EP3310462B1 - Catalyseur de réduction catalytique sélective insensible au surdosage de nh3 - Google Patents

Catalyseur de réduction catalytique sélective insensible au surdosage de nh3 Download PDF

Info

Publication number
EP3310462B1
EP3310462B1 EP16736947.9A EP16736947A EP3310462B1 EP 3310462 B1 EP3310462 B1 EP 3310462B1 EP 16736947 A EP16736947 A EP 16736947A EP 3310462 B1 EP3310462 B1 EP 3310462B1
Authority
EP
European Patent Office
Prior art keywords
scr catalyst
catalyst
support
coating
scr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16736947.9A
Other languages
German (de)
English (en)
Other versions
EP3310462A1 (fr
Inventor
Joseph Fedeyko
Jing Lu
Hai-Ying Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of EP3310462A1 publication Critical patent/EP3310462A1/fr
Application granted granted Critical
Publication of EP3310462B1 publication Critical patent/EP3310462B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/36Steaming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/18Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to catalysts for selective catalytic reduction (SCR), articles containing SCR catalysts and methods of using such articles to reduce nitrogen oxides (NO x ).
  • SCR selective catalytic reduction
  • NO x nitrogen oxides
  • NOx nitrogen oxides
  • NO 2 nitrogen dioxide
  • the present invention relates to a method of converting nitrogen oxides in a gas, such as an exhaust gas of a vehicular lean-burn internal combustion engine, to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a catalyst comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst.
  • SCR Selective catalytic reduction
  • nitrogenous compounds such as ammonia or urea
  • SCR technology was first used in thermal power plants in Japan in the late 1970s, and has seen widespread application in Europe since the mid-1980s.
  • SCR systems were introduced for gas turbines in the 1990s and have been used more recently in coal-fired power plants.
  • SCR applications include plant and refinery heaters and boilers in the chemical processing industry, furnaces, coke ovens, municipal waste plants and incinerators.
  • NO x reduction systems based on SCR technology are being developed for a number of vehicular (mobile) applications in Europe, Japan, and the USA, e.g. for treating diesel exhaust gas.
  • reaction (1) 4NO + 4NH 3 + O 2 ⁇ 4N 2 + 6H 2 O (1)
  • reaction (2) Competing, non-selective reactions with oxygen can produce secondary emissions or may unproductively consume ammonia.
  • One such non-selective reaction is the complete oxidation of ammonia, shown in reaction (2). 4NH 3 + 5O 2 ⁇ 4NO + 6H 2 O (2)
  • reaction (3) 4NH 3 + 5NO + 3O 2 ⁇ 4N 2 O + 6H 2 O (3)
  • a catalyst system includes an upstream zone effective to catalyze the conversion of a mixture of NO x and NH 3 to N 2 , and a downstream zone effective for the conversion of ammonia to N 2 in the presence or absence of NOx.
  • a method for preparing a catalyst system includes: first coating one end of a substrate along at least 5% of its length with an undercoat washcoat layer containing a material composition effective to catalyze the removal of ammonia; second coating with an overcoat layer containing a material composition effective to catalyze the conversion of a mixture of NO x and NH 3 to N 2 .
  • a method for treating the exhaust gas stream includes injecting ammonia or an ammonia precursor into an exhaust gas stream of a vehicle, passing the engine exhaust gas stream containing NOx and NH 3 through the upstream zone of a catalyst system to remove NOx and then passing the exhaust gas stream through the downstream zone of the catalyst system to remove NH 3 , as well as other oxidizable species such as hydrocarbons and CO.
  • a catalyst system includes a first zone to abate nitrogen oxides by selective catalytic reduction, a second zone to oxidize ammonia and a third zone to oxidize carbon monoxide and hydrocarbons. Methods for treating the exhaust gas stream are also provided. Methods of making and using such catalysts and catalytic articles are also described.
  • EP2692437 describes an ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N 2 O or NOx , and leakage of ammonia, by spray supplying urea water or the like to a selective catalytic reduction, in purification of nitrogen oxides discharged from a boiler or the like; and an exhaust gas purification apparatus and an exhaust gas purification method using the same.
  • an ammonia oxidation catalyst or the like for oxidizing and removing surplus ammonia, in selectively reducing nitrogen oxides by adding urea or ammonia and using a selective catalytic reduction (SCR) catalyst, into exhaust gas
  • the ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight,
  • US 2010/196221 describes an exhaust gas purification catalyst equipment, and a method of use thereof, formed by arranging a selective catalytic reduction type catalyst for purifying nitrogen oxides in exhaust gas exhausted from lean combustion engines using ammonia or urea as a reducing agent, it is provided with a selective catalytic reduction type catalyst, characterized in that said catalyst comprises a lower-layer catalyst layer (A) having an oxidative function for nitrogen monoxide (NO) in exhaust gas and an upper-layer catalyst layer (B) having an adsorbing function for ammonia on the surface of a monolithic structure type carrier (C), and that the lower-layer catalyst layer (A) comprises a noble metal component (i), an inorganic base material constituent (ii) and zeolite (iii), and the upper-layer catalyst layer (B) comprises substantially none of component (i); but the component (iii), in a flow path of exhaust gas, characterized in that a spraying means to supply an urea aqueous solution or an aqueous ammoni
  • the invention relates to a catalytic article comprising a substrate having an inlet and outlet and coated with a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; wherein the second coating at least partially overlaps the first coating, and wherein the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst, wherein the support with low ammonia storage is a siliceous support comprising a zeolite with silica-to-alumina ratio of ⁇ 100; and wherein the support with low ammonia storage is a support that stores less than 0.001 mmol NH 3 per m 3 of support.
  • the invention is a method of treating exhaust gas comprising NH 3 and NOx, the method comprising contacting an exhaust gas comprising ammonia with a catalytic article as hereinbefore defined.
  • ammonia slip means the amount of unreacted ammonia that passes through the SCR catalyst.
  • a support with low ammonia storage means a support that stores less than 0.001 mmol NH 3 per m 3 of support.
