WO2022201686A1 - 焼鈍酸洗鋼板の製造方法 - Google Patents

焼鈍酸洗鋼板の製造方法 Download PDF

Info

Publication number
WO2022201686A1
WO2022201686A1 PCT/JP2021/047093 JP2021047093W WO2022201686A1 WO 2022201686 A1 WO2022201686 A1 WO 2022201686A1 JP 2021047093 W JP2021047093 W JP 2021047093W WO 2022201686 A1 WO2022201686 A1 WO 2022201686A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
steel sheet
annealed
pickled
less
Prior art date
Application number
PCT/JP2021/047093
Other languages
English (en)
French (fr)
Inventor
隼人 竹山
大輔 水野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US18/261,266 priority Critical patent/US20240076765A1/en
Priority to JP2022516244A priority patent/JP7126104B1/ja
Priority to CN202180094456.7A priority patent/CN116917546A/zh
Priority to EP21933276.4A priority patent/EP4282994A1/en
Priority to KR1020237034023A priority patent/KR20230155517A/ko
Priority to MX2023010415A priority patent/MX2023010415A/es
Publication of WO2022201686A1 publication Critical patent/WO2022201686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously

Definitions

  • the present invention relates to a method for continuously manufacturing an annealed and pickled steel sheet by annealing, pickling, and re-picking a cold-rolled steel sheet.
  • Patent Document 1 discloses a process of annealing a cold-rolled steel sheet to obtain an annealed steel sheet, and a process in which the annealed steel sheet is treated with an oxidizing acid such as nitric acid and a non-oxidizing A pickling step of pickling by immersing in a mixed acid solution containing a non-oxidizing acid such as hydrochloric acid and sulfuric acid, and then pickling again by immersing the annealed steel sheet in an acid solution containing a non-oxidizing acid such as hydrochloric acid and sulfuric acid.
  • a mixed acid solution containing a non-oxidizing acid such as hydrochloric acid and sulfuric acid
  • a re-pickling step for obtaining an annealed and pickled steel sheet are continuously performed to continuously produce an annealed and pickled steel sheet.
  • the pickling process removes Si-containing oxides generated on the surface of the steel sheet by continuous annealing
  • the re-pickling process removes the iron-based oxides generated in the pickling process.
  • An annealed and pickled steel sheet having excellent chemical convertibility and post-coating corrosion resistance can be produced.
  • the present invention provides an annealed and pickled steel sheet that can continuously and stably produce an annealed and pickled steel sheet that is excellent in all of chemical conversion treatability, corrosion resistance after painting, and surface appearance quality.
  • the object is to provide a manufacturing method.
  • the ferrite fraction in the surface layer of the annealed steel sheet subjected to the pickling process the Fe concentration in the mixed acid solution in the pickling process, and the surface appearance quality of the produced annealed and pickled steel sheet It was found that there is a correlation between Specifically, when an annealed steel sheet having a low ferrite fraction in the surface layer is subjected to a pickling process, Fe gradually elutes from the annealed steel sheet into the mixed acid solution during the pickling process, and the Fe concentration in the mixed acid solution increases. As the temperature increased, the surface of the steel sheet immediately after the pickling process tended to turn black.
  • the present inventors investigated the cause of this, and found that ferrite has a faster dissolution rate during pickling with a mixed acid solution than martensite and retained austenite, and the difference becomes more pronounced when the Fe concentration in the mixed acid solution is high. I found out. Therefore, when an annealed steel sheet with a low ferrite fraction in the surface layer is subjected to a pickling process, as the Fe concentration in the mixed acid solution increases, the entire surface layer cannot be completely removed, and martensite is formed on the surface of the steel sheet after the pickling process. It was also found that residual austenite remained to form surface irregularities, and the surface of the steel sheet exhibited a black color.
  • the lower limit of the ferrite fraction in the surface layer of the annealed steel sheet to be subjected to the pickling process should be adjusted according to the Fe concentration in the mixed acid solution.
  • the "Fe concentration” is the concentration of iron ions, and specifically means the sum of the concentrations of iron (II) ions and iron (III) ions.
  • the annealed steel sheet discharged from the annealing furnace is passed through a mixed acid bath containing a mixed acid solution containing an oxidizing first acid and a non-oxidizing second acid, and annealed with the mixed acid solution.
  • a pickling process for pickling a steel plate The annealed steel sheet discharged from the mixed acid bath is passed through an acid bath containing an acid solution containing a non-oxidizing third acid, and the annealed steel plate is pickled again with the acid solution and annealed.
  • a re-pickling step for obtaining a pickled steel plate is continuously performed to continuously produce the annealed and pickled steel sheet, Measuring the Fe concentration in the mixed acid liquid in the mixed acid tank,
  • a method for producing an annealed and pickled steel sheet, wherein a lower limit of a ferrite fraction in a surface layer of the annealed steel sheet to be subjected to the pickling step is set according to the measured Fe concentration.
  • the component composition is, in mass%, C: 0.03 to 0.45%, Si: 0.50 to 3.00%, Mn: 0.5 to 5.0%, P: 0.05 % or less, S: 0.005% or less, Al: 0.001 to 0.060%, N: 0.005% or less, and B: 0.001 to 0.005%, the balance being Fe and unavoidable
  • the component composition is, in mass %, Cu: 1.00% or less, Nb: 0.050% or less, Ti: 0.080% or less, V: 0.5% or less, Mo: 1.00%
  • the method for producing an annealed and pickled steel sheet of the present invention it is possible to continuously and stably produce an annealed and pickled steel sheet that is excellent in all of chemical conversion treatability, corrosion resistance after painting, and surface appearance quality.
  • 4 is a graph showing the relationship between the Fe concentration in the mixed acid solution, the ferrite fraction in the surface layer of the annealed steel sheet, and the surface appearance quality of the annealed and pickled steel sheet in Examples.
  • a method for manufacturing an annealed and pickled steel sheet according to an embodiment of the present invention continuously performs an annealing process, a pickling process, and a re-pickling process, which will be described in detail below, to continuously manufacture an annealed and pickled steel sheet. do.
  • the annealing process, the pickling process, and the re-pickling process are performed continuously on the same line, for example, by the annealing and pickling equipment shown in FIG.
  • the annealing and pickling equipment illustrated in FIG. 1 includes a continuous annealing line (CAL) 10, a water tank 20 containing water, an oxidizing first acid and a non-oxidizing second acid.
  • a sheet threading facility including a plurality of rolls 70 can sequentially thread the steel sheet through the continuous annealing furnace 10 and the above five tanks.
  • annealing process Referring to FIG. 1, in the annealing step, cold-rolled steel sheet S1 is passed through continuous annealing furnace 10, and cold-rolled steel sheet S1 is annealed in continuous annealing furnace 10 to obtain annealed steel sheet S2.
  • the annealing step is performed to impart desired structure, strength, and workability to the cold-rolled steel sheet S1.
  • the annealing furnace 10 may have a plurality of zones, and in the example of FIG. 1, it has a heating zone 12, a soaking zone 14, and a cooling zone 16 in order from the upstream in the sheet threading direction.
  • the configuration of the continuous annealing furnace is not limited to FIG. There may be a belt.
  • a burner can be used to directly heat the cold-rolled steel sheet S1, or a radiant tube (RT) or an electric heater can be used to indirectly heat the cold-rolled steel sheet S1.
  • the average temperature inside the heating zone 12 is preferably 500-800.degree.
  • a non-oxidizing or reducing gas is separately supplied. N 2 gas, for example, is used as the non-oxidizing gas, and H 2 —N 2 mixed gas, for example, is used as the reducing gas.
  • the dew point of the heating zone 12 is preferably within the range of -50 to 20°C.
  • a radiant tube can be used to indirectly heat the cold-rolled steel sheet S1.
  • the average temperature (soaking temperature) inside the soaking zone 14 is preferably 600 to 950°C.
  • a non-oxidizing or reducing gas is supplied to the soaking zone 14 .
  • N 2 gas for example, is used as the non-oxidizing gas
  • H 2 —N 2 mixed gas for example, is used as the reducing gas.
  • the dew point of the soaking zone 14 is preferably within the range of -50 to 20°C.
  • the cold-rolled steel sheet S1 is cooled.
  • the cold-rolled steel sheet S1 is cooled to about 100 to 400° C. at the stage of leaving the continuous annealing furnace 10.
  • the annealed steel sheet S2 discharged from the annealing furnace 10 is placed in a mixed acid bath containing a mixed acid solution containing an oxidizing first acid and a non-oxidizing second acid. 30 to pickle the annealed steel sheet S2 with a mixed acid solution.
  • the annealed steel sheet S2 is continuously immersed in a mixed acid solution containing an oxidizing first acid and a non-oxidizing second acid, so that the surface of the annealed steel sheet S2 is The Si-containing oxide layer is removed.
  • the thickness of the Si-containing oxide layer varies depending on the steel sheet composition and annealing conditions (temperature, time, atmosphere), but is usually about 1 ⁇ m from the steel sheet surface.
  • Nitric acid can be mentioned as an oxidizing first acid.
  • the reason why the first acid is necessary in the mixed acid solution is that among the Si-containing oxides, the Si—Mn-based composite oxide is easily dissolved in the acid, but SiO 2 exhibits poor solubility, so it must be removed. This is because it is necessary to remove the Si-containing oxide layer on the surface of the steel sheet together with the base iron with an oxidizing acid such as nitric acid.
