EP3321394B1 - Verfahren und vorrichtung zum herstellen eines kaltgewalzten stahlbandes - Google Patents
Verfahren und vorrichtung zum herstellen eines kaltgewalzten stahlbandes Download PDFInfo
- Publication number
- EP3321394B1 EP3321394B1 EP16821503.6A EP16821503A EP3321394B1 EP 3321394 B1 EP3321394 B1 EP 3321394B1 EP 16821503 A EP16821503 A EP 16821503A EP 3321394 B1 EP3321394 B1 EP 3321394B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- concentration
- tank
- steel strip
- mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010960 cold rolled steel Substances 0.000 title claims description 73
- 238000000034 method Methods 0.000 title claims description 30
- 230000008569 process Effects 0.000 title description 2
- 239000002253 acid Substances 0.000 claims description 267
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 132
- 239000000243 solution Substances 0.000 claims description 97
- 229910000831 Steel Inorganic materials 0.000 claims description 77
- 239000010959 steel Substances 0.000 claims description 77
- 238000005554 pickling Methods 0.000 claims description 59
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 50
- 229910017604 nitric acid Inorganic materials 0.000 claims description 42
- 239000011550 stock solution Substances 0.000 claims description 38
- 238000004519 manufacturing process Methods 0.000 claims description 25
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 22
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- 230000004580 weight loss Effects 0.000 claims description 11
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 6
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 claims description 6
- 235000019253 formic acid Nutrition 0.000 claims description 6
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- 229940005657 pyrophosphoric acid Drugs 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 114
- 239000000126 substance Substances 0.000 description 46
- 239000011248 coating agent Substances 0.000 description 24
- 238000000576 coating method Methods 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 23
- 230000007797 corrosion Effects 0.000 description 20
- 238000005260 corrosion Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 19
- 239000007788 liquid Substances 0.000 description 16
- 230000001590 oxidative effect Effects 0.000 description 15
- 238000005728 strengthening Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 239000002699 waste material Substances 0.000 description 13
- 208000016261 weight loss Diseases 0.000 description 12
- 238000000137 annealing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000010924 continuous production Methods 0.000 description 4
- 238000004070 electrodeposition Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910006639 Si—Mn Inorganic materials 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 231100000241 scar Toxicity 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 238000004497 NIR spectroscopy Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000013527 degreasing agent Substances 0.000 description 1
- 238000005237 degreasing agent Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- -1 iron ion Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
- C23G1/085—Iron or steel solutions containing HNO3
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/08—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
- C23G3/02—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
- C23G3/021—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously by dipping
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
- C23G3/02—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
- C23G3/027—Associated apparatus, e.g. for pretreating or after-treating
- C23G3/028—Associated apparatus, e.g. for pretreating or after-treating for thermal or mechanical pretreatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G3/00—Apparatus for cleaning or pickling metallic material
- C23G3/02—Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
- C23G3/027—Associated apparatus, e.g. for pretreating or after-treating
- C23G3/029—Associated apparatus, e.g. for pretreating or after-treating for removing the pickling fluid from the objects
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
Definitions
- This application relates to a method of producing a cold rolled steel strip and a production system for a cold rolled steel strip.
- high-strength cold rolled steel sheets containing a large amount of Si suffer from a problem of having poor post-coating corrosion resistance and being more susceptible to coating peeling than normal cold rolled steel sheets when exposed to a harsh corrosive environment after electrodeposition coating, such as in a warm salt water immersion test or a wet-dry combined cyclic corrosion test. Consequently, it is difficult to use high-strength cold rolled steel sheets containing a large amount of Si in body applications for which coating is essential.
- Patent literature (PTL) 1 and 2 provide techniques for solving this problem.
- PTL 1 and 2 each describe a method of producing a cold rolled steel sheet including subjecting a steel sheet that has been cold rolled and subsequently continuously annealed to pickling by continuously feeding the steel sheet into a mixed acid (nitric acid and hydrochloric acid, nitric acid and hydrofluoric acid, or the like) to immerse the steel sheet, and subsequently subjecting the steel sheet to repickling by continuously feeding the steel sheet into a non-oxidizing acid (hydrochloric acid, sulfuric acid, or the like) to immerse the steel sheet.
- a mixed acid nitric acid and hydrochloric acid, nitric acid and hydrofluoric acid, or the like
- a non-oxidizing acid hydroochloric acid, sulfuric acid, or the like
- the described method removes Si-containing oxides at the steel sheet surface through the pickling and removes iron-based oxides that are produced in the pickling through the repickling, and thereby enables production of a cold rolled steel sheet having excellent chemical convertibility and post-coating corrosion resistance in harsh corrosive environments.
- PTL 3 relates to a method and device for producing an Si-containing cold rolled steel sheet, the method comprising steps of cold rolling a steel containing 0.5 to 3.0 mass% Si, continuously annealing the cold rolled steel sheet, pickling the surface of the continuously annealed steel sheet, and repickling the surface of the pickled steel sheet with a non-oxidative acid.
- PTL 4 relates to a method for producing a cold rolled steel sheet, wherein a continuously annealed steel sheet after cold rolling is pickled with a mixture of nitric acid and hydrochloric acid.
- PTL 5 relates to a method of continuously annealing a cold rolled steel strip and carrying out pickling with a mixed acid of nitric acid and hydrofluoric acid.
- PTL 6 relates to method of pickling stainless steel using a mixture of nitric acid and hydrofluoric acid.
- the disclosed method of producing a cold rolled steel strip and production system for a cold rolled steel strip enable continuous production with long-term stability of a steel strip having excellent chemical convertibility, post-coating corrosion resistance in harsh corrosive environments, and surface appearance quality.
- a method of producing a cold rolled steel strip includes: subjecting a steel strip that has been cold rolled and subsequently continuously annealed to pickling by continuously feeding the steel strip into a mixed acid solution containing a first acid that is oxidizing and is nitric acid and a second acid that is non-oxidizing to immerse the steel strip; and subsequently subjecting the steel strip to repickling by continuously feeding the steel strip into an acid solution containing a third acid that is non-oxidizing to immerse the steel strip.
- a non-oxidizing or reducing gas is normally used as an atmosphere gas, and the dew point is strictly controlled. Consequently, in the case of a normal cold rolled steel strip in which the additive amount of alloy is small, oxidation of the surface of the steel strip is suppressed. However, in the case of a cold rolled steel strip containing 0.5 mass% or more of Si or Mn, oxidation of Si, Mn, and the like, which are easily oxidized compared to Fe, occurs even if the composition and dew point of the atmosphere gas are strictly controlled during annealing.