  • the support with low ammonia storage is preferably a molecular sieve or zeolite having a framework type selected from the group consisting of AEI, ANA, ATS, BEA, CDO, CFI, CHA, CON, DDR, ERI, FAU, FER, GON, IFR, IFW, IFY, IHW, IMF, IRN, IRY, ISV, ITE, ITG, ITN, ITR, ITW, IWR, IWS, IWV, IWW, JOZ, LTA, LTF, MEL, MEP, MFI, MRE, MSE, MTF, MTN, MTT, MTW, MVY, MWW, NON, NSI, RRO, RSN, RTE, RTH, RUT, RWR, SEW, SFE, SFF, SFG, SFH, SFN,
  • the molecular sieve or zeolite has a framework type selected from the group consisting of BEA, CDO, CON, FAU, MEL, MFI and MWW, even more preferably the framework type is selected from the group consisting of BEA and MFI.
  • calcine means heating the material in air or oxygen. This definition is consistent with the IUPAC definition of calcination.
  • IUPAC Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997 ). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8.
  • Calcination is performed to decompose a metal salt and promote the exchange of metal ions within the catalyst and also to adhere the catalyst to a substrate.
  • the temperatures used in calcination depend upon the components in the material to be calcined and generally are between about 300°C to about 900 °C for approximately 1 to 8 hours. In some cases, calcination can be performed up to a temperature of about 1200 °C. In applications involving the processes described herein, calcinations are generally performed at temperatures from about 400°C to about 700 °C for approximately 1 to 8 hours, preferably at temperatures from about 400°C to about 650 °C for approximately 1 to 4 hours.
  • the term "about” means approximately and refers to a range that is optionally ⁇ 25%, preferably ⁇ 10%, more preferably, ⁇ 5%, or most preferably ⁇ 1% of the value with which the term is associated.
  • N 2 selectivity means the per cent conversion of ammonia into nitrogen.
  • a catalyst article comprises a combination of platinum on a support with low ammonia storage and a first SCR catalyst.
  • the combination of platinum on a support with low ammonia storage and a first SCR catalyst is a blend of platinum on a support with low ammonia storage with a first SCR catalyst.
  • the support with low ammonia storage is a siliceous support, where the siliceous support comprises a zeolite with silica-to-alumina ratio of at least one of: ⁇ 100, ⁇ 200, ⁇ 250, ⁇ 300, ⁇ 400, ⁇ 500, ⁇ 750, and ⁇ 1000.
  • the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst, more preferably a Cu-SCR catalyst.
  • the ratio of the amount of first SCR catalyst to the amount of platinum on a support with low ammonia storage in the blend can be in the range of 3:1 to 300:1, inclusive, based on the weight of these components.
  • the ratio of the amount of first SCR catalyst to the amount of platinum on a support with low ammonia storage in the blend is in the range of 7:1 to 100:1, inclusive, based on the weight of these components.
  • the ratio of the amount of first SCR catalyst to the amount of platinum on a support with low ammonia storage in the blend is in the range of 10:1 to 50:1, inclusive, based on the weight of these components.
  • active component loading refers to the weight of the support of platinum + the weight of platinum + the weight of the first SCR catalyst in the blend.
  • Platinum can be present in the catalyst in an active component loading from about 0.01 to about 0.25 wt. %, inclusive.
  • platinum can be present in the catalyst in an active component loading from 0.04-0.2 wt. %, inclusive. More preferably, platinum can be present in the catalyst in an active component loading from 0.07-0.17 wt. %, inclusive. Most preferably, platinum can be present in the catalyst in an active component loading from 0.05-0.15 wt. %, inclusive.
  • the compositions can comprise two or three SCR catalysts.
  • the first SCR catalyst which is always present in the compositions, is present in a blend with Pt on a support with low ammonia storage.
  • the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst, more preferably a Cu-SCR catalyst.
  • the Cu-SCR catalyst comprises copper and a molecular sieve.
  • the Fe-SCR catalyst comprises iron and a molecular sieve. Molecular sieves are further described below.
  • the copper or iron can be located within the framework of the molecular sieve and/or in extra-framework (exchangeable) sites within the molecular sieve.
  • the second and third SCR catalysts can be the same or different.
  • the second and third SCR catalyst can be an oxide of a base metal, a molecular sieve, a metal exchanged molecular sieve or a mixture thereof.
  • the base metal can be selected from the group consisting of vanadium (V), molybdenum (Mo) and tungsten (W), chromium (Cr), cerium (Ce), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), and copper (Cu), and mixtures thereof.
  • compositions consisting of vanadium supported on a refractory metal oxide such as alumina, silica, zirconia, titania, ceria and combinations thereof are well known and widely used commercially in mobile applications. Typical compositions are described in U.S. Pat. Nos. 4,010,238 and 4.085,193 . Compositions used commercially, especially in mobile applications, comprise TiO 2 on to which WO 3 and V 2 O 5 have been dispersed at concentrations ranging from 5 to 20 wt. % and 0.5 to 6 wt. %, respectively.
  • the second SCR catalyst can comprise promoted-Ce-Zr or promoted-MnO 2 . These catalysts may contain other inorganic materials such as SiO 2 and ZrO 2 acting as binders and promoters.
  • the catalyst article can further comprise at least one base metal promoter.
  • a “promoter” is understood to mean a substance that when added into a catalyst, increases the activity of the catalyst.
  • the base metal promoter can be in the form of a metal, an oxide of the metal, or a mixture thereof.
  • the at least one base metal catalyst promoter may be selected from neodymium (Nd), barium (Ba), cerium (Ce), lanthanum (La), praseodymium (Pr), magnesium (Mg), calcium (Ca), manganese (Mn), zinc (Zn), niobium (Nb), zirconium (Zr), molybdenum (Mo), tin (Sn), tantalum (Ta), strontium (Sr) and oxides thereof.
  • the at least one base metal catalyst promoter can preferably be MnO 2 , Mn 2 O 3 , Fe 2 O 3 , SnO 2 , CuO, CoO, CeO 2 and mixtures thereof.
  • the at least one base metal catalyst promoter may be added to the catalyst in the form of a salt in an aqueous solution, such as a nitrate or an acetate.
  • the at least one base metal catalyst promoter and at least one base metal catalyst, e.g., copper, may be impregnated from an aqueous solution onto the oxide support material(s), may be added into a washcoat comprising the oxide support material(s), or may be impregnated into a support previously coated with the washcoat.
  • the SCR catalyst can comprise a molecular sieve or a metal exchanged molecular sieve.