  • the concentration of the first acid in the mixed acid solution is preferably 100 g/L or higher, more preferably 110 g/L or higher.
  • the concentration of the first acid in the mixed acid solution is set to 150 g/L or less. preferably 140 g/L or less.
  • the non-oxidizing second acid is preferably one or more selected from hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, and oxalic acid, particularly hydrochloric acid, sulfuric acid, and hydrofluoric acid.
  • the reason for using such a non-oxidizing acid is to suppress the formation of iron-based oxides that precipitate and deposit on the surface of the steel sheet accompanying pickling with the first oxidizing acid.
  • the concentration of the second acid in the mixed acid solution is preferably 4.5 g/L or more, more preferably 6.5 g/L or more, from the viewpoint of facilitating the dissolution of the iron-based oxide in the subsequent re-pickling step. is more preferable.
  • the concentration of the second acid in the mixed acid solution is It is preferably 12.5 g/L or less, more preferably 8.5 g/L or less.
  • a suitable pickling time in the pickling process is determined by the pickling weight loss required to remove the Si-containing oxide layer generated in the annealing process, the pickling efficiency determined by the composition of the mixed acid solution, and the pickling length. is determined from Generally, the temperature of the mixed acid solution is about 30 to 60° C., and the pickling time is about 10 seconds.
  • the annealed steel sheet S2 discharged from the mixed acid tank 30 is passed through an acid tank 50 containing an acid solution containing a non-oxidizing third acid.
  • the annealed steel sheet S2 is pickled again with a liquid to obtain an annealed and pickled steel sheet S3.
  • iron-based oxide refers to an oxide mainly composed of iron in which the atomic concentration ratio of iron among elements other than oxygen constituting the oxide is 30% or more. This iron-based oxide exists on the surface of the steel sheet with a non-uniform thickness, and is an oxide different from the natural oxide film that exists uniformly and in layers with a thickness of several nanometers.
  • the iron-based oxides produced on the surface of the annealed steel sheet S2 were found to be amorphous from observation with a transmission electron microscope (TEM) and analysis results of diffraction patterns (diffraction patterns) by electron beam diffraction.
  • the non-oxidizing third acid is preferably one or more selected from hydrochloric acid, sulfuric acid, phosphoric acid, pyrophosphoric acid, formic acid, acetic acid, citric acid, hydrofluoric acid, and oxalic acid, particularly hydrochloric acid, sulfuric acid, and hydrofluoric acid.
  • hydrochloric acid is a volatile acid, so unlike sulfuric acid, residues such as sulfate radicals do not easily remain on the surface of the steel sheet, and chloride ions are highly effective in destroying iron-based oxides. is.
  • the second acid used in the pickling step and the third acid used in this step may be the same type of acid or different types of acid. However, it is preferable that they are the same kind of acid from the viewpoint of making common production facilities.
  • the concentration of the third acid in the acid solution is preferably 4.5 g/L or higher, more preferably 6.5 g/L or higher, from the viewpoint of sufficiently dissolving the iron-based oxide.
  • the concentration of the third acid should be 12.5 g/L or less. and more preferably 8.5 g/L or less.
  • the suitable pickling time in the re-pickling process is determined by the pickling weight loss required to remove the iron-based oxides produced in the first pickling, the pickling efficiency determined by the acid composition, and the pickling length is determined from Generally, the temperature of the acid solution is about 30 to 60° C., and the pickling time is about 10 seconds.
  • the total pickling weight loss in the pickling process and the re-pickling process is preferably 8 g/m 2 or more. If the total pickling weight loss is 8 g/m 2 or more, Si-containing oxides and iron-based oxides are less likely to remain on the surface of the steel sheet, resulting in higher chemical conversion treatability.
  • the annealed and pickled steel sheet S3 obtained after the re-pickling process can then be made into a steel sheet as a product through ordinary treatment processes such as temper rolling and leveling.
  • the water tank 40 is provided between the mixed acid tank 30 and the acid tank 50, and the annealed steel sheet S2 is passed through the water tank 40 and washed with water between the pickling process and the re-pickling process. preferably.
  • the mixed acid liquid carried out by the annealing steel plate S2 from the mixed acid tank 30 can be prevented from being mixed into the acid liquid in the acid tank 50 . Therefore, re-pickling in the acid bath 50 can reliably remove iron-based oxides, which is preferable.
  • a water tank 20 is provided upstream of the mixed acid tank 30, and the annealed steel sheet S2 is passed through the water tank 20 and washed with water before the pickling process.
  • impurities on the surface of the annealed steel sheet S2 can be removed, and contamination of the mixed acid liquid in the mixed acid tank 30 with impurities can be prevented.
  • a water tank 60 is provided downstream of the acid tank 50, and the annealed steel sheet S2 is passed through the water tank 60 and washed with water after the re-pickling process. As a result, the acid solution carried out by the annealed steel sheet S2 from the acid bath 50 can be removed, and rust on the surface of the annealed steel sheet S2 can be prevented.
  • the Fe concentration of the mixed acid solution in the mixed acid bath 30 is zero in a fresh state where the mixed acid solution has not been used for pickling the annealed steel sheet S2.
  • the Fe concentration clock 80 for example, an analyzer that uses near-infrared spectroscopic analysis to irradiate the mixed acid liquid with near-infrared rays at intervals of 1 minute and calculates the Fe concentration in the mixed acid liquid from the change in the spectrum after irradiation is used. be able to.
  • the Fe concentration of the mixed acid solution it is preferable to maintain the Fe concentration of the mixed acid solution within the range of 0 to 50 g/L. This is because if the Fe concentration exceeds 50 g/L, the oxidizing power of the mixed acid liquid becomes excessive, and yellowing occurs on the surface of the steel sheet. Therefore, at or before the Fe concentration of the mixed acid solution reaches 50 g/L, all of the mixed acid solution in the mixed acid tank 30 is treated as waste liquid, and fresh mixed acid solution is newly supplied to the mixed acid tank 30. It is preferable to reduce the Fe concentration of the mixed acid liquid by resetting the Fe concentration of the liquid to zero, or by using a part of the mixed acid liquid in the mixed acid tank 30 as waste liquid and adding fresh mixed acid liquid to the mixed acid tank 30 .
  • the thickness of the Si-containing oxide layer after continuous annealing is usually about 1 ⁇ m from the surface of the steel sheet, and it is necessary to remove this Si-containing oxide layer in the pickling process.
  • the Si-containing oxide is concentrated in the range of several tens of nm of the very surface layer, and in the region below that, the steel structure contains the Si-containing oxide. It is in a state where Regarding this steel structure, ferrite has a faster dissolution rate during pickling with a mixed acid solution than martensite and retained austenite, and the difference becomes more pronounced when the Fe concentration in the mixed acid solution is high.
  • the lower limit of the ferrite fraction in the surface layer of the annealed steel sheet S2 subjected to the pickling process is set higher. Then, only the annealed steel sheets having a ferrite fraction in the surface layer equal to or higher than the set lower limit value are subjected to the pickling process.
  • the steel plate surface does not turn black immediately after the pickling process, and the annealing acid is excellent in all of chemical conversion treatability, corrosion resistance after painting, and surface appearance quality.
  • a washed steel plate can be continuously and stably manufactured.
  • the relationship between the Fe concentration in the mixed acid solution and the lower limit of the surface ferrite fraction that can realize excellent surface appearance quality at the Fe concentration is obtained in advance (for example, FIG. 2).
  • the lower limit of the ferrite fraction in the surface layer of the annealed steel sheet S2 subjected to the pickling process can be set according to the measured Fe concentration in the mixed acid solution.
  • the lower limit of the surface layer ferrite fraction may be set so that the surface appearance quality is " ⁇ " or " ⁇ " according to the measured Fe concentration.
  • the ferrite fraction (volume fraction) in the surface layer of the annealed steel sheet can be measured as follows. That is, a test piece is taken from an arbitrary position in the width direction and rolling direction of the steel plate, the longitudinal section parallel to the rolling direction is polished, and the metal structure that appears by nital etching is removed 1 ⁇ m from the surface of the test piece. Observe using SEM within the range of up to. In the SEM observation, 10 or more fields of view are observed at a magnification of 3000 times, and from the observed image, a region with low brightness is treated as ferrite, and the area ratio is measured and the average value is calculated. Since there is no structural change in the direction perpendicular to the rolling direction (width direction) and the area ratio of the cross section parallel to the rolling direction is equal to the volume ratio, the area ratio can be regarded as the volume ratio.
  • the ferrite fraction in the surface layer of the annealed steel sheet S2 is determined by the chemical composition of the cold-rolled steel sheet S1 before annealing and the annealing conditions in the annealing step. Once the chemical composition is determined, it is determined by the annealing conditions. Therefore, the lower limit of the ferrite fraction can be set by adjusting the annealing conditions in the annealing process.