- Si-containing oxides such as Si oxide (SiO 2 ) and Si-Mn-based composite oxides at the surface of the steel strip.
- Si-containing oxides are formed not only at the surface of the steel strip, but also at an inner part of the steel substrate, which impairs etching properties of the steel strip surface in chemical conversion treatment (zinc phosphate treatment) carried out as foundation treatment for electrodeposition coating, and negatively affects formation of a sound chemical conversion treatment film.
- a cold rolled steel strip is continuously fed into a mixed acid solution containing a first acid that is oxidizing and is nitric acid and a second acid that is non-oxidizing to immerse the cold rolled steel strip and remove a Si-containing oxide layer from the surface of the cold rolled steel strip.
- the thickness of the Si-containing oxide layer is normally approximately 1 ⁇ m from the steel strip surface, but varies depending on the chemical composition of the steel strip and the annealing conditions (temperature, time, atmosphere).
- the oxidizing first acid is nitric acid.
- the reason that the first acid is required in the mixed acid solution is that, among Si-containing oxides, although Si-Mn-based composite oxides readily dissolve in acid, SiO 2 displays poor solubility, and thus, in order to remove this SiO 2 , it is necessary to use an oxidizing acid, namely nitric acid, so as to remove steel substrate together with Si-containing oxides at the surface of the steel strip.
- the concentration of nitric acid in the mixed acid solution is set within a range of higher than 110 g/L and not higher than 188 g/L. This is because a concentration of 110 g/L or lower reduces the permissible Fe concentration upper limit in the mixed acid solution and shortens the time that continuous pickling treatment can be performed using the same mixed acid solution without waste liquid treatment, whereas a concentration of higher than 188 g/L makes it difficult to dissolve iron-based oxides by the repickling in the subsequent stage.
- concentration of nitric acid is high, the Fe concentration in the mixed acid solution tends to rise more quickly, and thus the permissible Fe concentration upper limit tends to be reached more quickly.
- the concentration of nitric acid is more preferably 140 g/L or lower, and even more preferably 130 g/L or lower.
- the non-oxidizing second acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, and oxalic acid.
- hydrochloric acid, sulfuric acid, and/or hydrofluoric acid is preferred.
- the reason for using a non-oxidizing acid such as described above is to suppress the formation of iron-based oxides that precipitate on the steel strip surface in accompaniment to pickling with the oxidizing first acid.
- the concentration of the second acid in the mixed acid solution is set within a range of higher than 4.5 g/L and not higher than 12.5 g/L. This is because a concentration of 4.5 g/L or lower makes it difficult to dissolve iron-based oxides by the repickling in the subsequent stage, whereas a concentration of higher than 12.5 g/L reduces the pickling weight loss per unit time and may result in residual SiO 2 in the steel strip surface layer.
- the concentration of the second acid is more preferably 6.5 g/L to 8.5 g/L.
- Conditions that influence the amount of Si-containing oxides include the structure of the steel strip and the annealing conditions.
- a suitable pickling time for removing Si-containing oxides is determined by taking into account these conditions.
- the concentration of nitric acid, the sheet passing speed, and the pickling line length may be set so as to ensure this suitable pickling time.
- iron-based oxides that dissolves from the steel strip surface through the pickling forms iron-based oxides and these iron-based oxides precipitate on and cover the steel strip surface, leading to reduced chemical convertibility.
- These iron-based oxides are removed after the pickling in the present embodiment by continuously feeding the steel strip into an acid solution containing a third acid that is non-oxidizing to immerse the steel strip.
- the term "iron-based oxide” is used to refer to an oxide having iron as a main component in which the atomic concentration of iron among constituent elements of the oxide other than oxygen is 30% or higher.
- These iron-based oxides are oxides that are present with a non-uniform thickness on the steel strip surface and differ from a natural oxide layer that is present as a uniform layer of several nanometers in thickness. Note that iron-based oxides formed at the surface of the cold rolled steel strip are known to be amorphous based on observation using a transmission electron microscope (TEM) and analysis results of a diffraction pattern obtained by electron beam diffraction.
- the non-oxidizing third acid is one or more selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, and oxalic acid.
- hydrochloric acid, sulfuric acid, and/or hydrofluoric acid is preferred.
- hydrochloric acid is suitable because residual matter tends not to remain at the steel strip surface as with sulfate ions in the case of sulfuric acid since hydrochloric acid is a volatile acid, and because the destructive effect on iron-based oxides by chloride ions is large.
- an acid obtained by mixing hydrochloric acid and sulfuric acid may be used.
- the second acid used in the pickling and the third acid used in the repickling may be the same type of acid or different types of acids. However, it is preferable to use the same type of acid from a viewpoint of simplification of the production system.
- the concentration of the third acid in the acid solution is set within a range of higher than 4.5 g/L and not higher than 12.5 g/L. This is because a concentration of 4.5 g/L or lower makes it difficult to dissolve iron-based oxides, whereas a concentration of higher than 12.5 g/L may lead to discoloration due to the presence of residual acid solution on the steel strip surface.
- the concentration of the third acid is more preferably 6.5 g/L to 8.5 g/L.
- An appropriate pickling time in the repickling is determined based on the pickling weight loss required to remove iron-based oxides formed by the pickling in the first stage, pickling efficiency determined by the acid composition, and pickling length.
- the acid temperature is approximately 30 °C to 60 °C and the pickling time is approximately 10 s.
- the cold rolled steel strip that is subjected to the pickling and repickling described above after continuous annealing may then be processed to obtain a cold rolled steel sheet as a product sheet through normal processing steps such as temper rolling and a leveling process.
- the total pickling weight loss in the pickling and repickling is preferably 8 g/m 2 or more.
- the total pickling weight loss is 8 g/m 2 or more, Si-containing oxides and iron-based oxides tend not to remain at the steel strip surface and higher chemical convertibility is obtained.
- the pickling rate i.e., the temperature of the mixed acid
- the concentration of the first acid (nitric acid) in the mixed acid solution is lowered and the concentration of the second acid (for example, hydrochloric acid) in the mixed acid solution is raised as the Fe concentration in the mixed acid solution rises.
- this control of acid concentration is used to maintain the temperature of the mixed acid solution constantly within a range of 45 °C to 55 °C. This is because a temperature of lower than 45 °C reduces the pickling weight loss per unit time and may lead to residual SiO 2 in the surface layer of the steel strip, whereas a temperature of higher than 55 °C may lead to discoloration of the steel strip surface starting to occur.
- the Fe concentration in fresh mixed acid that has not been used for steel strip pickling is zero.
