gelöst wird die Aufgabe durch gesinterte, polykristalline, flach ausgebildete, geometrisch strukturierte keramische Schleifelemente nach Anspruch 1, die dazu vorgesehen sind, an Stelle von Schleifkörnern in kunstharzgebundene Schleifscheiben, insbesondere Trennscheiben, eingebaut zu werden.The object is achieved by sintered, polycrystalline, flat, geometrically structured ceramic grinding elements according to claim 1, which are intended to be installed in synthetic resin-bonded grinding wheels, in particular cutting wheels, instead of grinding grains.

Aufgabe der vorliegenden Erfindung ist es auch, ein Verfahren zur Herstellung von gesinterten, polykristallinen, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelementen für den Einsatz in kunstharzgebundenen Schleifscheiben bereitzustellen.The object of the present invention is also to provide a method for producing sintered, polycrystalline, flat, geometrically structured ceramic grinding elements for use in synthetic resin-bonded grinding wheels.

Gelöst wird die Aufgabe durch das Verfahren des Anspruchs 8.The object is achieved by the method of claim 8.

Eine weitere Aufgabe der vorliegenden Erfindung besteht darin, verbesserte kunstharzgebundene Schleifscheiben, insbesondere Trennscheiben, zur Verfügung zu stellen.Another object of the present invention is to provide improved synthetic resin-bonded grinding wheels, in particular cutting wheels.

Diese Aufgabe wird gelöst durch den Einsatz von gesinterten, polykristallinen, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelementen als Ersatz von Schleifkörnern in kunstharzgebundenen Schleifscheiben, insbesondere Trennscheiben, gemäß Anspruch 10 bzw. Anspruch 11.This object is achieved by using sintered, polycrystalline, flat, geometrically structured ceramic grinding elements as a replacement of abrasive grains in synthetic resin-bonded grinding wheels, in particular cutting wheels, according to claim 10 or claim 11.

Bei den besagte gesinterte, polykristalline, flach ausgebildete, geometrisch strukturierte Schleifelemente handelt es sich um gesinterte Formkörper mit einem homogenen Mikrogefüge, einer über den gesamten Bereich des Schleifelements gleichmäßig ausgebildeten chemischen Zusammensetzung und einer einheitlichen geometrischen Struktur. Der Sinterkörper besitzt eine erste Oberfläche und eine der ersten Oberfläche gegenüberliegende und parallel zu ihr angeordnete zweite Oberfläche. Beide Oberflächen sind durch eine Seitenwand mit einer Dicke (t) zwischen 50 µm und 2000 µm voneinander getrennt. Das Verhältnis von Durchmesser zu Dicke des Schleifelements ist größer als 30, vorzugsweise größer als 50. Der mittlere Durchmesser der die homogene Mikrostruktur ausbildenden Kristalle ist kleiner als 10 µm, vorzugsweise kleiner als 5µm.Said sintered, polycrystalline, flat, geometrically structured grinding elements are sintered molded bodies with a homogeneous microstructure, a chemical composition that is uniform over the entire area of the grinding element and a uniform geometric structure. The sintered body has a first surface and a second surface which is opposite and parallel to the first surface. Both surfaces are separated from one another by a side wall with a thickness (t) between 50 µm and 2000 µm. The ratio of diameter to thickness of the grinding element is greater than 30, preferably greater than 50. The mean diameter of the crystals forming the homogeneous microstructure is less than 10 μm, preferably less than 5 μm.

Vorzugsweise basiert die chemische Zusammensetzung der gesinterten, polykristallinen, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelemente auf Aluminiumoxid und/oder anderen chemischen Verbindungen ausgesucht aus der Gruppe bestehend aus den Carbiden, Oxiden, Nitriden, Oxy-Carbiden, Oxy-Nitriden und Carbo-Nitriden mindestens eines der Elemente ausgesucht aus der Gruppe bestehend aus Al, B, Si, Ti und Zr.The chemical composition of the sintered, polycrystalline, flat, geometrically structured ceramic grinding elements is preferably based on aluminum oxide and / or other chemical compounds selected from the group consisting of carbides, oxides, nitrides, oxy-carbides, oxy-nitrides and at least carbides one of the elements selected from the group consisting of Al, B, Si, Ti and Zr.

Die gesinterten polykristallinen, flach ausgebildeten, geometrisch strukturierten Schleifelemente besitzen vorzugsweise eine Vickershärte Hv von mindestens 15 GPa, besonders bevorzugt mindestens 18 GPa.The sintered polycrystalline, flat, geometrically structured grinding elements preferably have a Vickers hardness Hv of at least 15 GPa, particularly preferably at least 18 GPa.

Bei einer bevorzugten Ausführungsform der vorliegenden Erfindung, beträgt die Dichte der gesinterten, polykristallinen, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelemente mindestens 95% der theoretischen Dichte, vorzugsweise mindestens 97.5% der theoretischen Dichte.In a preferred embodiment of the present invention, the density of the sintered, polycrystalline, flat, geometrically structured ceramic abrasive elements is at least 95% of the theoretical density, preferably at least 97.5% of the theoretical density.

Vorzugsweise sind die Schleifelemente Kreisscheiben oder Kreissegmente, die in Bezug auf den Durchmesser und die Dicke den daraus zu bildenden Trennscheiben angepasst sind.The grinding elements are preferably circular disks or segments of a circle, the diameter and thickness of which are adapted to the cutting disks to be formed therefrom.

Bei einer bevorzugten Ausgestaltung sind die erfindungsgemäßen Schleifelemente als perforierte, mit Aussparungen versehene keramische Körper ausgebildet. Dabei zeigen die Perforierung bzw. die Aussparungen der keramischen Körper vorteilhaft eine homogene geometrische Struktur mit geometrisch geformten Öffnungen bzw. Aussparungen. Vorzugsweise ist dabei das Volumenverhältnis der Öffnungen zu den massiven Anteilen der Schleifelemente über den gesamten nutzbaren Durchmesser der Schleifelemente konstant, wobei unter nutzbarem Durchmesser der Bereich des Schleifelements zu verstehen ist, der beim Arbeiten mit dem Schleifelement zum Einsatz kommt.In a preferred embodiment, the grinding elements according to the invention are designed as perforated ceramic bodies provided with recesses. The perforation or the recesses of the ceramic body advantageously have a homogeneous geometric structure with geometrically shaped openings or recesses. The volume ratio of the openings to the massive proportions of the grinding elements is preferably constant over the entire usable diameter of the grinding elements, the usable diameter being understood to mean the area of the grinding element that is used when working with the grinding element.