  • the relationship between the annealing conditions in the annealing step and the ferrite fraction obtained under the annealing conditions is obtained in advance, and a ferrite fraction equal to or higher than the set lower limit is realized.
  • the annealing process can be performed under the annealing conditions that can be obtained.
  • the annealing conditions that affect the ferrite fraction in the surface layer of the annealed steel sheet S2 are mainly the soaking temperature and the dew point of the soaking zone.
  • the higher the dew point of the soaking zone, the higher the ferrite fraction. Therefore, the annealing conditions adjusted to achieve the desired ferrite fraction can be one or both of the soaking temperature and the dew point of the soaking zone.
  • the soaking temperature also affects the mechanical properties of the annealed and pickled steel sheets that will be the product, so it is not preferable to change it during operation. Therefore, the dew point of the soaking zone of the annealing furnace is preferable as the annealing condition to be adjusted to achieve the desired ferrite fraction.
  • the annealing conditions other than the dew point, including the soaking temperature are fixed, and the relationship between the dew point of the soaking zone in the annealing process and the ferrite fraction obtained at that dew point is obtained in advance, and the The annealing step can be performed at a dew point that allows the ferrite fraction to be achieved.
  • the chemical composition of the cold-rolled steel sheet S1 is not particularly limited, it preferably has a chemical composition containing 0.50 to 3.00% by mass of Si.
  • Si is an effective element for achieving high strength of steel because it has a large effect of increasing the strength of steel (solution strengthening ability) without significantly impairing workability. It is also an element that has an adverse effect on From the viewpoint of increasing the strength by adding Si, the Si content is preferably 0.50% or more, more preferably 0.80% or more.
  • the Si content is preferably 3.00% or less, more preferably 2.50% or less.
  • Components other than Si are permissible within the composition range of ordinary cold-rolled steel sheets, and are not particularly limited. However, it preferably has the following component composition.
  • C 0.03-0.45% C is an effective element for adjusting the strength of steel, and from this point of view, the amount of C is preferably 0.03% or more, more preferably 0.05% or more. On the other hand, the C content is preferably 0.45% or less, more preferably 0.20% or less, from the viewpoint of not deteriorating weldability.
  • Mn 0.5-5.0% Mn is an element effective in improving strength and hardenability. From this point of view, the Mn content is preferably 0.5% or more, more preferably 1.0% or more. On the other hand, the Mn content is preferably 5.0% or less, more preferably 3.0% or less, from the viewpoint of not deteriorating ductility and weldability.
  • P 0.05% or less
  • the amount of P is one of the elements that are unavoidably contained, but from the viewpoint of not deteriorating local ductility, the amount of P is preferably 0.05% or less, and 0.02% or less. is more preferable. It is preferable to reduce the amount of P as much as possible, and the lower limit is not limited. However, from the viewpoint of dephosphorization cost, the amount of P may be 0.005% or more.
  • S 0.005% or less
  • S is one of the elements that are unavoidably contained, but from the viewpoint of not degrading weldability, the S content is preferably 0.005% or less. It is preferable to reduce the amount of S as much as possible, and the lower limit is not limited. However, from the viewpoint of desulfurization cost, the amount of S may be 0.0001% or more.
  • Al 0.001-0.060%
  • Al is an element effective for deoxidizing molten steel, and from this point of view, the Al content is preferably 0.001% or more, more preferably 0.020% or more. On the other hand, from the viewpoint of cost, the Al content is preferably 0.060% or less.
  • N 0.005% or less N forms coarse precipitates and deteriorates bendability. Therefore, the N content is preferably 0.005% or less. It is preferable to reduce the amount of N as much as possible, and the lower limit is not limited. However, industrially, the amount of N can be 0.001% or more.
  • B 0.001 to 0.005%
  • B is an element effective in improving hardenability, and from this point of view, the amount of B is preferably 0.001% or more.
  • the amount of B is preferably 0.005% or less.
  • the balance other than the above components is Fe and unavoidable impurities. However, it may optionally contain at least one of the following components.
  • Cu 1.00% or less Cu promotes the formation of residual ⁇ phase and effectively contributes to improvement of strength. From this point of view, the Cu content is preferably 0.05% or more. On the other hand, from the viewpoint of cost, when Cu is added, the amount of Cu is 1.00% or less.
  • Nb 0.050% or less Nb contributes to improvement in strength. From this point of view, the Nb content is preferably 0.005% or more. On the other hand, from the viewpoint of cost, when Nb is added, the amount of Nb is 0.050% or less.
  • Ti 0.080% or less Ti contributes to improvement in strength. From this point of view, the Ti content is preferably 0.005% or more. On the other hand, from the viewpoint of not degrading the chemical conversion treatability, when adding Ti, the amount of Ti should be 0.080% or less.
  • V 0.5% or less V is effective in improving delayed fracture resistance. From this point of view, the V content is preferably 0.004% or more. On the other hand, from the viewpoint of not deteriorating the strength-ductility balance, when V is added, the amount of V should be 0.5% or less, preferably 0.1% or less, and more preferably 0.05% or less.
  • Mo 1.00% or less Mo contributes to improvement in strength. From this point of view, the Mo content is preferably 0.05% or more. On the other hand, from the viewpoint of cost, when adding Mo, the amount of Mo is set to 1.00% or less.
  • Cr 1.000% or less Cr contributes to improvement of hardenability. From this point of view, the Cr content is preferably 0.001% or more. On the other hand, from the viewpoint of not degrading weldability, when adding Cr, the amount of Cr is set to 1.000% or less.
  • Ni 1.00% or less Ni promotes the formation of residual ⁇ phase. From this point of view, the Ni content is preferably 0.05% or more. On the other hand, from the viewpoint of cost, when Ni is added, the amount of Ni is 1.00% or less.
  • a cold-rolled steel sheet having the chemical composition shown in Table 1 (the balance being Fe and unavoidable impurities) was used as a test piece, and the test piece was annealed.
  • the annealing conditions were as follows: the atmosphere in the furnace had a dew point value shown in Table 2, and contained 10% by volume of hydrogen, the balance being nitrogen. 120 seconds. This assumes annealing in the soaking zone of CAL.
  • test piece of the obtained annealed steel sheet was immersed for 15 seconds in a mixed acid solution shown in Table 3 (nitric acid concentration: 125 g/L, hydrochloric acid or hydrofluoric acid concentration: 7.5 g/L, liquid temperature: 30°C). , was pickled. Further, the test piece was immersed in hydrochloric acid (concentration: 8.0 g/L) for 8 seconds to pickle again. A test piece of the annealed and pickled steel sheet thus obtained was washed with water and dried.
  • the test piece of the annealed and pickled steel sheet is subjected to chemical conversion treatment under the above conditions, and the surface of the chemical conversion coating is coated with electrodeposition paint V-50 manufactured by Nippon Paint Co., Ltd. so that the film thickness becomes 25 ⁇ m. was subjected to electrodeposition coating.
  • the test piece After applying a cross-cut flaw with a length of 45 mm to the surface of this test piece with a cutter, the test piece is sprayed with salt water (5 mass% NaCl aqueous solution: 35 ° C., relative humidity: 98%) ⁇ 2 hours ⁇ drying ( 60 ° C., relative humidity: 30%) ⁇ 2 hours ⁇ wet (50 ° C., relative humidity: 95%) ⁇ 2 hours, and subjected to a corrosion test in which this is repeated 90 cycles, then washed with water and dried. After that, a tape peeling test was performed on the cut flaws. The maximum peel width of the left and right cut flaws was measured. If the maximum peel width is 6.0 mm or less, the corrosion resistance after painting can be evaluated as good. When the maximum peeling full width was 6.0 mm or less, it was evaluated as " ⁇ ", and when it exceeded 6.0 mm, it was evaluated as "x”. Table 3 shows the results.
  • FIG. 2 is a graph showing the relationship between the Fe concentration in the mixed acid solution, the ferrite fraction in the surface layer of the annealed steel sheet, and the surface appearance quality of the annealed and pickled steel sheet.
  • the surface layer ferrite fraction is 60 % or more, more preferably 75% or more; (3) If the Fe concentration is in the range of more than 10 g/L to 20 g/L, it is preferable to set the surface layer ferrite fraction to 90% or more. % or more, and (4) if the Fe concentration is in the range of more than 20 g/L to 30 g/L, it is preferable to set the surface layer ferrite fraction to 95% or more, preferably 99% or more.
  • the surface ferrite fraction is preferably set to 99% or more.
  • the surface layer ferrite fraction may be set according to the measured Fe concentration so that the surface appearance quality is “ ⁇ ” or “ ⁇ ”.
  • the dew point is -15 ° C. or higher.
  • the dew point is set to -10 ° C. or higher.
  • the dew point is set to -5 ° C. or higher, (4) if the Fe concentration is in the range of 20 g / L to 30 g / L, the dew point is set to 5 ° C. or higher, and (5) the Fe concentration exceeds 30 g / L. If it is in the range of 50 g/L, it is possible to set a standard such that the dew point is set to 15° C. or higher.
  • the method for producing an annealed and pickled steel sheet of the present invention it is possible to continuously and stably produce an annealed and pickled steel sheet that is excellent in all of chemical conversion treatability, corrosion resistance after painting, and surface appearance quality. Therefore, the annealed and pickled steel sheet produced according to the present invention can be suitably used for automobile body members, home electric appliance members, building members, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