- concentrations of the first acid and the second acid in the fresh mixed acid are taken to be roughly in the middle of the preferred ranges therefor.
- the concentration of the first acid may be set as 132.5 g/L and the concentration of the second acid may be set as 6.5 g/L.
- the Fe concentration in the mixed acid is measured over time.
- the Fe concentration may be measured continuously or may be measured intermittently at fixed intervals.
- the Fe concentration is classified into a number of levels and set concentrations for the first acid and the second acid are predetermined for each level.
- the concentrations of the first acid and the second acid are adjusted. For example, at a stage at which the Fe concentration in the mixed acid reaches 15 g/L, the concentration of the first acid may be adjusted to 125.0 g/L and the concentration of the second acid may be adjusted to 7.5 g/L. As further time passes, at a stage at which the Fe concentration in the mixed acid reaches 20 g/L, the concentration of the first acid may be adjusted to 110.0 g/L and the concentration of the second acid may be adjusted to 8.5 g/L.
- relationship formulae between Fe concentration and set concentrations for the first acid and the second acid is predetermined, and the concentrations of the first acid and the second acid are adjusted from moment to moment in accordance with a gradual rise in the Fe concentration in the mixed acid.
- the control of acid concentration enables the temperature of the mixed acid to be maintained within a preferred range without an increase in the pickling rate even when the Fe concentration in the mixed acid rises. This enables continuous production with long-term stability of a cold rolled steel strip having excellent chemical convertibility, post-coating corrosion resistance in harsh corrosive environments, and surface appearance quality.
- the following describes a cold rolled steel strip production system 100 according to one disclosed embodiment that can be used to implement the method of producing a cold rolled steel strip described above.
- the production system 100 includes, in this order, a water tank 10 that holds water, a mixed acid tank 12 that holds a mixed acid solution (nitric/hydrochloric acid) containing nitric acid as the first acid and hydrochloric acid as the second acid, a water tank 14 that holds water, an acid tank 16 that holds hydrochloric acid as the third acid, and a water tank 18 that holds water.
- a sheet feeder includes rollers 11, 13, 15, 17, and 19 that are respectively immersed in the five tanks mentioned above and a plurality of rollers 21 positioned above the tanks.
- the sheet feeder can continuously feed a steel strip P that has been cold rolled and subsequently continuously annealed and can immerse the steel strip P in the water tank 10, the mixed acid tank 12, the water tank 14, the acid tank 16, and the water tank 18 in this order.
- the production system 100 also includes a nitric acid stock solution tank 20 that holds nitric acid and serves as a first stock solution tank and a hydrochloric acid stock solution tank 22 that holds hydrochloric acid and serves as a second stock solution tank and a third stock solution tank.
- a first pipe 24 extends from the nitric acid stock solution tank 20, and a second pipe 26 and a third pipe 28 extend from the hydrochloric acid stock solution tank 22.
- the first pipe 24 and the second pipe 26 are connected to a mixed acid solution circulation tank 30.
- a mixed acid solution circulation tank 30 nitric acid fed from the nitric acid stock solution tank 20 and hydrochloric acid fed from the hydrochloric acid stock solution tank 22 are mixed and held.
- a first valve 32 is provided in the first pipe 24 such that the feed rate of nitric acid from the nitric acid stock solution tank 20 can be adjusted.
- a second valve 34 is provided in the second pipe 26 such that the feed rate of hydrochloric acid from the hydrochloric acid stock solution tank 22 can be adjusted.
- the third pipe 28 is connected to an acid solution circulation tank 40.
- the acid solution circulation tank 40 holds hydrochloric acid fed from the hydrochloric acid stock solution tank 22.
- a valve is also provided in the third pipe such that the feed rate of hydrochloric acid from the hydrochloric acid stock solution tank 22 can be adjusted.
- Two fourth pipes 38 that link the mixed acid solution circulation tank 30 and the mixed acid tank 12 are provided as pipes for circulating the mixed acid solution between the mixed acid solution circulation tank 30 and the mixed acid tank 12.
- a valve is provided in each of the fourth pipes 38 and these valves enable adjustment of the circulation rate of the mixed acid solution.
- the mixed acid solution circulation tank 30 is provided with a heat exchanger 36. When the temperature of the mixed acid solution rises due to reaction heat, the temperature can be lowered through the heat exchanger 36.
- Two fifth pipes 42 that link the acid solution circulation tank 40 and the acid tank 16 are provided as pipes for circulating hydrochloric acid solution between the acid solution circulation tank 40 and the acid tank 16.
- a valve is provided in each of the fifth pipes 42 and these valves enable adjustment of the circulation rate of the hydrochloric acid solution.
- the acid solution circulation tank 40 is provided with a heat exchanger 44. A rise in the temperature of the hydrochloric acid solution due to reaction heat can be suppressed through the heat exchanger 44.
- the production system 100 includes an Fe concentration meter 52 that measures the Fe concentration in the mixed acid solution in the mixed acid tank 12. Fe gradually elutes from the cold rolled steel strip over the course of the pickling, resulting in a gradual rise in the Fe concentration in the mixed acid. The rise in the Fe concentration in the mixed acid is detected at appropriate timing by the Fe concentration meter 52.
- the Fe concentration meter 52 may be an analyzer that, by near infrared spectroscopy, irradiates the mixed acid solution with near infrared at intervals of 1 minute and calculates the Fe concentration in the mixed acid solution from the change in the spectrum after the irradiation.
- the mixed acid solution fed to the Fe concentration meter 52 may be sampled from the mixed acid tank 12 as illustrated in FIG.
- the production system 100 has a configuration in which the mixed acid can be sampled from the circulation tank 30 and fed to the Fe concentration meter 52. This is in order to measure the Fe concentration of fresh mixed acid solution when mixed acid solution in the circulation tank 30 is replaced.
- a controller 54 controls the first valve 32 and the second valve 34 based on output of the Fe concentration meter 52. Specifically, the controller 54 reduces the feed rate of nitric acid from the nitric acid stock solution tank 20 and increases the feed rate of hydrochloric acid from the hydrochloric acid stock solution tank 22 as the Fe concentration in the mixed acid solution rises so as to lower the concentration of nitric acid in the mixed acid solution and raise the concentration of hydrochloric acid in the mixed acid solution.
- the specific method of control is as previously described.
- the controller 54 may be implemented by a central processing unit (CPU) in a computer.
- FIG. 1 illustrates an example in which acid concentration in the mixed acid is automatically controlled through the controller 54
- the disclosed production method is not limited to this example and an operator may alternatively adjust the first valve 32 and the second valve 34 based on measurement results of the Fe concentration meter 52.