Eine weitere vorteilhafte Ausführungsform der vorliegenden Erfindung sieht vor, dass die gesinterten, polykristallinen, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelemente poröse keramische Körper sind, die entweder per se eine ausreichende Porosität besitzen, um die für die Schleifscheiben erforderliche Porosität zu garantieren, oder zusätzlich ebenfalls gelocht sind oder Aussparungen aufweisen, wobei die Lochung bzw. die Aussparungen jedoch dann weniger stark ausgeprägt ist. Als poröse keramische Körper im Sinne der vorliegenden Erfindung sind solche keramischen Körper zu verstehen, die mit mehr oder weniger kleinen Poren durchsetzt sind, während die oben genannten Lochungen und Aussparungen großvolumig und vorzugsweise geometrisch strukturiert sind.A further advantageous embodiment of the present invention provides that the sintered, polycrystalline, flat, geometrically structured ceramic grinding elements are porous ceramic bodies which either per se have sufficient porosity to guarantee the porosity required for the grinding wheels, or additionally likewise are perforated or have recesses, the perforation or the recesses, however, then being less pronounced. Porous ceramic bodies in the context of the present invention are to be understood as those ceramic bodies which are interspersed with more or less small pores, while the above-mentioned perforations and recesses are large-volume and preferably geometrically structured.

Bei einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist die Basis für die chemische Zusammensetzung der SchleIfelemente Aluminiumoxid, wobei die chemische Zusammensetzung vorzugsweise mindestens 50 Gew.-% Aluminiumoxid und wahlweise eines oder mehrere der Oxide ausgesucht aus der Gruppe bestehend aus SiO2, MgO, TiO2, Cr2O3, MnO2, Co2O3, Fe2O3, NiO, Cu2O, ZnO, ZrO2 und die Oxide der Seltenen Erden umfasst. Daneben eignen sich auch andere chemische Verbindungen auf der Basis von Oxiden, Carbiden, Nitriden, Oxy-Carbiden, Oxy-Nitriden und Carbo-Nitriden, ausgewählt aus der Gruppe der Elementen bestehend aus AI, B, Si, Ti und Zr, geeignete Materialien zur Herstellung der erfindungsgemäßen keramischen Schleifelemente.In a preferred embodiment of the present invention, the basis for the chemical composition of the abrasive elements is aluminum oxide, the chemical composition preferably at least 50% by weight aluminum oxide and optionally one or more of the oxides selected from the group consisting of SiO 2 , MgO, TiO 2 , Cr 2 O 3 , MnO 2 , Co 2 O 3 , Fe 2 O 3 , NiO, Cu 2 O, ZnO, ZrO 2 and the rare earth oxides. In addition, other chemical compounds based on oxides, carbides, nitrides, oxy-carbides, oxy-nitrides and carbo-nitrides, selected from the group consisting of the elements, are also suitable from Al, B, Si, Ti and Zr, suitable materials for producing the ceramic abrasive elements according to the invention.

Die Herstellung der erfindungsgemäßen Schleifelemente kann nach unterschiedlichen Verfahren erfolgen, wobei in allen Fällen zunächst eine formbare keramische Masse hergestellt wird, aus der flach ausgebildete, geometrisch strukturierte Vorläufer für keramische Schleifelemente gebildet werden, die zu polykristallinen, flach ausgebildeten geometrisch strukturierten keramischen Schleifelementen gesintert werden.The grinding elements according to the invention can be produced by different processes, in which case a moldable ceramic mass is first produced from which flat, geometrically structured precursors for ceramic grinding elements are formed, which are sintered to polycrystalline, flat geometrically structured ceramic grinding elements.

So kann die keramische Masse bzw. das keramische Vorläufermaterial beispielsweise durch Nassvermahlen von α-Aluminiumoxid mit einer mittleren Partikelgröße von vorzugsweise weniger als 1 µm in einer Kugelmühle in Gegenwart eines Dispersionsmittels und anschließende Zugabe eines organischen Binders und wahlweise eines Plastifizierungsmittels und/oder eines Antischaummittels zu der Dispersion gewonnen werden. Die Dispersion wird für mehrere Stunden gemischt, bis sich eine stabile kolloidale Dispersion gebildet hat, die über Foliengießen zu einer Schicht mit einer Schichtstärke bis zu 3 mm verarbeitet wird. Die foliengegossene Schicht wird getrocknet und es werden Vorläufer der flach ausgebildeten, geometrisch strukturierten Schleifelemente ausgeschnitten, die dann kalziniert und gesintert werden.For example, the ceramic mass or the ceramic precursor material can be added by wet grinding α-aluminum oxide with an average particle size of preferably less than 1 μm in a ball mill in the presence of a dispersant and subsequent addition of an organic binder and optionally a plasticizer and / or an antifoam agent the dispersion can be obtained. The dispersion is mixed for several hours until a stable colloidal dispersion has formed, which is processed into a layer with a layer thickness of up to 3 mm using film casting. The film-cast layer is dried and precursors of the flat, geometrically structured grinding elements are cut out, which are then calcined and sintered.

Daneben sind alle Verfahren geeignet, bei denen formbare keramische Massen erhalten werden, aus denen dann die entsprechenden Schleifelemente geformt und anschließend gesintert werden können.In addition, all methods are suitable in which malleable ceramic masses are obtained, from which the corresponding grinding elements can then be shaped and then sintered.

So sind zum Beispiel auch Sol-Gel-Verfahren sehr gut geeignet zur Herstellung einer formbaren keramischen Masse, wobei die Sol-Gel-Zusammensetzungen einen flüssigen Träger umfassen, in dem das keramische Vorläufermaterial, das in ein keramisches Material, wie zum Beispiel α-Aluminiumoxid, Siliziumoxid, Titanoxid, Zirkonoxid oder Mischungen davon, umgewandelt werden kann, gelöst oder dispergiert ist. Viele solcher für die Herstellung von Keramiken auf Basis von Aluminiumoxid geeigneter Sole sind als Boehmit-Sole kommerziell unter den Markennamen "Dispal" , "Disperal", "Pural" oder "Catapal" erhältlich.For example, sol-gel processes are also very suitable for producing a moldable ceramic mass, the sol-gel compositions comprising a liquid carrier in which the ceramic precursor material is converted into a ceramic material, such as, for example, α-aluminum oxide , Silicon oxide, titanium oxide, zirconium oxide or mixtures thereof, can be converted, dissolved or dispersed. Many of these for the production of ceramics based on Sols suitable for aluminum oxide are commercially available as boehmite sols under the brand names “Dispal”, “Disperal”, “Pural” or “Catapal”.