化成処理性、塗装後耐食性、及び表面外観品質のいずれにも優れる焼鈍酸洗鋼板を継続的に安定して製造することが可能な、焼鈍酸洗鋼板の製造方法を提供する。本開示では、冷延鋼板を焼鈍炉内に通板させて、焼鈍炉内で冷延鋼板を焼鈍して、焼鈍鋼板を得る焼鈍工程と、焼鈍炉から排出された焼鈍鋼板を、酸化性の第1の酸と非酸化性の第2の酸とを含む混酸液を収容する混酸槽に通板して、混酸液で焼鈍鋼板を酸洗する酸洗工程と、混酸槽から排出された焼鈍鋼板を、非酸化性の第3の酸を含む酸液を収容する酸槽に通板して、酸液で焼鈍鋼板を再酸洗して、焼鈍酸洗鋼板を得る再酸洗工程と、を連続的に行って、焼鈍酸洗鋼板を連続的に製造する。その際、混酸槽における混酸液中のFe濃度を測定し、測定されたFe濃度に応じて、酸洗工程に供される焼鈍鋼板の表層におけるフェライト分率の下限値を設定する。

Description

焼鈍酸洗鋼板の製造方法
 本発明は、冷延鋼板を焼鈍、酸洗、及び再酸洗して、焼鈍酸洗鋼板を連続的に製造する方法に関する。
 近年、地球環境保護の観点から、自動車の燃費向上及び衝突安全性の向上が強く求められており、自動車車体の軽量化及び高強度化が求められている。これらの要求に応えるため、自動車部材の素材となる冷延鋼板を高強度化し、薄肉化(軽量化)することで、自動車車体の軽量化と高強度化を同時に達成することが積極的に推し進められている。しかし、自動車部材の多くは、冷延鋼板を成形加工して製造されていることから、その素材となる冷延鋼板には、高い強度に加えて、優れた成形性も求められている。
 成形性を大きく損なわずに冷延鋼板を高強度化する手段として、Si添加による固溶強化法が挙げられる。しかし、冷延鋼板に多量のSiを添加した場合には、冷間圧延後の焼鈍時に、鋼板表面にSiOやSi-Mn系複合酸化物等のSi含有酸化物が多量に形成されるため、化成処理性及び塗装後耐食性に劣る。
 この問題を解決する技術として、特許文献1には、冷延鋼板を焼鈍して焼鈍鋼板を得る工程と、前記焼鈍鋼板を、硝酸等の酸化性の酸と、塩酸、弗酸等の非酸化性の酸とを含む混酸液に浸漬して酸洗する酸洗工程と、その後、前記焼鈍鋼板を、塩酸、硫酸等の非酸化性の酸を含む酸液に浸漬して再酸洗して、焼鈍酸洗鋼板を得る再酸洗工程と、を連続的に行って、焼鈍酸洗鋼板を連続的に製造する方法が記載されている。この方法は、酸洗工程で、連続焼鈍により生成した鋼板表面のSi含有酸化物を除去し、再酸洗工程で、酸洗工程で発生した鉄系酸化物を除去するものであり、これにより、化成処理性及び塗装後耐食性に優れる焼鈍酸洗鋼板を製造することができる。
 しかしながら、特許文献1のような二段階酸洗により連続的に焼鈍酸洗鋼板を製造する場合、時間が経つにつれて、混酸液中のFe濃度及び混酸液の温度が上昇し、酸洗速度が過大になることが原因で、製造される焼鈍酸洗鋼板の表面外観品質が劣化するとの問題があった。これに対して、特許文献2には、混酸液中のFe濃度が上昇するほど、混酸液中の酸化性の酸の濃度を低く、非酸化性の酸の濃度を高く変更することで、混酸液の温度上昇を抑制し、表面外観品質に優れる焼鈍酸洗鋼板を継続的に製造する方法が記載されている。
特開2012-132092号公報 国際公開2017/007036号
 しかしながら、本発明者らが検討したところ、特許文献1のような二段階酸洗により連続的に焼鈍酸洗鋼板を製造する場合であっても、さらには、特許文献2に記載の方法を適用し、混酸液の温度を適切な範囲に維持した場合であっても、時間の経過とともに、製造される焼鈍酸洗鋼板の表面外観品質が劣化する場合があることが判明した。このように表面外観品質が劣化する場合、酸洗工程の直後の鋼板表面が黒く変色し、この変色は、再酸洗工程でも除去されないことが分かった。また、この変色した部分は鋼板表面から容易に剥離して黒い粉末となり、設備汚染を引き起こしやすいことが分かった。
 そこで本発明は、上記課題に鑑み、化成処理性、塗装後耐食性、及び表面外観品質のいずれにも優れる焼鈍酸洗鋼板を継続的に安定して製造することが可能な、焼鈍酸洗鋼板の製造方法を提供することを目的とする。
 本発明者らが検討したところ、酸洗工程に供される焼鈍鋼板の表層におけるフェライト分率と、酸洗工程での混酸液中のFe濃度と、製造される焼鈍酸洗鋼板の表面外観品質との間に相関関係があることが分かった。具体的には、表層におけるフェライト分率が低い焼鈍鋼板を酸洗工程に供する場合、酸洗の過程で混酸液中に焼鈍鋼板から徐々にFeが溶出し、混酸液中のFe濃度が上昇するにつれて、酸洗工程の直後の鋼板表面が黒く変色する傾向にあった。
 本発明者らがこの原因について調査したところ、フェライトはマルテンサイト及び残留オーステナイトに比べて混酸液による酸洗時の溶解速度が速く、その差は混酸液中のFe濃度が高い場合により顕著になることが分かった。そのため、表層におけるフェライト分率が低い焼鈍鋼板を酸洗工程に供する場合、混酸液中のFe濃度が高くなるにつれて、表層の全体を除去しきれずに、酸洗工程の後の鋼板表面にマルテンサイト及び残留オーステナイトが残存して表面凹凸を形成し、鋼板表面が黒色を呈することが分かった。そして、鋼板表面に残存したマルテンサイト及び残留オーステナイトが剥離することで、黒い粉末となっていた。したがって、混酸液中のFe濃度が上昇しても表面外観品質を劣化させないためには、混酸液中のFe濃度に応じて、酸洗工程に供する焼鈍鋼板の表層におけるフェライト分率の下限値を設定する必要がある。なお、本発明において「Fe濃度」とは、鉄イオン濃度であり、具体的には、鉄(II)イオン及び鉄(III)イオンの濃度の和を意味する。
 上記知見に基づき完成された本発明の要旨構成は、以下のとおりである。
 [1]冷延鋼板を焼鈍炉内に通板させて、前記焼鈍炉内で前記冷延鋼板を焼鈍して、焼鈍鋼板を得る焼鈍工程と、
 前記焼鈍炉から排出された前記焼鈍鋼板を、酸化性の第1の酸と非酸化性の第2の酸とを含む混酸液を収容する混酸槽に通板して、前記混酸液で前記焼鈍鋼板を酸洗する酸洗工程と、
 前記混酸槽から排出された前記焼鈍鋼板を、非酸化性の第3の酸を含む酸液を収容する酸槽に通板して、前記酸液で前記焼鈍鋼板を再酸洗して、焼鈍酸洗鋼板を得る再酸洗工程と、
を連続的に行って、前記焼鈍酸洗鋼板を連続的に製造する方法であって、
 前記混酸槽における前記混酸液中のFe濃度を測定し、
 測定された前記Fe濃度に応じて、前記酸洗工程に供される前記焼鈍鋼板の表層におけるフェライト分率の下限値を設定することを特徴とする、焼鈍酸洗鋼板の製造方法。
 [2]前記Fe濃度が上昇するにつれて、前記酸洗工程に供される前記焼鈍鋼板の表層におけるフェライト分率の下限値を高く設定する、上記[1]に記載の焼鈍酸洗鋼板の製造方法。
 [3]前記フェライト分率の下限値の設定は、前記焼鈍工程における焼鈍条件を調整することにより行う、上記[1]又は[2]に記載の焼鈍酸洗鋼板の製造方法。
 [4]前記焼鈍条件が、前記焼鈍炉の均熱帯内の露点である、上記[3]に記載の焼鈍酸洗鋼板の製造方法。
 [5]前記第1の酸が硝酸である、上記[1]~[4]のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
 [6]前記第2の酸が、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、及びシュウ酸から選択される一種以上である、上記[1]~[5]のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
 [7]前記第3の酸が、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、及びシュウ酸から選択される一種以上である、上記[1]~[6]のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
 [8]前記冷延鋼板が、Siを0.50~3.00質量%含有する成分組成を有する、上記[1]~[7]のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
 [9]前記成分組成が、質量%で、C:0.03~0.45%、Si:0.50~3.00%、Mn:0.5~5.0%、P:0.05%以下、S:0.005%以下、Al:0.001~0.060%、N:0.005%以下、及びB:0.001~0.005%を含有し、残部がFe及び不可避的不純物である、上記[8]に記載の焼鈍酸洗鋼板の製造方法。
 [10]前記成分組成が、質量%で、Cu:1.00%以下、Nb:0.050%以下、Ti:0.080%以下、V:0.5%以下、Mo:1.00%以下、Cr:1.000%以下、及びNi:1.00%以下のうちから選ばれる少なくとも1種をさらに含有する、上記[9]に記載の焼鈍酸洗鋼板の製造方法。
 本発明の焼鈍酸洗鋼板の製造方法によれば、化成処理性、塗装後耐食性、及び表面外観品質のいずれにも優れる焼鈍酸洗鋼板を継続的に安定して製造することが可能である。