- a waste liquid pipe 46 extends from the mixed acid solution circulation tank 30 and a waste liquid pipe 48 extends from the acid solution circulation tank 40 such as to feed waste liquid to a waste liquid pit 50 from each of these tanks.
- the waste liquid fed to the waste liquid pit is subjected to pH treatment and N 2 treatment in disposal.
- the Fe concentration in the nitric/hydrochloric acid solution gradually rises, but it is preferable to set the permissible Fe concentration upper limit as a value of 25 g/L or lower. This is because an Fe concentration of higher than 25 g/L in the nitric/hydrochloric acid solution makes it difficult to suppress a decrease in chemical convertibility even through adoption of our techniques.
- nitric/hydrochloric acid is discharged to the waste liquid pit 50 from the mixed acid solution circulation tank 30, and the mixed acid solution circulation tank 30 is replenished with fresh nitric acid and hydrochloric acid from the stock solution tanks 20 and 22.
- the permissible Fe concentration upper limit in the nitric/hydrochloric acid solution is more preferably set as a value of 15 g/L or lower from a viewpoint of ensuring better chemical convertibility.
- the permissible Fe concentration lower limit in the nitric/hydrochloric acid solution is preferably set as 10 g/L or higher from a viewpoint of operational efficiency.
- a feed rate A of nitric acid to the mixed acid solution circulation tank 30 from the nitric acid stock solution tank 20 may be set as 0.8 m 3 /hr to 1.6 m 3 /hr and a feed rate B of hydrochloric acid to the mixed acid solution circulation tank 30 from the hydrochloric acid stock solution tank 22 may be set as 0.1 m 3 /hr to 0.3 m 3 /hr.
- a and B are adjusted at the timing at which the concentrations of nitric acid and hydrochloric acid are to be adjusted.
- a circulation rate C by the mixed acid solution circulation tank 30 may be set as 25 m 3 /hr to 90 m 3 /hr
- a waste liquid discharge rate D from the mixed acid solution circulation tank 30 may be set as 0 m 3 /hr to 5 m 3 /hr
- a feed rate E of hydrochloric acid to the acid solution circulation tank 40 from the hydrochloric acid stock solution tank 22 may be set as 1.0 m 3 /hr to 2.0 m 3 /hr
- a circulation rate F by the acid solution circulation tank 40 may be set as 25 m 3 /hr to 90 m 3 /hr
- a waste liquid discharge rate G from the acid solution circulation tank 40 may be set as 0 m 3 /hr to 5 m 3 /hr.
- Si is an effective element for strengthening steel because it can increase the strength of steel without significantly reducing workability.
- Si is an element that has a negative impact on chemical convertibility and post-coating corrosion resistance.
- it is necessary to add 0.5 mass% or more.
- the Si content is less than 0.5 mass%, the necessity of adopting our techniques is low because the impact of poorer chemical conversion treatment conditions is small.
- Si is added within a range of 0.5 mass% to 3.0 mass%.
- the preferred range for Si addition is 0.8 mass% to 2.5 mass%.
- C is an effective element for strengthening steel and is also an effective element for forming bainite, martensite, and retained austenite having a transformation induced plasticity (TRIP) effect.
- TRIP transformation induced plasticity
- Mn is an element that has effects of strengthening steel through solid solution strengthening, raising quench hardenability, and promoting formation of retained austenite, bainite, and martensite. These effects are exhibited when 1.0 mass% or more of Mn is added. On the other hand, excessive addition of Mn leads to increased raw material cost, but addition of 7.5 mass% or less is permissible. Accordingly, Mn is preferably added within a range of 1.0 mass% to 7.5 mass%. Mn is more preferably added within a range of 2.0 mass% to 5.0 mass%.
- P is an element that has little negative impact on deep drawability relative its significant solid solution strengthening ability and is an effective element for achieving strengthening.
- the P content is preferably 0.005 mass% or more to achieve these effects. On the other hand, it is preferable to set an upper limit of 0.05 mass% because P impairs spot weldability.
- the P content is more preferably 0.02 mass% or less.
- S is unavoidably mixed into steel as an impurity, and is a harmful component that precipitates as MnS and reduces stretch flangeability of a steel sheet.
- the S content is preferably limited to 0.01 mass% or less and more preferably 0.005 mass% or less in order that stretch flangeability is not reduced.
- the S content is even more preferably 0.003 mass% or less.
- Industrially, a S content of 0.0001 mass% or more is obtained in view of desulfurization cost.
- A1 is an element that is added as a deoxidizer in a steel making process and is also an effective element for separating non-metal inclusions that reduce stretch flangeability as slag. Therefore, the Al content is preferably 0.01 mass% or more. However, it is preferable to set an upper limit of 0.06 mass% because excessive Al addition leads to increased raw material cost. The Al content is more preferably within a range of 0.02 mass% to 0.06 mass%.
- Ti, Nb, and V are useful elements that not only form precipitates such as carbides and nitrides and increase the strength of steel, but also suppress ferrite growth to refine structure, and improve formability and particularly stretch flangeability. These effects are obtained when 0.005 mass% or more of each of these elements is added and reach saturation when more than 0.3 mass% is added. Accordingly, it is preferable to add one of Ti, Nb, and V within a range of 0.005 mass% to 0.3 mass%, or to add two or more of Ti, Nb, and V, each within a range of 0.005 mass% to 0.3 mass%. Addition of each of these elements within a range of 0.005 mass% to 0.2 mass% is more preferable.
- Mo and Cr are elements that improve quench hardenability of steel, promote formation of bainite and martensite, and contribute to strengthening. These effects are obtained when 0.005 mass% or more of each of these elements is added and reach saturation when more than 0.3 mass% is added. Accordingly, it is preferable that Mo and Cr are each added within a range of 0.005 mass% to 0.3 mass%. Mo and Cr are more preferably each added within a range of 0.005 mass% to 0.2 mass%.
- B is an effective element for raising quench hardenability of steel and can be added in an amount of 0.001 mass% to 0.006 mass%. Addition of 0.002 mass% or less of B is more preferable.
- Ni and Cu are effective elements for strengthening steel and can each be added within a range of 0.001 mass% to 2.0 mass%.
- N is an element that causes greatest deterioration of an anti-aging property of steel and deterioration of the anti-aging property is significant particularly when the N content is more than 0.008 mass%. Accordingly, the N content should be as small as possible and is preferably 0.008 mass% or less. The N content is more preferably 0.006 mass% or less. Industrially, a N content of 0.001 mass% or more is obtained.