  • molecular sieve is understood to mean a metastable material containing pores of a precise and uniform size that may be used as an adsorbent for gases or liquids. The molecules which are small enough to pass through the pores are adsorbed while the larger molecules are not.
  • the molecular sieve can be a zeolitic molecular sieve, a non-zeolitic molecular sieve, or a mixture thereof.
  • a zeolitic molecular sieve is a microporous aluminosilicate having any one of the framework structures listed in the Database of Zeolite Structures published by the International Zeolite Association (IZA).
  • the framework structures include, but are not limited to those of the CHA, FAU, BEA, MFI, MOR types.
  • Non-limiting examples of zeolites having these structures include chabazite, faujasite, zeolite Y, ultrastable zeolite Y, beta zeolite, mordenite, silicalite, zeolite X, and ZSM-5.
  • Aluminosilicate zeolites can have a silica/alumina molar ratio (SAR) defined as SiO 2 /Al 2 O 3 ) from at least about 5, preferably at least about 20, with useful ranges of from about 10 to 200.
  • SAR silica/alumina molar ratio
  • any of the SCR catalysts can comprise a small pore, a medium pore or a large pore molecular sieve, or combinations thereof.
  • a "small pore molecular sieve” is a molecular sieve containing a maximum ring size of 8 tetrahedral atoms.
  • a “medium pore molecular sieve” is a molecular sieve containing a maximum ring size of 10 tetrahedral atoms.
  • a "large pore molecular sieve” is a molecular sieve having a maximum ring size of 12 tetrahedral atoms.
  • the second and/or third SCR catalysts can comprise a small pore molecular sieve selected from the group consisting of aluminosilicate molecular sieves, metal-substituted aluminosilicate molecular sieves, aluminophosphate (AlPO) molecular sieves, metal-substituted aluminophosphate (MeAlPO) molecular sieves, silico-aluminophosphate (SAPO) molecular sieves, and metal substituted silico-aluminophosphate (MeAPSO) molecular sieves, and mixtures thereof.
  • aluminosilicate molecular sieves selected from the group consisting of aluminosilicate molecular sieves, metal-substituted aluminosilicate molecular sieves, aluminophosphate (AlPO) molecular sieves, metal-substituted aluminophosphate
  • any of the SCR catalysts can comprise a small pore molecular sieve selected from the group of Framework Types consisting of ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SFW, SIV, THO, TSC, UEI, UFI, VNI, YUG, and ZON, and mixtures and/or intergrowths thereof.
  • the small pore molecular sieve is selected from the group of Framework Types consisting of CHA, LEV, AEI, AFX, ERI, SFW, KFI, DDR and ITE.
  • any of the SCR catalysts can comprise a medium pore molecular sieve selected from the group of Framework Types consisting of AEL, AFO, AHT, BOF, BOZ, CGF, CGS, CHI, DAC, EUO, FER, HEU, IMF, ITH, ITR, JRY, JSR, JST, LAU, LOV, MEL, MFI, MFS, MRE, MTT, MVY, MWW, NAB, NAT, NES, OBW, PAR, PCR, PON, PUN, RRO, RSN, SFF, SFG, STF, STI, STT, STW, SVR, SZR, TER, TON, TUN, UOS, VSV, WEI, and WEN, and mixtures and/or intergrowths thereof.
  • the medium pore molecular sieve selected from the group of Framework Types consisting of MFI, FER and STT.
  • any of the SCR catalysts can comprise a large pore molecular sieve selected from the group of Framework Types consisting of AFI, AFR, AFS, AFY, ASV, ATO, ATS, BEA, BEC, BOG, BPH, BSV, CAN, CON, CZP, DFO, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITG, IWR, IWS, IWV, IWW, JSR, LTF, LTL, MAZ, MEI, MOR, MOZ, MSE, MTW, NPO, OFF, OKO, OSI, RON, RWY, SAF, SAO, SBE, SBS, SBT, SEW, SFE, SFO, SFS, SFV, SOF, SOS, STO, SSF, SSY, USI, UWY, and VET, and mixtures and/or intergrowths thereof.
  • the large pore molecular sieve is selected from the group of
  • a metal exchanged molecular sieve can have at least one metal from one of the groups VB, VIB, VIIB, VIIIB, IB, or IIB of the periodic table deposited onto extra-framework sites on the external surface or within the channels, cavities, or cages of the molecular sieves.
  • Metals may be in one of several forms, including, but not limited to, zero valent metal atoms or clusters, isolated cations, mononuclear or polynuclear oxycations, or as extended metal oxides.
  • the metals can be iron, copper, and mixtures or combinations thereof.
  • the metal can be combined with the zeolite using a mixture or a solution of the metal precursor in a suitable solvent.
  • metal precursor means any compound or complex that can be dispersed on the zeolite to give a catalytically-active metal component.
  • the solvent is water due to both economics and environmental aspects of using other solvents.
  • suitable complexes or compounds include, but are not limited to, anhydrous and hydrated copper sulfate, copper nitrate, copper acetate, copper acetylacetonate, copper oxide, copper hydroxide, and salts of copper ammines (e.g. [Cu(NH 3 ) 4 ] 2+ ).
  • the molecular sieve can be added to the solution of the metal component to form a suspension, which is then allowed to react so that the metal component is distributed on the zeolite.
  • the metal can be distributed in the pore channels as well as on the outer surface of the molecular sieve.
  • the metal can be distributed in ionic form or as a metal oxide.
  • copper may be distributed as copper (II) ions, copper (I) ions, or as copper oxide.
  • the molecular sieve containing the metal can be separated from the liquid phase of the suspension, washed, and dried. The resulting metal-containing molecular sieve can then be calcined to fix the metal in the molecular sieve.
  • the second and third catalysts comprise a Cu-SCR, and Fe-SCR, vanadium, promoted Ce-Zr or promoted MnO 2 .
  • a metal exchanged molecular sieve can contain in the range of about 0.10% and about 10% by weight of a group VB, VIB, VIIB, VIIIB, IB, or IIB metal located on extra framework sites on the external surface or within the channels, cavities, or cages of the molecular sieve.
  • the extra framework metal can be present in an amount of in the range of about 0.2% and about 5% by weight.
  • the metal exchanged molecular sieve can be a copper (Cu) supported small pore molecular sieve having from about 0.1 to about 20.0 wt. % copper of the total weight of the catalyst. More preferably copper is present from about 0.5 wt. % to about 15 wt. % of the total weight of the catalyst. Most preferably copper is present from about 1 wt. % to about 9 wt. % of the total weight of the catalyst.
  • Cu copper
  • the blend of platinum on a support with low ammonia storage with a first SCR catalyst can further comprise at least one of palladium (Pd), gold (Au) silver (Ag), ruthenium (Ru) or rhodium (Rh).
  • the substrate for the catalyst may be any material typically used for preparing automotive catalysts that comprises a flow-through or filter structure, such as a honeycomb structure, an extruded support, a metallic substrate, or a SCRF.