Die Sol-Gel-Zusammensetzungen können modifizierende Additive oder Vorläufer von modifizierenden Additiven umfassen. Diese Additive haben die Funktion, die gewünschten Eigenschaften der gesinterten, flach ausgebildeten, geometrisch strukturierten keramischen Schleifelemente zu verbessern. Typische modifizierende Additive oder Vorläufer von modifizierenden Additiven sind Oxide, Carbide, Nitride, Oxy-Carbide, Oxy-Nitride, Carbo-Nitride oder wasserlösliche Salze des Magnesiums, Zinks, Eisens, Siliziums, Kobalt, Nickels, Zirkoniums, Hafniums und der Seltenen Erden.The sol-gel compositions can comprise modifying additives or precursors to modifying additives. The function of these additives is to improve the desired properties of the sintered, flat, geometrically structured ceramic abrasive elements. Typical modifying additives or precursors of modifying additives are oxides, carbides, nitrides, oxy-carbides, oxy-nitrides, carbon-nitrides or water-soluble salts of magnesium, zinc, iron, silicon, cobalt, nickel, zirconium, hafnium and rare earths.

Zusätzlich oder alternativ kann die Sol-Gel-Zusammensetzung Kristallisationskeime enthalten, um die Umwandlung von hydriertem oder kalziniertem Aluminiumoxid in α-Aluminiumoxid zu beschleunigen und damit das Kristallwachstum zu begrenzen. Dafür geeignete Kristallisationskeime schließen feine α-Atuminiumoxid-Partikel, feinteiliges α-Eisenoxid oder dessen Vorläufer, Titanoxid und Titanate, Chromoxid oder andere Verbindungen ein, die in der Lage sind, die Umwandlung in α-Aluminiumoxid zu begünstigen.Additionally or alternatively, the sol-gel composition can contain crystallization nuclei in order to accelerate the conversion of hydrogenated or calcined aluminum oxide into α-aluminum oxide and thus to limit crystal growth. Suitable crystallization nuclei for this include fine particles of α-aluminum oxide, finely divided α-iron oxide or its precursors, titanium oxide and titanates, chromium oxide or other compounds which are able to promote the conversion to α-aluminum oxide.

Der besondere Vorteil des Sol-Gel-Verfahrens liegt darin, dass auf diese Weise Schleifelemente mit einem besonders feinkristallinen Gefüge, einer hohen Härte und einer außerordentlichen Zähigkeit erhalten werden können. Auch beim Sol-Gel-Verfahren werden Schichten ausgebildet, die dann getrocknet werden. Aus den getrockneten Schichten werden die Vorläufer der flach ausgebildeten, geometrisch strukturierten Schleifelemente ausgeschnitten und anschließend gesintert. Alternativ können die beim Sol-Gel-Verfahren erhaltenen Gele auch direkt in eine entsprechende Form gegeben, anschließend getrocknet und dann gesintert werden.The particular advantage of the sol-gel process is that grinding elements with a particularly fine crystalline structure, high hardness and extraordinary toughness can be obtained in this way. In the sol-gel process too, layers are formed which are then dried. The precursors of the flat, geometrically structured grinding elements are cut out of the dried layers and then sintered. Alternatively, the gels obtained in the sol-gel process can also be placed directly in a corresponding mold, then dried and then sintered.

Weitere geeignete Verfahren zur Herstellung von flach ausgebildeten, geometrisch strukturierten keramischen Schleifelementen sind das Spritzgießen, das Pressen, das Rollformen und die schnelle Prototypenentwicklung oder additive Fertigung, wie zum Beispiel der 3D-Druck, die Stereolithografie und das LOM-Verfahren (Laminated Object Manufacturing).Further suitable processes for the production of flat, geometrically structured ceramic grinding elements are injection molding, pressing, roll forming and rapid prototype development or additive manufacturing, such as for example 3D printing, stereolithography and the LOM process (Laminated Object Manufacturing).

KURZBESCHREIBUNG DER ABBILDUNGENBRIEF DESCRIPTION OF THE FIGURES

Die vorliegende Erfindung wird anhand von Abbildungen zusätzlich erläutert. Dabei zeigen

die Figuren 1 bis 8
zweidimensionale Draufsichten auf unterschiedlich geometrisch strukturierte Schleifelemente;
die Figur 9
eine Übersicht mit unterschiedlichen geometrischen Aussparungen und
die Figuren 10a - 10c
schematische Darstellungen unterschiedlicher Spanwinkel.
The present invention is additionally explained with reference to figures. Show it
Figures 1 to 8
two-dimensional top views of different geometrically structured grinding elements;
Figure 9
an overview with different geometric cutouts and
Figures 10a-10c
schematic representations of different rake angles.

In der Auswahl der in den oben genannten Figuren gezeigten geometrischen Strukturen ist keine Einschränkung zu sehen. Neben den gezeigten Strukturen ist eine Vielzahl weiterer Strukturen möglich und sinnvoll, um die erfindungsgemäße Aufgabe zu lösen.No restriction is to be seen in the selection of the geometric structures shown in the above-mentioned figures. In addition to the structures shown, a large number of other structures are possible and useful in order to achieve the object according to the invention.

BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMENDESCRIPTION OF PREFERRED EMBODIMENTS

Die Figur 1 zeigt eine Draufsicht auf ein strahlenförmig ausgebildetes rundes Schleifelement, in dessen Mitte eine kreisförmige Aussparung 1 zu sehen ist, die mit der Aufnahme der Schleifscheibe korrespondiert, in die das Schleifelement eingebaut werden soll. Der Körper 2 des Schleifelements ist sternförmig ausgebildet, wobei die Enden der Strahlen 3, senkrecht zur kreisförmigen Aussparung 1 stehen und einen Kreis ausbilden, dessen Durchmesser mit dem Durchmesser der Schleifscheibe korrespondiert, für die das Schleifelement vorgesehen ist. Zwischen den Strahlen 3 sind Aussparungen 4 zu sehen, die geeignet sind, der Schleifscheibe die erforderliche Porosität zur Verfügung zu stellen. Die Aussparungen 4 sind so dimensioniert, dass das Volumenverhältnis von Aussparungen 4 zu den massiven Bereichen des Schleifelements über den beim Schleifprozess genutzten Durchmesser des Schleifelements konstant ist. Auf diese Weise wird gewährleistet, dass bei radialer Abnutzung der Schleifscheibe die Porosität der Schleifscheibe und damit die Schleifbedingungen über den gesamten Schleifprozess unverändert bleiben. In der Figur 1 wird dieses Verhältnis verdeutlicht über das Verhältnis der den Umfang U bzw. U' betreffenden Abstände A/B und A' / B' bei einen bestimmten Scheibendurchmesser.The Figure 1 shows a plan view of a radially designed round grinding element, in the center of which a circular recess 1 can be seen, which corresponds to the receptacle of the grinding wheel in which the grinding element is to be installed. The body 2 of the grinding element is star-shaped, the ends of the rays 3 being perpendicular to the circular recess 1 and forming a circle whose diameter corresponds to the diameter of the grinding wheel for which the grinding element is intended. Recesses 4 can be seen between the rays 3, which are suitable for providing the grinding wheel with the required porosity. The recesses 4 are like this dimensioned so that the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process. This ensures that if the grinding wheel is radially worn, the porosity of the grinding wheel and thus the grinding conditions remain unchanged over the entire grinding process. In the Figure 1 this relationship is illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference U or U 'for a specific pulley diameter.