- Ca and REM have an effect of causing spheroidization of sulfides and are effective elements for enhancing stretch flangeability. These effects are obtained when 0.001 mass% or more is added, but addition of more than 0.1 mass% reduces cleanliness of steel. Accordingly, it is preferable that Ca and REM are each added within a range of 0.001 mass% to 0.1 mass%.
- a cold rolled steel strip that had a chemical composition containing, in mass%, 0.125 % of C, 1.40 % of Si, 1.90 % of Mn, 0.02 % of P, and 0.002 % of S, the balance being Fe and incidental impurities, and that had been annealed under a reducing atmosphere in a continuous annealing furnace was passed along the production system and was subjected to pickling and repickling.
- the concentration of nitric acid in the mixed acid was set as 132.5 g/L and the concentration of hydrochloric acid in the mixed acid was set as 6.5 g/L.
- the Fe concentration in the mixed acid at the start of operation was 0 g/L. Although the Fe concentration gradually rose over the course of operation, the nitric acid concentration and hydrochloric acid concentration in the mixed acid were not adjusted.
- the concentration of hydrochloric acid in repickling was set as 3 g/L. A sample was taken from the steel strip at a section that had been pickled once the Fe concentration in the mixed acid solution reached 20 g/L and had subsequently been repickled. The sample was subjected to evaluation as described below. The total pickling weight loss in the pickling and repickling was 5.9 g/m 2 .
- the concentration of nitric acid in the mixed acid was set as 132.5 g/L and the concentration of hydrochloric acid in the mixed acid was set as 6.5 g/L.
- the Fe concentration in the mixed acid at the start of operation was 0 g/L.
- the concentration of nitric acid was adjusted to 125.0 g/L and the concentration of hydrochloric acid was adjusted to 7.5 g/L at a stage at which the Fe concentration in the mixed acid reached 15 g/L, and the concentration of nitric acid was adjusted to 110.0 g/L and the concentration of hydrochloric acid was adjusted to 8.5 g/L at a stage at which the Fe concentration in the mixed acid reached 20 g/L. Adjustment of the nitric acid concentration and hydrochloric acid concentration in the mixed acid was carried out by an operator. The concentration of hydrochloric acid in repickling was set as 6 g/L.
- a sample was taken from the steel strip at a section that had been pickled once the Fe concentration in the mixed acid solution reached 20 g/L and had subsequently been repickled. The sample was subjected to evaluation as described below. The total pickling weight loss in the pickling and repickling was 21.3 g/m 2 .
- the samples of the comparative example and Example 1 were subjected to chemical conversion treatment under the following conditions.
- the grain size of phosphate film chemical conversion crystals and the film mass were measured.
- the film surface was observed at ⁇ 1,000 magnification by an SEM to confirm whether there were locations at which chemical conversion crystals were not present.
- GDS analysis was used to measure depth direction distributions of O, Si, Mn, and Fe in a sample surface layer and confirm whether a Si peak was present at the surface layer.
- Each sample was subjected to chemical conversion treatment under the following conditions using a degreasing agent "FC-E2011”, a surface-modifying agent “PL-X”, and a chemical conversion treatment agent “PALBOND PB-L3065” produced by Nihon Parkerizing Co., Ltd. such that the film coating weight was 1.7 g/m 2 to 3.0 g/m 2 .
- Treatment temperature 40 °C, treatment time 120 s Spray degreasing and surface modification: pH 9.5, treatment temperature room temperature, treatment time 20 s
- Chemical conversion treatment Chemical conversion treatment liquid temperature 35 °C, treatment time 120 s
- the mean grain size was 6 ⁇ m in the comparative example and 4 ⁇ m in Example 1.
- the film mass was 0.9 g/m 3 in the comparative example and 2.5 g/m 3 in Example 1.
- FIG. 2A is an SEM image illustrating the film surface in the comparative example
- FIG. 3A is an SEM image illustrating the film surface in Example 1.
- locations at which chemical conversion crystals were not present were observed in the comparative example, whereas chemical conversion crystals were observed uniformly in Example 1.
- a Si peak was detected at the surface layer in the comparative example as illustrated in FIG 2B
- a Si peak was not detected at the surface layer in Example 1 as illustrated in FIG. 3B .
- the samples of the comparative example and Example 1 were subjected to chemical conversion treatment under the conditions described above and were further subjected to electrodeposition coating on the surface of the chemical conversion treatment film using an electrodeposition coating material "V-50" produced by Nippon Paint Co. Ltd. such as to obtain a film thickness of 25 ⁇ m.
- a cutter was used to form a cross-cut scar of 45 mm in length in the surface of the resultant test piece.
- test piece was then subjected to a corrosion test in which 90 cycles were repeated with each cycle comprising salt spraying (5 mass% NaCl aqueous solution: 35 °C, relative humidity: 98 %) for 2 hours, followed by drying (60 °C, relative humidity: 30 %) for 2 hours, followed by wetting (50 °C, relative humidity: 95 %) for 2 hours.
- salt spraying 5 mass% NaCl aqueous solution: 35 °C, relative humidity: 98 %) for 2 hours, followed by drying (60 °C, relative humidity: 30 %) for 2 hours, followed by wetting (50 °C, relative humidity: 95 %) for 2 hours.
- the test piece was washed with water and dried, and then a tape peeling test was performed on the cut scar section. The maximum total peeling width both left and right of the cut scar section was measured. Post-coating corrosion resistance can be evaluated as good when this maximum total peeling width is 6.0 mm or less.
- FIG. 2C is an image illustrating the test piece of the comparative example after the tape peeling test
- FIG. 3C is an image illustrating the test piece of Example 1 after the tape peeling test.
- the maximum total peeling width was 7.9 mm and post-coating corrosion resistance was poor, whereas in Example 1, the maximum total peeling width was 5.6 mm and post-coating corrosion resistance was good.
- FIG. 2D is an image illustrating the surface of the sample in the comparative example
- FIG. 3D is an image illustrating the surface of the sample in Example 1.
- the surface in the comparative example was discolored reddish-brown, whereas Example 1 did not experience such discoloring and had good surface appearance.
- the Fe concentration in the mixed acid at the start of operation was 5.0 g/L. Relationships between Fe concentration and concentrations of nitric acid and hydrochloric acid for ensuring the required pickling weight loss were set in advance by the following relationship formulae (1) and (2).
- the nitric acid concentration at the start of operation was set as 132.5 g/L and the hydrochloric acid concentration at the start of operation was set as 5.5 g/L. Since the Fe concentration in the mixed acid gradually rose over the course of operation, the concentration of nitric acid and the concentration of hydrochloric acid were adjusted in accordance with formulae (1) and (2) in response.