  • the substrate has a plurality of fine, parallel gas flow passages extending from an inlet to an outlet face of the substrate, such that passages are open to fluid flow.
  • Such monolithic carriers may contain up to about 109 or more flow passages (or "cells”) per square centimeter of cross section (700 or more flow passages (or "cells”) per square inch of cross section), although far fewer may be used.
  • the carrier may have from about about 1 to 93, more usually from about 16 to 93, cells per square centimeter (7 to 600, more usually from about 100 to 600, cells per square inch (“cpsi”)).
  • the passages which are essentially straight paths from their fluid inlet to their fluid outlet, are defined by walls onto which the SCR catalyst is coated as a "washcoat" so that the gases flowing through the passages contact the catalytic material.
  • the flow passages of the monolithic substrate are thin-walled channels which can be of any suitable cross-sectional shape such as trapezoidal, rectangular, square, triangular, sinusoidal, hexagonal, oval, circular, etc.
  • the invention is not limited to a particular substrate type, material, or geometry.
  • Ceramic substrates may be made of any suitable refractory material, such as cordierite, cordierite-a alumina, ⁇ -alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica magnesia, zirconium silicate, sillimanite, magnesium silicates, zircon, petalite, aluminosilicates and mixtures thereof.
  • suitable refractory material such as cordierite, cordierite-a alumina, ⁇ -alumina, silicon carbide, silicon nitride, zirconia, mullite, spodumene, alumina-silica magnesia, zirconium silicate, sillimanite, magnesium silicates, zircon, petalite, aluminosilicates and mixtures thereof.
  • Wall flow substrates may also be formed of ceramic fiber composite materials, such as those formed from cordierite and silicon carbide. Such materials are able to withstand the environment, particularly high temperatures, encountered in treating the exhaust streams.
  • the substrates can be a high porosity substrate.
  • high porosity substrate refers to a substrate having a porosity of between about 40% and about 80%.
  • the high porosity substrate can have a porosity preferably of at least about 45%, more preferably of at least about 50%.
  • the high porosity substrate can have a porosity preferably of less than about 75%, more preferably of less than about 70%.
  • porosity refers to the total porosity, preferably as measured with mercury porosimetry.
  • the substrate can be cordierite, a high porosity cordierite, a metallic substrate, an extruded SCR, a filter or an SCRF.
  • a washcoat comprising a blend of platinum on a support with low NH 3 storage and a first SCR catalyst, where the first SCR catalyst is a Cu-SCR catalyst or an Fe-SCR catalyst, can be applied to the inlet side of the substrate using a method known in the art. After application of the washcoat, the composition can be dried and calcined. The second SCR catalyst can be applied in a separate washcoat to a calcined article having the bottom layer, as described above. After the second washcoat is applied, it can be dried and calcined as performed for the first layer.
  • the substrate with the platinum containing layer can be dried and calcined at a temperature within the range of 300°C to 1200°C, preferably 400°C to 700°C and more preferably 450°C to 650°C.
  • the calcination is preferably done under dry conditions, but it can also be performed hydrothermally, i.e., in the presence of some moisture content. Calcination can be performed for a time of between about 30 minutes and about 4 hours, preferably between about 30 minutes and about 2 hours, more preferably between about 30 minutes and about 1 hour.
  • an exhaust system comprising (1) a catalytic article comprising a substrate; a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; an inlet and an outlet, where the first coating is positioned on the substrate, the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst and the second coating at least partially overlaps the first coating and (2) a means for converting NH 3 and NOx in the exhaust gas.
  • the exhaust system can have an ANR >1.0 for at least a portion of the operating time of the system.
  • the exhaust system can further comprise a third SCR catalyst that provides ⁇ 100% NOx conversion, where the third SCR catalyst is a Cu-zeolite only SCR catalyst and the third catalyst is placed an exhaust gas flow upstream of the catalyst article comprising a substrate; a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; an inlet and an outlet, where the first coating is positioned on the substrate, the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst and the second coating at least partially overlaps the first coating.
  • the second SCR catalyst can comprise promoted-Ce-Zr or promoted-MnO 2 .
  • an exhaust system comprising (1) a catalytic article comprising a substrate, a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; an inlet and an outlet, where the first coating is positioned on the substrate, the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst and the second coating overlaps at least 20% of the length of the first coating along a axis from the inlet to the outlet and (2) a means for converting NH 3 and NOx in the exhaust gas.
  • the exhaust system can have an ANR >1.0 for at least a portion of the operating time of the system.
  • the exhaust system can further comprise a third SCR catalyst that provides ⁇ 100% NOx conversion, where the third SCR catalyst is a Cu-zeolite only SCR catalyst and the third catalyst is placed an exhaust gas flow upstream of the catalyst article comprising a substrate; a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; an inlet and an outlet, where the first coating is positioned on the substrate, the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst and the second coating at least partially overlaps the first coating.
  • the second SCR catalyst can comprise promoted-Ce-Zr or promoted-MnO 2 .
  • a method of improving the N 2 yield from ammonia in an exhaust gas at a temperature from about 200 °C to about 350 °C comprises contacting an exhaust gas comprising ammonia with a catalytic article comprising a substrate; a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; an inlet and an outlet, where the first coating is positioned on the substrate, the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst and the second coating at least partially overlaps the first coating.
  • the improvement in yield can be about 10% to about 20% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and supported platinum is present in a second layer and gas comprising NH 3 and NO passes through the first layer before passing through the second layer.
  • a method of reducing N 2 O formation from NH 3 and NOx in an exhaust gas comprises contacting an exhaust gas comprising ammonia with a catalytic article comprising a substrate; a first coating comprising a blend of platinum on a support with low ammonia storage with a first SCR catalyst; a second coating comprising a second SCR catalyst; an inlet and an outlet, where the first coating is positioned on the substrate, the first SCR catalyst is a Cu-SCR catalyst or a Fe-SCR catalyst and the second coating at least partially overlaps the first coating.
  • the reduction in N 2 O formation can be about 20% to about 80% compared to a catalyst comprising a comparable formulation in which the first SCR catalyst is present as a first layer and the supported platinum is present in a second layer and gas comprising NH 3 and NO passes through the first layer before passing through the second layer.
  • Another aspect of the invention relates to a method of treating exhaust gas comprising NH 3 and NO x with a catalytic article according to claim 1.
  • a bi-layer formulation having a Pt on alumina bottom layer and a SCR top layer was used as a comparative example.
  • a bottom layer was applied to a ceramic substrate using a washcoat comprising 0.3wt. % Pt on alumina.
  • the washcoat was applied to a ceramic substrate, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Pt on the article was 106 g/m 3 (3 g/ft 3 ).
  • a top layer was applied to the substrate coated with the bottom layer using a second washcoat comprising a Cu-CHA, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Cu-CHA in the top layer was 0.110 g/cm 3 (1.8 g/in 3 ).
  • This material is Example 1.
  • An aged sample was prepared by aging a sample of Example 1 for 50 hours at 620 °C in an atmosphere containing 10% H 2 O.
  • a bi-layer formulation having a Pt on alumina bottom layer and a SCR top layer was used as a comparative example.
  • a bottom layer was applied to a ceramic substrate using a washcoat comprising 0.17 wt. % Pt on a blend of alumina and bare zeolite.
  • the washcoat was applied to a ceramic substrate, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Pt on the article was 106 g/m 3 (3 g/ft 3 ).
  • a top layer was applied to the substrate coated with the bottom layer using a second washcoat comprising a Cu-CHA, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Cu-CHA in the top layer was 0.165 g/cm 3 (2.7 g/in 3 ).
  • This material is Example 2.
  • An aged sample was prepared by aging a sample of Example 2 for 50 hours at 620 °C in an atmosphere containing 10% H 2 O.
  • the washcoat was applied to a ceramic substrate, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Pt, the zeolite and the Cu-CHA on the article was 106 g/m 3 (3 g/ft 3 ), 0.011 g/cm 3 (0.18 g/in 3 ), and 0.110 g/cm 3 (1.8 g/in 3 ), respectively.
  • a top layer was applied to the substrate coated with the bottom layer using a second washcoat comprising a Cu-CHA, and then the washcoat was pulled down the substrate to a distance of about 50% of the length of the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Cu-CHA in the top layer was 0.110 g/cm 3 (1.8 g/in 3 ).
  • the article was cut at an appropriate location along the length of the article to form a new smaller article having 100% of the blend bottom layer covered by the Cu-CHA top layer.
  • This material is Example 3.
  • An aged sample was prepared by aging a sample of Example 3 for 50 hours at 620 °C in an atmosphere containing 10% H 2 O.
  • the washcoat was applied to a ceramic substrate, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Pt, the zeolite and the Cu-CHA on the article was 106 g/m 3 (3 g/ft 3 ), 0.0055 g/cm 3 (0.09 g/in 3 ), and 0.055 g/cm 3 (0.9 g/in 3 ), respectively.
  • a top layer was applied to the substrate coated with the bottom layer using a second washcoat comprising a Cu-CHA, and then the washcoat was pulled down the substrate to a distance of about 50% of the length of the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Cu-CHA in the top layer was 0.110 g/cm 3 (1.8 g/in 3 ).
  • the article was cut at an appropriate location along the length of the article to form a new smaller article having 100% of the blend bottom layer covered by the Cu-CHA top layer.
  • This material is Example 4.
  • An aged sample was prepared by aging a sample of Example 4 for 50 hours at 620 °C in an atmosphere containing 10% H 2 O.
  • the washcoat was applied to a ceramic substrate, and then the washcoat was pulled down the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Pt, the zeolite and the Cu-CHA on the article was 106 g/m 3 (3 g/ft 3 ), 0.00275 g/cm 3 (0.045 g/in 3 ), and 0.055 g/cm 3 (0.9 g/in 3 ), respectively.
  • a top layer was applied to the substrate coated with the bottom layer using a second washcoat comprising a Cu-CHA, and then the washcoat was pulled down the substrate to a distance of about 50% of the length of the substrate using a vacuum.
  • the article was dried and calcined at about 500 °C for about 1 hour.
  • the loading of Cu-CHA in the top layer was 0.110 g/cm 3 (1.8 g/in 3 ).
  • the article was cut at an appropriate location along the length of the article to form a new smaller article having 100% of the blend bottom layer covered by the Cu-CHA top layer.
  • This material is Example 5.
  • An aged sample was prepared by aging a sample of Example 5 for 50 hours at 620 °C in an atmosphere containing 10% H 2 O.
  • Examples 3, 4 and 5 significantly reduced N 2 O formation, with up to an 85% N 2 O reduction between 200 and 300 °C. NO conversion and N 2 yield is also significantly higher in Examples 3, 4 and 5.
  • SCR reaction on Cu is promoted and unselective NH 3 + NO reaction on Pt (with the primary product being N 2 O) and parasitic NH 3 oxidation on Pt (which reduces available NH 3 for SCR reaction on Cu) are minimized.
  • Examples 2, 4 and 5 contained the same amount of Cu-SCR catalysts, N 2 O formation was much lower and NO conversion was much higher in Example 4 and 5.
  • ANRs a mmonia to N O r atio
  • Increasing the ANR from 1.0 to 1.4 improves NO conversion in all catalysts, suggesting that an ANR > 1 is desirable for optimal NOx removal efficiency.
  • At a high ANR of 1.4 i.e. not enough NO to react with all the NH 3 resulting in NH 3 slip from the Cu-SCR component
  • all three catalysts testes showed almost no NH 3 slip at 250 °C or above. This is expected because of the presence of Pt in all three catalysts that is highly active for NH 3 oxidation.
  • Examples 3 and 5 demonstrate that the Cu-catalyzed SCR reaction is promoted and the Pt-catalyzed unselective NO + NH 3 reaction is minimized when both NOx and NH 3 are present in the feed.
  • Figure 3 shows the NO + NH 3 reaction performance on systems with a Cu-SCR catalyst with various volume in the upstream and Examples 1 and 5 in downstream of the Cu-SCR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (12)