Die Figuren 2 und 3 zeigen ebenfalls Draufsichten auf strahlenförmig ausgebildete Schleifelemente, wobei die Strahlen 3 in der Figur 2 einen Winkel zur kreisförmigen Aussparung 1 bilden. In der Figur 3 sind die Strahlen 3 zusätzlich noch gekrümmt. Auch hier sind die Aussparungen 4 wieder so dimensioniert, dass das Volumenverhältnis von Aussparungen zu den massiven Bereichen des Schleifelementes über den beim Schleifprozess genutzten Durchmesser des Schleifelements konstant ist, was ebenfalls wieder durch das Verhältnis der den Umfang betreffenden Abstände A/B und A' / B' verdeutlicht wird.The Figures 2 and 3rd also show top views of radially designed grinding elements, the rays 3 in FIG Figure 2 Form an angle to the circular recess 1. In the Figure 3 the rays 3 are additionally curved. Here, too, the recesses 4 are again dimensioned in such a way that the volume ratio of the recesses to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again determined by the ratio of the distances A / B and A '/ relating to the circumference. B 'is clarified.

Ein weiteres Merkmal zur Charakterisierung der flach ausgebildeten, geometrisch strukturierten keramischen Schleifelemente ist der Spanwinkel γ, welcher der Neigung der Spanoberfläche (Angriffsfläche) zur Referenzfläche, die senkrecht zur Tangente der Scheibe angeordnet ist, entspricht. Es sind drei unterschiedliche Arten von Spanwinkel möglich: positiv, negativ und genau null. Ein positiver Spanwinkel γ hilft, die Schnittkraft und somit den Energiebedarf beim Schneiden zu reduzieren, wohingegen ein negativer Spanwinkel Y die Kantenfestigkeit und die Lebensdauer des Schleifelements bzw. der Schleifscheibe erhöht. Der Spanwinkel Y ist zusätzlich anhand der Figuren 3, 4, 8, 10a, 10b und 10c erläutert.Another feature for characterizing the flat, geometrically structured ceramic grinding elements is the rake angle γ, which corresponds to the inclination of the chip surface (contact surface) to the reference surface, which is arranged perpendicular to the tangent of the disk. There are three different types of rake angle possible: positive, negative and exactly zero. A positive rake angle γ helps to reduce the cutting force and thus the energy requirement during cutting, whereas a negative rake angle Y increases the edge strength and the service life of the grinding element or grinding wheel. The rake angle Y is also based on the Figures 3, 4 , 8th , 10a, 10b and 10c explained.

Das Schleifelement gemäß Figur 3 besitzt einen positiven Spanwinkel Y von 18°. Während des Schleifprozesses fällt der Spanwinkel Y mit zunehmendem Verschleiß (abnehmendem Radius) der Schleifscheibe auf null zurück.The grinding element according to Figure 3 has a positive rake angle Y of 18 °. During the grinding process, the rake angle Y falls back to zero with increasing wear (decreasing radius) of the grinding wheel.

Die Figur 4 zeigt ein kreisscheibenförmig ausgebildetes Schleifelement, dessen Körper 2 eine mit der Aufnahme der Schleifscheibe korrespondierende kreisförmige Aussparung 1 aufweist. Die Porosität der Schleifscheibe wird im vorliegenden Fall mit runden Löchern 4 gewährleistet, die mit zunehmendem Radius der Scheibe größer werden, so dass auch hier das Volumenverhältnis von Aussparungen 4 zu den massiven Bereichen des Schleifelementes über den beim Schleifprozess genutzten Durchmesser des Schleifelements konstant ist, was wieder durch das Verhältnis der den Umfang betreffenden Abstände A/B und A' / B' verdeutlicht wird. Der Spanwinkel Y des Schleifelements beginnt mit +29° und wechselt mit abnehmendem Schleifscheibenradius nach dem Passieren der Null in den negativen Bereich bis hinunter zu -90°. Bei der nächsten Reihe der runden Löcher 4 beginnt der Spanwinkel mit +90°, fällt auf null zurück und wechselt anschließend in den negativen Bereich bis hinunter zu -90°. Dieser Verlauf wiederholt sich dann mit jeder beginnenden Lochreihe.The Figure 4 shows a circular disk-shaped grinding element, the body 2 of which has a circular recess 1 corresponding to the receptacle of the grinding disk. The porosity of the grinding wheel is ensured in the present case with round holes 4, which become larger with increasing radius of the wheel, so that here too the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference. The rake angle Y of the grinding element begins with + 29 ° and changes with decreasing grinding wheel radius after passing the zero in the negative range down to -90 °. In the next row of round holes 4, the rake angle starts with + 90 °, falls back to zero and then changes to the negative range down to -90 °. This process then repeats itself with each beginning row of holes.

Die Figuren 5 bis 8 zeigen ebenfalls kreisscheibenförmig ausgebildete Schleifelemente, die Lochungen 4 in anderen geometrischen Formen aufweisen. In der Figur 5 sind trapezförmige Löcher 4, in der Figur 6 rautenförmige Löcher 4, in der Figur 7 hexagonale, wabenförmige Löcher 4 und in der Figur 8 dreieckige Löcher 4 zu sehen. In allen Fällen ist das Volumenverhältnis von Aussparungen 4 zu den massiven Bereichen des Schleifelementes über den beim Schleifprozess genutzten Durchmesser des Schleifelements konstant ist, was wieder durch das Verhältnis der den Umfang betreffenden Abstände A/B und A' / B' verdeutlicht wird. Der Spanwinkel γ des Schleifelementes gemäß Figur 8 beträgt 32° und bleibt während des gesamten Schleifprozesses konstant.The Figures 5 to 8 also show circular disk-shaped grinding elements that have perforations 4 in other geometric shapes. In the Figure 5 are trapezoidal holes 4 in which Figure 6 diamond-shaped holes 4 in which Figure 7 hexagonal, honeycomb-shaped holes 4 and in the Figure 8 triangular holes 4 can be seen. In all cases, the volume ratio of recesses 4 to the solid areas of the grinding element is constant over the diameter of the grinding element used in the grinding process, which is again illustrated by the ratio of the distances A / B and A '/ B' relating to the circumference. The rake angle γ of the grinding element according to Figure 8 is 32 ° and remains constant during the entire grinding process.