- Nitric acid concentration g / L 140 ⁇ 1.5 ⁇ Fe concentration g / L
- Hydrochloric acid concentration g / L 4.5 + 0.2 ⁇ Fe concentration g / L
- the concentration of hydrochloric acid in repickling was set as 8 g/L. Samples were taken from the steel strip at sections that had been pickled once the Fe concentration in the mixed acid solution reached 5 g/L, 15.0 g/L, and 20 g/L, and had subsequently been repickled. These samples were subjected to evaluation as described below.
- the total pickling weight loss for the pickling and repickling was 11.0 g/m 2 for the sample corresponding to the Fe concentration of 5 g/L, 12.0 g/m 2 for the sample corresponding to the Fe concentration of 15 g/L, and 12.0 g/m 2 for the sample corresponding to the Fe concentration of 20 g/L.
- the samples were subjected to evaluation of chemical convertibility, post-coating corrosion resistance, and surface appearance by the same methods as for the comparative example and Example 1.
- FIG. 4A is an SEM image illustrating the film surface of the sample corresponding to the Fe concentration of 5 g/L
- FIG. 4B is an SEM image illustrating the film surface of the sample corresponding to the Fe concentration of 15 g/L
- FIG. 4C is an SEM image illustrating the film surface of the sample corresponding to the Fe concentration of 20 g/L.
- Chemical conversion crystals were observed uniformly in all the images. Moreover, a Si peak was not detected at the surface layer in GDS analysis for any of the samples. This demonstrates that Example 2 also had excellent chemical convertibility.
- Example 2 had good post-coating corrosion resistance in the same way as Example 1.
- the surfaces of the samples corresponding to the Fe concentrations of 5 g/L, 15 g/L, and 20 g/L were observed. Reddish-brown discoloring was not observed at the surface of any of the samples and all the samples had good surface appearance. However, slight staining was observed on a section of the surface of the sample corresponding to the Fe concentration of 20 g/L, whereas the samples corresponding to the Fe concentrations of 5 g/L and 15 g/L did not suffer from staining and had extremely good surface appearance. This demonstrates that it is preferable to set the upper limit for the Fe concentration as 15 g/L.
- the disclosed method of producing a cold rolled steel strip and production system for a cold rolled steel strip enable continuous production with long-term stability of a steel strip having excellent chemical convertibility, post-coating corrosion resistance in harsh corrosive environments, and surface appearance quality. Therefore, a cold rolled steel strip produced by our techniques can be suitably used as a strengthening component of an automotive body, a component for a home appliance, a building component, or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Claims (7)
- Verfahren zur Herstellung eines kaltgewalzten Bandstahls, umfassend:Beizen eines Bandstahls, enthaltend 0,5 Massen-% bis 3,0 Massen-% Si, der kaltgewalzt und anschließend kontinuierlich geglüht wurde, indem der Bandstahl kontinuierlich in eine gemischte Säurelösung eingespeist wird, die eine erste Säure, die Salpetersäure ist, und eine zweite Säure enthält, die mindestens eine ist, ausgewählt aus der Gruppe, bestehend aus Salzsäure, Schwefelsäure, Phosphorsäure, Pyrophosphorsäure, Ameisensäure, Essigsäure, Zitronensäure, Flusssäure und Oxalsäure, so dass der Bandstahl eingetaucht wird; undanschließendes Nachbeizen des Bandstahls, indem der Bandstahl kontinuierlich in eine Säurelösung eingespeist wird, die eine dritte Säure enthält, die mindestens eine ist, ausgewählt aus der Gruppe, bestehend aus Salzsäure, Schwefelsäure, Phosphorsäure, Pyrophosphorsäure, Ameisensäure, Essigsäure, Zitronensäure, Flusssäure und Oxalsäure, so dass der Bandstahl eingetaucht wird, worindie Konzentration der ersten Säure in der gemischten Säurelösung in einem Bereich von höher als 110 g/L und nicht höher als 188 g/L eingestellt ist und die Konzentration der zweiten Säure in der gemischten Säurelösung in einem Bereich von höher als 4,5 g/L und nicht höher als 12,5 g/L eingestellt ist,die Konzentration der dritten Säure in der Säurelösung in einem Bereich von höher als 4,5 g/L und nicht höher als 12,5 g/L eingestellt ist,die Fe-Konzentration in der gemischten Säurelösung über die Zeit gemessen wird unddie Konzentration der ersten Säure in der gemischten Säurelösung gesenkt wird und die Konzentration der zweiten Säure in der gemischten Säurelösung erhöht wird, so dass die Temperatur der gemischten Säurelösung konstant in einem Bereich von 45 °C bis 55 °C gehalten wird, wenn die Fe-Konzentration in der gemischten Säurelösung ansteigt, so dass:(i) eine Anzahl an Stufen der Fe-Konzentration vorbestimmt ist, Sollkonzentrationen der ersten Säure und der zweiten Säure für jede Stufe vorbestimmt sind, und wenn die gemessene Fe-Konzentration in eine nächste Stufe übergeht, die Konzentrationen der ersten Säure und der zweiten Säure angepasst werden oder(ii) eine Verhältnisformel zwischen der Fe-Konzentration und den Sollkonzentrationen der ersten Säure und der zweiten Säure vorbestimmt ist und die Konzentrationen der ersten Säure und der zweiten Säure von Moment zu Moment entsprechend der Verhältnisformel mit einem allmählichen Anstieg der gemessenen Fe-Konzentration in der gemischten Säure eingestellt werden.