  1. Article catalytique comprenant un substrat présentant une entrée et une sortie et revêtu d'un premier revêtement, comprenant un mélange de platine sur un support doté d'un faible stockage d'ammoniac et d'un premier catalyseur SCR ; un deuxième revêtement comprenant un deuxième catalyseur SCR ; le deuxième revêtement recouvrant au moins partiellement le premier revêtement et le premier catalyseur SCR étant un catalyseur Cu-SCR ou un catalyseur Fe-SCR, le support doté d'un faible stockage d'ammoniac étant un support silicié comprenant une zéolithe dotée d'un rapport silice-à-alumine ≥100 ; et
    le support doté d'un faible stockage d'ammoniac étant un support qui stocke moins que 0,001 mmole de NH3 par m3 de support.
  2. Article catalytique selon la revendication 1, le deuxième revêtement recouvrant complètement le premier revêtement.
  3. Article catalytique selon la revendication 1, le support doté d'un faible stockage d'ammoniac étant un support silicié comprenant une zéolithe dotée d'un rapport silice-à-alumine ≥ 1000.
  4. Catalyseur selon la revendication 1, le mélange comprenant du platine sur un support doté d'un faible stockage d'ammoniac comprenant en outre au moins l'un parmi le palladium (Pd), l'or (Au), l'argent (Ag), le ruthénium (Ru) ou le rhodium (Rh).
  5. Article catalytique selon la revendication 1, le premier catalyseur SCR comprenant du Cu ou du Fe chargé sur un tamis moléculaire choisi dans le groupe de types de structure constitué par ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG, ZON, BEA, MFI et FER et des mélanges et/ou des intercroissances correspondants.
  6. Article catalytique selon la revendication 1, le deuxième catalyseur SCR étant un métal de base supporté sur un tamis moléculaire, le métal de base étant choisi dans le groupe constitué par le vanadium (V), le molybdène (Mo) et le tungstène (W), le chrome (Cr), le cérium (Ce), le manganèse (Mn), le fer (Fe), le cobalt (Co), le nickel (Ni) et le cuivre (Cu) et les mélanges correspondants.
  7. Article catalytique selon la revendication 1, le substrat étant de la cordiérite, une cordiérite à porosité élevée, un substrat métallique, un nid d'abeille extrudé ou un filtre.
  8. Article catalytique selon la revendication 1, le deuxième catalyseur SCR étant situé sur le côté entrée du catalyseur comprenant le mélange de platine sur un support doté d'un faible stockage d'ammoniac avec le premier catalyseur SCR.
  9. Article catalytique selon la revendication 1, le deuxième catalyseur SCR étant situé sur le côté sortie du catalyseur comprenant le mélange de platine sur un support doté d'un faible stockage d'ammoniac avec le premier catalyseur SCR.
  10. Article catalytique selon la revendication 1, le deuxième catalyseur SCR comprenant du Ce-Zr dopé ou du MnO2 dopé.
  11. Article catalytique selon l'une quelconque des revendications 1, 3, 4, 5, 6, 7, 8, 9 et 10, le deuxième revêtement recouvrant au moins 20% de la longueur du premier revêtement le long d'un axe allant de l'entrée vers la sortie.
  12. Procédé de traitement d'un gaz d'échappement comprenant de l'ammoniac et du NOx, le procédé comprenant la mise en contact d'un gaz d'échappement comprenant de l'ammoniac avec un article catalytique selon la revendication 1.
EP16736947.9A 2015-06-18 2016-06-16 Catalyseur de réduction catalytique sélective insensible au surdosage de nh3 Active EP3310462B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562181479P 2015-06-18 2015-06-18
PCT/US2016/037740 WO2016205441A1 (fr) 2015-06-18 2016-06-16 Catalyseur de réduction catalytique sélective insensible au surdosage de nh3