本発明の一実施形態による焼鈍酸洗鋼板の製造方法を実施可能な焼鈍酸洗設備の模式図である。 実施例における、混酸液中のFe濃度及び焼鈍鋼板の表層におけるフェライト分率と、焼鈍酸洗鋼板の表面外観品質との関係を示すグラフである。
 本発明の一実施形態による焼鈍酸洗鋼板の製造方法は、以下に詳細に説明する焼鈍工程、酸洗工程、及び再酸洗工程を連続的に行って、焼鈍酸洗鋼板を連続的に製造する。
 本実施形態において、焼鈍工程、酸洗工程、及び再酸洗工程は、例えば図1に示す焼鈍酸洗設備によって、同一ラインで連続的に行われる。図1に例示する焼鈍酸洗設備は、連続焼鈍炉(Continuous Annealing Line:CAL)10と、水を収容する水槽20と、酸化性の第1の酸と非酸化性の第2の酸とを含む混酸液を収容する混酸槽30と、水を収容する水槽40と、非酸化性の第3の酸を含む酸液を収容する酸槽50と、水を収容する水槽60と、を鋼板の進行方向の上流から下流に向かってこの順に有する。複数のロール70を含む通板設備は、鋼板を連続焼鈍炉10と上記5つの槽に順次通板させることができる。
 [焼鈍工程]
 図1を参照して、焼鈍工程では、冷延鋼板S1を連続焼鈍炉10内に通板させて、連続焼鈍炉10内で冷延鋼板S1を焼鈍して、焼鈍鋼板S2を得る。焼鈍工程は、冷延鋼板S1に所望の組織、強度、及び加工性を付与するために行われる。焼鈍炉10は、複数の領域を有してもよく、図1の例では、通板方向の上流から順に、加熱帯12、均熱帯14、及び冷却帯16を有する。連続焼鈍炉の構成は図1に限定されず、例えば、加熱帯12の上流に予熱帯があってもよく、冷却帯16が複数の冷却帯を含んでもよく、冷却帯16の下流に過時効帯があってもよい。
 加熱帯12では、バーナーを用いて、冷延鋼板S1を直接加熱することや、ラジアントチューブ(RT)又は電気ヒーターを用いて、冷延鋼板S1を間接加熱することができる。加熱帯12の内部の平均温度は500~800℃とすることが好ましい。加熱帯12には、均熱帯14からのガスが流れ込むと同時に、別途非酸化性又は還元性のガスが供給される。非酸化性のガスとしては、例えばNガスが用いられ、還元性ガスとしては、例えばH-N混合ガスが用いられる。加熱帯12の露点は、-50~20℃の範囲内とすることが好ましい。
 均熱帯14では、ラジアントチューブ(RT)を用いて、冷延鋼板S1を間接加熱することができる。均熱帯14の内部の平均温度(均熱温度)は600~950℃とすることが好ましい。均熱帯14には非酸化性又は還元性のガスが供給される。非酸化性のガスとしては、例えばNガスが用いられ、還元性ガスとしては、例えばH-N混合ガスが用いられる。均熱帯14の露点は、-50~20℃の範囲内とすることが好ましい。
 冷却帯16では、冷延鋼板S1が冷却される。冷延鋼板S1は、連続焼鈍炉10を出る段階で100~400℃程度にまで冷却される。
 [酸洗工程]
 図1を参照して、酸洗工程では、焼鈍炉10から排出された焼鈍鋼板S2を、酸化性の第1の酸と非酸化性の第2の酸とを含む混酸液を収容する混酸槽30に通板して、混酸液で焼鈍鋼板S2を酸洗する。
 上記のとおり、焼鈍工程では、雰囲気ガスとして非酸化性又は還元性のガスが用いられ、その露点は厳格に管理されている。そのため、合金添加量の少ない一般冷延鋼板では、鋼板表面の酸化は抑制されている。しかし、Feよりも易酸化性元素であるSiやMnを含む冷延鋼板の場合、焼鈍時の雰囲気ガスの成分や露点を厳格に管理しても、SiやMnが選択酸化されて、鋼板表面にSi酸化物(SiO)やSi-Mn系複合酸化物等のSi含有酸化物が形成される。すなわち、焼鈍鋼板の表層がSi含有酸化物層となり、これが化成処理性及び塗装後耐食性の劣化を招く。
 そこで、本実施形態の酸洗工程では、焼鈍鋼板S2を酸化性の第1の酸と非酸化性の第2の酸とを含む混酸液に連続的に浸漬して、焼鈍鋼板S2の表面のSi含有酸化物層を除去する。Si含有酸化物層の厚さは、鋼板成分や焼鈍条件(温度、時間、雰囲気)によって変化するが、通常、鋼板表面から1μm程度である。
 酸化性の第1の酸としては、硝酸を挙げることができる。混酸液中に第1の酸が必要な理由は、Si含有酸化物のうち、Si-Mn系複合酸化物は酸に容易に溶解するが、SiOは難溶性を示すため、これを除去するには、硝酸のような酸化性の酸で鋼板表面のSi含有酸化物層を地鉄ごと取り除く必要があるからである。
 混酸液中の第1の酸の濃度は、Si含有酸化物層を効率的に除去する観点から、100g/L以上とすることが好ましく、110g/L以上とすることがより好ましい。他方で、第1の酸の濃度が過大の場合、後段の再酸洗工程で鉄系酸化物を溶解させにくくなるため、混酸液中の第1の酸の濃度は、150g/L以下とすることが好ましく、140g/L以下とすることがより好ましい。
 非酸化性の第2の酸は、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、及びシュウ酸から選択される一種以上であることが好ましく、特に塩酸、硫酸、及び弗酸から選択される一種以上であることが好ましい。このような非酸化性の酸を用いる理由は、上記酸化性の第1の酸による酸洗に伴って鋼板表面に沈殿析出してくる鉄系酸化物の生成を抑制するためである。
 混酸液中の第2の酸の濃度は、後段の再酸洗工程で鉄系酸化物を溶解させやすくする観点から、4.5g/L以上とすることが好ましく、6.5g/L以上とすることがより好ましい。他方で、第2の酸の濃度が過大の場合、単位時間あたりの酸洗減量が低下し、鋼板表層にSiOの残存が懸念されるため、混酸液中の第2の酸の濃度は、12.5g/L以下とすることが好ましく、8.5g/L以下とすることがより好ましい。
 酸洗工程での好適な酸洗時間は、焼鈍工程で生じたSi含有酸化物層を除去するために必要な酸洗減量と、混酸液の組成によって決定される酸洗効率と、酸洗長とから決定される。一般的には、混酸液の温度は30~60℃程度、酸洗時間は10秒程度とされる。
 [再酸洗工程]
 図1を参照して、再酸洗工程では、混酸槽30から排出された焼鈍鋼板S2を、非酸化性の第3の酸を含む酸液を収容する酸槽50に通板して、酸液で焼鈍鋼板S2を再酸洗して、焼鈍酸洗鋼板S3を得る。
 上記酸洗工程により、鋼板表面から溶解したFeが鉄系酸化物を生成し、これが鋼板表面に沈殿析出して鋼板表面を覆うことにより化成処理性が低下する。そこで、本実施形態では、上記酸洗工程の後、焼鈍鋼板S2を、非酸化性の第3の酸を含む酸液に連続的に浸漬して、この鉄系酸化物を除去する。「鉄系酸化物」とは、酸化物を構成する酸素以外の元素のうちで鉄の原子濃度比が30%以上である鉄主体の酸化物のことをいう。この鉄系酸化物は、鋼板表面上に不均一な厚さで存在しており、数nmの厚さで均一かつ層状に存在する自然酸化皮膜とは異なる酸化物である。なお、焼鈍鋼板S2の表面に生成した鉄系酸化物は、透過型電子顕微鏡(TEM)による観察や電子線回折によるディフラクションパターン(回折図形)の解析結果から非晶質であることがわかっている。
 非酸化性の第3の酸は、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、及びシュウ酸から選択される一種以上であることが好ましく、特に塩酸、硫酸、及び弗酸から選択される一種以上であることが好ましい。中でも塩酸は、揮発性の酸であるため、硫酸のように鋼板表面に硫酸根などの残留物が残存し難いことや、塩化物イオンによる鉄系酸化物の破壊効果が大きいことなどから、好適である。また、塩酸と硫酸を混合した酸を用いてもよい。また、酸洗工程で用いる第2の酸と、本工程で用いる第3の酸とは、同種類の酸であっても、異なる種類の酸であってもよい。しかし、製造設備を共通化できる観点から、同種類の酸であることが好ましい。
 酸液中の第3の酸の濃度は、鉄系酸化物を十分に溶解する観点から、4.5g/L以上とすることが好ましく、6.5g/L以上とすることがより好ましい。他方で、第3の酸の濃度が過大の場合、鋼板表面に酸液が残存して変色が発生する懸念があるため、酸液中の第3の酸の濃度は、12.5g/L以下とすることが好ましく、8.5g/L以下とすることがより好ましい。
 再酸洗工程の好適な酸洗時間は、一段目の酸洗で生じた鉄系酸化物を除去するために必要な酸洗減量と、酸組成によって決定される酸洗効率と、酸洗長とから決定される。一般的には、酸液の温度は30~60℃程度、酸洗時間は10秒程度とされる。
 前記酸洗工程及び前記再酸洗工程での合計の酸洗減量は8g/m以上とすることが好ましい。合計の酸洗減量が8g/m以上あれば、鋼板表面にSi含有酸化物や鉄系酸化物が残存しにくいため、より高い化成処理性が得られる。
 [再酸洗工程後の工程]
 再酸洗工程後に得られた焼鈍酸洗鋼板S3は、その後、調質圧延やレベラー加工等の通常の処理工程を経て製品としての鋼板とすることができる。