- Verfahren zur Herstellung eines kaltgewalzten Bandstahls gemäß Anspruch 1, worin
die zweite Säure und die dritte Säure Salzsäure sind. - Verfahren zur Herstellung eines kaltgewalzten Bandstahls gemäß Anspruch 1 oder 2, ferner umfassend
das Eintauchen des Bandstahls in Wasser nach dem Beizen und vor dem Nachbeizen. - Verfahren zur Herstellung eines kaltgewalzten Bandstahls gemäß mindestens einem der Ansprüche 1 bis 3, worin
das Beizen und das Nachbeizen einen Gesamtgewichtverlust des Beizens von 8 g/m2 oder mehr aufweisen. - Herstellungsanlage (100) für einen kaltgewalzten Bandstahl, umfassend:einen ersten Vorratslösungstank (20), der eine Vorratslösung einer ersten Säure beinhaltet, die Salpetersäure ist, einen zweiten Vorratslösungstank (22), der eine Vorratslösung einer zweiten Säure beinhaltet, die mindestens eine ist, ausgewählt aus der Gruppe, bestehend aus Salzsäure, Schwefelsäure, Phosphorsäure, Pyrophosphorsäure, Ameisensäure, Essigsäure, Zitronensäure, Flusssäure und Oxalsäure, und einen dritten Vorratslösungstank (22), der eine Vorratslösung einer dritten Säure beinhaltet, die mindestens eine ist, ausgewählt aus der Gruppe, bestehend aus Salzsäure, Schwefelsäure, Phosphorsäure, Pyrophosphorsäure, Ameisensäure, Essigsäure, Zitronensäure, Flusssäure und Oxalsäure;eine erste Leitung (24), die sich vom ersten Vorratslösungstank (20) erstreckt, eine zweite Leitung (26), die sich vom zweiten Vorratslösungstank (22) erstreckt, und eine dritte Leitung (28), die sich vom dritten Vorratslösungstank (22) erstreckt;einen Umwälztank einer gemischten Säurelösung (30), an den die erste Leitung (24) und die zweite Leitung (26) angeschlossen sind und in dem die erste Säure, die aus dem ersten Vorratslösungstank (20) eingespeist wird, und die zweite Säure, die aus dem zweiten Vorratslösungstank (22) eingespeist wird, gemischt werden und beinhaltet sind;ein erstes Ventil (32), das in der ersten Leitung (24) angeordnet ist, um eine Zufuhrrate der ersten Säure aus dem ersten Vorratslösungstank (20) einzustellen, und ein zweites Ventil (34), das in der zweiten Leitung (26) angeordnet ist, um eine Zufuhrrate der zweiten Säure aus der zweiten Leitung (26) einzustellen;einen Umwälztank einer Säurelösung (40), an den die dritte Leitung (28) angeschlossen ist und der die dritte Säure beinhaltet, die von dem dritten Vorratslösungstank (22) eingespeist wird;einen Tank mit gemischter Säure (12), der eine gemischte Säurelösung beinhaltet, die die erste Säure und die zweite Säure enthält;einen Säuretank (16), der eine Säurelösung beinhaltet, die die dritte Säure enthält;mindestens zwei vierte Leitungen (38), die den Umwälztank der gemischten Säurelösung (30) und den Tank der gemischten Säure (12) verbinden, damit die gemischte Säurelösung zwischen dem Umwälztank der gemischten Säurelösung (30) und dem Tank gemischter Säure (12) umgewälzt wird;mindestens zwei fünfte Leitungen (42), die den Umwälztank der Säurelösung (40) und den Säuretank (16) verbinden, um die Säurelösung zwischen dem Umwälztank der Säurelösung (40) und dem Säuretank (16) umzuwälzen; undeine Bogenzuführeinrichtung (11, 13, 15, 17, 19, 21), die kontinuierlich einen Bandstahl (P), enthaltend 0,5 Massen-% bis 3,0 Massen-% Si, der kaltgewalzt und anschließend kontinuierlich geglüht wurde, einspeist und den Bandstahl (P) in den Tank der gemischten Säure (12) und den Säuretank (16) in dieser Reihenfolge eintaucht;worin die Konzentration der ersten Säure in der gemischten Säurelösung in einem Bereich von höher als 110 g/L und nicht höher als 188 g/L eingestellt ist und die Konzentration der zweiten Säure in der gemischten Säurelösung in einem Bereich von höher als 4,5 g/L und nicht höher als 12,5 g/L eingestellt ist unddie Konzentration der dritten Säure in der Säurelösung in einem Bereich von höher als 4,5 g/L und nicht höher als 12,5 g/L eingestellt ist,wobei die Herstellungsanlage (100) ferner umfasst:einen Konzentrationsmesser (52), der die Fe-Konzentration in der gemischten Säurelösung in dem Tank der gemischten Säure (12) misst; undeine Steuerung (54), die das erste Ventil (32) und das zweite Ventil (34) auf der Grundlage der Angabe des Konzentrationsmessers (52) steuert, um die Zufuhrrate der ersten Säure aus dem ersten Vorratslösungstank (20) zu verringern und die Zufuhrrate der zweiten Säure aus dem zweiten Vorratslösungstank (22) zu erhöhen, und dadurch die Konzentration der ersten Säure in der gemischten Säurelösung verringert wird und die Konzentration der zweiten Säure in der gemischten Säurelösung erhöht wird, so dass die Temperatur der gemischten Säurelösung konstant in einem Bereich von 45 °C bis 55°C gehalten wird, wenn die Fe-Konzentration in der gemischten Säurelösung ansteigt, so dass:(i) eine Anzahl an Stufen der Fe-Konzentration vorbestimmt ist, Sollkonzentrationen der ersten Säure und der zweiten Säure für jede Stufe vorbestimmt sind, und wenn die gemessene Fe-Konzentration in eine nächste Stufe übergeht, die Konzentrationen der ersten Säure und der zweiten Säure angepasst werden oder(ii) eine Verhältnisformel zwischen der Fe-Konzentration und den Sollkonzentrationen der ersten Säure und der zweiten Säure vorbestimmt ist und die Konzentrationen der ersten Säure und der zweiten Säure von Moment zu Moment entsprechend der Verhältnisformel mit einem allmählichen Anstieg der gemessenen Fe-Konzentration in der gemischten Säure eingestellt werden.