Publications (2)

Publication Number Publication Date
EP3310462A1 EP3310462A1 (fr) 2018-04-25
EP3310462B1 true EP3310462B1 (fr) 2019-07-31

Family

ID=56404284

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16736947.9A Active EP3310462B1 (fr) 2015-06-18 2016-06-16 Catalyseur de réduction catalytique sélective insensible au surdosage de nh3

Country Status (9)

Country Link
US (3) US9878287B2 (fr)
EP (1) EP3310462B1 (fr)
JP (1) JP6830451B2 (fr)
KR (1) KR102527239B1 (fr)
CN (1) CN107847862B (fr)
DE (1) DE102016111000A1 (fr)
GB (1) GB2541500B (fr)
RU (1) RU2715539C2 (fr)
WO (1) WO2016205441A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198569A1 (fr) * 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Catalyseur de blocage d'ammoniac pour moteurs à combustion interne stoechiométrique

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878287B2 (en) * 2015-06-18 2018-01-30 Johnson Matthey Public Limited Company NH3 overdosing-tolerant SCR catalyst
KR20180102196A (ko) * 2016-02-03 2018-09-14 바스프 코포레이션 내연기관용 다층 촉매 조성물
EP3600624A1 (fr) * 2017-03-29 2020-02-05 Johnson Matthey Public Limited Company Asc avec un métal du groupe du platine dans de multiples couches
RU2762284C2 (ru) * 2017-03-30 2021-12-17 Джонсон Мэтти Паблик Лимитед Компани МЕТАЛЛ ПЛАТИНОВОЙ ГРУППЫ И НЕБЛАГОРОДНЫЙ МЕТАЛЛ НА МОЛЕКУЛЯРНОМ СИТЕ ДЛЯ СИСТЕМ С ВПЛОТНУЮ СОЕДИНЕННЫМИ ПАССТИВНЫМ АДСОРБЕРОМ NOх, КАТАЛИЗАТОРОМ ПРЕДОТВРАЩЕНИЯ ПРОСКОКА АММИАКА И КАТАЛИЗАТОРОМ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ
WO2018183623A1 (fr) * 2017-03-30 2018-10-04 Johnson Matthey Public Limited Company Asc/dec avec génération d'exothermie concentrée à l'arrière
US10926221B2 (en) * 2017-03-30 2021-02-23 Johnson Matthey Public Limited Company Single brick SCR/ASC/PNA/DOC close-coupled catalyst
GB201705158D0 (en) * 2017-03-30 2017-05-17 Johnson Matthey Plc Catalyst article for use in a emission treatment system
CN109833907B (zh) * 2017-11-29 2021-10-15 中国科学院大连化学物理研究所 一种具备储放氨性能的低温耐硫焦炉烟气脱硝催化剂
JP7213251B2 (ja) * 2017-12-13 2023-01-26 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー より高いn2選択性を有する改善されたnh3削減
GB2573391B (en) * 2018-03-14 2022-10-26 Johnson Matthey Plc Ammonia slip catalyst with in-situ Pt fixing
GB201805312D0 (en) 2018-03-29 2018-05-16 Johnson Matthey Plc Catalyst article for use in emission treatment system
US10953366B2 (en) * 2018-04-20 2021-03-23 GM Global Technology Operations LLC Nitrogen oxides and hydrocarbon storage catalyst and methods of using the same
US11549417B2 (en) * 2018-04-23 2023-01-10 Basf Corporation Selective catalytic reduction catalyst for the treatment of an exhaust gas of a diesel engine
CN109306886A (zh) * 2018-11-22 2019-02-05 江苏海事职业技术学院 一种海洋船舶内燃机循环燃烧系统
JP2023506375A (ja) * 2019-12-10 2023-02-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 選択性、活性及び耐毒性を改善するための区分化アンモニアスリップ触媒
CN110961144A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种具有cha/lev拓扑结构共生复合分子筛及其制备方法和scr应用
CN111001436A (zh) * 2019-12-14 2020-04-14 中触媒新材料股份有限公司 一种具有aei/kfi结构共生复合分子筛及其制备方法和scr应用
CN111001437A (zh) * 2019-12-14 2020-04-14 中触媒新材料股份有限公司 一种aei/afx结构共生复合分子筛及其制备方法和scr应用
CN110961146A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种具有cha/rth拓扑结构共生复合分子筛及其制备方法和scr应用
CN111013648A (zh) * 2019-12-14 2020-04-17 中触媒新材料股份有限公司 一种具有cha/kfi结构共生复合分子筛及其制备方法和scr应用
CN110961145A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种具有cha/afx结构共生复合分子筛及其制备方法和scr应用
CN110961147A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种aei/rth结构共生复合分子筛及其制备方法和scr应用
CN110961148A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种aei/lev结构共生复合分子筛及其制备方法和scr应用
US11187128B2 (en) * 2020-03-09 2021-11-30 Progress Rail Services Corporation After-treatment system for repower locomotives
US20220314207A9 (en) * 2020-03-31 2022-10-06 Massachusetts Institute Of Technology Catalytic compositions for the oxidation of substrates
CN115023285A (zh) * 2020-03-31 2022-09-06 庄信万丰股份有限公司 具有原位Pt固定的氨漏失催化剂
CN111203268B (zh) * 2020-04-21 2020-09-08 稀土催化创新研究院(东营)有限公司 一种低温高效氨氧化催化剂
JP7372302B2 (ja) * 2021-12-06 2023-10-31 株式会社キャタラー 排ガス浄化触媒装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523086B2 (fr) 1973-03-26 1980-06-20
US4085193A (en) 1973-12-12 1978-04-18 Mitsubishi Petrochemical Co. Ltd. Catalytic process for reducing nitrogen oxides to nitrogen
JP2614337B2 (ja) * 1989-11-30 1997-05-28 新日鐵化学株式会社 ベンジルビフェニルの製造方法
CN1025865C (zh) * 1990-12-24 1994-09-07 中国石油化工总公司石油化工科学研究院 含β沸石的重整催化剂
JPH05320074A (ja) * 1992-05-18 1993-12-03 Nippon Steel Chem Co Ltd 2,6−ジアルキルナフタレンの製造方法
JPH09253453A (ja) 1996-03-19 1997-09-30 Nissan Motor Co Ltd 排ガス浄化方法
JP2000262860A (ja) * 1999-03-16 2000-09-26 Mazda Motor Corp 排気ガス浄化装置
JP2001179095A (ja) * 1999-12-22 2001-07-03 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
CN1176748C (zh) * 2002-09-30 2004-11-24 厦门大学 分子筛为载体的合成柴油的催化剂
KR100765413B1 (ko) * 2005-07-06 2007-10-09 희성촉매 주식회사 암모니아 산화촉매 및 이를 이용한 슬립 암모니아 또는폐암모니아 처리장치
US7981834B2 (en) * 2006-03-16 2011-07-19 Ict Co., Ltd. Adsorbent for hydrocarbons, catalyst for exhaust gas purification and method for exhaust gas purification
CN100998941B (zh) * 2007-01-04 2012-09-05 华东理工大学 一种前置催化剂及其制备方法
DE502007003465D1 (de) * 2007-02-23 2010-05-27 Umicore Ag & Co Kg Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US8636959B2 (en) * 2007-05-09 2014-01-28 N.E. Chemcat Corporation Selective catalytic reduction type catalyst, and exhaust gas purification equipment and purifying process of exhaust gas using the same
JP5110954B2 (ja) * 2007-05-09 2012-12-26 エヌ・イーケムキャット株式会社 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
JP4886613B2 (ja) * 2007-06-22 2012-02-29 田中貴金属工業株式会社 窒素酸化物浄化触媒及びこれを用いた窒素酸化物浄化方法
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
CN102131582B (zh) * 2008-12-03 2013-11-13 第一稀元素化学工业株式会社 废气净化催化剂、使用其的废气净化装置和废气净化方法
KR101448734B1 (ko) * 2009-03-09 2014-10-08 현대자동차 주식회사 질소 산화물 저감 촉매 및 이를 이용한 배기 장치
US8293182B2 (en) * 2010-05-05 2012-10-23 Basf Corporation Integrated SCR and AMOx catalyst systems
US8722000B2 (en) * 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
WO2012132678A1 (fr) * 2011-03-31 2012-10-04 エヌ・イー ケムキャット株式会社 Catalyseur d'oxydation de l'ammoniac, dispositif de purification de gaz d'échappement l'utilisant et procédé de purification de gaz d'échappement
US8101146B2 (en) * 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
GB201221025D0 (en) * 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
CN103011192B (zh) * 2012-12-17 2014-10-08 中国海洋石油总公司 一种含分子筛的硅铝载体及其制备方法
MX2015011264A (es) * 2013-03-14 2016-04-28 Basf Corp Sistema de catalizadores para reduccion catalitica selectiva.
CN104549435B (zh) * 2013-10-12 2017-05-31 中国石油化工股份有限公司 一种稀土改性的zsm‑5分子筛催化剂及其制备方法和应用
JP5888312B2 (ja) * 2013-11-29 2016-03-22 トヨタ自動車株式会社 排ガス浄化用触媒
WO2016205509A1 (fr) * 2015-06-18 2016-12-22 Johnson Matthey Public Limited Company Catalyseur de conversion d'excès d'ammoniac à faible formation de n2o
US9878287B2 (en) * 2015-06-18 2018-01-30 Johnson Matthey Public Limited Company NH3 overdosing-tolerant SCR catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023198569A1 (fr) * 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Catalyseur de blocage d'ammoniac pour moteurs à combustion interne stoechiométrique