 [水洗工程]
 本実施形態のように、混酸槽30と酸槽50との間に水槽40を設けて、酸洗工程と再酸洗工程との間に、焼鈍鋼板S2を水槽40に通板して、水洗することが好ましい。これにより、混酸槽30から焼鈍鋼板S2が持ち出した混酸液が酸槽50の酸液中に混入することを防ぐことができる。そのため、酸槽50での再酸洗によって確実に鉄系酸化物を除去できるため好ましい。また、混酸槽30の上流に水槽20を設けて、酸洗工程の前に、焼鈍鋼板S2を水槽20に通板して、水洗することが好ましい。これにより、焼鈍鋼板S2の表面の不純物を除去でき、混酸槽30の混酸液中に不純物が混入することを防ぐことができる。また、酸槽50の下流に水槽60を設けて、再酸洗工程の後に、焼鈍鋼板S2を水槽60に通板して、水洗することが好ましい。これにより、酸槽50から焼鈍鋼板S2が持ち出した酸液を除去でき、焼鈍鋼板S2の表面の錆を防ぐことができる。
 [Fe濃度の測定]
 混酸槽30における混酸液のFe濃度は、当該混酸液が焼鈍鋼板S2の酸洗に使用されていないフレッシュな状態では、ゼロである。しかし、酸洗の過程で焼鈍鋼板S2から徐々にFeが溶出し、混酸液中のFe濃度は徐々に上昇する。そこで本実施形態では、混酸槽30における混酸液中のFe濃度を経時的に測定する。この測定は、常時行ってもよいし、一定期間ごとに間欠的に行ってもよい。
 図1に例示する焼鈍酸洗設備は、混酸槽30における混酸液中のFe濃度を測定するFe濃度計80を有する。Fe濃時計80としては、例えば、近赤外分光分析を使用し混酸液に1分間ピッチで近赤外線を照射し、照射後のスペクトルの変化から混酸液中のFe濃度を算出する分析計を用いることができる。
 混酸液のFe濃度は、0~50g/Lの範囲内に維持することが好ましい。Fe濃度が50g/Lを超えると、混酸液による酸化力が過大となり、鋼板表面に黄変が発生するためである。よって、混酸液のFe濃度が50g/Lに達するか、その前の段階で、混酸槽30中の混酸液の全てを廃液として、混酸槽30に新たにフレッシュな混酸液を供給して、混酸液のFe濃度をゼロに戻すか、混酸槽30中の混酸液の一部を廃液として、混酸槽30にフレッシュな混酸液を継ぎ足して、混酸液のFe濃度を低下させることが好ましい。
 [表層フェライト分率の下限値の設定]
 既述のとおり、連続焼鈍後のSi含有酸化物層の厚さは、通常、鋼板表面から1μm程度であり、酸洗工程でこのSi含有酸化物層を除去する必要がある。ただし、このSi含有酸化物層において、Si含有酸化物が濃化しているのは、ごく表層の数十nmの範囲であり、それより下の領域では、鋼組織中にSi含有酸化物が含まれている状態である。この鋼組織に関して、フェライトはマルテンサイト及び残留オーステナイトに比べて混酸液による酸洗時の溶解速度が速く、その差は混酸液中のFe濃度が高い場合により顕著になる。そのため、表層におけるフェライト分率が低い焼鈍鋼板を酸洗工程に供する場合、混酸液中のFe濃度が高くなるにつれて、表層の全体を除去しきれずに、酸洗工程の後の鋼板表面にマルテンサイト及び残留オーステナイトが残存して表面凹凸を形成し、鋼板表面が黒色を呈する。
 そこで本実施形態では、測定された混酸液中のFe濃度に応じて、酸洗工程に供される焼鈍鋼板S2の表層におけるフェライト分率の下限値を設定することが重要である。具体的には、測定された混酸液中のFe濃度が上昇するにつれて、酸洗工程に供される焼鈍鋼板S2の表層におけるフェライト分率の下限値を高く設定する。そして、設定された下限値以上の、表層におけるフェライト分率を有する焼鈍鋼板のみを酸洗工程に供するようにする。これにより、混酸液中のFe濃度が上昇しても、酸洗工程の直後の鋼板表面が黒く変色することがなく、化成処理性、塗装後耐食性、及び表面外観品質のいずれにも優れる焼鈍酸洗鋼板を継続的に安定して製造することができる。
 例えば、後記の実施例に示すように、混酸液中のFe濃度と、当該Fe濃度において優れた表面外観品質を実現できる表層フェライト分率の下限値との関係(例えば図2)を予め求めておき、この関係を用いて、測定された混酸液中のFe濃度に応じて、酸洗工程に供される焼鈍鋼板S2の表層におけるフェライト分率の下限値を設定することができる。図2に示す関係を用いれば、測定されたFe濃度に応じて、表面外観品質が「○」又は「◎」となるように表層フェライト分率の下限値を設定すればよい。
 焼鈍鋼板の表層におけるフェライト分率(体積率)は、次のようにして測定することができる。すなわち、鋼板の幅方向及び圧延方向に対して任意の位置から試験片を採取し、圧延方向に平行な縦断面を研磨し、ナイタールエッチングにより現出した金属組織を、試験片の表面から1μmまでの範囲内において、SEMを用いて観察する。SEM観察では3000倍の倍率で10視野以上を観察し、観察された画像から輝度の低い領域をフェライトとしてその面積率を測定し、その平均値を算出する。圧延方向に対して垂直方向(幅方向)には組織変化がなく、圧延方向に平行な断面の面積率は体積率と等しいため、面積率を体積率とみなすことができる。
 ただし、焼鈍工程、酸洗工程、及び再酸洗工程は、同一ラインで連続的に行われるため、実際の操業において、焼鈍工程後かつ酸洗工程前の段階で、焼鈍鋼板S2の表層におけるフェライト分率を測定することは困難である。ここで、焼鈍鋼板S2の表層におけるフェライト分率は、焼鈍前の冷延鋼板S1の成分組成と、焼鈍工程における焼鈍条件とによって決定され、成分組成が定まれば、焼鈍条件により決定される。そのため、フェライト分率の下限値の設定は、焼鈍工程における焼鈍条件を調整することにより行うことができる。すなわち、冷延鋼板S1の成分組成に応じて、焼鈍工程における焼鈍条件と、当該焼鈍条件において得られるフェライト分率との関係を予め求めておき、設定された下限値以上のフェライト分率を実現できる焼鈍条件で焼鈍工程を行うことができる。
 焼鈍鋼板S2の表層におけるフェライト分率に影響を及ぼす焼鈍条件は、主に、均熱温度と、均熱帯の露点である。均熱温度が高いほど、フェライト分率も高くなる。また、均熱帯の露点が高いほど、フェライト分率も高くなる。よって、所望のフェライト分率を実現するために調整する焼鈍条件は、均熱温度及び均熱帯の露点の一方又は両方とすることができる。
 ただし、均熱温度は、製品となる焼鈍酸洗鋼板の機械的特性にも影響するため、操業中に変更することは好ましくない。そのため、所望のフェライト分率を実現するために調整する焼鈍条件は、焼鈍炉の均熱帯の露点とすることが好ましい。例えば、均熱温度を含め露点以外の焼鈍条件を固定して、焼鈍工程における均熱帯の露点と、当該露点において得られるフェライト分率との関係を予め求めておき、設定された下限値以上のフェライト分率を実現できる露点で焼鈍工程を行うことができる。
 [冷延鋼板の成分組成]
 以下、冷延鋼板S1の成分組成を説明する。各元素の含有量の単位は「質量%」であるが、単に「%」と表記する。
 Si:0.50~3.00%
 冷延鋼板S1の成分組成は特に限定されないが、Siを0.50~3.00質量%含有する成分組成を有することが好ましい。Siは、加工性を大きく損なうことなく鋼の強度を高める効果(固溶強化能)が大きいため、鋼の高強度化を達成するには有効な元素であるが、化成処理性や塗装後耐食性に悪影響を及ぼす元素でもある。Siを添加して高強度化を図る観点から、Si量は0.50%以上であることが好ましく、0.80%以上であることがより好ましい。他方で、Si量が過多の場合、熱間圧延性や冷間圧延性が大きく低下し、生産性に悪影響を及ぼしたり、鋼板自体の延性の低下を招いたりする。よって、Si量は3.00%以下であることが好ましく、2.50%以下であることがより好ましい。
 Si以外の成分については、通常の冷延鋼板が有する組成範囲であれば許容することができ、特に制限されるものではない。ただし、以下の成分組成を有するものであることが好ましい。
 C:0.03~0.45%
 Cは、鋼の強度を調整するのに有効な元素であり、この観点から、C量は0.03%以上であることが好ましく、0.05%以上であることがより好ましい。他方で、溶接性を低下させない観点から、C量は、0.45%以下であることが好ましく、0.20%以下であることがより好ましい。
 Mn:0.5~5.0%
 Mnは、強度と焼入れ性の向上に有効な元素であり、この観点から、Mn量は0.5%以上であることが好ましく、1.0%以上であることがより好ましい。他方で、延性及び溶接性を低下させない観点から、Mn量は、5.0%以下であることが好ましく、3.0%以下であることがより好ましい。
 P:0.05%以下
 Pは不可避的に含有される元素の一つであるが、局部延性を劣化させない観点から、P量は0.05%以下であることが好ましく、0.02%以下であることがより好ましい。P量は極力低減させることが好ましく、その下限は限定されない。しかし、脱燐コストの観点から、P量は0.005%以上であり得る。