- Herstellungsanlage für einen kaltgewalzten Bandstahl gemäß Anspruch 5, ferner umfassend
einen Wassertank (14), der Wasser beinhaltet und zwischen dem Tank der gemischten Säure (12) und dem Säuretank (16) angeordnet ist, worin
die Bogenzuführeinrichtung (11, 13, 15, 17, 19, 21) kontinuierlich den Bandstahl (P) in den Wassertank (14) einspeist, nachdem der Bandstahl den Tank der gemischten säure (12) verlässt, und anschließend den Bandstahl (P) in den Säuretank (16) kontinuierlich einspeist. - Herstellungsanlage für einen kaltgewalzten Bandstahl gemäß Anspruch 5 oder 6, worin
die zweite Säure und die dritte Säure die gleiche Art Säure sind und der zweite Vorratslösungstank (22) und der dritte Vorratslösungstank (22) derselbe Tank sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015137186 | 2015-07-08 | ||
PCT/JP2016/070755 WO2017007036A1 (ja) | 2015-07-08 | 2016-07-07 | 冷延鋼帯の製造方法及び製造設備 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3321394A1 EP3321394A1 (de) | 2018-05-16 |
EP3321394A4 EP3321394A4 (de) | 2018-05-16 |
EP3321394B1 true EP3321394B1 (de) | 2019-12-11 |
Family
ID=57685795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16821503.6A Active EP3321394B1 (de) | 2015-07-08 | 2016-07-07 | Verfahren und vorrichtung zum herstellen eines kaltgewalzten stahlbandes |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180298503A1 (de) |
EP (1) | EP3321394B1 (de) |
CN (1) | CN107709620B (de) |
WO (1) | WO2017007036A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112226775A (zh) * | 2020-09-16 | 2021-01-15 | 江苏华久辐条制造有限公司 | 一种冷轧钢酸洗工艺 |
CN116917546A (zh) * | 2021-03-26 | 2023-10-20 | 杰富意钢铁株式会社 | 退火酸洗钢板的制造方法 |
WO2022201686A1 (ja) | 2021-03-26 | 2022-09-29 | Jfeスチール株式会社 | 焼鈍酸洗鋼板の製造方法 |
CN113737196B (zh) * | 2021-09-09 | 2023-05-26 | 本钢板材股份有限公司 | 一种节能的带钢酸洗机构 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3021164B2 (ja) * | 1992-02-14 | 2000-03-15 | 川崎製鉄株式会社 | 表面光沢の優れるオーステナイト系ステンレス鋼の製造方法 |
JP3046132B2 (ja) * | 1992-03-19 | 2000-05-29 | 日新製鋼株式会社 | ステンレス鋼帯の脱スケール用硝フッ酸浴の管理方法およびその連続脱スケール装置 |
JP3078657B2 (ja) * | 1992-07-03 | 2000-08-21 | 川崎製鉄株式会社 | 表面研摩性の優れるオーステナイト系ステンレス鋼の製造方法 |
JP3021164U (ja) * | 1995-07-31 | 1996-02-16 | 太陽誘電株式会社 | 光情報媒体 |
JP3225880B2 (ja) * | 1997-03-07 | 2001-11-05 | 住友金属工業株式会社 | ステンレス鋼の酸洗方法 |
JP5729211B2 (ja) * | 2010-08-31 | 2015-06-03 | Jfeスチール株式会社 | 冷延鋼板の製造方法、冷延鋼板および自動車部材 |
JP5835558B2 (ja) * | 2010-08-31 | 2015-12-24 | Jfeスチール株式会社 | 冷延鋼板の製造方法 |
JP5835545B2 (ja) * | 2011-02-21 | 2015-12-24 | Jfeスチール株式会社 | Si含有熱延鋼板の製造方法 |
JP5835547B2 (ja) * | 2011-03-10 | 2015-12-24 | Jfeスチール株式会社 | Si含有冷延鋼板の製造方法 |
JP5919920B2 (ja) * | 2011-03-28 | 2016-05-18 | Jfeスチール株式会社 | Si含有冷延鋼板の製造方法及び装置 |
-
2016
- 2016-07-07 EP EP16821503.6A patent/EP3321394B1/de active Active
- 2016-07-07 WO PCT/JP2016/070755 patent/WO2017007036A1/ja active Application Filing
- 2016-07-07 CN CN201680039032.XA patent/CN107709620B/zh active Active
- 2016-07-07 US US15/737,904 patent/US20180298503A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3321394A1 (de) | 2018-05-16 |
CN107709620A (zh) | 2018-02-16 |
WO2017007036A1 (ja) | 2017-01-12 |
EP3321394A4 (de) | 2018-05-16 |
CN107709620B (zh) | 2020-04-14 |
US20180298503A1 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6137089B2 (ja) | 冷延鋼板の製造方法および冷延鋼板の製造設備 | |
EP3733898B1 (de) | Hochfestes kaltgewalztes stahlblech und verfahren zur herstellung davon | |
KR101502213B1 (ko) | 냉연 강판의 제조 방법, 냉연 강판 및 자동차 부재 | |
JP5835558B2 (ja) | 冷延鋼板の製造方法 | |
EP3733897B1 (de) | Hochfestes kaltgewalztes stahlblech und verfahren zur herstellung davon | |
EP3399064B1 (de) | Hochfestes kaltgewalztes stahlblech | |
EP3321394B1 (de) | Verfahren und vorrichtung zum herstellen eines kaltgewalzten stahlbandes | |
EP3418417B1 (de) | Hochfestes kaltgewalztes stahlblech | |
KR20130129297A (ko) | Si 함유 냉연 강판의 제조 방법 및 장치 | |
JP6041079B1 (ja) | 冷延鋼帯の製造方法及び製造設備 | |
EP2821515A1 (de) | Si-haltiges hochfestes kaltgewalztes stahlblech, herstellungsverfahren dafür und fahrzeugkomponente | |
JP5835545B2 (ja) | Si含有熱延鋼板の製造方法 | |
JP5835547B2 (ja) | Si含有冷延鋼板の製造方法 | |
EP3115482B1 (de) | Kaltgewalztes stahlblech, herstellungsverfahren dafür und autoteil | |
JP4725376B2 (ja) | 成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法 | |
JP2007246951A (ja) | 成形性、化成処理性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法 | |
JP5682366B2 (ja) | Si含有冷延鋼板の製造方法 | |
JP5835548B2 (ja) | Si含有冷延鋼板の製造方法 | |
EP4282994A1 (de) | Verfahren zur herstellung eines geglühten und gebeizten stahlblechs | |
JP2007126747A (ja) | 成形性および塗装後耐食性に優れた高強度冷延鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180104 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180321 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602016026163 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C23G0001080000 Ipc: C21D0008020000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/00 20060101ALI20190710BHEP Ipc: C22C 38/16 20060101ALI20190710BHEP Ipc: C22C 38/12 20060101ALI20190710BHEP Ipc: C21D 8/02 20060101AFI20190710BHEP Ipc: C22C 38/18 20060101ALI20190710BHEP Ipc: C23G 1/08 20060101ALI20190710BHEP Ipc: C22C 38/02 20060101ALI20190710BHEP Ipc: C21D 9/56 20060101ALI20190710BHEP Ipc: C22C 38/04 20060101ALI20190710BHEP Ipc: C21D 9/46 20060101ALI20190710BHEP Ipc: C23G 3/02 20060101ALI20190710BHEP Ipc: C23G 1/00 20060101ALI20190710BHEP |
|
INTG | Intention to grant announced |
Effective date: 20190724 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1212241 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016026163 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191211 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200312 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200311 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200411 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016026163 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1212241 Country of ref document: AT Kind code of ref document: T Effective date: 20191211 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
26N | No opposition filed |
Effective date: 20200914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200707 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200707 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200707 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200707 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191211 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 9 |