Also Published As

Publication number Publication date
EP3310462A1 (fr) 2018-04-25
GB2541500A (en) 2017-02-22
GB201610521D0 (en) 2016-08-03
JP6830451B2 (ja) 2021-02-17
CN107847862A (zh) 2018-03-27
GB2541500B (en) 2019-06-26
US10322372B2 (en) 2019-06-18
JP2018526194A (ja) 2018-09-13
KR102527239B1 (ko) 2023-05-02
US20190299160A1 (en) 2019-10-03
KR20180034400A (ko) 2018-04-04
US9878287B2 (en) 2018-01-30
WO2016205441A1 (fr) 2016-12-22
RU2018101694A3 (fr) 2019-07-24
DE102016111000A1 (de) 2016-12-22
US20160367937A1 (en) 2016-12-22
RU2018101694A (ru) 2019-07-19
CN107847862B (zh) 2020-12-18
US20180147530A1 (en) 2018-05-31
RU2715539C2 (ru) 2020-02-28

Similar Documents

Publication Publication Date Title
US10322372B2 (en) NH3 overdosing-tolerant SCR catalyst
US10807081B2 (en) Ammonia slip catalyst designed to be first in an SCR system
US10589261B2 (en) Exhaust system without a DOC having an ASC acting as a DOC in a system with an SCR catalyst before the ASC
US9789441B2 (en) Single or dual layer ammonia slip catalyst
US9993772B2 (en) Zoned exhaust system
KR20180063176A (ko) 연소 터빈용 구역화된 암모니아 슬립 촉매
EP3310479A1 (fr) Catalyseur de conversion d'excès d'ammoniac à faible formation de n2o
US20180111086A1 (en) Hydrocarbon injection through small pore cu-zeolite catalyst
Chen et al. NH 3 overdosing-tolerant SCR catalyst
BR112017027024B1 (pt) Artigo catalítico, e, métodos para melhorar o rendimento de n2 a partir de amônia e nox em um gás de escape e para tratar gás de escape

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181031

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 29/072 20060101ALI20181214BHEP

Ipc: F01N 3/20 20060101ALI20181214BHEP

Ipc: B01J 29/80 20060101ALI20181214BHEP

Ipc: F01N 3/28 20060101ALI20181214BHEP

Ipc: B01J 29/076 20060101ALI20181214BHEP

Ipc: B01J 29/44 20060101ALI20181214BHEP

Ipc: B01J 35/04 20060101ALI20181214BHEP

Ipc: B01J 23/89 20060101ALI20181214BHEP

Ipc: B01J 37/02 20060101ALI20181214BHEP

Ipc: B01J 29/068 20060101ALI20181214BHEP

Ipc: B01D 53/94 20060101AFI20181214BHEP

Ipc: B01J 29/76 20060101ALI20181214BHEP

Ipc: B01J 35/00 20060101ALI20181214BHEP

INTG Intention to grant announced

Effective date: 20190123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1160326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016017749

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1160326

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016017749

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 8