 S:0.005%以下
 Sは不可避的に含有される元素の一つであるが、溶接性を低下させない観点から、S量は0.005%以下であることが好ましい。S量は極力低減させることが好ましく、その下限は限定されない。しかし、脱硫コストの観点から、S量は0.0001%以上であり得る。
 Al:0.001~0.060%
 Alは、溶鋼の脱酸に有効な元素であり、この観点から、Al量は0.001%以上であることが好ましく、0.020%以上であることがより好ましい。他方で、コストの観点から、Al量は0.060%以下とすることが好ましい。
 N:0.005%以下
 Nは、粗大な析出物を形成して曲げ性を劣化させる。このため、N量は0.005%以下であることが好ましい。N量は極力低減させることが好ましく、その下限は限定されない。しかし、工業的にはN量は0.001%以上であり得る。
 B:0.001~0.005%
 Bは、焼入れ性の向上に有効な元素であり、この観点から、B量は0.001%以上であることが好ましい。他方で、B量が過多の場合、焼入れ性向上の効果は飽和するため、B量は、0.005%以下であることが好ましい。
 冷延鋼板S1の成分組成において、上記成分以外の残部はFe及び不可避的不純物である。ただし、任意で以下の成分のうち少なくとも1種を含んでもよい。
 Cu:1.00%以下
 Cuは、残留γ相の形成を促進し、強度の改善に有効に寄与する。この観点から、Cu量は0.05%以上とすることが好ましい。他方で、コストの観点から、Cuを添加する場合、Cu量は1.00%以下とする。
 Nb:0.050%以下
 Nbは、強度の向上に寄与する。この観点から、Nb量は0.005%以上とすることが好ましい。他方で、コストの観点から、Nbを添加する場合、Nb量は0.050%以下とする。
 Ti:0.080%以下
 Tiは、強度の向上に寄与する。この観点から、Ti量は0.005%以上とすることが好ましい。他方で、化成処理性を劣化させない観点から、Tiを添加する場合、Ti量は0.080%以下とする。
 V:0.5%以下
 Vは、耐遅れ破壊性の向上に有効である。この観点から、V量は0.004%以上とすることが好ましい。他方で、強度-延性バランスを劣化させない観点から、Vを添加する場合、V量は0.5%以下とし、好ましくは0.1%以下とし、より好ましくは0.05%以下とする。
 Mo:1.00%以下
 Moは、強度の向上に寄与する。この観点から、Mo量は0.05%以上とすることが好ましい。他方で、コストの観点から、Moを添加する場合、Mo量は1.00%以下とする。
 Cr:1.000%以下
 Crは、焼入れ性の向上に寄与する。この観点から、Cr量は0.001%以上とすることが好ましい。他方で、溶接性を劣化させない観点から、Crを添加する場合、Cr量は1.000%以下とする。
 Ni:1.00%以下
 Niは、残留γ相の形成を促進する。この観点から、Ni量は0.05%以上とすることが好ましい。他方で、コストの観点から、Niを添加する場合、Ni量は1.00%以下とする。
 表1に示す成分組成(残部はFe及び不可避的不純物)を有する冷延鋼板を試験片として用い、該試験片に焼鈍を行った。焼鈍条件は、炉内雰囲気を、露点を表2に示す値で、かつ、10体積%の水素を含み、残部が窒素からなる雰囲気とし、表2に示す均熱温度にて、均熱時間を120秒とした。これは、CALの均熱帯での焼鈍を想定したものである。
 得られた焼鈍鋼板の試験片について、既述の方法で表層におけるフェライト分率を求め、結果を表2に示した。
 その後、得られた焼鈍鋼板の試験片を、表3に示す混酸液(硝酸濃度:125g/L、塩酸又は弗酸濃度:7.5g/L、液温:30℃)に15秒間浸漬して、酸洗を行った。さらに、試験片を、塩酸(濃度:8.0g/L)に8秒間浸漬し、再酸洗を行った。このようにして得た焼鈍酸洗鋼板の試験片を水洗し、乾燥させた。
 <表面外観品質の評価>
 焼鈍酸洗鋼板の試験片の表面にセロハンテープ(商標登録)を貼り付けて引き離した後、テープを白い紙に貼って、この状態で白色度(L値)を測定し、表面外観品質を評価した。白色度が低いほど、黒い粉末がテープに付着していることになり、表面外観品質が劣っていることを意味する。表面外観品質は以下の基準で評価し、◎及び○を良好とした。結果を表3に示す。
 ◎:L値が90以上
 ○:L値が75以上90未満
 ×:L値が75未満
 <化成処理性の評価>
 焼鈍酸洗鋼板の試験片に対し、リン酸亜鉛処理を行い、化成処理性を評価した。
 (1)リン酸亜鉛処理液:日本パーカライジング社製 パルボンドPB-L3065
 (2)化成処理工程:脱脂→水洗→表面調整→リン酸亜鉛処理→水洗
 化成処理後の試験片表面を1000倍でSEM観察し、10視野のリン酸塩結晶の形成状態を調べた。10視野全てにおいてリン酸塩結晶が均一に形成している場合を「◎」、リン酸塩結晶が形成していない部分が1視野存在する場合を「○」、2~5視野存在する場合を「△」、5視野以上存在する場合を「×」と評価した。結果を表3に示す。
 <塗装後耐食性の評価>
 焼鈍酸洗鋼板の試験片に対し、上記の条件で化成処理を施し、さらに化成処理被膜の表面に、日本ペイント社製の電着塗料:V-50を用いて、膜厚が25μmとなるように電着塗装を施した。この試験片の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、塩水噴霧(5質量%NaCl水溶液:35℃、相対湿度:98%)×2時間→乾燥(60℃、相対湿度:30%)×2時間→湿潤(50℃、相対湿度:95%)×2時間、を1サイクルとして、これを90サイクル繰り返す腐食試験に供し、その後、水洗し、乾燥した後、カット疵部についてテープ剥離試験を行った。カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が6.0mm以下であれば、塗装後耐食性は良好と評価できる。最大剥離全幅が6.0mm以下の場合を「○」、6.0mm超えの場合を「×」と評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3の結果に基づいて、混酸液中のFe濃度ごとに、表面外観品質が「○」と「×」の境界となる表層フェライト分率、表面外観品質が「◎」と「○」の境界となる表層フェライト分率を、表4にまとめた。また、表3の結果に基づいて、混酸液中のFe濃度及び焼鈍鋼板の表層におけるフェライト分率と、焼鈍酸洗鋼板の表面外観品質との関係を示すグラフを図2に示した。
Figure JPOXMLDOC01-appb-T000004
 表4及び図2から明らかなとおり、表1に示す成分組成を有する冷延鋼板の場合には、例えば、(1)Fe濃度が5g/L以下の範囲であれば、表層フェライト分率を60%以上に設定することが好ましく、75%以上に設定することがより好ましく、(2)Fe濃度が5g/L超え10g/Lの範囲であれば、表層フェライト分率を75%以上に設定することが好ましく、85%以上に設定することがより好ましく、(3)Fe濃度が10g/L超え20g/Lの範囲であれば、表層フェライト分率を90%以上に設定することが好ましく、95%以上に設定することがより好ましく、(4)Fe濃度が20g/L超え30g/Lの範囲であれば、表層フェライト分率を95%以上に設定することが好ましく、99%以上に設定することがより好ましく、(5)Fe濃度が30g/L超え50g/Lの範囲であれば、表層フェライト分率を99%以上に設定することが好ましい、という基準を定めることができる。あるいは、図2を用いて、測定されたFe濃度に応じて、表面外観品質が「○」又は「◎」となるように表層フェライト分率を設定することでもよい。
 そして、表4のような基準を実現するための操業例としては、均熱温度を820℃とした場合、(1)Fe濃度が5g/L以下の範囲であれば、露点を-15℃以上に設定し、(2)Fe濃度が5g/L超え10g/Lの範囲であれば、露点を-10℃以上に設定し、(3)Fe濃度が10g/L超え20g/Lの範囲であれば、露点を-5℃以上に設定し、(4)Fe濃度が20g/L超え30g/Lの範囲であれば、露点を5℃以上に設定し、(5)Fe濃度が30g/L超え50g/Lの範囲であれば、露点を15℃以上に設定する、といった基準を定めることができる。
 本発明の焼鈍酸洗鋼板の製造方法によれば、化成処理性、塗装後耐食性、及び表面外観品質のいずれにも優れる焼鈍酸洗鋼板を継続的に安定して製造することが可能である。そのため、本発明により製造された焼鈍酸洗鋼板は、自動車車体の部材、家電製品の部材、及び建築部材等に好適に用いることができる。
 10 連続焼鈍炉
 12 加熱帯
 14 均熱帯
 16 冷却帯
 20 水槽
 30 混酸槽
 40 水槽
 50 酸槽
 60 水槽
 70 ロール(通板設備)
 80 Fe濃度計
 S1 冷延鋼板
 S2 焼鈍鋼板
 S3 焼鈍酸洗鋼板