Der Spanwinkel γ wird allgemein anhand der Figuren 10a bis 10c erläutert, wobei Figur 10a einen positiven Spanwinkel Y zeigt, der Spanwinkel γ gemäß Figur 10b ist null und Figur 10c zeigt einen negativen Spanwinkel γ- Beim Abtragen erzeugt das Schleifelement 7 auf dem Werkstück 5 einen Span 6, wobei ein positiver Spanwinkel Y dazu beträgt, die Schnittkraft und damit den Energiebedarf beim Schneiden zu reduzieren, währenddessen eine negativer Spanwinkel Y die Kantenfestigkeit und die Lebensdauer des Schleifelements 7 erhöht.The rake angle γ is generally based on the Figures 10a to 10c explained, where Figure 10a shows a positive rake angle Y, the rake angle γ according to Figure 10b is zero and Figure 10c shows a negative rake angle γ- During removal, the grinding element 7 produces a chip 6 on the workpiece 5, with a positive rake angle Y contributing to reducing the cutting force and thus the energy requirement during cutting, while a negative rake angle Y the edge strength and the service life of the Increased sanding element 7.

Wie bereits eingangs erwähnt, handelt es sich bei den in den Figuren 1 bis 8 gezeigten Ausführungsformen der Schleifelemente um eine willkürliche Auswahl, worin keine Einschränkung zu sehen ist. In der Figur 9 sind Beispiele für weitere geometrische Flächen zu sehen, die mögliche Formen für Aussparungen bzw. Löcher wiedergeben. Auch in dieser Zusammenfassung ist keine Einschränkung zu sehen.As already mentioned at the beginning, the in the Figures 1 to 8 shown embodiments of the abrasive elements by an arbitrary selection, in which no restriction is to be seen. In the Figure 9 are examples of other geometric surfaces that show possible shapes for recesses or holes. There is no restriction to be seen in this summary either.

Neben den in den Figuren 1 bis 8 gezeigten vollständigen kreisförmigen Elementen ist es selbstverständlich auch möglich, Kreissegmente mit den gleichen geometrischen Strukturen herzustellen und einzusetzen. Der Vorteil der Kreissegmente besteht darin, dass ihre Herstellung und Handhabung einfacher ist und bei der Verarbeitung die Gefahr des Bruches von Schleifelementen geringer ist. Als praktische Kreissegmente sind insbesondere Bruchteile mit der Hälfte, einem Drittel, einem Viertel und einem Achtel eines vollständigen kreisförmigen Schleifelementes geeignet.In addition to the Figures 1 to 8 It is of course also possible to produce and use circular segments with the same geometric structures. The advantage of the circular segments is that they are easier to manufacture and handle and the risk of grinding elements breaking during processing is lower. Fractions with half, a third, a quarter and an eighth of a complete circular grinding element are particularly suitable as practical circular segments.

Letztendlich hängt die geometrische Gestaltung der Schleifelemente im Wesentlichen vom Einsatzgebiet der Schleifscheibe ab, wobei der Fachmann die geometrische Form wählt, mit der sich die gewünschten Schleifbedingungen am besten einstellen lassen und die darüber hinaus am einfachsten herzustellen ist.Ultimately, the geometric design of the grinding elements essentially depends on the field of application of the grinding wheel, with the person skilled in the art choosing the geometric shape with which the desired grinding conditions can best be set and which is also the easiest to manufacture.

BeispieleExamples

Es wurde eine 80%ige α-Aluminiumoxid-Suspension mit einer mittleren Partikelgröße D50 von 0.144 µm durch Nassvermahlen eines α-Aluminiumoxid-Ausgangspulvers mit einer mittleren Partikelgrößer von weniger als 1 µm gewonnen. Dabei wurde die Suspension durch Zugabe von 0.75 Gew.-% eines Polymethacrylats (KV5182, Zschimmer & Schwarz) stabilisiert. Die stabilisierte Suspension wurde dann mit einem Latex-Binder (B-1000, Dow Chemicals) versetzt.An 80% α-aluminum oxide suspension with an average particle size D 50 of 0.144 μm was obtained by wet grinding an α-aluminum oxide starting powder with an average particle size of less than 1 μm. The suspension was stabilized by adding 0.75% by weight of a polymethacrylate (KV5182, Zschimmer & Schwarz). A latex binder (B-1000, Dow Chemicals) was then added to the stabilized suspension.

Anschließend wurden zur Erhöhung der Viskosität zur flüssigen Suspension 5 Gew.-% einer wässrigen 1.25%igen Cellulose-Lösung (Methocel K15M) in Wasser zugegeben. Mit der so hergestellten keramischen Vorstufe, die einen Aluminiumoxid-Gehalt von 72.6 Gew.-% und eine Viskosität von 1300 mPa*s aufwies, wurden Folien mit unterschiedlichen Stärken zwischen 200 und 500 µm gegossen, aus denen dann Vorläufer der flach ausgebildeten, geometrisch strukturierten keramischen Schleifelemente entsprechend den Figuren 1 bis 8 gestanzt wurden.Then, to increase the viscosity of the liquid suspension, 5% by weight of an aqueous 1.25% cellulose solution (Methocel K15M) was added to water admitted. With the ceramic precursor produced in this way, which had an aluminum oxide content of 72.6% by weight and a viscosity of 1300 mPa * s, foils with different thicknesses between 200 and 500 μm were cast, from which precursors of the flat, geometrically structured ones were then cast ceramic abrasive elements according to the Figures 1 to 8 were punched.

Die Vorläufer der Schleifelemente wurden getrocknet, wobei aufgrund des hohen Aluminiumoxidgehaltes nur eine geringe Volumenkontraktion und keine Rissbildungen zu erkennen waren. Die getrockneten Vorläufer wurden mit einer Aufheizrate von 1 °C/min auf 600 °C erwärmt, um den Binder zu entfernen, und dann mit einer Aufheizrate von 5° C/min bis zu einer maximalen Temperatur von 1600 °C gesintert. Die Haltezeit bei 1600 °C betrug 30 Minuten. Die so erhaltenen flach ausgebildeten, geometrisch strukturierten Schleifelemente besitzen einen Dichte von 3.94 g/cm3 (98.3 % der theoretischen Dichte), eine Vickers-Härte Hv von 18.4 GPa und eine Kristallitgröße von weniger als 2 µm.The precursors of the abrasive elements were dried, whereby due to the high aluminum oxide content only a slight contraction in volume and no cracking could be seen. The dried precursors were heated to 600 ° C. at a heating rate of 1 ° C./min to remove the binder, and then sintered at a heating rate of 5 ° C./min up to a maximum temperature of 1600 ° C. The holding time at 1600 ° C. was 30 minutes. The flat, geometrically structured grinding elements obtained in this way have a density of 3.94 g / cm 3 (98.3% of the theoretical density), a Vickers hardness Hv of 18.4 GPa and a crystallite size of less than 2 μm.

TrenntestSeparation test

Zur Herstellung einer kunstharzgebundenen Trennscheibe mit einem Durchmesser von 125 mm wurde ein sternförmiges flach ausgebildetes, geometrisch strukturiertes Schleifelement gemäß Figur 1 mit einer Stärke von 300 µm eingesetzt. Um die Stabilität der Scheibe zu gewährleisten wurde dem Harz Korund als Füllstoff zugemischt. Als Standard wurde ein Vergleichsscheibe mit einem Einkristallkorund (TSCTSK, Imerys Fused Minerals) in den Körnungen F46/60 herangezogen.To produce a synthetic resin-bonded cutting disc with a diameter of 125 mm, a star-shaped, flat, geometrically structured grinding element according to FIG Figure 1 used with a thickness of 300 µm. To ensure the stability of the disc, corundum was added to the resin as a filler. A comparison disk with a single crystal corundum (TSCTSK, Imerys Fused Minerals) with the grain size F46 / 60 was used as the standard.

Es wurden Cr-Ni-Edelstahl-Rundstäbe mit einem Durchmesser von 20 mm als Werkstücke eingesetzt und mit einer Schnittgeschwindigkeit von 6000 µm/sec bei einer Scheibendrehzahl von 8800 Umdrehungen pro Minute bearbeitet. Dazu wurden jeweils 3 Vorschnitte und 12 weitere Schnitte durchgeführt. Danach wurde der Scheibenverlust anhand der Abnahme des Durchmessers der Scheiben bestimmt. Aus dem Quotienten von Materialabtrag und Scheibenverlust wurde dann das das G-Verhältnis bestimmt.Cr-Ni stainless steel round bars with a diameter of 20 mm were used as workpieces and machined at a cutting speed of 6000 μm / sec at a disc speed of 8800 revolutions per minute. For this purpose, 3 pre-cuts and 12 further cuts were made. The disk loss was then determined from the decrease in the diameter of the disks. The G-ratio was then determined from the quotient of material removal and disk loss.

Die Ergebnisse sind in der folgenden Tabelle 1 zusammengefasst: Tabelle 1 Beispiel G-Verhältnis cm2/cm2 Schleifleistung (%) Gemäß Figur 1 300 µm 3.41 112 Standard (Vergleich) TSCTSK 46/60 3.04 100 The results are summarized in the following table 1: Table 1 example G ratio cm 2 / cm 2 Grinding performance (%) According to Figure 1 300 µm 3.41 112 Standard (comparison) TSCTSK 46/60 3.04 100

Das oben aufgeführte Beispiel veranschaulicht das Potential der erfindungsgemäßen Schleifelemente. Durch Variationen der geometrischen Struktur, der Stärke und der Eigenporosität der Schleifelemente können für die unterschiedlichsten Anwendungen maßgeschneiderte Schleifelemente zur Verfügung gestellt werden. Schleifelemente mit hoher Eigenporosität sind beispielsweise poröse Oxidkeramiken, deren Porosität mit Hilfe bekannter keramischer Technologien zwischen 10 % und 90 % Porenvolumen eingestellt werden kann.The example given above illustrates the potential of the abrasive elements of the invention. By varying the geometric structure, the thickness and the inherent porosity of the grinding elements, tailor-made grinding elements can be made available for a wide variety of applications. Grinding elements with high inherent porosity are, for example, porous oxide ceramics, the porosity of which can be set between 10% and 90% pore volume with the aid of known ceramic technologies.

Ein weiteres Optimierungspotential ergibt sich aus der Verwendung mehrerer Schleifelemente, die in einer Schleifscheibe parallel nebeneinander eingesetzt werden können, wobei vorteilhaft zusätzlich die Lochbilder der Schleifelemente versetzt zueinander angeordnet sind, so dass die Porosität über die Breite der Schleifscheibe eine optimale homogene Verteilung aufweist. Ein Beispiel für eine solche Scheibe ist eine doppelschichtig versetzte Trennscheibe, die zwei flach ausgebildete, geometrisch strukturierte Schleifelemente aufweist, die jeweils eine Stärke von 150 µm besitzen.A further potential for optimization results from the use of several grinding elements that can be used parallel to each other in a grinding wheel, with the hole patterns of the grinding elements also advantageously being offset from one another so that the porosity has an optimal homogeneous distribution over the width of the grinding wheel. An example of such a disk is a double-layer staggered cutting disk which has two flat, geometrically structured grinding elements, each of which is 150 μm thick.

Zusätzlich können die physikalischen Eigenschaften der Schleifelemente durch Dotierungen verändert werden. So kann beispielsweise die Zähigkeit und Bruchfestigkeit der Schleifelemente durch den Zusatz von Zirkonoxid verbessert werden. Die Wahl der Ausgangsstoffe und des Herstellverfahrens bietet weitere Variationsmöglichkeiten und Optimierungsansätze für die erfindungsgemäßen Schleifelemente. So können beispielsweise über das Sol-Gel-Verfahren mit bekannten Technologien besonders feinkristalline Schleifelemente hergestellt werden, die eine mittlere Kristallitgröße im Bereich von 100 nm aufweisen. Derartige keramische Stoffe besitzen eine außerordentliche Zähigkeit und Härte und sind besonders gut für die Bearbeitung von hochlegierten Stählen geeignet.In addition, the physical properties of the grinding elements can be changed by doping them. For example, the toughness and breaking strength of the grinding elements can be improved by adding zirconium oxide. The choice of the starting materials and the production process offers further possibilities for variation and optimization approaches for the invention Grinding elements. For example, the sol-gel process can be used to produce particularly fine-crystalline grinding elements with known technologies, which have an average crystallite size in the range of 100 nm. Ceramic materials of this type have extraordinary toughness and hardness and are particularly suitable for machining high-alloy steels.

Ein besonders interessantes Einsatzgebiet für die erfindungsgemäßen Schleifelemente sind dünne kunstharzgebundene Scheiben mit einer Stärke zwischen 100 µm und 200 µm und einem geringen Durchmesser zwischen 1 cm und 4 cm, wie sie im Dentalbereich eingesetzt werden.A particularly interesting field of application for the grinding elements according to the invention are thin synthetic resin-bonded disks with a thickness between 100 μm and 200 μm and a small diameter between 1 cm and 4 cm, as used in the dental field.

Claims (11)

  1. Sintered polycrystalline flat-shaped geometrically structured ceramic abrasive element consisting of a sintered shaped body having
    - a homogeneous microstructure,
    - a chemical composition consistent across the whole abrasive element, and
    - a uniform geometrical structure,
    wherein the sintered body has a first surface and a second surface opposite the first surface and parallel to it, wherein both surfaces are separated by a sidewall having a thickness between 50 µm and 2000 µm, and the diameter-to-thickness ratio of the abrasive element is greater than 30,
    characterised in that
    the average diameter of the crystals forming the homogeneous microstructure of the sintered body is less than 10 µm, and that
    the abrasive element is a perforated ceramic body.
  2. Abrasive element according to claim 1,
    characterised in that
    the chemical composition of the abrasive element is based on aluminium oxide and/or other chemical compounds selected from the group consisting of carbides, oxides, nitrides, oxy-carbides, oxy-nitrides and carbo-nitrides of at least one of the elements selected from the group consisting of Al, B, Si, Zr and Ti.
  3. Abrasive element according to claim 1 or 2,
    characterised in that
    the abrasive element is a circular disk or a segment of a circle.
  4. Abrasive element according to claim 3,
    characterised in that
    the perforation of the ceramic body features a homogeneous geometrical structure with geometrically shaped openings.
  5. Abrasive element according to any of claims 1 to 4,
    characterised in that
    the abrasive element is a porous ceramic body.
  6. Abrasive element according to any of claims 1 to 5,
    characterised in that
    the volume ratio of the openings to the massive portions of the abrasive element is constant across the whole usable diameter of the abrasive element.
  7. The abrasive element according to any of claims 1 to 6,
    characterised in that
    the chemical composition of the abrasive element comprises at least 50 wt.-% alumina and optionally one or more oxides selected from the group consisting of SiO2, MgO, TiO2, Cr2O3, MnO2, Co2O3, Fe2O3, NiO, Cu2O, ZnO, ZrO2, and rare earth oxides.
  8. Method of manufacturing a flat-shaped geometrically structured ceramic abrasive element of any of claims 1 to 6, comprising the steps of:
    - preparing a ductile mass of a ceramic precursor material;
    - forming a precursor of a flat-shaped geometrically structured abrasive element from said ductile mass; and
    - calcining and sintering the said precursor to obtain flat-shaped geometrically structured ceramic abrasive element.
  9. Method according to claim 8,
    further characterised by the steps
    - preparing a dispersion of α-alumina in water by wet-milling α-alumina having an average particle size of less than 1 µm in the presence of a dispersant;
    - adding an organic binder and optionally a plasticiser and/or an antifoaming agent to the dispersion;
    - mixing the dispersion for several hours to obtain a stable colloidal dispersion;
    - tape casting the stable colloidal dispersion to a film having a thickness up to 3 mm;
    - drying the tape cast film;
    - cutting out precursors of a flat-shaped geometrically structured ceramic abrasive element; and
    - calcining and sintering the precursors to obtain flat-shaped, geometrically structured ceramic abrasive elements.
  10. Use of flat-shaped geometrically structured ceramic abrasive elements of any of claims 1 to 6 for the manufacture of synthetic resin-bonded grinding wheels.
  11. Cut-off wheels comprising flat-shaped geometrically structured ceramic abrasive elements of any of claims 1 to 6.
EP16790612.2A 2015-11-09 2016-11-03 Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof Active EP3374129B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL16790612T PL3374129T3 (en) 2015-11-09 2016-11-03 Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof
SI201631173T SI3374129T1 (en) 2015-11-09 2016-11-03 Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015119213 2015-11-09
DE102016120863.9A DE102016120863A1 (en) 2015-11-09 2016-11-02 Sintered, polycrystalline, flat-shaped, geometrically structured ceramic abrasive element, process for its preparation and its use
PCT/EP2016/076496 WO2017080897A1 (en) 2015-11-09 2016-11-03 Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof

Publications (2)

Publication Number Publication Date
EP3374129A1 EP3374129A1 (en) 2018-09-19
EP3374129B1 true EP3374129B1 (en) 2021-03-03

Family

ID=58584976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16790612.2A Active EP3374129B1 (en) 2015-11-09 2016-11-03 Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof

Country Status (12)

Country Link
US (1) US11618129B2 (en)
EP (1) EP3374129B1 (en)
JP (1) JP6909796B2 (en)
KR (1) KR102639639B1 (en)
CN (1) CN108430700B (en)
DE (1) DE102016120863A1 (en)
ES (1) ES2873826T3 (en)
HU (1) HUE054381T2 (en)
PL (1) PL3374129T3 (en)
PT (1) PT3374129T (en)
SI (1) SI3374129T1 (en)
WO (1) WO2017080897A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016120863A1 (en) 2015-11-09 2017-05-11 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Sintered, polycrystalline, flat-shaped, geometrically structured ceramic abrasive element, process for its preparation and its use
CN108687680A (en) * 2018-04-17 2018-10-23 株洲钻石切削刀具股份有限公司 A kind of forming grinding wheel for roughly grinding hard alloy cutter chip pocket
JP7145494B2 (en) * 2018-09-26 2022-10-03 株式会社ナノテム whetstone
CN111451506A (en) * 2020-05-27 2020-07-28 中南大学 3D printing manufacturing process of metal ceramic bonding agent CBN ultrathin cutting blade
KR102279391B1 (en) * 2020-09-14 2021-07-21 (주)대경셈코 Ceramic member for semiconductor exposure apparatus and manufacturing method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314827A (en) * 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
US5654246A (en) * 1985-02-04 1997-08-05 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
JPH01164562A (en) * 1987-12-18 1989-06-28 Brother Ind Ltd Grindstone and manufacturing method thereof
US5035723A (en) * 1989-04-28 1991-07-30 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
EP0662110B1 (en) * 1992-09-25 1999-11-24 Minnesota Mining And Manufacturing Company Abrasive grain including rare earth oxide therein
US5443418A (en) 1993-03-29 1995-08-22 Norton Company Superabrasive tool
JPH0789759A (en) * 1993-07-27 1995-04-04 Sumitomo Chem Co Ltd Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
DE19503854C2 (en) * 1995-02-06 1997-02-20 Starck H C Gmbh Co Kg Process for the production of sintered alpha-Al¶2¶O¶3¶ bodies and their use
WO1998021009A1 (en) * 1996-11-13 1998-05-22 Rappold International Sales Ag Abrasive body and process for manufacturing the same
US5876470A (en) 1997-08-01 1999-03-02 Minnesota Mining And Manufacturing Company Abrasive articles comprising a blend of abrasive particles
CN2355847Y (en) * 1999-03-15 1999-12-29 金东燮 Multiple air hole groove interrupted grinding and cutting abrasive wheel
JP2002036121A (en) * 2000-07-27 2002-02-05 Mitsubishi Materials Corp Thin-bladed grinding wheel
DE10202953A1 (en) * 2002-01-26 2003-08-14 Arno Friedrichs Disc-shaped carbide or ceramic tool
JP2004017263A (en) * 2002-06-20 2004-01-22 Toshiba Ceramics Co Ltd Porous wheel grind stone
KR101832002B1 (en) 2010-03-03 2018-02-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Bonded abrasive wheel
BR112012027030B1 (en) 2010-04-27 2020-05-19 3M Innovative Properties Co abrasive article, method of abrasion of a workpiece and method of preparing a ceramic shaped abrasive particle
CN104822493B (en) * 2012-06-27 2018-07-03 3M创新有限公司 Abrasive product
CN102896590B (en) * 2012-09-21 2015-03-11 南京航空航天大学 Process for distributing grinding materials of grinding disc of ship body made of brass solder super-hard grinding material
CN104647228A (en) * 2013-11-21 2015-05-27 江苏苏北砂轮厂有限公司 Ceramic grooving grinding wheel
CN203936807U (en) * 2014-05-30 2014-11-12 谢杨莎 Abrasive wheel with heat abstractor
DE102016120863A1 (en) 2015-11-09 2017-05-11 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Sintered, polycrystalline, flat-shaped, geometrically structured ceramic abrasive element, process for its preparation and its use
CN206084802U (en) * 2016-07-06 2017-04-12 广东奔朗新材料股份有限公司 Compound piece diamond -impregnated wheel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3374129A1 (en) 2018-09-19
US11618129B2 (en) 2023-04-04
PT3374129T (en) 2021-04-05
JP6909796B2 (en) 2021-07-28
CN108430700A (en) 2018-08-21
HUE054381T2 (en) 2021-09-28
PL3374129T3 (en) 2021-09-20
JP2018534166A (en) 2018-11-22
ES2873826T3 (en) 2021-11-04
KR20180081100A (en) 2018-07-13
WO2017080897A1 (en) 2017-05-18
SI3374129T1 (en) 2021-08-31
US20200254587A1 (en) 2020-08-13
DE102016120863A1 (en) 2017-05-11
KR102639639B1 (en) 2024-02-21
CN108430700B (en) 2021-07-27

Similar Documents

Publication Publication Date Title
EP3374129B1 (en) Sintered, polycrystalline, flat, geometrically structured ceramic grinding element, method for the production thereof, and use thereof
DE69029421T3 (en) Sol-gel alumina-based sintered filament and method and use thereof
AT515258B1 (en) Process for producing abrasive bodies
DE102012023688A1 (en) Abrasive grain with geometrically defined shape useful e.g. for producing abrasive wheel comprises three potentially acting cutting edges, and edge defining surface of abrasive grain and additional cutting edge formed in grain surface
DE102013212644A1 (en) Process for producing an abrasive
DD297994A5 (en) ABRASIVES PRODUCTS
DD297595A5 (en) GRINDING BODY AND METHOD FOR THE PRODUCTION THEREOF
EP2692820A1 (en) Abrasive grit with base surface, ridge and opening
EP2523906B1 (en) Polycrystalline al2o3 bodies based on melted aluminum oxide
DE202015009584U1 (en) Polycrystalline diamond body, cutting tool, wear-resistant tool and grinding tool
DE4217720C1 (en) SINTERED VERBUNDSCHLEIFKOERPER, PROCESS FOR THEIR PRODUCTION AND THEIR USE
DE102016100196A1 (en) Shaped sintered abrasive grains based on alumina with fractions of mineralogical phases consisting of mullite, tialite and / or armalcolite and baddeleyite and / or Srilankit and a process for their preparation
DE19805889C2 (en) Sintered body based on corundum with a closed cell structure, its production and use
CH701596B1 (en) Dressing.
DE102013111006A1 (en) Polycrystalline Al2O3 porous bodies based on molten alumina with increased toughness, process for their preparation and their use
EP1218310A1 (en) A1 2?O 3?/SiC NANOCOMPOSITE ABRASIVE GRAINS, METHOD FOR PRODUCING THEM AND THEIR USE
EP3590658B1 (en) Method for producing thin grinding bodies
DE10221483C1 (en) Process for the production of free sintered annular grinding pads for grinding wheels
DE812294C (en) Abrasive body with bond made of finely divided oxides
DE102020115476A1 (en) Abrasive with an abrasive skeleton
EP3360944A2 (en) Abrasive article
DE2329896A1 (en) METHOD OF MANUFACTURING CERAMIC POWDERS
EP1355757A1 (en) Honing and grinding tool with abrasive means and bonding agent
EP1866126A1 (en) Tool for machining zirconium oxide
DE102013206837A1 (en) abrasives

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMERTECH SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. LUSUARDI AG, CH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1366685

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012526

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3374129

Country of ref document: PT

Date of ref document: 20210405

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210326

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054381

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012526

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

26N No opposition filed

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221019

Year of fee payment: 7

Ref country code: BE

Payment date: 20221128

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210303

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231020

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231020

Year of fee payment: 8

Ref country code: SI

Payment date: 20231026

Year of fee payment: 8

Ref country code: SE

Payment date: 20231020

Year of fee payment: 8

Ref country code: PT

Payment date: 20231019

Year of fee payment: 8

Ref country code: IT

Payment date: 20231019

Year of fee payment: 8

Ref country code: HU

Payment date: 20231030

Year of fee payment: 8

Ref country code: FR

Payment date: 20231019

Year of fee payment: 8

Ref country code: DE

Payment date: 20231019

Year of fee payment: 8

Ref country code: CH

Payment date: 20231202

Year of fee payment: 8

Ref country code: AT

Payment date: 20231023

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231025

Year of fee payment: 8

Ref country code: BE

Payment date: 20231019

Year of fee payment: 8