Claims (10)

  1.  冷延鋼板を焼鈍炉内に通板させて、前記焼鈍炉内で前記冷延鋼板を焼鈍して、焼鈍鋼板を得る焼鈍工程と、
     前記焼鈍炉から排出された前記焼鈍鋼板を、酸化性の第1の酸と非酸化性の第2の酸とを含む混酸液を収容する混酸槽に通板して、前記混酸液で前記焼鈍鋼板を酸洗する酸洗工程と、
     前記混酸槽から排出された前記焼鈍鋼板を、非酸化性の第3の酸を含む酸液を収容する酸槽に通板して、前記酸液で前記焼鈍鋼板を再酸洗して、焼鈍酸洗鋼板を得る再酸洗工程と、
    を連続的に行って、前記焼鈍酸洗鋼板を連続的に製造する方法であって、
     前記混酸槽における前記混酸液中のFe濃度を測定し、
     測定された前記Fe濃度に応じて、前記酸洗工程に供される前記焼鈍鋼板の表層におけるフェライト分率の下限値を設定することを特徴とする、焼鈍酸洗鋼板の製造方法。
  2.  前記Fe濃度が上昇するにつれて、前記酸洗工程に供される前記焼鈍鋼板の表層におけるフェライト分率の下限値を高く設定する、請求項1に記載の焼鈍酸洗鋼板の製造方法。
  3.  前記フェライト分率の下限値の設定は、前記焼鈍工程における焼鈍条件を調整することにより行う、請求項1又は2に記載の焼鈍酸洗鋼板の製造方法。
  4.  前記焼鈍条件が、前記焼鈍炉の均熱帯内の露点である、請求項3に記載の焼鈍酸洗鋼板の製造方法。
  5.  前記第1の酸が硝酸である、請求項1~4のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
  6.  前記第2の酸が、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、及びシュウ酸から選択される一種以上である、請求項1~5のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
  7.  前記第3の酸が、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、及びシュウ酸から選択される一種以上である、請求項1~6のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
  8.  前記冷延鋼板が、Siを0.50~3.00質量%含有する成分組成を有する、請求項1~7のいずれか一項に記載の焼鈍酸洗鋼板の製造方法。
  9.  前記成分組成が、質量%で、C:0.03~0.45%、Si:0.50~3.00%、Mn:0.5~5.0%、P:0.05%以下、S:0.005%以下、Al:0.001~0.060%、N:0.005%以下、及びB:0.001~0.005%を含有し、残部がFe及び不可避的不純物である、請求項8に記載の焼鈍酸洗鋼板の製造方法。
  10.  前記成分組成が、質量%で、Cu:1.00%以下、Nb:0.050%以下、Ti:0.080%以下、V:0.5%以下、Mo:1.00%以下、Cr:1.000%以下、及びNi:1.00%以下のうちから選ばれる少なくとも1種をさらに含有する、請求項9に記載の焼鈍酸洗鋼板の製造方法。
     
PCT/JP2021/047093 2021-03-26 2021-12-20 焼鈍酸洗鋼板の製造方法 WO2022201686A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/261,266 US20240076765A1 (en) 2021-03-26 2021-12-20 Method for producing annealed and pickled steel sheet
JP2022516244A JP7126104B1 (ja) 2021-03-26 2021-12-20 焼鈍酸洗鋼板の製造方法
CN202180094456.7A CN116917546A (zh) 2021-03-26 2021-12-20 退火酸洗钢板的制造方法
EP21933276.4A EP4282994A1 (en) 2021-03-26 2021-12-20 Method for producing annealed and pickled steel sheet
KR1020237034023A KR20230155517A (ko) 2021-03-26 2021-12-20 어닐링 산세정 강판의 제조 방법
MX2023010415A MX2023010415A (es) 2021-03-26 2021-12-20 Metodo para producir lamina de acero recocido y decapado.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054006 2021-03-26
JP2021054006 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201686A1 true WO2022201686A1 (ja) 2022-09-29

Family

ID=83396708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047093 WO2022201686A1 (ja) 2021-03-26 2021-12-20 焼鈍酸洗鋼板の製造方法

Country Status (1)

Country Link
WO (1) WO2022201686A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222558A (ja) * 1992-02-14 1993-08-31 Kawasaki Steel Corp 表面光沢の優れるオーステナイト系ステンレス鋼の製造方法
JP2002097585A (ja) * 2000-09-22 2002-04-02 Sumitomo Metal Ind Ltd バフ研磨性の優れた冷延鋼板の製造方法
JP2003201538A (ja) * 2001-10-30 2003-07-18 Jfe Steel Kk 耐塩温水2次密着性に優れた高強度高延性冷延鋼板およびその製造方法
JP2007530282A (ja) * 2004-03-25 2007-11-01 ユジンヌ・エ・アルツ・フランス 表面が艶消し仕上げされたオーステナイト系ステンレス帯鋼の製造方法
JP2012132092A (ja) 2010-08-31 2012-07-12 Jfe Steel Corp 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP6041079B1 (ja) * 2015-07-08 2016-12-07 Jfeスチール株式会社 冷延鋼帯の製造方法及び製造設備
WO2017007036A1 (ja) 2015-07-08 2017-01-12 Jfeスチール株式会社 冷延鋼帯の製造方法及び製造設備

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222558A (ja) * 1992-02-14 1993-08-31 Kawasaki Steel Corp 表面光沢の優れるオーステナイト系ステンレス鋼の製造方法
JP2002097585A (ja) * 2000-09-22 2002-04-02 Sumitomo Metal Ind Ltd バフ研磨性の優れた冷延鋼板の製造方法
JP2003201538A (ja) * 2001-10-30 2003-07-18 Jfe Steel Kk 耐塩温水2次密着性に優れた高強度高延性冷延鋼板およびその製造方法
JP2007530282A (ja) * 2004-03-25 2007-11-01 ユジンヌ・エ・アルツ・フランス 表面が艶消し仕上げされたオーステナイト系ステンレス帯鋼の製造方法
JP2012132092A (ja) 2010-08-31 2012-07-12 Jfe Steel Corp 冷延鋼板の製造方法、冷延鋼板および自動車部材
JP6041079B1 (ja) * 2015-07-08 2016-12-07 Jfeスチール株式会社 冷延鋼帯の製造方法及び製造設備
WO2017007036A1 (ja) 2015-07-08 2017-01-12 Jfeスチール株式会社 冷延鋼帯の製造方法及び製造設備

Similar Documents

Publication Publication Date Title
JP5482968B2 (ja) 酸洗後の鋼板表面の黄変防止方法
WO2011129465A1 (ja) 熱延鋼板の製造方法及び溶融亜鉛めっき鋼板の製造方法
US20190024208A1 (en) Method for manufacturing steel sheet and device for continuous annealing steel sheet
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
TWI510644B (zh) 高強度鋼板及其製造方法
JP2010255110A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552864B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6041079B1 (ja) 冷延鋼帯の製造方法及び製造設備
WO2013129295A1 (ja) Si含有高強度冷延鋼板とその製造方法ならびに自動車部材
JP2010255113A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2017007036A1 (ja) 冷延鋼帯の製造方法及び製造設備
EP3396005B1 (en) Mn-containing hot-dip galvannealed steel sheet and manufacturing method therefor
JP5896165B2 (ja) 酸洗後の鋼板表面の黄変防止方法
TWI481744B (zh) 塗裝後耐蝕性優良的合金化熱浸鍍鋅鋼板
JP7126104B1 (ja) 焼鈍酸洗鋼板の製造方法
JP5309862B2 (ja) 部材加工後の化成処理性に優れた鋼材およびその製造方法
WO2022201686A1 (ja) 焼鈍酸洗鋼板の製造方法
JP4629138B2 (ja) 合金化溶融亜鉛めっき鋼板
JP6020485B2 (ja) 高強度鋼板およびその製造方法
CN108026617B (zh) 钢板
JP5990892B2 (ja) 化成処理性に優れた高Si冷延鋼板の製造方法
JP5128619B2 (ja) 合金化溶融亜鉛めっき鋼板
US20240018617A1 (en) Thin steel sheet
WO2015133077A1 (ja) 冷延鋼板およびその製造方法、ならびに自動車部材
TWI577808B (zh) Steel plate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022516244

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933276

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18261266

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180094456.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021933276

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021933276

Country of ref document: EP

Effective date: 20230825

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/010415

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2301005913

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20237034023

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034023

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE