EP3302787A1 - Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau - Google Patents

Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau

Info

Publication number
EP3302787A1
EP3302787A1 EP16730287.6A EP16730287A EP3302787A1 EP 3302787 A1 EP3302787 A1 EP 3302787A1 EP 16730287 A EP16730287 A EP 16730287A EP 3302787 A1 EP3302787 A1 EP 3302787A1
Authority
EP
European Patent Office
Prior art keywords
lithium
solution
carried out
chloride
licl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16730287.6A
Other languages
German (de)
English (en)
Inventor
Malika Boualleg
Fabien Burdet
Morgan GOHIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Eramet SA
Original Assignee
IFP Energies Nouvelles IFPEN
Eramet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, Eramet SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP3302787A1 publication Critical patent/EP3302787A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/10Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • C01F7/141Aluminium oxide or hydroxide from alkali metal aluminates from aqueous aluminate solutions by neutralisation with an acidic agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/782Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen containing carbonate ions, e.g. dawsonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to the field of solid materials for the adsorption of lithium.
  • the present invention relates to a new process for the preparation of a crystallized and shaped solid material, preferably in extruded form, of the formula LiX x .2Al (OH) 3 , nH 2 O with n being between 0.01 and 10, x being equal to 1 when X is an anion chosen from chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion chosen from sulfate and carbonate anions, comprising a step a) of precipitation of boehmite under specific temperature and pH conditions, at least one shaping step, preferably by extrusion, said method also comprising a final hydrothermal treatment step, all of the process characteristics to increase the adsorption capacity of lithium and the adsorption kinetics of the materials obtained compared to the materials of the prior art when it is used in a lithium extraction process saline solutions.
  • the present invention also relates to a process for extracting lithium from saline solutions using said crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 O with n, x and X having the above definition prepared according to the new preparation method according to the invention.
  • Prior art LiX x .2AI (OH) 3 , nH 2 O with n, x and X having the above definition prepared according to the new preparation method according to the invention.
  • Lithium ions coexist with massive amounts of metals such as, for example, alkalis, alkaline earths, boron and sulphates, especially in saline solutions such as brines. Thus, they must be extracted economically and selectively from these salt solutions. Indeed, the chemical properties of lithium and alkali metals, preferably sodium (Na), and potassium (K) and alkaline earth metals, preferably magnesium (Mg), calcium (Ca) and strontium ( Sr), make it difficult to separate these elements.
  • the solid materials of formula LiCl 2 Al (OH) 3 , nH 2 0 with n being between 0.01 and 10 are known for their use in the phenomena of adsorption / desorption of lithium ions and in particular in the processes of lithium extraction from saline solutions. These unstable structures would allow the intercalation of lithium atoms in the structure and thus the extraction of lithium.
  • a solid aluminum trihydroxide AI (OH) 3 prepared or commercial, is contacted with a lithium precursor.
  • OH solid aluminum trihydroxide AI
  • An aluminum hydroxide (LiOH) or a lithium carbonate (Li 2 CO 3 ) can also be used.
  • US Pat. No. 6,280,693 describes a process for preparing a LiCl / Al (OH) 3 solid by adding an aqueous LiOH solution to a polycrystalline hydrated alumina to form LiOH / Al (OH) 3 , and thus create lithium sites active in the crystalline layers of alumina without altering its structure.
  • the conversion of LiOH / Al (OH) 3 to LiCl / Al (OH) 3 is then carried out by adding dilute hydrochloric acid.
  • the alumina pellets thus prepared are then used in a process for extracting lithium from brine at high temperature.
  • 6,280,693 uses the solid detailed above and comprises the following steps: a) Saturation of a bed of solid by a brine containing a lithium salt LiX, X being chosen from halides, nitrates, sulphates and bicarbonates, b) displacement of brine impregnated with concentrated NaX solution, c) elution of LiX salt captured by the solid by passage of an unsaturated solution of LiX,
  • steps a) to d) are then repeated at least once.
  • the patent RU 2,234,367 describes a process for the preparation of a solid of formula LiCl 2 Al (OH) 3 , nH 2 O comprising a step of mixing aluminum trichloride (AlCl 3 ) and lithium carbonate (Li 2 C0 3 ) in the presence of water at 40 ° C. The residue obtained is filtered and washed and then dried for 4 hours at 60 ° C. The solid thus obtained is not shaped.
  • the solid obtained is used for the extraction of lithium contained in saline solutions by contact with water in order to remove part of the lithium and then placed in contact with a saline solution containing lithium.
  • the static capacity thus obtained is between 6.0 and 8.0 mg of lithium per g of solid.
  • the CN12431 12 patent describes a process for the preparation of a solid of formula LiCI.2AI (OH) 3 , nH 2 O comprising a step of precipitation of aluminum hydroxide microcrystals AI (OH) 3 by contacting the AICI 3 and sodium hydroxide NaOH, then the contacting said microcrystals with a 6% solution of lithium chloride LiCl at 80 ° C for 2 hours followed by filtration, rinsing and drying to obtain LiCl 2 Al (OH) 3 powder , nH 2 0 with an unordered and amorphous structure.
  • a solution of a macromolecular polymer chosen from fluorinated resins, polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC), ethylene perchlorate and cellulose acetate butyrate (CAB) acting as binder is then mixed with LiCI.2Al (OH) 3 , nH 2 O powder to obtain a paste which is then shaped by granulation followed by drying in air.
  • An object of the present invention is to provide a solid material for the selective extraction of lithium from brine, said solid material being of good quality, without apparent defects and having good cohesion and good mechanical strength when it is put in contact with a brine solution or in water.
  • An object of the present invention is to provide a new process for preparing such a solid material.
  • Another object of the present invention is to provide a method of extracting lithium from saline solutions using said solid material.
  • Another object of the present invention is to provide a solid material for the implementation of a lithium extraction process of saline solutions, in which the solid material makes it possible to limit the generation of fine particles, in particular because the fine particles increase.
  • the pressure drop promotes the creation of preferential paths and increase the rate of renewal of the material during the passage of the brine through a bed of a material within a column.
  • Applicants have discovered a new process for preparing a crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with n being between 0.01 and 10, x being 1 when X is an anion chosen from chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion chosen from sulfate and carbonate anions, comprising a specific step combination and in particular that carrying out both the step a) of boehmite precipitation under specific temperature and pH conditions, the step of forming a paste, preferably by extrusion, after a drying step operating under specific conditions, the step of shaping being then followed by another drying step also operating under specific conditions, then to carry out a final hydrothermal treatment stage of the materials shaped makes it possible to obtain a crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with no apparent defect having both a good cohesion, a good mechanical strength of the material when
  • step a) of precipitation under the operating conditions of temperatures and pH as defined according to the invention makes it possible to obtain a boehmite precipitate composed of small crystallites.
  • the precipitate of boehmite obtained has a size, obtained by the Scherrer formula in X-ray diffraction according to the crystallographic directions [020] and [120], respectively between 0.5 and 10 nm and between 0.5 and 15 nm and preferably respectively between 0.5 to 2 nm and between 0.5 to 3 nm and very preferably respectively between 0.5 and 1.5 nm and between 0.5 and 2.5 nm.
  • Scherrer's formula is a formula used in X-ray diffraction on powders or polycrystalline samples which connects the width at half height of the diffraction peaks to the size of the crystallites. It is described in detail in the reference: Appl. Cryst. (1978). 1 1, 102-1. Scherrer after sixty years: A survey and some new results in the determination of crystallite size, J. I. Langford and A. J. C. Wilson.
  • the method according to the invention comprising a precipitation step a) as claimed thus makes it possible to obtain a crystallized solid final material of formula LiX x .2AI (OH) 3 , nH 2 0, with n being between 0, 01 and 10, x having the above definition, also poorly crystallized but having a lithium adsorption capacity and improved adsorption kinetics compared to materials of the prior art when it is used in a process of extraction of lithium from saline solutions.
  • material of formula LiX x .2AI (OH) 3 , nH 2 0 is preferably understood to mean a material comprising essentially or consisting of a crystalline phase of formula LiX x .2Al (OH) 3 , nH 2 0, n, x and X having the above definition.
  • the subject of the present invention is a process for preparing a crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with n being between 0.01 and 10, where x is equal to 1 when X is a anion selected from chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion selected from sulfate and carbonate anions, said process comprising at least the following steps:
  • a step of precipitating boehmite, in an aqueous medium comprising bringing into contact at least one basic precursor preferably selected from sodium aluminate, potassium aluminate, ammonia, hydroxide, sodium and potassium hydroxide; and at least one acidic precursor preferably selected from aluminum sulphate, aluminum chloride, aluminum nitrate, sulfuric acid, hydrochloric acid, and nitric acid, wherein at least one one of the basic or acid precursors comprises aluminum, to obtain a suspension of boehmite, said step a) being carried out at a temperature of between 5 and 35 ° C., and the amount of the basic precursor being chosen so to obtain a pH of end of precipitation in the reaction medium of between 7.5 and 9.5,
  • step b) a step of contacting the precipitate obtained in step b) with at least one lithium source
  • step c) a filtration step of the suspension obtained in step c) to obtain a paste
  • step e) a step of drying the paste obtained at the end of step d) at a temperature of between 20 and 80 ° C. for a duration of preferably between 1 h and 12 h,
  • step f) a step of drying the shaped material obtained at the end of step f) at a temperature of between 20 and 200 ° C., for a duration of preferably between 1 and 20 hours,
  • step h) a step of hydrothermal treatment of the dried shaped material obtained at the end of step g), at a temperature of between 50 and 200 ° C. and for a duration preferably of between 30 minutes and 12 hours.
  • An advantage of the preparation process according to the invention is that it makes it possible to obtain a crystallized solid material shaped, preferably in the form of extrudates, of the formula LiX x .2Al (OH) 3 , nH 2 O with n , x and X having the above definition, of good quality, without apparent defects, and having good cohesion and improved mechanical strength when it is brought into contact with a brine solution or a dilute solution and preferably in water.
  • Another advantage of the present invention is to provide a process for preparing a crystallized solid material shaped, preferably in extruded form, of the formula LiX x .2Al (OH) 3 , nH 2 0 with n, x and X having the above definition having a lithium adsorption capacity and adsorption kinetics improved over prior art materials when it is used in a saline lithium extraction process. .
  • the adsorption capacity of the aforementioned material is defined by the amount of lithium adsorbed for a given solution. It is calculated by those skilled in the art by integrating the amount of lithium fixed from a drilling curve also called leakage curve or saturation curve. The integration is carried out on the volume by the difference in lithium concentration between a solution after its loading on the aforementioned material and the theoretical concentration without loading. This amount of material can be related to the amount of material used to obtain a capacity in milligrams of lithium per gram of solid.
  • the kinetics of adsorption of the aforementioned material is measured by those skilled in the art by studying the shape of a drilling curve also called leakage curve or saturation curve.
  • This curve is obtained by means of a column filled with the adsorbent material to form a homogeneous bed, percolating a saline solution containing lithium and by measuring the lithium concentration at the outlet of the adsorbent bed as a function of the volume of the solution used for a given flow.
  • adsorption capacity improved over the materials of the prior art is meant an adsorption capacity greater than 4.5 mg Li / g dry solid material.
  • dry solid material is meant a solid material dried at 200 ° C. for 12 hours.
  • shape is meant that the material is solid and has sufficient cohesion when the solid is brought into contact with a brine solution so that it substantially does not lose its physical integrity, i.e. to say that it retains substantially its formatting. More specifically, a solid formed in the sense of the invention covers a solid maintaining its cohesion in the lithium extraction conditions defined in the examples.
  • the cohesion as well as the mechanical strength of the shaped material, preferably by extrusion, prepared according to the invention are tested during the production of the drilling curves also called leak curves or saturation curves.
  • a solid exhibiting good mechanical strength does not produce fine particles and makes it possible to operate the column without observation of clogging.
  • a solid having poor mechanical strength produces fine particles which induce clogging of the column.
  • the cohesion as well as the mechanical strength of the shaped material, preferably by extrusion, prepared according to the invention are also tested by means of an accelerated aging protocol on a stirring table, either in a brine or in the water.
  • the stirring table is animated by a horizontal unidirectional movement of amplitude 4 cm at a speed of 190 movements per minute.
  • the shaped solids are stirred for a total of 168 hours.
  • the solid mixture shaped-brine or water is sieved using a mesh grid 315 ⁇ . Then the shaped solids remaining on the sieve are washed with the medium used during the stirring.
  • the liquid fraction thus obtained containing fine solid particles (diameter less than 315 ⁇ ) in suspension, is filtered using a Buchner equipped with a filter paper whose pores have a dimension of 0.45 ⁇ . The cake formed by agglomeration of the fine particles is washed with deionized water.
  • the solid residue thus obtained is dried in an oven at 50 ° C. until the mass stabilizes.
  • the ratio of the solid residue mass to the initial shaped solid mass is then calculated, giving access to a percent destruction of the shaped solids.
  • the percentage of destruction of the materials prepared according to the invention makes it possible to assess the cohesion of said materials.
  • Good cohesion is obtained in particular for materials whose percentage of destruction is less than 60%, and preferably less than 50%, when they are brought into contact with a solution of brine or any other dilute aqueous solution and especially water.
  • the materials prepared according to the invention also have an improved mechanical strength compared to the materials of the prior art.
  • improved mechanical strength is meant that the materials prepared according to the invention have a percentage of destruction, when they are brought into contact with a solution of brine or any other dilute aqueous solution and in particular water less than 30% and preferably less than 20%.
  • Another advantage of the preparation process according to the invention is that it makes it possible to obtain a crystallized solid material shaped, preferably in the form of extrudates, of the formula LiX x .2Al (OH) 3 , nH 2 O with n, x and X having the above definition having no or few cracks which could cause harmful swelling to the cohesion and mechanical strength of the material when it is brought into contact with a brine solution or a dilute solution and preferably in water.
  • the subject of the present invention is also a process for extracting lithium from saline solutions using said shaped crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with n being between 0.01 and 10, x being equal to 1 when X is an anion chosen from chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion chosen from sulfate and carbonate anions, prepared according to the new preparation method according to 'invention.
  • An advantage of the extraction method according to the invention is to allow the selective extraction of lithium from a saline solution and thus obtain a high purification factor compared to the initial saline solution, calculated as the X / Li ratio which is equal to the molar ratio of X / Li concentrations in the initial saline solution divided by the molar ratio of X / Li concentrations in the final solution, X being selected from sodium (Na), potassium (K) , magnesium (Mg), calcium (Ca), boron (B), sulfur (S) and strontium (Sr).
  • the present invention also relates to a crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with n being between 0.01 and 10, x being equal to 1 when X is an anion chosen from anions chloride, hydroxide and nitrate, and x being equal to 0.5 when X is an anion chosen from sulphate and carbonate anions, preferably in the form of extrudates, obtainable according to a method of the invention.
  • the present invention also relates to a lithium extraction device of saline solution (s).
  • the device according to the invention thus implements the extraction method according to the invention.
  • the process comprises a step a) of precipitation of boehmite, in an aqueous reaction medium, said step comprising contacting at least one basic precursor preferably selected from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide; and at least one acid precursor preferably selected from aluminum sulphate, aluminum trichloride, aluminum nitrate, sulfuric acid, acid hydrochloric acid, and nitric acid, wherein at least one of the basic precursors or acid comprises aluminum, to obtain a suspension of boehmite, said step a) being carried out at a temperature between 5 and 35 ° C, and the amount of the basic precursor being chosen so as to obtain a pH of end of precipitation in the reaction medium of between 7.5 and 9.5.
  • at least one basic precursor preferably selected from sodium aluminate, potassium aluminate, ammonia, sodium hydroxide and potassium hydroxide
  • at least one acid precursor preferably selected from aluminum sulphate, aluminum
  • the mixture in the aqueous reaction medium of at least one basic precursor and at least one acidic precursor requires either that at least the basic precursor or the acidic precursor comprises aluminum, or that the two precursors basic and acidic include aluminum.
  • the basic precursor is sodium hydroxide (NaOH).
  • the acidic precursor is aluminum trichloride (AlCl 3 ).
  • the basic precursor (s) and acid (s) are added in said first precipitation step a) in aqueous solutions.
  • the aqueous reaction medium is water.
  • said step a) is carried out with stirring.
  • said boehmite precipitation step a) is carried out at a temperature between 5 and 30 ° C, and preferably between 10 and 30 ° C and very preferably between 10 and 25 ° C, and the amount of the basic precursor being chosen so as to obtain a pH of the end of precipitation in the reaction medium of between 7.5 and 9 and preferably between 7.7 and 8.8.
  • the precipitation step a) is carried out for a period of between 10 minutes and 5 hours, preferably between 15 minutes and 2 hours.
  • Said step a) of precipitation makes it possible to obtain a suspension of precipitated boehmite or aluminum oxyhydroxide (AIOOH).
  • step a) of precipitation under the operating conditions of temperatures and pH as defined makes it possible to obtain a boehmite precipitate having small crystallites.
  • small crystallites is meant a precipitate of boehmite composed of crystallites whose size, obtained by the Scherrer formula in X-ray diffraction according to the crystallographic directions [020] and [120], is respectively between 0.5 and 10 nm and between 0.5 and 15 nm and preferably respectively between 0.5 to 2 nm and between 0.5 to 3 nm and very preferably respectively between 0.5 and 1.5 nm and between 0.5 and 1.5 nm respectively. and 2.5 nm.
  • the process comprises a step b) of washing and filtration of the boehmite precipitate obtained at the end of step a).
  • said washing step is a washing step with water.
  • the process comprises a step c) of contacting the boehmite precipitate obtained in step b) with at least one lithium source.
  • the lithium source (s) may be any compound comprising the lithium element and capable of releasing this element in aqueous solution in reactive form.
  • the source (s) of lithium is (are) chosen from among the lithium salts and preferably from lithium chloride (LiCl), lithium hydroxide (LiOH), nitrate of lithium Lithium (LiNO 3 ), lithium sulphate (Li 2 SO 4 ) and lithium carbonate (Li 2 CO 3 ), taken alone or as a mixture.
  • the lithium source is lithium chloride (LiCl).
  • the boehmite precipitate obtained in step b) and at least one lithium source are mixed in the presence of water to obtain a suspension in step c).
  • said mixing step c) is carried out with vigorous stirring.
  • said contacting step c) is carried out at a temperature of between 20 and 95 ° C and preferably between 50 and 95 ° C, and preferably between 70 and 95 ° C for a duration of between 15 and 95 ° C. minutes and 12 hours and preferably between 30 minutes and 5 hours.
  • the suspension obtained at the end of step c) undergoes a d) filtration step to obtain a paste.
  • the paste obtained at the end of step d) is dried in a drying step e), preferably at a temperature of between 20 and 80 ° C., for a duration of preferably between 1 h and 12 h.
  • said drying step is carried out, preferably in an oven, at a temperature between 20 and 60 ° C and very preferably between 30 and 50 ° C for a period of between 1 h and 10 h .
  • the operating conditions of said drying step e) make it possible to obtain a dried pulp with a loss on ignition (PAF) of between 45 and 75% and preferably between 50 and 70%.
  • PAF loss on ignition
  • the loss on ignition obtained allows the shaping, preferably by extrusion, of the dried paste under good conditions and obtaining shaped materials, preferably in the form of extruded, resistant and without apparent defects, ie without crack.
  • a portion of the paste obtained is removed and placed in an oven for 6 hours at 200 ° C.
  • the PAF is obtained by difference between the mass of the sample before and after passage in the oven.
  • said dried paste obtained at the end of the drying step e) undergoes a f) shaping step.
  • said shaping step f) is carried out according to the methods known to those skilled in the art, such as for example by extrusion, by pelletization, by the method of the coagulation in drop (oil-drop), by granulation turntable.
  • said shaping step f) is carried out by extrusion.
  • said step f) is carried out by direct extrusion or by extrusion-mixing.
  • step e) direct shaping of the dried dough resulting from step e) is meant a step in which said dried dough does not undergo intermediate steps between the drying step e) and its introduction into the extruder and into the extruder. in particular no mixing step.
  • drying-extrusion step is understood to mean a step in which the dried pulp obtained at the end of the drying step e) undergoes, in a first kneading step, in the presence or absence of at least one binder or precursor compound. binder, then the paste is then subjected to an extrusion step.
  • Said e) shaping-extrusion shaping step is advantageously carried out in a manner known to those skilled in the art.
  • said dried paste obtained at the end of the drying step e), and optionally at least said binder or precursor of binder, in the case where they are present, are mixed, preferably at one time , in a mixer.
  • the kneader is advantageously chosen from batch kneaders, preferably with a cam or Z-arm, or with the aid of a twin-screw mixer-mixer. The mixing conditions are adjusted in a manner known to those skilled in the art and aim to obtain a homogeneous and extrudable paste.
  • the extrudability of the dough may advantageously be adjusted with the addition of water and / or acid in solution, in order to obtain a paste suitable for performing step e) extrusion shaping.
  • a neutralization step is generally carried out.
  • said shaping step f) can advantageously be implemented directly after the drying step e).
  • step f) of direct shaping of the dried paste is carried out in the absence of a binder chosen from inorganic binders, such as, for example, hydraulic binders or inorganic binders which may be generated in the conditions of said step e) by adding precursors of inorganic binders, and organic binders, such as for example paraffins or polymers.
  • inorganic binders such as, for example, hydraulic binders or inorganic binders which may be generated in the conditions of said step e) by adding precursors of inorganic binders, and organic binders, such as for example paraffins or polymers.
  • said dried paste preferably undergoes no intermediate step between said drying step e) and said extrusion shaping step f), and preferably no mixing step and more preferably no acid / basic mixing step.
  • said forming step f) according to the first embodiment is carried out without addition of acid or base to the dried pulp introduced in said step f).
  • Said step f) of shaping by direct extrusion is advantageously carried out in a manner known to those skilled in the art.
  • the dried paste resulting from the drying step e) advantageously passes through a die, using, for example, a piston or a continuous twin-screw or single-screw extruder.
  • the diameter of the die of the extruder is advantageously variable and is between 0.5 and 5 mm, preferably between 0.5 and 3 mm and preferably between 0.5 and 2 mm.
  • the shape of the die, and therefore the shape of the material obtained in extruded form is advantageously cylindrical, for example of circular cross-section, trilobal, quadrilobed or multilobed.
  • said shaping step f) may advantageously be carried out by kneading-extrusion in the presence of at least one binder chosen from organic or inorganic binders and preferably without addition of acid or base to the dried pulp introduced in said step f).
  • the kneading step is preferably carried out without addition of acid or base.
  • no step of acidification or neutralization of the dried paste is implemented in the step e) of shaping-extrusion forming according to the invention.
  • the paste then advantageously passes through a die, using, for example, a piston or a continuous twin-screw or single-screw extruder.
  • the diameter of the die of the extruder is advantageously variable and is between 0.5 and 5 mm, preferably between 0.5 and 3 mm and preferably between 0.5 and 2 mm.
  • the shape of the die, and therefore the shape of the material obtained in extruded form is advantageously cylindrical, for example with a trilobal, quadrilobed or multilobed circular cross section.
  • Said binder (s) organic (s) that can be used in said step d) shaping are advantageously selected (s) from paraffins, and polymers, taken alone or in mixture.
  • said at least one organic binder (s) is chosen from polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), an aqueous dispersion of a mixture of paraffin waxes and of polyethylene, for example
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • aqueous dispersion of a mixture of paraffin waxes and of polyethylene for example
  • Cerfobol R75 polysaccharides, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose and carboxymethylcellulose and taken alone or as a mixture, preferably from polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and an aqueous dispersion of a mixture of paraffin waxes and polyethylene
  • Cerfobol R75 polyvinylpyrrolidone
  • PVP polyvinyl alcohol
  • PVA polyvinyl alcohol
  • a very preferred organic binder is polyvinylpyrrolidone (PVP).
  • Cerfobol R75 comprises 28.4% dry paraffinic organic mass diluted in an aqueous phase.
  • the proportion of said one or more organic binder (s) added in said shaping step e) is advantageously between 0.5 and 20% by weight, preferably between 0.5 and 15% by weight. preferably between 1 and 13% by weight, relative to the total mass of dry pulp to be shaped.
  • step d) facilitates the extrusion shaping of step e) of the process according to the invention.
  • step e) also makes it possible to obtain a crystallized solid material in the form of extrudates with improved stirring resistance in contact with the brine.
  • said inorganic binder (s) used in said forming step e) are advantageously chosen from silicic binders, clay-type binders and inorganic binders which can be generated in the conditions of said step e) by adding precursors of inorganic binders.
  • said inorganic binder (s) used in said shaping step e) are advantageously chosen from silicic binders.
  • the silicic binders are advantageously chosen from precipitated silica and silica derived from by-products such as fly ash such as, for example, silico-aluminous or silico-calcic particles, silicic acid, sodium metasilicate and silica fumes.
  • Colloidal silica for example in the form of a stabilized suspension, such as for example commercial products such as Ludox® or Klebosol® may also be used.
  • the silicic binder is in amorphous or crystalline form.
  • the silica is used in powder form or in colloidal form.
  • the proportion of said one or more inorganic binder (s) added in said shaping step (d) is advantageously between 0.5 and 20 by weight, preferably between 0.5 and 15% by weight, preferably between 1 and 13% by weight, relative to the total mass of dry pulp to be shaped.
  • step e facilitates its extrusion shaping.
  • step e) also makes it possible to obtain a shaped crystallized solid material, preferably in the form of extrudates, exhibiting improved stirring resistance in contact with the brine.
  • step e) of setting form of the dried paste is advantageously carried out in the presence of a binder formulation comprising and preferably consisting of at least one solid precursor of alumina and at least one acid in solution in proportions such that the molar ratio acid / Al is between 0.01 and 1, 2.
  • step f) of shaping, of a solid precursor of alumina and of an acid in solution allows the in situ generation of a mineral binder resulting from the reaction of the precursor of alumina and of the acid introduced during said shaping step.
  • the solid precursor of alumina and the acid in solution must be introduced in said step f) in the proportions as described.
  • the generation of said inorganic binder resulting from the reaction of the solid precursor of alumina and of the introduced acid requires the use of a solid precursor of alumina capable of dispersing predominantly or of dissolving predominantly in the acid solution employed.
  • the solid precursor of alumina is advantageously chosen from aluminum oxides, aluminum hydroxides and aluminum oxyhydroxides that are soluble or dispersible in the phosphoric acid solution, preferably from aluminum hydroxides and oxyhydroxides. 'aluminum.
  • said solid alumina precursor is an aluminum oxyhydroxide and more preferably said solid alumina precursor is boehmite or pseudo-boehmite.
  • Said solid precursor of alumina is advantageously in the form of a powder consisting of solid particles having a median diameter, determined by laser diffraction granulometry (Mastersizer granulometer Malvern), between 9 and 80 ⁇ , preferably between 10 and 60 ⁇ and preferably between 15 and 45 ⁇ .
  • the particles of the solid precursor of alumina are advantageously constituted by agglomerates of elementary units, called crystallites, whose dimensions are advantageously between 2 and 150 nm, preferably between 4 and 150 nm and preferably between 4 and 100 nm. determined by transmission electron microscopy (TEM).
  • TEM transmission electron microscopy
  • the proportion of the solid precursor of alumina added in step f) is between 0.5 and 50% by weight relative to the mass of dry paste to be shaped, preferably between 2 and 30% by weight. mass, and preferably between 3 and 25% by weight.
  • the acid is chosen from phosphoric acid, hydrochloric acid, nitric acid, acetic acid and citric acid, alone or as a mixture.
  • the acid is phosphoric acid.
  • Phosphoric acid is also called orthophosphoric acid.
  • the role of the acid solution is to promote the formation of an amorphous phase of inorganic binder resulting from the reaction with the solid precursor of alumina.
  • the particles of the solid precursor of alumina become with the action of the acid and the mechanical energy provided during the shaping step f), an amorphous phase of inorganic binder.
  • the acid or acids in solution is (are) introduced in such proportions that the acid / Al molar ratio is between 0.01 and 1.2, and preferably between 0.03 and 1. .
  • the introduced acid is phosphoric acid, it is introduced in solution in proportions such that the molar ratio P / Al is between 0.01 and 1, 2, preferably between 0.3 and 1, 0.
  • P is derived from the introduced phosphoric acid and Al is derived from the solid precursor of alumina.
  • the specific P / Al molar ratio as claimed corresponds to a proportion of phosphoric acid such that the ratio of the mass of acid introduced onto the mass of introduced alumina solid precursor is between 30 and 225% by weight, of preferably between 59 and 170% by weight and preferably.
  • the use of an acid / Al molar ratio of between 0.01 and 1.2, characteristic of a high acid ratio dissolution, in the shaping step (d) makes it possible at the same time to form the amorphous phase of the inorganic binder resulting from the reaction with the solid precursor of alumina, but also to facilitate the shaping by extrusion and to increase the cohesion and mechanical strength of the extrudates obtained according to this embodiment.
  • the shaped material and preferably the extrudates obtained at the end of step d) undergoes (ssen) a step g) of drying at a temperature of between 20 and 200 ° C. during a preferably between 1 hour and 20 hours, to obtain the crystalline solid material of formula LiX x .2AI (OH) 3 , nH 2 0 shaped, preferably in the form of extrudates.
  • said drying step g) is carried out at a temperature between 20 and 100 ° C, preferably between 20 and 80 ° C and very preferably between 20 and 60 ° C, preferably for a period of time. preferably between 1 and 18 hours, preferably between 5 and 14 hours and preferably between 8 and 14 hours.
  • Said drying step g) is advantageously carried out according to the techniques known to those skilled in the art and preferably in an oven.
  • the dried shaped material and preferably the extrudates obtained at the end of step g) is (are) subjected to a hydrothermal treatment step at a temperature of between 50 and 200 ° C and for a period of preferably between 30 min and 12 hours.
  • said step h) is carried out at a temperature between 70 and 200 ° C, preferably between 70 and 180 ° C, and very preferably between 80 and 150 ° C, for example for a period of between 30 minutes and 120 hours.
  • Said hydrothermal treatment step h) is advantageously carried out according to a technique known to those skilled in the art.
  • said step h) is carried out in an autoclave, under autogenous pressure and under a saturated water atmosphere.
  • said step h) is carried out by introducing a liquid at the bottom of the autoclave, said liquid being chosen from water, alone or as a mixture with at least one acid, a base or a lithium salt.
  • the shaped and dried material, and preferably the extrudates obtained at the end of step g) are not in contact with the liquid at the bottom of the autoclave.
  • the acid is advantageously chosen from nitric acid, hydrochloric acid, sulfuric acid and carboxylic acid.
  • the base is preferably selected from lithium hydroxide, sodium hydroxide, potassium hydroxide and ammonia.
  • the lithium salt is advantageously chosen from lithium chloride and lithium carbonate.
  • said step h) is carried out in the presence of a humid atmosphere comprising a water content of between 20 and 100% by weight, and preferably between 50 and 100% by weight, and preferably between 80 and 100% by weight. % by mass relative to the total mass of the atmosphere in the autoclave.
  • said step h) can be carried out in a climate drying oven, in the presence of a humid air stream containing between 20 and 100% by weight of water, preferably between 50 and 100% by weight, and preferably between 80 and 100% water mass, or in an oven operating under a moist air flow containing between 20 and 100% by weight of water, preferably between 50 and 100% by weight and preferably between 80 and 100% by weight. according to the methods known to those skilled in the art.
  • the hydrothermal treatment step h) in a controlled atmosphere makes it possible to obtain a crystalline solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with n being between 0.01 and 10, where x is equal to 1 when X is an anion chosen from chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion chosen from sulphate and carbonate anions which are preferably shaped in the form of extrudates, with good strength and good mechanical strength when it is placed in contact with a brine or a dilute solution and preferably water.
  • the material, preferably shaped in the form of extrudates, obtained is then advantageously recovered and may optionally be washed.
  • Said shaped material and preferably the extrudates obtained at the end of step h) can then optionally be subjected to a drying step i), said drying step preferably operating at a temperature of a temperature of between 15 and 50 ° C. for a duration of preferably between 1 hour and 12 hours to obtain the crystalline solid material of formula LiX x .2Al (OH) 3 , nH 2 O with n being between 0.01 and 10 where x is 1 when X is an anion selected from chloride, hydroxide and nitrate anions, and x is 0.5 when X is an anion selected from the formed sulfate and carbonate anions.
  • Said drying step i) is advantageously carried out according to the techniques known to those skilled in the art, and preferably in an oven.
  • the method according to the present invention therefore makes it possible to obtain a crystalline solid material of formula LiX x .2AI (OH) 3 , nH 2 O with n being between 0.01 and 10, preferably between 0.1 and 5. and most preferably between 0.1 and 1, where x is 1 when X is an anion selected from chloride, hydroxide and nitrate anions, and x is 0.5 when X is an anion selected from sulfate anions and carbonate, preferably in the form of section extrusions (larger dimension of the cross-section) or diameter of between 0.2 and 5 mm, preferably between 0.3 and 4 mm, preferably between 0.3 and 3 mm. mm, very preferably between 0.3 and 2 mm and even more preferably between 0.3 and 1.8 mm.
  • the X-ray diffraction pattern of the material in the form of extrudates corresponds to a crystallized solid of formula LiX x .2AI (OH) 3 , nH 2 O according to JCPDS sheet No. 0031 -07-00, with n being between 0.01 and 10, preferably between 0.1 and 0.5, preferably between 0.1 and 5 and very preferably between 0.1 and 1, obtained according to the invention, shaped, advantageously in the form of extruded.
  • the preparation method according to the present invention thus makes it possible to obtain a crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0, n, x and X having the above definition shaped preferably in the form of extrudates, having both a low BET specific surface area, a good cohesion, and having no apparent defect and having good strength and good mechanical strength when it is placed in contact with a brine or a dilute solution and preferably in water.
  • the good properties of the material obtained result from the combined effect of shaping preferably by extrusion of a paste, in the absence of binder, directly, after a drying step operating under specific conditions, of the implementation. a drying step according to the shaping, also operating under specific conditions and also the implementation of a final hydrothermal treatment step operating preferably in an autoclave.
  • the shaped crystallized solid material preferably in the form of extrudates, thus obtained of formula LiX x .2AI (OH) 3 , nH 2 0 with n, x and X having the above definition, has a capacity of lithium adsorption as well as improved adsorption kinetics compared to the prior art materials when it is used in a lithium salt extraction process.
  • the materials obtained according to the invention have an improved adsorption capacity compared to the materials of the prior art greater than 4.5 mg Li / g of dry solid material, that is to say solid material dried at 200 ° C, preferably between 4.5 and 10 mg Li / g, preferably between 4.5 and 8 and very preferably between 4.5 and 7 mg Li / g dry solid material.
  • the subject of the present invention is also a process for extracting lithium from a saline solution using said crystalline solid material of formula LiX x .2AI (OH) 3 , nH 2 0 with n being between 0.01 and 10 , x being equal to 1 when X is an anion chosen from chloride, hydroxide and nitrate anions, and x being equal to 0.5 when X is an anion chosen from sulfate and carbonate anions, prepared according to the invention.
  • Said saline solution used in the extraction process according to the invention advantageously comprises a lithium concentration of between 0.001 mol / L and 0.5 mol / L, preferably between 0.02 mol / L and 0.3 mol / L. .
  • Said saline solution also contains other species, such as, for example, the species chosen from the following list: Na, K, Rb, Cs, Mg, Ca, Sr, Ba, F, Cl, Br, I, SO 4 , CO 3, N0 3, and HC0 3.
  • Said saline solution may advantageously be saturated with salts or not.
  • Said saline solution may be any natural saline solution, concentrated or resulting from a lithium extraction or transformation process.
  • said saline solution used in the extraction process according to the invention may advantageously be chosen from brine from salt lakes or from geothermal sources, brines subjected to evaporation to obtain brines concentrated in lithium, water of sea, effluents from cathode production plants, or production of lithium chloride or hydroxide and the effluents of the lithium extraction process from minerals.
  • the lithium extraction process according to the invention is preferably a selective extraction process of lithium. Indeed, it allows the separation of lithium from alkali metals, preferably sodium (Na), and potassium (K) and alkaline earth metals, preferably magnesium (Mg), calcium (Ca) and strontium ( Sr), present in a massive amount in the saline solutions treated in said extraction process.
  • alkali metals preferably sodium (Na), and potassium (K)
  • alkaline earth metals preferably magnesium (Mg), calcium (Ca) and strontium ( Sr)
  • the lithium extraction process according to the invention also allows the selective separation of lithium from other compounds such as boron and sulphates.
  • the lithium extraction process according to the invention is advantageously carried out in a unit comprising at least one column, said column or columns comprising at least one bed of said crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0, where n, x and X are as defined above, formed and prepared according to the preparation method of the invention.
  • said lithium extraction method according to the invention is implemented in a unit comprising at least two columns, and preferably between two and three columns, comprising at least one bed of crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0, where n, x and X are as defined above.
  • a lithium desorption step carried out by passing water or an aqueous solution of lithium salt on said material to obtain an eluate comprising at least lithium.
  • the lithium extraction method according to the invention comprises a prior step of setting said material in a column.
  • said step of activating the crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 O, with n, x and X having the above definition, preferably shaped, and preferably in the form of is extruded, is carried out only once in the column of the synthesized material and shaped according to the preparation method according to the invention.
  • Said activation step makes it possible to activate the sites intended to selectively adsorb lithium.
  • said activation step is advantageously carried out by the ascending or descending passage, and preferably descending, of an activation solution chosen from water and a lithium salt solution having a concentration of between 0.001 mol / L and 0.1 mol / L, preferably between 0.001 mol / L and 0.05 mol / L and preferably between 0.01 and 0.04 mol / L.
  • the lithium salt used in solution in said activation step is chosen from lithium chloride (LiCl), lithium nitrate and lithium bromide.
  • the lithium salt used in solution in said activation step is lithium chloride (LiCl).
  • Said activation step is advantageously carried out at a temperature of between 0 ° C. and 90 ° C., and preferably between 10 ° C. and 60 ° C., and preferably between 10 ° C. and 30 ° C. with a residence time.
  • said activating solution in the column preferably between 0.03 and 10 h, and preferably between 0.06 and 1 h.
  • the amount of solution required for activation is advantageously between 1 and 30 column volumes, preferably between 2 and 20 column volumes.
  • the column volume or "Bed Volume” according to the English terminology is also called the volume occupied by the bed of the solid in the column or BV according to the terminology specific to the technical field known to those skilled in the art.
  • Said crystallized activated solid material may optionally undergo at the end of the activation step a washing step with a washing solution and preferably a solution of lithium chloride (LiCl).
  • Said step of loading said adsorption-activated material is advantageously carried out by ascending or descending, and preferably ascending, saline solution treated in the extraction process according to the invention, on said activated material.
  • said loading step is advantageously carried out at a temperature of between 0 ° C. and 90 ° C., and preferably between 10 ° C. and 70 ° C., with a residence time of said solution, preferably of said treated salt solution, in the column preferably between 0.03 and 10 h, and preferably between 0.06 and 1 h.
  • the amount of solution necessary to saturate said material depends on the adsorption capacity of said material and the lithium concentration of the saline solution.
  • the adsorption capacity of the materials according to the invention is greater than 4.5 mg Li / g of dry solid material, preferably between 4.5 and 10 mg Li / g, preferably between 4.5 and And most preferably between 4.5 and 7 mg Li / g dry solid material.
  • the first column is advantageously saturated with lithium during said charging step.
  • the second column receiving the output stream of the first column, is advantageously charged until a lithium leak not exceeding 10% of the lithium concentration of the inlet stream is obtained, preferably 5%, thus making it possible to maximize the recovery yield of lithium.
  • the third column already saturated with lithium, is devoted to the lithium washing and then desorbing steps described below. after, while loading the other two columns.
  • the first fraction of the output stream of said adsorption loading step corresponds to the elimination of the impregnant resulting from the activation step of the solid material.
  • This fraction can be considered as an effluent or recycled, and preferably recycled as an input stream of the desorption step.
  • the entire output stream of said adsorption loading step hereinafter referred to as raffinate, which does not No chemical treatment is desirably and preferably returned to the original salt solution deposit.
  • the saline solution impregnates said activated material.
  • the saline solution impregnating the activated material is then washed in at least one washing step by passing a washing solution on said material.
  • Said step (s) of washing the saline solution impregnating said material is (are) advantageously carried out (s) by upward or downward passage of a washing solution on said material, and preferably downward.
  • said washing solution is selected from water and an aqueous solution of sodium salt and preferably sodium chloride (NaCl), optionally comprising a lithium salt and preferably lithium chloride (LiCl), said solution advantageously having a concentration of sodium salt and preferably sodium chloride (NaCl), greater than 0.5 mol / l, preferably of between 2 mol / l and saturation and a concentration of lithium salt and preferably in lithium chloride (LiCl), between 0 mol / L and 2 mol / L.
  • NaCl sodium chloride
  • LiCl lithium chloride
  • said saline solution impregnating the activated material undergoes a final washing step by passing an aqueous washing solution of sodium chloride (NaCl) optionally comprising lithium chloride (LiCl), on said material.
  • NaCl sodium chloride
  • LiCl lithium chloride
  • Said washing step is advantageously carried out at a temperature of between 0 ° C. and 90 ° C., and preferably between 10 ° C. and 70 ° C., and with a residence time of said solution, preferably of said washing solution in the column between 0.03 and 10 h, and preferably between 0.06 and 1 h.
  • the amount of solution required for washing is between 0.1 and 10 column volumes, and preferably in the range 0.5 to 5 column volumes.
  • the outlet stream of said washing step is considered as an effluent or is advantageously recycled, and preferably recycled at the inlet of the loading stage or directly at the inlet of the second column in the case where said process of extraction of lithium according to the invention is implemented in a unit comprising at least two columns.
  • Said washing step allows the washing of the saline solution impregnated in said material during the step of loading said material by adsorption, while limiting the desorption of lithium.
  • said washing step not only makes it possible to eliminate the saline solution impregnated in said material during the step of loading said material by adsorption but also desorb elements such as boron, sulphates, alkalis other than lithium and sodium and alkaline earths.
  • the lithium desorption step is then carried out by passing water or an aqueous solution of lithium chloride (LiCl) on said material at the end of the washing step to obtain an eluate comprising at least lithium .
  • LiCl lithium chloride
  • said desorption step is carried out by ascending or descending, and preferably descending, passage of a desorption solution chosen from water and a solution of lithium chloride (LiCl) containing from 0.001 mol / l to 2 mol / L LiCl, and preferably from 0.01 mol / L to 1 mol / L.
  • a desorption solution chosen from water and a solution of lithium chloride (LiCl) containing from 0.001 mol / l to 2 mol / L LiCl, and preferably from 0.01 mol / L to 1 mol / L.
  • Said desorption step is advantageously carried out at a temperature between 0 ° C. and 90 ° C., and preferably between 10 ° C. and 70 ° C., with a residence time of said desorption solution in the column, preferably between 0 ° C. , 03 and 10 h, and preferably between 0.06 and 1 h.
  • the amount of lithium chloride solution (LiCl) required for the desorption is advantageously between 0.01 and 10 column volumes, and preferably between 0.05 and 5 column volumes.
  • the output stream of said lithium desorption step generates the final product of the process, called the eluate.
  • the eluate is advantageously recovered between 0 and 4 column volumes, and preferably between 0.2 and 3 column volumes. All the other fractions of the output stream of this step not constituting the final product called eluate, is considered as an effluent or is advantageously recycled, and preferably recycled at the inlet of the washing step or the loading step.
  • the eluate obtained at the end of the extraction process according to the invention is a solution containing mainly Li, Na and Cl elements as well as impurities preferably chosen from K, Mg, Ca, Sr, B or S0 4 .
  • the eluate is then advantageously concentrated and then purified to obtain a lithium salt of high purity.
  • Said lithium extraction method according to the invention allows the selective extraction of lithium from a saline solution and thus makes it possible to obtain a high purification factor with respect to the initial saline solution, calculated as being the ratio X / Li which is equal to the molar ratio of concentration X / Li in the initial saline solution divided by the molar ratio of concentration X / Li in the eluate, X being chosen from sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), boron (B), sulfur (S) and strontium (Sr).
  • the present invention also covers a lithium extraction device characterized in that it comprises a unit comprising at least one column, said column comprising at least one lining comprising the crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 where n is between 0.01 and 10, where x is 1 when X is an anion selected from chloride, hydroxide and nitrate anions, and x is 0.5 when X is an anion selected from sulfate and carbonate anions, as defined according to the present invention.
  • a lithium extraction device characterized in that it comprises a unit comprising at least one column, said column comprising at least one lining comprising the crystallized solid material of formula LiX x .2AI (OH) 3 , nH 2 0 where n is between 0.01 and 10, where x is 1 when X is an anion selected from chloride, hydroxide and nitrate anions, and x is 0.5 when X is an anion selected from sulf
  • the invention covers a device implementing the lithium extraction method according to the invention.
  • the device of the present invention comprises units or means implementing the various steps of the lithium extraction process according to the invention.
  • FIGS. 1, 3, 5 and 7 represent the X-ray diffraction patterns of the precipitated boehmites obtained respectively in Examples 1 and 2 according to the invention and 3 and 4 not in accordance with the invention.
  • FIG. 9 represents the saturation curve according to example 5, made from the extrudates obtained in examples 1 to 4.
  • Example 1 (according to the invention):
  • a solid material of formula LiCl 2 Al (OH) 3 , nH 2 O is prepared with n being between 0.01 and 1, according to a synthesis method according to the invention, in which the shaping step is implemented by direct extrusion, without binder.
  • a sample of the precipitate obtained is taken from the reaction medium.
  • the DRX (FIG. 1) of the precipitate shows that the precipitate obtained in example 1 is indeed a boehmite precipitate.
  • the boehmite precipitate obtained in Example 1 is poorly crystalline.
  • the size of the crystallites of the boehmite obtained is measured according to the method of
  • a solution containing 78.5 g of lithium chloride LiCl provided by Prolabo and 1326 ml of water which is added to the plumped cake is prepared. This reaction medium is stirred and heated at 80 ° C for 2 h.
  • the shaping step of the paste obtained is carried out directly after the drying step, without prior mixing step and in the absence of binder.
  • the paste obtained is shaped using a piston extruder (MTS) equipped with a cylindrical die 1 mm in diameter.
  • the extrudates obtained at the end of the shaping step are then dried in an oven at 40 ° C. for 12 hours.
  • extrudates obtained are then subjected to a hydrothermal treatment step in an autoclave comprising water. 10 g of extrudates are placed in a basket placed in a 500 ml autoclave. In the bottom of the autoclave are put 20 g of distilled water. The extrudates are not in contact with the liquid at the bottom of the autoclave.
  • the hydrothermal treatment is carried out at a temperature of 100 ° C. for 6 h under a saturated water atmosphere.
  • the elemental analysis shows a good Li / Al / Cl stoichiometry corresponding to the composition of a LiCI.2Al (OH) 3 , nH 2 O structure.
  • the extrudates obtained according to Example 1 have a good visual cohesion, have no or few cracks and have both a very good cohesion and a very good mechanical strength when they are in contact with a brine (percentage destruction less than 15% in the cohesion test) or water (percentage of destruction less than 20% in the cohesion test).
  • a solid material of formula LiCl 2 Al (OH) 3 , nH 2 O is prepared with n being between 0.01 and 1, according to a synthesis method according to the invention, in which the shaping step is implemented by direct extrusion, without binder. 1 / boehmite precipitation AIOOH
  • a sample of the precipitate obtained is taken from the reaction medium.
  • the DRX (FIG. 3) of the precipitate shows that the precipitate obtained in example 2 is indeed a boehmite precipitate.
  • the boehmite precipitate obtained in Example 2 is poorly crystallized.
  • the size of the crystallites of the boehmite obtained is measured according to the method of
  • a solution containing 78.5 g of lithium chloride LiCl provided by Prolabo and 1326 ml of water which is added to the plumped cake is prepared. This reaction medium is stirred and heated at 80 ° C for 2 h.
  • the shaping step of the paste obtained is carried out directly after the drying step, without prior mixing step and in the absence of binder.
  • the paste obtained is shaped using a piston extruder (MTS) equipped with a cylindrical die 1 mm in diameter.
  • MTS piston extruder
  • the extrudates obtained at the end of the shaping step are then dried in an oven at 40 ° C. for 12 hours.
  • extrudates obtained are then subjected to a hydrothermal treatment step in an autoclave comprising water. 10 g of extrudates are placed in a basket placed in a 500 ml autoclave. In the bottom of the autoclave are put 20 g of distilled water. The extrudates are not in contact with the liquid at the bottom of the autoclave.
  • the elemental analysis shows a good Li / Al / Cl stoichiometry corresponding to the composition of a LiCI.2Al (OH) 3 , nH 2 O structure.
  • the extrudates obtained according to Example 2 have a good visual cohesion, have no or only few cracks and have both a very good cohesion and a very good mechanical strength when they are in contact with a brine (percentage destruction less than 15% in the cohesion test) or water (percentage of destruction less than 20% in the cohesion test).
  • a solid material of formula LiCl 2 Al (OH) 3 , nH 2 O is prepared with n being between 0.01 and 1, according to a synthesis method not according to the invention, in that the pH of the end of precipitation of the synthesis step of boehmite is carried out at a pH greater than 9.5.
  • a sample of the precipitate obtained is taken from the reaction medium.
  • the DRX (FIG. 5) of the precipitate shows that the precipitate obtained in example 3 is indeed a boehmite precipitate.
  • the shaping step of the paste obtained is carried out directly after the drying step, without prior mixing step and in the absence of binder.
  • the paste obtained is shaped using a piston extruder (MTS) equipped with a cylindrical die 1 mm in diameter.
  • MTS piston extruder
  • the extrudates obtained at the end of the shaping step are then dried in an oven at 40 ° C. for 12 hours.
  • the extrudates obtained are then subjected to a hydrothermal treatment step in an autoclave comprising water. 10 g of extrudates are placed in a basket placed in a 500 ml autoclave. In the bottom of the autoclave are put 20 g of distilled water. The extrudates are not in contact with the liquid at the bottom of the autoclave.
  • the hydrothermal treatment is carried out at a temperature of 100 ° C. for 6 h under a saturated water atmosphere.
  • the extrudates obtained are also characterized by the following measurements: Elemental analysis shows a good Li / Al / Cl stoichiometry corresponding to the composition of a LiCI.2Al (OH) 3 , nH 2 O structure
  • the extrudates obtained according to Example 3 visually exhibit good cohesion, have no or only a few cracks and exhibit both very good cohesion and very good mechanical strength when they are brought into contact with a brine (percentage destruction less than 15% in the cohesion test) or water (percentage of destruction less than 20% in the cohesion test).
  • a solid material of formula LiCl 2 Al (OH) 3 , nH 2 O is prepared with n being between 0.01 and 1, according to a synthesis method not according to the invention, in which that the temperature of the precipitation step of boehmite is carried out at a temperature of 40 ° C.
  • a solution containing 78.5 g of lithium chloride LiCl provided by Prolabo and 1326 ml of water which is added to the plumped cake is prepared. This reaction medium is stirred and heated at 80 ° C for 2 h.
  • the shaping step of the paste obtained is carried out directly after the drying step, without prior mixing step and in the absence of binder.
  • the paste obtained is shaped using a piston extruder (MTS) equipped with a cylindrical die 1 mm in diameter.
  • MTS piston extruder
  • the extrudates obtained at the end of the shaping step are then dried in an oven at 40 ° C. for 12 hours.
  • extrudates obtained are then subjected to a hydrothermal treatment step in an autoclave comprising water. 10 g of extrudates are placed in a basket placed in a 500 ml autoclave. In the bottom of the autoclave are put 20 g of distilled water. The extrudates are not in contact with the liquid at the bottom of the autoclave.
  • the hydrothermal treatment is carried out at a temperature of 100 ° C. for 6 hours in an atmosphere saturated with water.
  • the elemental analysis shows a good Li / Al / Cl stoichiometry corresponding to the composition of a LiCI.2Al (OH) 3 , nH 2 O structure.
  • the extrudates obtained according to Example 4 have a good visual cohesion, have no or only few cracks and have both a very good cohesion and a very good mechanical strength when they are in contact with a brine (percentage destruction less than 15% in the cohesion test) or water (percentage of destruction less than 20% in the cohesion test).
  • Example 5 adsorption capacity and adsorption kinetics test.
  • a natural solution containing about 0.06 mol / L of lithium crosses the column by upward passage, at a rate of 6 BV / h, that is to say six times the volume occupied by the extruded bed in one hour.
  • the lithium concentration is measured at the outlet of the column as a function of the volume of solution passed.
  • FIG. 9 illustrates the saturation curves obtained for each of the extrudates obtained in the examples in accordance with the invention 1 and 2 and not in accordance with the invention 3 and 4.
  • the extrudates obtained according to Examples 1 and 2 according to the invention are compared with those obtained in Examples 3 and 4 obtained according to preparation methods not in accordance with the invention.
  • the extrusions of Examples 1 and 2 obtained according to the invention show a leakage of lithium arriving at larger past brine volumes. Their lithium adsorption capacities are respectively 5.8 and 6.2 mg (Li) / g (dry solid), compared to 1, 7 and 4.3 mg (Li) / g (dry solid) for the solids obtained according to Examples 3 and 4, according to preparation methods not in accordance with the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention se rapporte au domaine des matériaux solides pour l'adsorption du lithium. En particulier, la présente invention se rapporte à un nouveau procédé de préparation d'un matériau solide cristallisé et mis en forme, de préférence sous forme d'extrudés, de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, comprenant une étape a) de précipitation de boehmite dans des conditions de température et de pH spécifiques, au moins une étape de mise en forme, de préférence par extrusion, ledit procédé comprenant également une étape de traitement hydrothermal finale, le tout permettant d'augmenter la capacité d'adsorption du lithium ainsi que la cinétique d'adsorption des matériaux obtenus par rapport aux matériaux de l'art antérieur lorsque celui-ci est utilisé dans un procédé d'extraction du lithium de solutions salines.

Description

PROCEDE DE PREPARATION D'UN MATERIAU ADSORBANT COMPRENANT UNE ETAPE DE PRECIPITATION DE BOEHMITE OPERANT DANS DES CONDITIONS SPECIFIQUES ET PROCEDE D'EXTRACTION DE LITHIUM A PARTIR DE
SOLUTIONS SALINES UTILISANT LEDIT MATERIAU
Domaine technique
La présente invention se rapporte au domaine des matériaux solides pour l'adsorption du lithium. En particulier, la présente invention se rapporte à un nouveau procédé de préparation d'un matériau solide cristallisé et mis en forme, de préférence sous forme d'extrudés, de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, comprenant une étape a) de précipitation de boehmite dans des conditions de température et de pH spécifiques, au moins une étape de mise en forme, de préférence par extrusion, ledit procédé comprenant également une étape de traitement hydrothermal finale, l'ensemble des caractéristiques du procédé permettant d'augmenter la capacité d'adsorption du lithium ainsi que la cinétique d'adsorption des matériaux obtenus par rapport aux matériaux de l'art antérieur lorsque celui-ci est utilisé dans un procédé d'extraction du lithium de solutions salines.
La présente invention se rapporte également à un procédé d'extraction du lithium à partir de solutions salines utilisant ledit matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n, x et X ayant la définition précitée préparé selon le nouveau procédé de préparation selon l'invention. Art antérieur
Les ions lithium coexistent avec des quantités massives de métaux tels que par exemple les alcalins, les alcalino-terreux, le bore et les sulfates, en particulier dans des solutions salines telles que les saumures. Ainsi, ils doivent faire l'objet d'une extraction économique et sélective à partir de ces solutions salines. En effet, les propriétés chimiques du lithium et des métaux alcalins, de préférence le sodium (Na), et le potassium (K) et des alcalino-terreux, de préférence le magnésium (Mg), le calcium (Ca) et le strontium (Sr), rendent difficile la séparation de ces éléments.
Les matériaux solides de formule LiCI.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10 sont connus pour leur utilisation dans les phénomènes d'adsorption/désorption des ions lithium et en particulier dans les procédés d'extraction du lithium à partir de solutions salines. Ces structures peu stables permettraient l'intercalation d'atomes de lithium dans la structure et ainsi l'extraction du lithium.
Plusieurs protocoles opératoires conduisant à des solides susceptibles d'adsorber sélectivement le lithium ont été mis en évidence dans l'art antérieur. Dans tous les cas, un solide trihydroxyde d'aluminium AI(OH)3, préparé ou commercial, est mis en contact avec un précurseur de lithium. Trois principaux précurseurs sont utilisés : le plus utilisé est le chlorure de lithium (LiCI). Un hydroxyde d'aluminium (LiOH) ou un carbonate de lithium (Li2C03) peuvent également être mis en œuvre.
Le brevet US 6 280 693 décrit un procédé de préparation d'un solide LiCI/AI(OH)3 par ajout d'une solution aqueuse de LiOH à une alumine hydratée polycristalline pour former du LiOH/AI(OH)3, et ainsi créer des sites de lithium actifs dans les couches cristallines de l'alumine sans en altérer la structure. La transformation de LiOH/AI(OH)3 en LiCI/AI(OH)3 est ensuite réalisée par ajout d'acide chlorhydrique dilué. Les pastilles d'alumine ainsi préparées sont ensuite utilisées dans un procédé d'extraction du lithium à partir de saumures à haute température. Le procédé d'extraction du lithium décrit dans le brevet US 6 280 693 utilise le solide détaillé ci-dessus et comprend les étapes ci-après : a) Saturation d'un lit de solide par une saumure contenant un sel de lithium LiX, X étant choisi parmi les halogénures, les nitrates, les sulfates et les bicarbonates, b) Déplacement de la saumure imprégnée par une solution concentrée NaX, c) Élution du sel LiX capté par le solide par passage d'une solution non saturée de LiX,
d) Déplacement de l'imprégnant par une solution concentrée de NaX, les étapes a) à d) sont ensuite répétées au moins une fois.
Le brevet RU 2 234 367 décrit un procédé de préparation d'un solide de formule LiCI.2AI(OH)3,nH20 comprenant une étape de mélange de trichlorure d'aluminium (AICI3) et de carbonate de lithium (Li2C03) en présence d'eau à 40°C. Le résidu obtenu est filtré et lavé puis séché pendant 4 heures à 60°C. Le solide ainsi obtenu n'est pas mis en forme.
Le solide obtenu est utilisé pour l'extraction du lithium contenu dans des solutions salines par mise en contact avec de l'eau afin d'éliminer une partie du lithium puis par mise en contact avec une solution saline contenant du lithium. La capacité statique ainsi obtenue est comprise entre 6,0 et 8,0 mg de lithium par g de solide.
Le brevet CN12431 12 décrit un procédé de préparation d'un solide de formule LiCI.2AI(OH)3,nH20 comprenant une étape de précipitation de microcristaux d'hydroxyde d'aluminium AI(OH)3 par mise en contact d'AICI3 et d'hydroxyde de sodium NaOH, puis la mise en contact desdits microcristaux avec une solution à 6% de chlorure de lithium LiCI à 80°C pendant 2 heures suivie d'une filtration, d'un rinçage et d'un séchage pour obtenir une poudre de LiCI.2AI(OH)3,nH20 doté d'une structure non ordonnée et amorphe. Une solution d'un polymère macromoléculaire choisie parmi les résines fluorées, le chlorure de polyvinyle (PVC), le chlorure de polyvinyle chloré (CPVC), le perchlorate d'éthylène et l'acétate-butyrates de cellulose (CAB) faisant office de liant est ensuite mélangée à la poudre de LiCI.2AI(OH)3,nH20 pour obtenir une pâte qui est ensuite mise en forme par granulation suivie d'un séchage à l'air.
L'utilisation d'un tel solide dans un procédé d'extraction du lithium des saumures de lacs salés permet d'obtenir un faible rapport Mg/Li et une liqueur mère riche en lithium et conforme aux normes de production de carbonates ou de chlorures de lithium.
Un objectif de la présente invention est de fournir un matériau solide permettant l'extraction sélective de lithium à partir de saumure, ledit matériau solide étant de bonne qualité, sans défaut apparent et présentant une bonne cohésion et une bonne tenue mécanique lorsque celui-ci est mis au contact d'une solution saumure ou dans l'eau.
Un objectif de la présente invention est de fournir un nouveau procédé de préparation d'un tel matériau solide.
Un autre objectif de la présente invention est de fournir un procédé d'extraction du lithium de solutions salines utilisant ledit matériau solide.
Un autre objectif de la présente invention est de fournir un matériau solide pour la mise en œuvre d'un procédé d'extraction de lithium de solutions salines, dans lequel le matériau solide permet de limiter la génération de particules fines notamment car les particules fines augmentent la perte de charge, favorise la création de chemins préférentiels et augmentent le taux de renouvellement du matériau lors du passage de la saumure au travers d'un lit d'un matériau au sein d'une colonne.
Les demandeurs ont découvert un nouveau procédé de préparation d'un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, comprenant une combinaison d'étape spécifique et en particulier que le fait de réaliser à la fois l'étape a) de précipitation de boehmite dans des conditions de température et de pH spécifiques, l'étape de mise en forme d'une pâte, de préférence par extrusion, après une étape de séchage opérant dans des conditions spécifiques, l'étape de mise en forme étant ensuite suivie d'une autre étape de séchage opérant également dans des conditions spécifiques, puis de réaliser une étape de traitement hydrothermal finale des matériaux mis en forme permet d'obtenir un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 sans défaut apparent présentant à la fois, une bonne cohésion, une bonne tenue mécanique du matériau lorsque celui-ci est mis au contact d'une solution saumure ou dans l'eau et présentant une capacité d'adsorption du lithium ainsi qu'une cinétique d'adsorption améliorée par rapport aux matériaux de l'art antérieur lorsque celui- ci est utilisé dans un procédé d'extraction du lithium de solutions salines.
Sans être lié à une quelconque théorie, les demandeurs ont mis en évidence que la mise en œuvre de l'étape a) de précipitation dans les conditions opératoires de températures et de pH telles que définies selon l'invention permet l'obtention d'un précipité de boehmite composée de cristallites de faible taille. En particulier, le précipité de boehmite obtenu présente une taille, obtenue par la formule de Scherrer en diffraction des rayons X selon les directions cristallographiques [020] et [120], respectivement comprise entre 0,5 et 10 nm et entre 0,5 et 15 nm et de préférence respectivement comprise entre 0,5 à 2 nm et entre 0,5 à 3 nm et de manière très préférée respectivement entre 0,5 et 1 ,5 nm et entre 0,5 et 2,5 nm.
La formule de Scherrer est une formule utilisée en diffraction des rayons X sur des poudres ou échantillons polycristallins qui relie la largeur à mi-hauteur des pics de diffraction à la taille des cristallites. Elle est décrite en détail dans la référence : Appl. Cryst. (1978). 1 1 , 102-1 13 Scherrer after sixty years: A survey and some new results in the détermination of crystallite size, J. I. Langford and A. J. C. Wilson.
Le procédé selon l'invention comprenant une étape a) de précipitation telle que revendiquée permet ainsi l'obtention d'un matériau final solide cristallisé de formule LiXx.2AI(OH)3,nH20, avec n étant compris entre 0,01 et 10, x ayant la définition précitée, également peu cristallisé mais présentant une capacité d'adsorption du lithium ainsi qu'une cinétique d'adsorption améliorées par rapport aux matériaux de l'art antérieur lorsque celui-ci est utilisé dans un procédé d'extraction du lithium de solutions salines.
Résumé et intérêt de l'invention
On entend de préférence par « matériau de formule LiXx.2AI(OH)3,nH20» un matériau comprenant essentiellement ou consistant d'une phase cristallisée de formule LiXx.2AI(OH)3,nH20, n, x et X ayant la définition précitée.
La présente invention a pour objet un procédé de préparation d'un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, ledit procédé comprenant au moins les étapes suivantes :
a) une étape de précipitation de la boehmite, en milieu aqueux, comprenant la mise en contact d'au moins un précurseur basique de préférence choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium ; et d'au moins un précurseur acide de préférence choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, pour obtenir une suspension de boehmite, ladite étape a) étant mise en œuvre à une température comprise entre 5 et 35°C, et la quantité du précurseur basique étant choisie de manière à obtenir un pH de fin de précipitation dans le milieu réactionnel compris entre 7,5 et 9,5,
b) une étape de lavage et de filtration du précipité de boehmite obtenu à l'étape a),
c) une étape de mise en contact du précipité obtenu à l'étape b) avec au moins une source de lithium,
d) une étape de filtration de la suspension obtenue à l'étape c) pour obtenir une pâte,
e) une étape de séchage de la pâte obtenue à l'issue de l'étape d) à une température comprise entre 20 et 80°C pendant une durée de préférence comprise entre 1 h et 12h,
f) une étape de mise en forme de ladite pâte séchée,
g) une étape de séchage du matériau mis en forme obtenu à l'issue de l'étape f) à une température comprise entre 20 et 200°C, pendant une durée de préférence comprise entre 1 et 20 heures,
h) une étape de traitement hydrothermal du matériau mis en forme séché obtenu à l'issue de l'étape g), à une température comprise entre 50 et 200°C et pendant une durée de préférence comprise entre 30 min et 12 heures.
Un avantage du procédé de préparation selon l'invention est de permettre l'obtention d'un matériau solide cristallisé mis en forme, de préférence sous forme d'extrudés, de formule LiXx.2AI(OH)3,nH20 avec n, x et X ayant la définition précitée, de bonne qualité, sans défaut apparent, et présentant une bonne cohésion ainsi qu'une tenue mécanique améliorée lorsque celui-ci est mis au contact d'une solution saumure ou d'une solution diluée et de préférence dans l'eau.
Un autre avantage de la présente invention est de fournir un procédé de préparation d'un matériau solide cristallisé mis en forme, de préférence sous forme d'extrudés, de formule LiXx.2AI(OH)3,nH20 avec n, x et X ayant la définition précitée, présentant une capacité d'adsorption du lithium ainsi qu'une cinétique d'adsorption améliorée par rapport aux matériaux de l'art antérieur lorsque celui-ci est utilisé dans un procédé d'extraction du lithium de solutions salines.
La capacité d'adsorption du matériau précitée est définie par la quantité de lithium adsorbé, pour une solution donnée. Elle est calculée par l'homme du métier en intégrant la quantité de lithium fixée à partir d'une courbe de perçage dite aussi courbe de fuite ou courbe de saturation. L'intégration est réalisée sur le volume par la différence de concentration en lithium entre une solution après son chargement sur le matériau précité et la concentration théorique sans chargement. Cette quantité de matière peut être rapportée à la quantité de matériau utilisée pour obtenir une capacité en milligrammes de lithium par gramme de solide.
La cinétique d'adsorption du matériau précité est mesurée par l'homme du métier en étudiant la forme d'une courbe de perçage dite aussi courbe de fuite ou courbe de saturation. Cette courbe est obtenue au moyen d'une colonne remplie avec le matériau adsorbant pour former un lit homogène, en faisant percoler une solution saline contenant du lithium et en mesurant la concentration en lithium à la sortie du lit d'adsorbant en fonction du volume de solution utilisé pour un débit donné.
Par capacité d'adsorption améliorée par rapport aux matériaux de l'art antérieur, on entend une capacité d'adsorption supérieure à 4,5 mg de Li/g de matériau solide sec.
On entend par matériau solide sec, un matériau solide séché à 200 °C pendant 12 heures.
Par « mis en forme », on entend que le matériau est solide et présente une cohésion suffisante lorsque le solide est mis au contact d'une solution de saumure pour qu'il ne perde sensiblement pas son intégrité physique, c'est-à-dire qu'il conserve sensiblement sa mise en forme. Plus précisément, un solide mis en forme au sens de l'invention couvre un solide conservant sa cohésion dans les conditions d'extraction de lithium définies dans les exemples.
La cohésion ainsi que la résistance mécanique du matériau mis en forme, de préférence par extrusion, préparé selon l'invention sont testées lors de la réalisation des courbes de perçage dites aussi courbes de fuite ou courbes de saturation. Un solide présentant une bonne résistance mécanique ne produit pas de fines particules et permet d'opérer la colonne sans observation de colmatage. Un solide présentant une mauvaise résistance mécanique produit des fines particules qui induisent un colmatage de la colonne.
La cohésion ainsi que la résistance mécanique du matériau mis en forme, de préférence par extrusion, préparés selon l'invention sont aussi testées par l'intermédiaire d'un protocole de vieillissement accéléré sur table d'agitation, soit dans une saumure, soit dans l'eau.
La table d'agitation est animée d'un mouvement unidirectionnel horizontal d'amplitude 4 cm à une vitesse de 190 mouvements par minute. Les solides mis en forme sont ainsi agités pendant une durée totale de 168h.
A l'issue de ces 168h, le mélange solide mis en forme-saumure ou eau est tamisé à l'aide d'une grille de maille 315 μηι. Puis les solides mis en forme restant sur le tamis sont lavés avec le milieu utilisé pendant l'agitation. La fraction liquide ainsi obtenue, contenant de fines particules solides (diamètre inférieur à 315 μηι) en suspension, est filtrée à l'aide d'un Buchner équipé d'un papier filtre dont les pores ont une dimension de 0,45 μηι. Le gâteau formé par l'agglomération des fines particules est lavé avec de l'eau déminéralisée. Le résidu solide ainsi obtenu est séché en étuve à 50°C jusqu'à stabilisation de la masse.
Le rapport de la masse de résidu solide sur la masse de solides mis en forme initiale est alors calculé, donnant accès à un pourcentage de destruction des solides mis en forme.
Le pourcentage de destruction des matériaux préparés selon l'invention permet d'apprécier la cohésion desdits matériaux.
Une bonne cohésion est notamment obtenue pour les matériaux dont le pourcentage de destruction est inférieur à 60%, et de préférence inférieur à 50%, lorsque ceux-ci sont mis au contact d'une solution de saumure ou de toute autre solution aqueuse diluée et en particulier de l'eau.
Les matériaux préparés selon l'invention présentent par ailleurs une tenue mécanique améliorée par rapport aux matériaux de l'art antérieur.
Par « tenue mécanique améliorée », on entend que les matériaux préparés selon l'invention présentent un pourcentage de destruction, lorsqu'ils sont mis au contact d'une solution de saumure ou de toute autre solution aqueuse diluée et en particulier de l'eau, inférieur à 30% et de préférence inférieur à 20%. Un autre avantage du procédé de préparation selon l'invention est de permettre l'obtention d'un matériau solide cristallisé mis en forme, de préférence sous forme d'extrudés, de formule LiXx.2AI(OH)3,nH20 avec n, x et X ayant la définition précitée présentant pas ou peu de fissures qui pourraient provoquer un gonflement néfaste à la cohésion et à la tenue mécanique du matériau lorsque celui-ci est mis au contact d'une solution saumure ou d'une solution diluée et de préférence dans l'eau.
La présente invention a également pour objet un procédé d'extraction du lithium de solutions salines utilisant ledit matériau solide cristallisé mis en forme de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, préparé selon le nouveau procédé de préparation selon l'invention.
Un avantage du procédé d'extraction selon l'invention est de permettre l'extraction sélective du lithium à partir d'une solution saline et d'obtenir ainsi un facteur d'épuration élevé par rapport à la solution saline initiale, calculé comme étant le rapport X/Li qui est égal au rapport molaire de concentrations X/Li dans la solution saline initiale divisé par le rapport molaire de concentrations X/Li dans la solution finale, X étant choisi parmi le sodium (Na), le potassium (K), le magnésium (Mg), le calcium (Ca), le bore (B), le soufre (S) et le strontium (Sr).
La présente invention a également pour objet un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, de préférence sous forme d'extrudés, susceptible d'être obtenu selon un procédé de l'invention.
La présente invention a également pour objet un dispositif d'extraction de lithium de solution(s) saline(s). Le dispositif selon l'invention met ainsi en œuvre le procédé d'extraction selon l'invention.
Description de l'invention
Conformément à l'invention, le procédé comprend une étape a) de précipitation de la boehmite, en milieu réactionnel aqueux, ladite étape comprenant la mise en contact d'au moins un précurseur basique de préférence choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium ; et d'au moins un précurseur acide de préférence choisi parmi le sulfate d'aluminium, le trichlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, pour obtenir une suspension de boehmite, ladite étape a) étant mise en œuvre à une température comprise entre 5 et 35°C, et la quantité du précurseur basique étant choisie de manière à obtenir un pH de fin de précipitation dans le milieu réactionnel compris entre 7,5 et 9,5.
Le mélange dans le milieu réactionnel aqueux d'au moins un précurseur basique et d'au moins un précurseur acide nécessite soit, qu'au moins le précurseur basique ou le précurseur acide comprenne de l'aluminium, soit que les deux précurseurs basique et acide comprennent de l'aluminium.
De préférence, le précurseur basique est l'hydroxyde de sodium (NaOH).
De préférence, le précurseur acide est le trichlorure d'aluminium (AICI3).
De préférence, le ou les précurseur(s) basique(s) et acide(s) sont ajoutés dans ladite première étape de précipitation a) en solutions aqueuse.
De préférence, le milieu réactionnel aqueux est de l'eau.
De préférence, ladite étape a) est mise en œuvre sous agitation.
De préférence, ladite étape a) de précipitation de la boehmite est mise en œuvre à une température comprise entre 5 et 30°C, et de manière préférée entre 10 et 30°C et de manière très préférée entre 10 et 25°C, et la quantité du précurseur basique étant choisie de manière à obtenir un pH de fin de précipitation dans le milieu réactionnel compris entre 7,5 et 9 et de manière préférée entre 7,7 et 8,8.
De préférence l'étape a) de précipitation est mise en œuvre pendant une durée comprise entre 10 minutes et 5 heures, de préférence entre 15 minutes et 2 heures.
Ladite étape a) de précipitation permet l'obtention d'une suspension de boehmite précipitée ou oxyhydroxyde d'aluminium (AIOOH).
La mise en œuvre de l'étape a) de précipitation dans les conditions opératoires de températures et de pH telles que définies permet l'obtention d'un précipité de boehmite présentant des cristallites de faible taille. On entend par cristallites de faible taille, un précipité de boehmite composée de cristallites dont la taille, obtenue par la formule de Scherrer en diffraction des rayons X selon les directions cristallographiques [020] et [120], est respectivement comprise entre 0,5 et 10 nm et entre 0,5 et 15 nm et de préférence respectivement comprise entre 0,5 à 2 nm et entre 0,5 à 3 nm et de manière très préférée respectivement entre 0,5 et 1 ,5 nm et entre 0,5 et 2,5 nm.
Conformément à l'invention, le procédé comprend une étape b) de lavage et de filtration du précipité de boehmite obtenu à l'issue de l'étape a).
De préférence ladite étape de lavage est une étape de lavage à l'eau. Conformément à l'invention, le procédé comprend une étape c) de mise en contact du précipité de boehmite obtenu à l'étape b) avec au moins une source de lithium.
La ou les source(s) de lithium peu(ven)t être tout composé comprenant l'élément lithium et pouvant libérer cet élément en solution aqueuse sous forme réactive. De préférence, la ou les source(s) de lithium est (sont) choisie(s) parmi les sels de lithium et de manière préférée parmi le chlorure de lithium (LiCI), l'hydroxyde de lithium (LiOH), le nitrate de Lithium (LiN03), le sulfate de lithium (Li2S04) et le carbonate de lithium (Li2C03), pris seuls ou en mélange.
De manière très préférée, la source de lithium est le chlorure de lithium (LiCI). Dans ce cas, X est l'anion chlorure et x=1 .
De préférence, le précipité de boehmite obtenu à l'étape b) et au moins une source de lithium sont mélangées en présence d'eau pour obtenir une suspension dans l'étape c). De préférence, ladite étape c) de mélange est mise en œuvre sous agitation vigoureuse.
De préférence, ladite étape c) de mise en contact est réalisée à une température comprise entre 20 et 95° C et de préférence comprise entre 50 et 95°C, et de manière préférée entre 70 et 95°C pendant une durée comprise entre 15 minutes et 12 heures et de préférence entre 30 minutes et 5 heures.
Conformément à l'invention, la suspension obtenue à l'issue de l'étape c) subit une étape d) de filtration pour obtenir une pâte.
Conformément à l'invention, la pâte obtenue à l'issue de l'étape d) est séchée dans une étape e) de séchage de préférence à une température comprise entre 20 et 80°C, pendant une durée de préférence comprise entre 1 h et 12 h.
De préférence, ladite étape de séchage est mise en œuvre, de manière préférée en étuve, à une température comprise entre 20 et 60°C et de manière très préférée entre 30 et 50°C, pendant une durée comprise entre 1 h et 10 h.
Les conditions opératoires de ladite étape e) de séchage permettent l'obtention d'une pâte séchée présentant une perte au feu (PAF) comprise entre 45 et 75% et de préférence entre 50 et 70%. La perte au feu obtenue permet la mise en forme, de préférence par extrusion, de la pâte séchée dans de bonnes conditions et l'obtention de matériaux mis en forme, de préférence sous forme d'extrudés, résistants et sans défaut apparent, c'est à dire sans fissure.
De manière à déterminer la PAF avant l'étape de mise en forme, une partie de la pâte obtenue est prélevée et mise à l'étuve pendant 6 h à 200°C. La PAF est obtenue par différence entre la masse de l'échantillon avant et après passage à l'étuve. Conformément à l'invention, ladite pâte séchée obtenue à l'issue de l'étape e) de séchage subit, une étape f) de mise en forme.
De préférence, ladite étape f) de mise en forme est réalisée selon les méthodes connues de l'Homme du métier, telles que par exemple par extrusion, par pastillage, par la méthode de la coagulation en goutte (oil-drop), par granulation au plateau tournant. De manière préférée, ladite étape f) de mise en forme est réalisée par extrusion. De manière très préférée, ladite étape f) est réalisée par extrusion directe ou par malaxage- extrusion.
On entend par mise en forme directe de la pâte séchée issue de l'étape e), une étape dans laquelle ladite pâte séchée ne subit pas d'étapes intermédiaires entre l'étape e) de séchage et son introduction dans l'extrudeuse et en particulier aucune étape de malaxage.
On entend par étape de malaxage - extrusion, une étape dans laquelle la pâte séchée obtenue à l'issue de l'étape e) de séchage subit dans une première étape de malaxage, en présence ou non d'au moins un liant ou composé précurseur de liant, puis la pâte est ensuite soumise à une étape d'extrusion.
Ladite étape e) de mise en forme par malaxage - extrusion est avantageusement réalisée de manière connue de l'Homme du métier.
De préférence, ladite pâte séchée obtenue à l'issue de l'étape e) de séchage, et éventuellement au moins ledit liant ou précurseur de liant, dans le cas ou ceux-ci sont présents, sont mélangés, de préférence en une seule fois, dans un malaxeur. Le malaxeur est avantageusement choisi parmi les malaxeurs batch, de préférence à bras à cames ou à bras en Z, ou bien à l'aide d'un malaxeur-mélangeur bi-vis. Les conditions de malaxage sont ajustées de manière connue de l'Homme du métier et visent à obtenir une pâte homogène et extrudable.
Dans les procédés de malaxage - extrusion connus de l'Homme du métier, l'extrudabilité de la pâte peut éventuellement avantageusement être ajustée avec l'ajout d'eau et/ou d'acide en solution, afin d'obtenir une pâte adaptée à la réalisation de l'étape e) de mise en forme par extrusion. Dans le cas où de l'acide est ajouté, une étape de neutralisation est généralement mise en œuvre. Ces procédés sont appelés procédés de malaxage acide/basique extrusion. Selon un premier mode de réalisation de l'étape f), ladite étape f) de mise en forme peut avantageusement être mise en œuvre directement après l'étape e) de séchage.
De préférence, l'étape f) de mise en forme directe de la pâte séchée est mise en œuvre en l'absence de liant choisi parmi les liants inorganiques, tels que par exemples les liants hydrauliques ou les liants inorganiques susceptibles d'être générés dans les conditions de ladite étape e) par ajout de précurseurs de liants inorganiques, et les liants organiques, tels que par exemple les paraffines ou les polymères.
Dans ce cas, ladite pâte séchée ne subit, de préférence, pas d'étape intermédiaire entre ladite étape e) de séchage et ladite étape f) de mise en forme par extrusion, et de manière préféré aucune étape de malaxage et de manière plus préférée aucune étape de malaxage acide/basique. Ainsi, de manière plus préférée, ladite étape f) de mise en forme selon le premier mode de réalisation est réalisée sans ajout d'acide ni de base à la pâte séchée introduite dans ladite étape f).
Ladite étape f) de mise en forme par extrusion directe est avantageusement réalisée de manière connue de l'Homme du métier.
En particulier, la pâte séchée issue de l'étape e) de séchage passe avantageusement à travers une filière, à l'aide par exemple, d'un piston ou d'une extrudeuse continue double vis ou monovis. Le diamètre de la filière de l'extrudeuse est avantageusement variable et est compris entre 0,5 et 5 mm, de préférence entre 0,5 et 3 mm et de manière préférée entre 0,5 et 2 mm. La forme de la filière, et par conséquent, la forme du matériau obtenu sous forme d'extrudé, est avantageusement cylindrique, par exemple de section transversale circulaire, trilobée, quadrilobée ou bien multilobée. Selon un deuxième mode de réalisation de l'étape f), ladite étape f) de mise en forme peut avantageusement être mise en œuvre par malaxage - extrusion en présence d'au moins un liant choisi parmi les liants organiques ou inorganiques et de préférence sans ajout d'acide ni de base à la pâte séchée introduite dans ladite étape f).
Dans ledit deuxième mode de réalisation de l'étape f), l'étape de malaxage est de préférence réalisée sans ajout d'acide ou de base. Ainsi, aucune étape d'acidification ni de neutralisation de la pâte séchée n'est mise en œuvre dans l'étape e) de mise en forme par malaxage - extrusion selon l'invention.
La pâte passe ensuite avantageusement à travers une filière, à l'aide par exemple, d'un piston ou d'une extrudeuse continue double vis ou monovis. Le diamètre de la filière de l'extrudeuse est avantageusement variable et est compris entre 0,5 et 5 mm, de préférence entre 0,5 et 3 mm et de manière préférée entre 0,5 et 2 mm. La forme de la filière, et par conséquent, la forme du matériau obtenu sous forme d'extrudé, est avantageusement cylindrique, par exemple de section transversale circulaire trilobée, quadrilobée ou bien multilobée.
Ledit ou lesdits liant(s) organique(s) qui peuvent être utilisés dans ladite étape d) de mise en forme sont avantageusement choisi(s) parmi les paraffines, et les polymères, pris seul ou en mélange.
De préférence, ledit ou lesdits liant(s) organique(s) sont choisi(s) parmi la polyvinylpyrrolidone (PVP), l'alcool polyvinylique (PVA), une dispersion aqueuse d'un mélange de cires de paraffine et de polyéthylène comme par exemple le Cerfobol R75, les polysaccharides, le méthylcellulose, l'hydroxypropylméthylcellulose, l'hydroxyéthylcellulose et le carboxymethylcellulose et pris seul ou en mélange, de préférence parmi la polyvinylpyrrolidone (PVP), l'alcool polyvinylique (PVA) et une dispersion aqueuse d'un mélange de cires de paraffine et de polyéthylène comme par exemple le Cerfobol R75, et de manière préférée parmi la polyvinylpyrrolidone (PVP) et l'alcool polyvinylique (PVA).
Un liant organique très préféré est la polyvinylpyrrolidone (PVP).
Le Cerfobol R75 comprend 28,4% de masse organique paraffine sèche diluée dans une phase aqueuse.
La proportion dudit ou desdits liant(s) organique(s) ajoutée(s) dans ladite étape e) de mise en forme est avantageusement comprise entre 0,5 et 20% en masse, de préférence entre 0,5 et 15% en masse, de manière préférée entre 1 et 13% en masse, par rapport à la masse totale de pâte sèche à mettre en forme.
L'addition d'au moins un liant organique dans ladite étape d) facilite la mise en forme par extrusion de l'étape e) du procédé selon l'invention.
L'addition d'au moins un liant organique dans ladite étape e) permet également l'obtention d'un matériau solide cristallisé sous forme d'extrudés présentant une résistance sous agitation améliorée au contact de la saumure.
De préférence, ledit ou lesdits liant(s) inorganique(s) utilisés dans ladite étape e) de mise en forme sont avantageusement choisi(s) parmi les liants siliciques, les liants de type argile et les liants inorganiques susceptibles d'être générés dans les conditions de ladite étape e) par ajout de précurseurs de liants inorganiques.
De préférence, ledit ou lesdits liant(s) inorganique(s) utilisés dans ladite étape e) de mise en forme sont avantageusement choisi(s) parmi les liants siliciques. De préférence, les liants siliciques sont avantageusement choisis parmi la silice de précipitation et la silice issue de sous-produits comme les cendres volantes telle que par exemple les particules silico-alumineuses ou silico-calciques, l'acide silicique, le métasilicate de sodium et les fumées de silice. La silice colloïdale, se présentant par exemple sous la forme d'une suspension stabilisée, telles que par exemple les produits commerciaux tels que le Ludox® ou les Klebosol® peut également être utilisée.
De manière préférée, le liant silicique est sous forme amorphe ou cristalline. De manière très préférée, la silice est utilisée sous forme de poudre ou sous forme colloïdale.
La proportion dudit ou desdits liant(s) inorganique(s) ajoutée(s) dans ladite étape d) de mise en forme est avantageusement comprise entre 0,5 et 20 en masse, de préférence entre 0,5 et 15% en masse, de manière préférée entre 1 et 13% en masse, par rapport à la masse totale de pâte sèche à mettre en forme.
L'addition d'au moins un liant inorganique dans ladite étape e) facilite sa mise en forme par extrusion.
L'addition d'au moins un liant inorganique dans ladite étape e) permet également l'obtention d'un matériau solide cristallisé mis en forme, de préférence sous forme d'extrudés présentant une résistance sous agitation améliorée au contact de la saumure.
Dans le cas où ladite étape e) est mise en œuvre par malaxage - extrusion en présence d'au moins un liant choisi parmi les liants inorganiques susceptibles d'être générés dans les conditions de ladite étape e), ladite étape e) de mise en forme de la pâte séchée est avantageusement réalisée en présence d'une formulation liante comprenant et de préférence constituée d'au moins un précurseur solide d'alumine et d'au moins un acide en solution dans des proportions telles que le ratio molaire acide/AI est compris entre 0,01 et 1 ,2.
L'introduction dans l'étape f) de mise en forme, d'un précurseur solide d'alumine et d'un acide en solution permet la génération in situ d'un liant minéral résultant de la réaction du précurseur d'alumine et de l'acide introduit, au cours de ladite étape de mise en forme.
Par ailleurs, le précurseur solide d'alumine et l'acide en solution doivent être introduits dans ladite étape f) dans les proportions telles que décrites.
La génération dudit liant minéral résultant de la réaction du précurseur solide d'alumine et de l'acide introduit nécessite l'utilisation d'un précurseur solide d'alumine capable de se disperser majoritairement ou de se dissoudre majoritairement dans la solution acide employée. Le précurseur solide d'alumine est avantageusement choisi parmi les oxydes d'aluminium, les hydroxydes d'aluminium et les oxyhydroxydes d'aluminium solubles ou dispersibles dans la solution d'acide phosphorique, de préférence parmi les hydroxydes d'aluminium et les oxyhydroxydes d'aluminium. De manière très préférée, ledit précurseur solide d'alumine est un oxyhydroxyde d'aluminium et de manière plus préférée ledit précurseur solide d'alumine est la boehmite ou la pseudo-boehmite.
Ledit précurseur solide d'alumine se présente avantageusement sous forme de poudre constituée de particules solides présentant un diamètre médian, déterminé par granulométrie à diffraction laser (granulomètre Mastersizer de Malvern) , compris entre 9 et 80 μηι, de préférence compris entre 10 et 60 μηι et de manière préférée entre 15 et 45 μηι. Les particules du précurseur solide d'alumine sont avantageusement constituées d'agglomérats d'unités élémentaires, dites cristallites, dont les dimensions sont avantageusement comprises entre 2 et 150 nm, de préférence entre 4 et 150 nm et de manière préférée entre 4 et 100 nm déterminées par microscopie électronique à transmission (MET). La morphologie des cristallites, la taille et la manière dont les cristallites sont organisées, dépendent principalement de la voie de synthèse du précurseur d'alumine utilisé pour préparer lesdites particules micrométriques.
De préférence, la proportion du précurseur solide d'alumine ajoutée dans l'étape f) est comprise entre 0,5 et 50% en masse par rapport à la masse de pate sèche à mettre en forme, de préférence entre 2 et 30% en masse, et de manière préférée entre 3 et 25% en masse.
Dans ce mode de réalisation, au moins un acide en solution est introduit dans le mélange. De préférence, l'acide est choisi parmi l'acide phosphorique, l'acide chlorhydrique, l'acide nitrique, l'acide acétique et l'acide citrique, seul ou en mélange. De manière très préférée, l'acide est l'acide phosphorique.
L'acide phosphorique est aussi appelé acide orthophosphorique.
Le rôle de la solution d'acide est de promouvoir la formation d'une phase amorphe de liant minéral résultant de la réaction avec le précurseur solide d'alumine. De cette manière, les particules du précurseur solide d'alumine deviennent avec l'action de l'acide et de l'énergie mécanique apportée pendant l'étape f) de mise en forme, une phase amorphe de liant minéral.
De préférence, l'acide ou les acides en solution est (sont) introduit(s) dans des proportions telles que le ratio molaire acide/AI est compris entre 0,01 et 1 ,2, et de préférence entre 0,03 et 1 . Dans le cas où l'acide introduit est l'acide phosphorique, il est introduit en solution dans des proportions telles que le ratio molaire P/AI est compris entre 0,01 et 1 ,2, de préférence entre 0,3 et 1 ,0.
Dans le ratio molaire P/AI, P provient de l'acide phosphorique introduit et Al provient du précurseur solide d'alumine.
Le ratio molaire P/AI spécifique tel que revendiqué correspond à une proportion d'acide phosphorique telle que le rapport de la masse d'acide introduit sur la masse de précurseur solide d'alumine introduit soit compris entre 30 et 225% en masse, de préférence entre 59 et 170% en masse et de manière préférée.
L'emploi d'un ratio molaire acide/AI compris entre 0,01 et 1 ,2, caractéristique d'une dissolution à rapport d'acide élevé, dans l'étape d) de mise en forme permet à la fois de former la phase amorphe de liant minéral résultant de la réaction avec le précurseur solide d'alumine, mais également, de faciliter la mise en forme par extrusion et d'augmenter la cohésion et la résistance mécanique des extrudés obtenus selon ce mode de réalisation.
Conformément à l'invention, le matériau mis en forme et de préférence les extrudés obtenus à l'issue de l'étape d) subi(ssen)t une étape g) de séchage à une température comprise entre 20 et 200°C pendant une durée de préférence comprise entre 1 heure et 20 heures, pour obtenir le matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 mis en forme, de préférence sous forme d'extrudés.
De préférence, ladite étape g) de séchage est mise en œuvre à une température comprise entre 20 et 100°C, de manière préférée entre 20 et 80°C et de manière très préférée entre 20 et 60°C, de préférence pendant une durée de préférence comprise entre 1 et 18 heures, de préférence entre 5 et 14 heures et de manière préférée entre 8 et 14 heures.
Les conditions spécifiques de ladite étape e) de séchage permettent l'obtention d'un matériau solide cristallisé présentant la phase LiXx.2AI(OH)3,nH20 désirée.
Ladite étape g) de séchage est avantageusement réalisée selon les techniques connues de l'Homme du métier et de préférence en étuve.
Conformément à l'invention, le matériau mis en forme séché et de préférence les extrudés obtenu(s) à l'issue de l'étape g) est (sont) soumis à une étape de traitement hydrothermal à une température comprise entre 50 et 200°C et pendant une durée de préférence comprise entre 30 min et 12 heures.
De préférence, ladite étape h) est mise en œuvre à une température comprise entre 70 et 200°C, de manière préférée entre 70 et 180°C, et de manière très préférée entre 80 et 150°C, par exemple pendant une durée comprise entre 30 minutes et 120 heures.
Ladite étape h) de traitement hydrothermal est avantageusement réalisée selon une technique connue de l'homme du métier.
Selon un mode de réalisation préféré, ladite étape h) est réalisée en autoclave, sous pression autogène et sous une atmosphère saturée en eau. De préférence, ladite étape h) est réalisée en introduisant un liquide au fond de l'autoclave, ledit liquide étant choisi parmi l'eau, seule ou en mélange avec au moins un acide, une base ou un sel de lithium. De préférence, le matériau mis en forme et séché, et de préférence les extrudés obtenu(s) à l'issue de l'étape g) ne sont pas en contact avec le liquide au fond de l'autoclave.
Dans le cas où de l'eau est introduite dans l'autoclave en mélange avec un acide, l'acide est avantageusement choisi parmi l'acide nitrique, l'acide chlorhydrique, l'acide sulfurique et l'acide carboxylique.
Dans le cas où de l'eau est introduite dans l'autoclave en mélange avec une base, la base est avantageusement choisie parmi l'hydroxyde de lithium, l'hydroxyde de sodium, l'hydroxyde de potassium et l'ammoniaque.
Dans le cas où de l'eau est introduite dans l'autoclave en mélange avec un sel de lithium, le sel de lithium est avantageusement choisi parmi le chlorure de lithium et le carbonate de lithium.
De préférence, ladite étape h) est mise en œuvre en présence d'une atmosphère humide comprenant une teneur en eau comprise entre 20 et 100% en masse, et de préférence entre 50 et 100% en masse, et de préférence entre 80 et 100% en masse par rapport à la masse total de l'atmosphère dans l'autoclave.
Selon un mode de réalisation, ladite étape h) peut être réalisée en étuve climatique, en présence d'un flux d'air humide contenant entre 20 et 100% masse d'eau de préférence entre 50 et 100% masse et de manière préférée entre 80 et 100% masse d'eau, ou dans un four opérant sous un flux d'air humide contenant entre 20 et 100% masse d'eau de préférence entre 50 et 100% masse et de manière préférée entre 80 et 100% masse d'eau selon les méthodes connues de l'Homme du métier.
L'étape h) de traitement hydrothermal en atmosphère contrôlée permet l'obtention d'un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate mis en forme de préférence sous forme d'extrudés, présentant une bonne tenue et une bonne résistance mécanique lorsque celui-ci est placé au contact d'une saumure ou d'une solution diluée et de préférence de l'eau.
A l'issue de ladite étape h), le matériau, mis en forme de préférence sous forme d'extrudés, obtenu est ensuite avantageusement récupéré et peut éventuellement être lavé.
Ledit matériau mis en forme et de préférence les extrudés obtenu(s) à l'issue de l'étape h) peu(ven)t ensuite éventuellement être soumis à une étape de séchage i), ladite étape de séchage opérant de préférence à une température comprise entre 15 et 50°C pendant une durée de préférence comprise entre 1 h et 12 heures pour obtenir le matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate mis en forme.
Ladite étape i) de séchage est avantageusement réalisée selon les techniques connues de l'Homme du métier, et de préférence en étuve.
Le procédé selon la présente invention permet donc l'obtention d'un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, de préférence entre 0,1 et 5 et de manière préférée entre 0,1 et 1 , x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, de préférence sous forme d'extrudés de section (plus grande dimension de la section transversale) ou diamètre compris entre 0,2 et 5 mm, de préférence entre 0,3 et 4 mm, de manière préférée entre 0,3 et 3 mm, de manière très préférée entre 0,3 et 2 mm et de manière encore plus préférée entre 0,3 et 1 ,8 mm.
Les meilleurs résultats en terme de tenue mécanique et de cohésion du matériau solide cristallisé obtenus selon le procédé de préparation selon l'invention sont obtenus dans le cas d'extrudés de section(plus grande dimension de la section transversale) ou diamètre compris entre 0,2 et 5 mm et de préférence compris entre 0,3 et 1 ,8 mm, lesdits extrudés ayant été obtenus grâce à la combinaison d'une étape de mise en forme spécifique telle que décrite ci-dessus et d'une étape de séchage i) finale réalisée à une température comprise entre 20 et 200°C, de préférence comprise entre 20 et 60°C et en particulier à 40°C, pendant une durée de préférence comprise entre 1 et 20 heures, de préférence comprise entre 5 et 14 heures, de préférence entre 8 et 14 heures et en particulier pendant 8 heures. Le matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 mis en forme, de préférence sous forme d'extrudés, préparé selon l'enchainement des étapes a) à i) du procédé de préparation selon l'invention peut être caractérisé selon les techniques suivantes : l'adsorption d'azote pour la détermination de la surface spécifique selon la méthode BET; la diffractométrie de rayons X, dans le domaine d'angle de diffraction 2Θ = 0,8 à 40° ± 0,02° en géométrie de réflexion pour identifier la structure dudit matériau et l'analyse élémentaire.
Le matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 mis en forme, de préférence sous forme d'extrudés, présente avantageusement une surface spécifique mesurée selon la méthode BET comprise entre 1 et 30 m2/g et de préférence entre 1 et 20 m2/g.
Le diagramme de diffraction de rayon X du matériau sous forme d'extrudés correspond à un solide cristallisé de formule LiXx.2AI(OH)3,nH20 selon la fiche JCPDS n° 0031 -07-00, avec n étant compris entre 0,01 et 10, de préférence entre 0,1 et 0,5 de manière préférée entre 0,1 et 5 et de manière très préférée entre 0,1 et 1 , obtenu selon l'invention, mis en forme, avantageusement sous forme d'extrudés.
Le procédé de préparation selon la présente invention permet donc l'obtention d'un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20, n, x et X ayant la définition précitée mis en forme de préférence sous forme d'extrudés, présentant à la fois une surface spécifique BET faible, une bonne cohésion, et n'ayant pas de défaut apparent et présentant une bonne tenue et une bonne résistance mécanique lorsque celui-ci est placé au contact d'une saumure ou d'une solution diluée et de préférence dans l'eau.
Les bonnes propriétés du matériau obtenu résultent de l'effet combiné de mise en forme de préférence par extrusion d'une pâte, en l'absence de liant, directement, après une étape de séchage opérant dans des conditions spécifiques, de la mise en œuvre d'une étape de séchage suivant la mise en forme, opérant également dans des conditions spécifiques et également de la mise en œuvre d'une étape de traitement hydrothermal final opérant de préférence en autoclave.
Par ailleurs, le matériau solide cristallisé mis en forme, de préférence sous forme d'extrudés, ainsi obtenu de formule LiXx.2AI(OH)3,nH20 avec n, x et X ayant la définition précitée, présente une capacité d'adsorption du lithium ainsi qu'une cinétique d'adsorption améliorée par rapport aux matériaux de l'art antérieur lorsque celui-ci est utilisé dans un procédé d'extraction du lithium de solutions salines.
Les matériaux obtenus selon l'invention présentent une capacité d'adsorption améliorée par rapport aux matériaux de l'art antérieur supérieure à 4,5 mg de Li/g de matériau solide sec, c'est-à-dire de matériau solide séché à 200 °C, de préférence comprise entre 4,5 et 10 mg de Li/g, de manière préférée entre 4,5 et 8 et de manière très préférée entre 4,5 et 7 mg de Li/g de matériau solide sec.
La présente invention a également pour objet un procédé d'extraction du lithium à partir d'une solution saline utilisant ledit matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, préparé selon l'invention.
Ladite solution saline utilisée dans le procédé d'extraction selon l'invention comprend avantageusement une concentration en lithium comprise entre 0,001 mol/L et 0,5 mol/L, de préférence entre 0,02 mol/L et 0,3 mol/L.
Ladite solution saline contient également d'autres espèces, telles que par exemple les espèces choisies parmi la liste suivante : Na, K, Rb, Cs, Mg, Ca, Sr, Ba, F, Cl, Br, I, S04, C03, N03, et HC03. Ladite solution saline peut avantageusement être saturée en sels ou non.
Ladite solution saline peut être toute solution saline naturelle, concentrée ou issue d'un procédé d'extraction ou de transformation du lithium. Par exemple, ladite solution saline utilisée dans le procédé d'extraction selon l'invention peut avantageusement être choisie parmi les saumures de lacs salés ou de sources géothermales, les saumures soumises à une évaporation pour obtenir des saumures concentrées en lithium, l'eau de mer, les effluents des usines de production de cathodes, ou de production de chlorure ou d'hydroxyde de lithium et les effluents des procédé d'extraction du lithium à partir de minéraux.
Le procédé d'extraction du lithium selon l'invention est de préférence un procédé d'extraction sélective du lithium. En effet, il permet la séparation du lithium des métaux alcalins, de préférence le sodium (Na), et le potassium (K) et des alcalino-terreux, de préférence le magnésium (Mg), le calcium (Ca) et le strontium (Sr), présents en quantité massive dans les solutions salines traitées dans ledit procédé d'extraction.
Le procédé d'extraction du lithium selon l'invention permet également la séparation sélective du lithium des autres composés tels que le bore et les sulfates.
Le procédé d'extraction du lithium selon l'invention est avantageusement mis en œuvre dans une unité comprenant au moins une colonne, la ou lesdites colonnes comprenant au moins un lit dudit matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20, avec n, x et X ayant la définition précitée, mis en forme et préparé selon le procédé de préparation selon l'invention. De préférence, ledit procédé d'extraction du lithium selon l'invention est mis en œuvre dans une unité comprenant au moins deux colonnes, et de manière préférée entre deux et trois colonnes, comprenant au moins un lit du matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20, avec n, x et X ayant la définition précitée.
Ledit procédé d'extraction du lithium comprend avantageusement au moins les étapes suivantes :
- une étape d'activation dudit matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20, avec n, x et X ayant la définition précitée,
- une étape de chargement dudit matériau activé par adsorption réalisée par passage de ladite solution saline sur ledit matériau activé,
- au moins une étape de lavage de la solution saline imprégnant ledit matériau par passage d'une solution de lavage sur ledit matériau,
- une étape de désorption du lithium réalisée par passage d'eau ou d'une solution aqueuse de sel de lithium sur ledit matériau pour obtenir un éluat comprenant au moins du lithium.
De préférence, le procédé d'extraction du lithium selon l'invention comprend une étape préalable de mise en colonne dudit matériau.
De préférence, ladite étape d'activation du matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20, avec n, x et X ayant la définition précitée, de préférence mis en forme, et de préférence sous forme d'extrudés, est réalisée une seule fois lors de la mise en colonne du matériau synthétisé et mis en forme selon le procédé de préparation selon l'invention.
Ladite étape d'activation permet d'activer les sites destinés à adsorber sélectivement le lithium.
De préférence, ladite étape d'activation est avantageusement réalisée par le passage ascendant ou descendant, et de préférence descendant, d'une solution d'activation choisi parmi l'eau et une solution de sel de lithium ayant une concentration comprise entre 0,001 mol/L et 0,1 mol/L, de préférence entre 0,001 mol/L et 0,05 mol/L et de manière préférée entre 0,01 et 0,04 mol/L.
De manière préférée, le sel de lithium utilisé en solution dans ladite étape d'activation est choisi parmi le chlorure de lithium (LiCI), le nitrate de lithium et le bromure de lithium.
De manière très préférée, le sel de lithium utilisé en solution dans ladite étape d'activation est le chlorure de lithium (LiCI). Ladite étape d'activation est avantageusement réalisée à une température comprise entre 0°C et 90°C, et de préférence entre 10°C et 60°C, et de manière préférée entre 10°C et 30°C avec un temps de séjour de ladite solution d'activation dans la colonne de préférence compris entre 0,03 et 10 h, et de préférence entre 0,06 et 1 h.
La quantité de solution nécessaire à l'activation est avantageusement comprise entre 1 et 30 volumes de colonne, de préférence entre 2 et 20 volumes de colonne.
Le volume de colonne ou « Bed Volume » selon la terminologie anglo-saxonne est également appelé volume occupé par le lit du solide dans la colonne ou BV selon la terminologie propre au domaine technique connu de l'Homme du métier.
Ledit matériau solide cristallisé activé peut éventuellement subir à l'issue de l'étape d'activation une étape de lavage avec une solution de lavage et de préférence une solution de chlorure de lithium (LiCI).
Ladite étape de chargement dudit matériau activé par adsorption est avantageusement réalisée par passage ascendant ou descendant, et de préférence ascendant, de la solution saline traitée dans le procédé d'extraction selon l'invention, sur ledit matériau activé.
Avantageusement, ladite étape de chargement est avantageusement effectuée à une température comprise entre 0°C et 90°C, et de préférence entre 10°C et 70°C avec un temps de séjour de ladite solution, de préférence de ladite solution saline traitée, dans la colonne de préférence compris entre 0,03 et 10 h, et de préférence entre 0,06 et 1 h.
De préférence, la quantité de solution nécessaire pour saturer ledit matériau dépend de la capacité d'adsorption dudit matériau et de la concentration en lithium de la solution saline.
La capacité d'adsorption des matériaux selon l'invention est supérieure à 4,5 mg de Li/g de matériau solide sec, de préférence comprise entre 4,5 et 10 mg de Li/g, de manière préférée entre 4,5 et 8 et de manière très préférée entre 4,5 et 7 mg de Li/g de matériau solide sec.
Dans le cas où ledit procédé d'extraction du lithium selon l'invention est mis en œuvre dans une unité comprenant deux colonnes, la première colonne est avantageusement saturée par le lithium lors de ladite étape de chargement. La deuxième colonne, recevant le flux de sortie de la première colonne, est avantageusement chargée jusqu'à l'obtention d'une fuite en lithium ne dépassant pas 10% de la concentration en lithium du flux d'entrée et de préférence 5%, permettant ainsi de maximiser le rendement de récupération en lithium. Dans le cas où ledit procédé d'extraction du lithium selon l'invention est mis en œuvre dans une unité comprenant trois colonnes, la troisième colonne, déjà saturée en lithium, est consacrée aux étapes de lavage puis de désorption du lithium, décrites ci- après, pendant le chargement des deux autres colonnes.
La première fraction du flux de sortie de ladite étape de chargement par adsorption, avantageusement entre 0 et 1 volumes de colonne, correspond à l'élimination de l'imprégnant issu de l'étape d'activation du matériau solide. Cette fraction peut être considérée comme un effluent ou recyclée, et de préférence recyclée comme flux d'entrée de l'étape de désorption. Dans le cas du traitement d'une saumure naturelle ou d'eau de mer, au-delà de 1 volume de colonne, l'intégralité du flux de sortie de ladite étape de chargement par adsorption, appelé ci-après raffinât qui n'a subi aucun traitement chimique, est avantageusement et de préférence renvoyé vers le gisement de solution saline d'origine.
A l'issue de l'étape de chargement par passage de la solution saline traitée dans le procédé selon l'invention sur le matériau activé, la solution saline imprègne ledit matériau activé.
La solution saline imprégnant le matériau activé est ensuite lavée lors d'au moins une étape de lavage par passage d'une solution de lavage sur ledit matériau.
Ladite ou lesdites étape(s) de lavage de la solution saline imprégnant ledit matériau, est (sont) avantageusement réalisée(s) par passage ascendant ou descendant d'une solution de lavage sur ledit matériau, et de préférence descendant.
De préférence, ladite solution de lavage est choisie parmi l'eau et une solution aqueuse de sel de sodium et de préférence de chlorure de sodium (NaCI), comprenant éventuellement un sel de lithium et de préférence le chlorure de lithium (LiCI), ladite solution présentant avantageusement une concentration en sel de sodium et de préférence en chlorure de sodium (NaCI), supérieure à 0,5 mol/L, de préférence comprise entre 2 mol/L et la saturation et une concentration en sel de lithium et de préférence en chlorure de lithium (LiCI), comprise entre 0 mol/L et 2 mol/L.
Selon un mode de réalisation préféré, ladite solution saline imprégnant le matériau activé subit une étape finale de lavage par passage d'une solution de lavage aqueuse de chlorure de sodium (NaCI) comprenant éventuellement du chlorure de lithium (LiCI), sur ledit matériau.
Ladite étape de lavage est avantageusement réalisée à une température comprise entre 0°C et 90°C, et de préférence entre 10°C et 70°C, et avec un temps de séjour de ladite solution, de préférence de ladite solution de lavage dans la colonne compris entre 0,03 et 10 h, et de préférence entre 0,06 et 1 h. La quantité de solution nécessaire au lavage est comprise entre 0,1 et 10 volumes de colonne, et de préférence dans la gamme 0,5 à 5 volumes de colonne.
Le flux de sortie de ladite étape de lavage est considéré comme un effluent ou est avantageusement recyclé, et de préférence recyclé à l'entrée de l'étape de chargement ou directement à l'entrée de la deuxième colonne dans le cas où ledit procédé d'extraction du lithium selon l'invention est mis en œuvre dans une unité comprenant au moins deux colonnes.
Ladite étape de lavage permet le lavage de la solution saline imprégnée dans ledit matériau lors de l'étape de chargement dudit matériau par adsorption, tout en limitant la désorption du lithium.
Dans le cas où ladite solution de lavage est une solution aqueuse concentrée de chlorure de sodium (NaCI), ladite étape de lavage permet non seulement d'éliminer la solution saline imprégnée dans ledit matériau lors de l'étape de chargement dudit matériau par adsorption mais aussi de désorber les éléments tels que le bore, les sulfates, les alcalins autres que le lithium et le sodium et les alcalino-terreux.
L'étape de désorption du lithium est ensuite réalisée par passage d'eau ou d'une solution aqueuse de chlorure de lithium (LiCI) sur ledit matériau à l'issue de l'étape de lavage pour obtenir un éluat comprenant au moins du lithium.
De préférence, ladite étape de désorption est réalisée par passage ascendant ou descendant, et de préférence descendant, d'une solution de désorption choisie parmi l'eau et une solution de chlorure de lithium (LiCI) contenant de 0,001 mol/L à 2 mol/L de LiCI, et de préférence de 0,01 mol/L à 1 mol/L.
Ladite étape de désorption est avantageusement réalisée à une température comprise entre 0°C et 90°C, et de préférence entre 10°C et 70°C à avec un temps de séjour de ladite solution de désorption dans la colonne de préférence compris entre 0,03 et 10 h, et de préférence entre 0,06 et 1 h.
La quantité de solution de chlorure de lithium (LiCI) nécessaire à la désorption est avantageusement comprise entre 0,01 et 10 volumes de colonne, et de préférence entre 0,05 et 5 volumes de colonne.
Le flux de sortie de ladite étape de désorption du lithium génère le produit final du procédé, appelé éluat.
L'éluat est avantageusement récupéré entre 0 et 4 volumes de colonne, et de préférence entre 0,2 et 3 volumes de colonne. L'ensemble des autres fractions du flux de sortie de cette étape ne constituant pas le produit final appelé éluat, est considéré comme un effluent ou est avantageusement recyclé, et de préférence recyclé à l'entrée de l'étape de lavage ou de l'étape de chargement.
L'éluat obtenu à l'issue du procédé d'extraction selon l'invention est une solution contenant majoritairement les éléments Li, Na et Cl ainsi que des impuretés de préférence choisies parmi K, Mg, Ca, Sr, B ou S04.
L'éluat est ensuite avantageusement concentré puis purifié pour obtenir un sel de lithium de haute pureté.
Ledit procédé d'extraction du lithium selon l'invention permet l'extraction sélective du lithium à partir d'une solution saline et permet ainsi d'obtenir un facteur d'épuration élevé par rapport à la solution saline initiale, calculé comme étant le rapport X/Li qui est égal au rapport molaire de concentration X/Li dans la solution saline initiale divisé par le rapport molaire de concentration X/Li dans l'éluat, X étant choisi parmi le sodium (Na), le potassium (K), le magnésium (Mg), le calcium (Ca), le bore (B), le soufre (S) et le strontium (Sr).
La présente invention couvre également un dispositif d'extraction de lithium caractérisé en ce qu'il comprend une unité comprenant au moins une colonne, ladite colonne comprenant au moins une garniture comprenant le matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, tel que défini selon la présente invention.
Plus particulièrement, l'invention couvre un dispositif mettant en œuvre le procédé d'extraction de lithium selon l'invention. Encore plus précisément, le dispositif de la présente invention comprend des unités ou moyens mettant en œuvre les différentes étapes du procédé d'extraction de lithium selon l'invention.
Par « selon l'invention » ou des termes équivalents, on entend couvrir tout mode de réalisation, variante, caractéristique avantageuse ou préférée, pris seul ou selon l'une quelconque de leurs combinaisons, sans aucune limitation.
Description des figures :
Les figures 1 , 3, 5 et 7 représentent les diagrammes de diffraction des rayons X des boehmites précipitées obtenues respectivement dans les exemples 1 et 2 selon l'invention et 3 et 4 non conformes à l'invention. Les figures 2, 4, 6 et 8 représentent les diagrammes de diffraction des rayons X des matériaux solides de formule LiXx.2AI(OH)3,nH20 avec X=CI , x=1 et n étant compris entre 0,01 et 10 obtenus sous forme d'extrudés respectivement dans les exemples 1 et 2 selon l'invention et 3 et 4 non conformes à l'invention.
La figure 9 représente la courbe de saturation selon l'exemple 5, réalisée à partir des extrudés obtenus aux exemples 1 à 4.
L'invention est illustrée par les exemples suivants qui ne présentent, en aucun cas, un caractère limitatif. Exemples:
Exemple 1 : (selon l'invention) :
On prépare un matériau solide de formule LiCI.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 1 , selon un procédé de synthèse conforme à l'invention, dans lequel l'étape de mise en forme est mise en œuvre par extrusion directe, sans liant.
1 / précipitation de boehmite AIOOH
Dans un bêcher refroidit par un bain de glace, une solution contenant 326 ml d'eau permutée et 135,6 g de chlorure d'aluminium hexahydraté (AICI3) est préparée. Ensuite sous agitation magnétique, 67,5 g d'hydroxyde de sodium (NaOH) sont ajoutés pendant 30 minutes de manière à ajuster le pH. Le pH atteint en fin de synthèse est de 8. La température est maintenue à 20°C pendant toute la durée de l'étape de précipitation. Ce gâteau est mis en suspension dans un bêcher de 3 L avec 320 mL d'eau.
Un échantillon du précipité obtenu est prélevé du milieu réactionnel. La DRX (figure 1 ) du précipité montre que le précipité obtenu dans l'exemple 1 est bien un précipité de boehmite. Le précipité de boehmite obtenu dans l'exemple 1 est peu cristallisé.
La taille des cristallites de la boehmite obtenue est mesurée selon la méthode de
Sherrer :
Taille selon [020] = 0,6 ± 0,1 (nm) ; Taille selon [120]=1 ,4 ± 0,1 (nm) 21 Addition du chlorure de lithium LiCI.
On prépare une solution contenant 78,5g de chlorure de lithium LiCI fourni par la société Prolabo et 1326 ml d'eau qui est additionnée au gâteau repulpé. Ce milieu réactionnel est agité et chauffé à 80°C pendant 2 h.
Une filtration puis un séchage en étuve à 80°C pendant 8h suivent les 2 premières étapes. Le matériau solide ainsi préparé se caractérise par la formule LiCI.2AI(OH)3,nH20 avec n = 0,25 selon un procédé de synthèse conforme à l'invention. L'étape de mise en forme de la pâte obtenue est réalisée directement après l'étape de séchage, sans étape de malaxage préalable et en l'absence de liant. La pâte obtenue est mise en forme à l'aide d'une extrudeuse piston (MTS), équipée d'une filière cylindrique de 1 mm de diamètre.
Les extrudés obtenus à l'issue de l'étape de mise en forme sont ensuite séchés en étuve à 40°C pendant 12h.
Les extrudés obtenus sont ensuite soumis à une étape de traitement hydrothermal en autoclave comprenant de l'eau. 10 g d'extrudés sont placés dans un panier placé dans un autoclave de 500ml. Dans le fond de l'autoclave sont mis 20 g d'eau distillée. Les extrudés ne sont pas en contact avec le liquide au fond de l'autoclave.
Le traitement hydrothermal est opéré à une température de 100 °C pendant 6 h sous une atmosphère saturée en eau.
Des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 présentant une bonne cohésion et un aspect correcte sont obtenus. Une phase LiCI.2AI(OH)3,nH20 est détectée sur le diagramme de diffraction des rayons X des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 obtenu à l'exemple 1 (figure 2).
Les extrudés obtenus sont également caractérisés par les mesures suivantes :
L'analyse élémentaire montre une bonne stœchiométrie Li/AI/CI correspondant à la composition d'une structure LiCI.2AI(OH)3,nH20
Al= 21 ,2 % masse ; Li= 4,2 % masse ; Cl;= 19 % masse.
Les extrudés obtenus présentent une surface spécifique : SBET = 3 m2/g.
Les extrudés obtenus selon l'exemple 1 présentent visuellement une bonne cohésion, ne présentent pas ou peu de fissures et présentent à la fois une très bonne cohésion et une très bonne tenue mécanique lorsque ceux-ci sont mis au contact d'une saumure (pourcentage de destruction inférieur à 15% lors du test de cohésion) ou d'eau (pourcentage de destruction inférieur à 20% lors du test de cohésion).
Exemple 2 : (selon l'invention) :
On prépare un matériau solide de formule LiCI.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 1 , selon un procédé de synthèse conforme à l'invention, dans lequel l'étape de mise en forme est mise en œuvre par extrusion directe, sans liant. 1 / précipitation de boehmite AIOOH
Dans un bêcher refroidit par un bain de glace, une solution contenant 326 ml d'eau permutée et 135,6 g de chlorure d'aluminium hexahydraté (AICI3) est préparée. Ensuite sous agitation magnétique, 67,5 g d'hydroxyde de sodium (NaOH) sont ajoutés pendant 30 minutes de manière à ajuster le pH. Le pH atteint en fin de synthèse est de 8.5. La température est maintenue à 20°C pendant toute le durée de l'étape. Ce gâteau est mis en suspension dans un bêcher de 3 L avec 320 mL d'eau.
Un échantillon du précipité obtenu est prélevé du milieu réactionnel. La DRX (figure 3) du précipité montre que le précipité obtenu dans l'exemple 2 est bien un précipité de boehmite. Le précipité de boehmite obtenu dans l'exemple 2 est peu cristallisé.
La taille des cristallites de la boehmite obtenue est mesurée selon la méthode de
Sherrer :
Taille selon [020] = 0,9 ± 0, 1 (nm) ; Taille selon [120]=1 ,6 ± 0,2 (nm)
21 Addition du chlorure de lithium LiCI.
On prépare une solution contenant 78,5g de chlorure de lithium LiCI fourni par la société Prolabo et 1326 ml d'eau qui est additionnée au gâteau repulpé. Ce milieu réactionnel est agité et chauffé à 80°C pendant 2 h.
Une filtration puis un séchage en étuve à 80°C pendant 8h suivent les 2 premières étapes.
Le matériau solide ainsi préparé ainsi préparé se caractérise par la formule LiCI.2AI(OH)3,nH20 avec n = 0,25 selon un procédé de synthèse conforme à l'invention. L'étape de mise en forme de la pâte obtenue est réalisée directement après l'étape de séchage, sans étape de malaxage préalable et en l'absence de liant.
La pâte obtenue est mise en forme à l'aide d'une extrudeuse piston (MTS), équipée d'une filière cylindrique de 1 mm de diamètre.
Les extrudés obtenus à l'issue de l'étape de mise en forme sont ensuite séchés en étuve à 40°C pendant 1 2h.
Les extrudés obtenus sont ensuite soumis à une étape de traitement hydrothermal en autoclave comprenant de l'eau. 1 0 g d'extrudés sont placés dans un panier placé dans un autoclave de 500ml. Dans le fond de l'autoclave sont mis 20 g d'eau distillée. Les extrudés ne sont pas en contact avec le liquide au fond de l'autoclave.
Le traitement hydrothermal est opéré à une température de 1 00 °C pendant 6 h sous une atmosphère saturée en eau. Des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 présentant une bonne cohésion et un aspect correcte sont obtenus. Une phase LiCI.2AI(OH)3,nH20 est détectée sur le diagramme de diffraction des rayons X des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 de la figure 4.
Les extrudés obtenus sont également caractérisés par les mesures suivantes :
L'analyse élémentaire montre une bonne stœchiométrie Li/AI/CI correspondant à la composition d'une structure LiCI.2AI(OH)3,nH20
Al= 20,00% masse ; Li= 4,03 % masse ; Cl;= 20,5 % masse, C=5,87 % masse.
Les extrudés obtenus présentent une surface spécifique : SBET = 3 m2/g.
Les extrudés obtenus selon l'exemple 2 présentent visuellement une bonne cohésion, ne présentent pas ou peu de fissures et présentent à la fois une très bonne cohésion et une très bonne tenue mécanique lorsque ceux-ci sont mis au contact d'une saumure (pourcentage de destruction inférieur à 15% lors du test de cohésion) ou d'eau (pourcentage de destruction inférieur à 20% lors du test de cohésion).
Exemple 3 : (comparatif) :
On prépare un matériau solide de formule LiCI.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 1 , selon un procédé de synthèse non conforme à l'invention, en ce que le pH de fin de précipitation de l'étape de synthèse de la boehmite est réalisée à un pH supérieur à 9,5.
1 / précipitation de boehmite AIOOH
Dans un bêcher refroidit par un bain de glace, une solution contenant 326 ml d'eau permutée et 135,6 g de chlorure d'aluminium hexahydraté (AICI3) est préparée. Ensuite sous agitation magnétique, 67,5 g d'hydroxyde de sodium (NaOH) sont ajoutés pendant 30 minutes de manière à ajuster le pH. Le pH atteint en fin de synthèse est de 10. La température est maintenue à 20°C pendant toute le durée de l'étape. Ce gâteau est mis en suspension dans un bêcher de 3 L avec 320 mL d'eau.
Un échantillon du précipité obtenu est prélevé du milieu réactionnel. La DRX (figure 5) du précipité montre que le précipité obtenu dans l'exemple 3 est bien un précipité de boehmite.
La taille des cristallites de la boehmite obtenue est mesurée selon la méthode de Sherrer : Taille selon [020] = 2,1 ± 2 (nm) ; Taille selon [120]=2,8 ± 3 (nm)
2/ Addition du chlorure de lithium LiCI. On prépare une solution contenant 78,5g de chlorure de lithium LiCI fourni par la société Prolabo et 1326 ml d'eau qui est additionnée au gâteau repulpé. Ce milieu réactionnel est agité et chauffé à 80°C pendant 2 h.
Une filtration puis un séchage en étuve à 80°C pendant 8h suivent les 2 premières étapes.
L'étape de mise en forme de la pâte obtenue est réalisée directement après l'étape de séchage, sans étape de malaxage préalable et en l'absence de liant.
La pâte obtenue est mise en forme à l'aide d'une extrudeuse piston (MTS), équipée d'une filière cylindrique de 1 mm de diamètre.
Les extrudés obtenus à l'issue de l'étape de mise en forme sont ensuite séchés en étuve à 40°C pendant 12h. Les extrudés obtenus sont ensuite soumis à une étape de traitement hydrothermal en autoclave comprenant de l'eau. 10 g d'extrudés sont placés dans un panier placé dans un autoclave de 500ml. Dans le fond de l'autoclave sont mis 20 g d'eau distillée. Les extrudés ne sont pas en contact avec le liquide au fond de l'autoclave. Le traitement hydrothermal est opéré à une température de 100 °C pendant 6 h sous une atmosphère saturée en eau.
Des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 présentant une bonne cohésion et un aspect correcte sont obtenus. Une phase LiCI.2AI(OH)3,nH20 est détectée sur le diagramme de diffraction des rayons X des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 de la figure 6.
Les extrudés obtenus sont également caractérisés par les mesures suivantes : L'analyse élémentaire montre une bonne stœchiométrie Li/AI/CI correspondant à la composition d'une structure LiCI.2AI(OH)3,nH20
Al= 20,00% masse ; Li= 4,03 % masse ; Cl= 20,5 % masse, C=5,87 % masse. Les extrudés obtenus présentent une surface spécifique : SBET = 3 m2/g.
Les extrudés obtenus selon l'exemple 3 présentent visuellement une bonne cohésion, ne présentent pas ou peu de fissures et présentent à la fois une très bonne cohésion et une très bonne tenue mécanique lorsque ceux-ci sont mis au contact d'une saumure (pourcentage de destruction inférieur à 15% lors du test de cohésion) ou d'eau (pourcentage de destruction inférieur à 20% lors du test de cohésion).
Exemple 4 : (comparatif) :
On prépare un matériau solide de formule LiCI.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 1 , selon un procédé de synthèse non conforme à l'invention, en ce que la température de l'étape de précipitation de la boehmite est réalisée à une température de 40°C.
1 / précipitation de boehmite AIOOH
Dans un bêcher refroidit par un bain de glace, une solution contenant 326 ml d'eau permutée et 135,6 g de chlorure d'aluminium hexahydraté (AICI3) est préparée. Ensuite sous agitation magnétique, 67,5 g d'hydroxyde de sodium (NaOH) sont ajoutés pendant 30 minutes de manière à ajuster le pH. Le pH atteint en fin de synthèse est de 8. La température est maintenue à 40°C pendant toute le durée de l'étape. Ce gâteau est mis en suspension dans un bêcher de 3 L avec 320 mL d'eau.
Un échantillon du précipité obtenu est prélevé du milieu réactionnel. La DRX
(figure 7) du précipité montre que le précipité obtenu dans l'exemple 4 est bien un précipité de boehmite.
La taille des cristallites de la boehmite obtenue est mesurée selon la méthode de Sherrer : Taille selon [020] = 1 ,9 ± 3 (nm) ; Taille selon [120]=2,6 ± 2 (nm)
21 Addition du chlorure de lithium LiCI.
On prépare une solution contenant 78,5g de chlorure de lithium LiCI fourni par la société Prolabo et 1326 ml d'eau qui est additionnée au gâteau repulpé. Ce milieu réactionnel est agité et chauffé à 80°C pendant 2 h.
Une filtration puis un séchage en étuve à 80°C pendant 8h suivent les 2 premières étapes.
L'étape de mise en forme de la pâte obtenue est réalisée directement après l'étape de séchage, sans étape de malaxage préalable et en l'absence de liant.
La pâte obtenue est mise en forme à l'aide d'une extrudeuse piston (MTS), équipée d'une filière cylindrique de 1 mm de diamètre.
Les extrudés obtenus à l'issue de l'étape de mise en forme sont ensuite séchés en étuve à 40°C pendant 1 2h.
Les extrudés obtenus sont ensuite soumis à une étape de traitement hydrothermal en autoclave comprenant de l'eau. 1 0 g d'extrudés sont placés dans un panier placé dans un autoclave de 500ml. Dans le fond de l'autoclave sont mis 20 g d'eau distillée. Les extrudés ne sont pas en contact avec le liquide au fond de l'autoclave.
Le traitement hydrothermal est opéré à une température de 1 00 °C pendant 6 h sous une atmosphère saturée en eau.
Des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 présentant une bonne cohésion et un aspect correcte sont obtenus. Une phase LiCI.2AI(OH)3,nH20 est détectée sur le diagramme de diffraction des rayons X des extrudés du matériau solide de formule LiCI.2AI(OH)3,nH20 avec n = 0,25 de la figure 8.
Les extrudés obtenus sont également caractérisés par les mesures suivantes :
L'analyse élémentaire montre une bonne stœchiométrie Li/AI/CI correspondant à la composition d'une structure LiCI.2AI(OH)3,nH20
Al= 20,00% masse ; Li= 4,03 % masse ; Cl= 20,51 % masse.
Les extrudés obtenus présentent une surface spécifique : SBET = 2m2/g.
Les extrudés obtenus selon l'exemple 4 présentent visuellement une bonne cohésion, ne présentent pas ou peu de fissures et présentent à la fois une très bonne cohésion et une très bonne tenue mécanique lorsque ceux-ci sont mis au contact d'une saumure (pourcentage de destruction inférieur à 15% lors du test de cohésion) ou d'eau (pourcentage de destruction inférieur à 20% lors du test de cohésion).
Exemple 5 : test de capacité d'adsorption et de cinétique d'adsorption.
La cinétique d'adsorption du lithium par les extrudés et leur capacité d'adsorption est testée par la réalisation d'une courbe de perçage dite aussi courbe de fuite ou courbe de saturation en colonne. Un courbe de saturation est réalisée pour chacun des extrudés obtenus dans les exemples 1 à 4 :
15 g de solide sont placés dans une colonne
- 10 volumes de colonne d'une solution saline de chlorure de lithium (LiCI) à 0,02 mol/L traverse la colonne en circuit fermé jusqu'à atteindre une concentration stable en lithium en solution
Une solution naturelle contenant environ 0,06 mol/L de lithium traverse la colonne par passage ascendant, à un débit de 6 BV/h, c'est-à-dire six fois le volume occupé par le lit des extrudés en une heure.
La concentration en lithium est mesurée en sortie de la colonne en fonction du volume de solution passé.
La figure 9 illustre les courbes de saturation obtenues pour chacun des extrudés obtenus dans les exemples conformes à l'invention 1 et 2 et non conformes à l'invention 3 et 4.
Les extrudés obtenus selon les exemples 1 et 2 selon l'invention sont comparés à ceux obtenus dans les exemples 3 et 4 obtenus selon des procédés de préparation non- conformes à l'invention. Les extrudés des exemples 1 et 2 obtenus selon l'invention montrent une fuite en lithium arrivant à des volumes de saumure passés plus importants. Leur capacités d'adsorption en lithium sont respectivement 5,8 et 6,2 mg(Li)/g(solide sec), à comparer aux 1 ,7 et 4,3 mg(Li)/g(solide sec) pour les solides obtenus selon les exemples 3 et 4, selon des procédés de préparation non-conformes à l'invention.

Claims

REVENDICATIONS
1 . Procédé de préparation d'un matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, ledit procédé comprenant au moins les étapes suivantes :
a) une étape de précipitation de la boehmite, en milieu aqueux, comprenant la mise en contact d'au moins un précurseur basique de préférence choisi parmi l'aluminate de sodium, l'aluminate de potassium, l'ammoniaque, l'hydroxyde de sodium et l'hydroxyde de potassium ; et d'au moins un précurseur acide de préférence choisi parmi le sulfate d'aluminium, le chlorure d'aluminium, le nitrate d'aluminium, l'acide sulfurique, l'acide chlorhydrique, et l'acide nitrique, dans laquelle au moins l'un des précurseurs basique ou acide comprend de l'aluminium, pour obtenir une suspension de boehmite, ladite étape a) mise en oeuvre à une température comprise entre 5 et 35°C, et la quantité du précurseur basique étant choisie de manière à obtenir un pH de fin de précipitation dans le milieu réactionnel compris entre 7,5 et 9,5,
b) une étape de lavage et de filtration du précipité de boehmite obtenu à l'étape a),
c) une étape de mise en contact du précipité obtenu à l'étape b) avec au moins une source de lithium,
d) une étape de filtration de la suspension obtenue à l'étape c) pour obtenir une pâte,
e) une étape de séchage de la pâte obtenue à l'issue de l'étape d) à une température comprise entre 20 et 80°C pendant une durée de préférence comprise entre 1 h et 12h,
f) une étape de mise en forme de ladite pâte séchée,
g) une étape de séchage du matériau mis en forme obtenu à l'issue de l'étape f) à une température comprise entre 20 et 200°C, pendant une durée de préférence comprise entre 1 et 20 heures,
h) une étape de traitement hydrothermal du matériau mis en forme séché obtenu à l'issue de l'étape g), à une température comprise entre 50 et 200°C et pendant une durée de préférence comprise entre 30 min et 12 heures.
2. Procédé selon la revendication 1 , dans lequel le précurseur basique est l'hydroxyde de sodium (NaOH).
3. Procédé selon l'une des revendications 1 ou 2, dans lequel le précurseur acide est le trichlorure d'aluminium (AICI3).
4. Procédé selon l'une des revendications 1 à 3, dans lequel ladite étape a) de précipitation de la boehmite est mise en œuvre à une température comprise entre 10 et 25°C.
5. Procédé selon l'une des revendications 1 à 3, dans lequel la quantité du précurseur basique est choisie de manière à obtenir un pH de fin de précipitation de ladite étape a) dans le milieu réactionnel compris entre 7,7 et 8,8.
6. Procédé selon l'une des revendications 1 à 5, dans lequel la ou les source(s) de lithium est (sont) choisie(s) parmi le chlorure de lithium (LiCI), l'hydroxyde de lithium (LiOH) le nitrate de Lithium (LiN03), le sulfate de lithium (Li2S04) et le carbonate de lithium (Li2C03), pris seuls ou en mélange.
7. Procédé selon la revendication 6, dans lequel la source de lithium est le chlorure de lithium (LiCI).
8. Procédé selon l'une des revendications 1 à 5, dans lequel ladite étape f) de mise en forme est réalisée par extrusion.
9. Procédé selon la revendication 8, dans lequel ladite étape f) de mise en forme est mise en œuvre directement après l'étape e) de séchage.
10. Matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre 0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, mis en forme, de préférence sous forme d'extrudé, susceptible d'être obtenu selon un procédé tel que défini à l'une quelconque des revendications 1 à 9.
1 1 . Procédé d'extraction du lithium de solutions salines, ledit procédé mettant en œuvre ledit matériau solide de formule LiXx.2AI(OH)3,nH20 avec n étant compris entre
0,01 et 10, x étant égal à 1 quand X est un anion choisi parmi les anions chlorure, hydroxyde et nitrate, et x étant égal à 0,5 quand X est un anion choisi parmi les anions sulfate et carbonate, préparé selon le procédé tel que défini selon l'une des revendications 1 à 9, ou tel que défini selon la revendication 10, pour l'extraction de lithium de solutions salines.
12. Procédé d'extraction selon la revendication 1 1 , dans lequel ledit procédé d'extraction du lithium comprend au moins les étapes suivantes :
une étape d'activation dudit matériau solide cristallisé de formule LiXx.2AI(OH)3,nH20,
une étape de chargement dudit matériau activé par adsorption réalisée par passage de ladite solution saline sur ledit matériau activé,
au moins une étape de lavage de la solution saline imprégnant ledit matériau par passage d'une solution de lavage sur ledit matériau,
- une étape de désorption du lithium réalisée par passage d'eau ou d'une solution aqueuse de sel de lithium sur ledit matériau pour obtenir un éluat comprenant au moins du lithium.
13. Procédé d'extraction selon la revendication 12, dans lequel ladite étape d'activation est réalisée par le passage ascendant ou descendant d'eau ou d'une solution de chlorure de lithium (LiCI) ayant une concentration comprise entre 0,001 mol/L et 0,1 mol/L.
14. Procédé d'extraction selon la revendication 13, dans lequel ladite étape d'activation est réalisée à une température comprise entre 0°C et 90°C, et avec un temps de séjour de ladite solution de chlorure de lithium ou d'eau dans la colonne compris entre 0,03 et 10 h.
15. Procédé d'extraction selon l'une des revendications 12 à 14, dans lequel ladite étape de chargement est effectuée à une température comprise entre 0°C et 90°C, et avec un temps de séjour de ladite solution saline dans la colonne compris entre 0,03 et 10 h.
16. Procédé d'extraction selon l'une des revendications 12 à 15, dans lequel ladite solution de lavage utilisée dans l'étape de lavage est l'eau ou une solution aqueuse de chlorure de sodium (NaCI), comprenant éventuellement du chlorure de lithium (LiCI).
17. Procédé d'extraction selon l'une des revendications 12 à 16, dans lequel ladite étape de lavage est réalisée à une température comprise entre 0°C et 90°C, et avec un temps de séjour de ladite solution de lavage dans la colonne compris entre 0,03 et 10 h.
18. Procédé d'extraction selon l'une des revendications 12 à 17, dans lequel ladite étape de désorption est réalisée par passage ascendant ou descendant, d'une solution de désorption choisi parmi l'eau et une solution de chlorure de lithium (LiCI) contenant de 0,001 mol/L à 2 mol/L de LiCI.
19. Procédé d'extraction selon l'une des revendications 12 à 18, dans lequel ladite étape de désorption est réalisée à une température comprise entre 0°C et 90°C, et avec un temps de séjour de ladite solution de désorption dans la colonne compris entre 0,03 et 10 h.
20. Dispositif d'extraction de lithium caractérisé en ce qu'il comprend une unité comprenant au moins une colonne, ladite colonne comprenant au moins une garniture comprenant le matériau solide cristallisé préparé selon le procédé tel que défini selon l'une des revendications 1 à 9, ou tel que défini selon la revendication 10.
EP16730287.6A 2015-06-05 2016-06-03 Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau Pending EP3302787A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1555157A FR3036978B1 (fr) 2015-06-05 2015-06-05 Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
PCT/EP2016/062667 WO2016193439A1 (fr) 2015-06-05 2016-06-03 Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau

Publications (1)

Publication Number Publication Date
EP3302787A1 true EP3302787A1 (fr) 2018-04-11

Family

ID=54066031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16730287.6A Pending EP3302787A1 (fr) 2015-06-05 2016-06-03 Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau

Country Status (7)

Country Link
US (1) US10786802B2 (fr)
EP (1) EP3302787A1 (fr)
CN (1) CN107787248B (fr)
AR (1) AR104902A1 (fr)
CL (1) CL2017003061A1 (fr)
FR (1) FR3036978B1 (fr)
WO (1) WO2016193439A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904297B1 (en) 2023-01-11 2024-02-20 Iliad Ip Company, Llc Process for manufacturing lithium selective adsorption/separation media

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051787B1 (fr) 2016-05-25 2022-07-08 Eramet Procede de preparation d'un materiau adsorbant et procede d'extraction de lithium utilisant ledit materiau
FR3053264B1 (fr) * 2016-06-30 2022-07-29 Eramet Procede de preparation d'un materiau adsorbant et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
CN108083301A (zh) * 2017-11-10 2018-05-29 江苏旌凯中科超导高技术有限公司 利用磁性粉体铝系锂吸附剂从卤水中提取锂的方法
WO2020219625A1 (fr) 2019-04-25 2020-10-29 Saint-Gobain Ceramics & Plastics, Inc. Particules adsorbantes et procédés de formation associés
CN111330540A (zh) * 2020-03-06 2020-06-26 旬阳领盛新材料科技有限公司 一种氧化石墨烯复合铝系锂吸附剂的制备方法
CN112691654B (zh) * 2020-12-25 2024-04-02 华东理工大学 一种铝盐锂吸附剂的一步再生方法
CN114558557B (zh) * 2022-03-22 2022-09-09 北京中科顺谷科技发展有限公司 基于分子筛吸附剂的天然卤水中锂提取吸附颗粒及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2050330C1 (ru) * 1993-02-16 1995-12-20 Научно-производственное акционерное общество "Экостар" Способ селективного сорбционного извлечения лития из рассолов и устройство для его осуществления
CN1511964A (zh) * 2002-12-27 2004-07-14 中国科学院青海盐湖研究所 吸附法从盐湖卤水中提取锂的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4348297A (en) * 1979-11-19 1982-09-07 The Dow Chemical Company Crystalline lithium aluminates
EP0103034A1 (fr) * 1982-09-09 1984-03-21 The Dow Chemical Company Aluminates cristallins de lithium et procédé pour les préparer
WO1994019280A1 (fr) * 1993-02-16 1994-09-01 Nauchno-Proizvodstvennoe Aktsionernoe Obschestvo 'ekostar' Procede d'obtention de chlorure de lithium a partir de solutions et son dispositif de mise en ×uvre
US5599516A (en) 1993-05-24 1997-02-04 Fmc Corporation Recovery of lithium values from brines
CN1095807C (zh) * 1995-09-01 2002-12-11 水泽化学工业株式会社 碱金属铝配合氢氧化物碳酸盐、和生产该盐的方法及其应用
CN1243112A (zh) 1999-08-23 2000-02-02 李凤杰 多元增效氮肥添加剂及其制备方法
RU2234367C1 (ru) 2002-12-15 2004-08-20 Закрытое акционерное общество "Экостар-Наутех" Способ получения сорбента для извлечения лития из рассолов
US7465517B2 (en) * 2004-08-23 2008-12-16 Air Products And Chemicals, Inc. High purity lithium polyhalogenated boron cluster salts useful in lithium batteries
EP2200941A4 (fr) * 2007-09-17 2013-12-25 Areva Fed Services Llc Procédé de retrait d'oxydes d'aluminium de milieux aqueux
US8637428B1 (en) * 2009-12-18 2014-01-28 Simbol Inc. Lithium extraction composition and method of preparation thereof
CN101829538B (zh) 2010-05-19 2013-06-26 浙江海虹控股集团有限公司 一种高性能锂吸附剂的制备方法
CN102631897B (zh) * 2012-02-14 2015-03-25 西安蓝晓科技新材料股份有限公司 一种制备锂吸附剂树脂的方法
FR3024445A1 (fr) * 2014-07-31 2016-02-05 Eramet Procede de preparation d'un materiau adsorbant en presence d'un liant comprenant une etape de traitement hydrothermal et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2050330C1 (ru) * 1993-02-16 1995-12-20 Научно-производственное акционерное общество "Экостар" Способ селективного сорбционного извлечения лития из рассолов и устройство для его осуществления
CN1511964A (zh) * 2002-12-27 2004-07-14 中国科学院青海盐湖研究所 吸附法从盐湖卤水中提取锂的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2016193439A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904297B1 (en) 2023-01-11 2024-02-20 Iliad Ip Company, Llc Process for manufacturing lithium selective adsorption/separation media

Also Published As

Publication number Publication date
CN107787248B (zh) 2021-01-12
US10786802B2 (en) 2020-09-29
CN107787248A (zh) 2018-03-09
AR104902A1 (es) 2017-08-23
FR3036978B1 (fr) 2020-02-21
US20180353932A1 (en) 2018-12-13
WO2016193439A1 (fr) 2016-12-08
FR3036978A1 (fr) 2016-12-09
CL2017003061A1 (es) 2018-08-24

Similar Documents

Publication Publication Date Title
EP3478406B1 (fr) Procede de preparation d'un materiau adsorbant et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
EP3380235B1 (fr) Procede de preparation d'un materiau adsorbant comprenant une etape de malaxage basique et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
EP3302787A1 (fr) Procede de preparation d'un materiau adsorbant comprenant une etape de precipitation de boehmite operant dans des conditions specifiques et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
EP3464181B1 (fr) Procede de preparation d'un materiau adsorbant et procede d'extraction de lithium utilisant ledit materiau
WO2015162272A1 (fr) Procede de preparation d'un materiau adsorbant en l'absence de liant comprenant une etape de traitement hydrothermal et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
EP3086874B1 (fr) Procede de preparation d'un materiau adsorbant mis en forme en l'absence de liant et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
WO2015097205A1 (fr) Procede de preparation d'un materiau adsorbant mis en forme comprenant une etape de mise en forme en presence d'un liant mineral et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
WO2015097201A1 (fr) Procede de preparation d'un materiau adsorbant, mis en forme, par precipitation de sulfate d'aluminium et d'aluminate de sodium et procede d'extraction de lithium utilisant ledit materiau
FR3044002A1 (fr) Procede de preparation d'un materiau adsorbant par malaxage basique d'une poudre sechee en etuve ou four ou par atomisation et procede d'extraction de lithium
WO2015097203A1 (fr) Procede de preparation d'un materiau adsorbant mis en forme par precipitation de nitrate d'aluminium et d'aluminate de sodium et procede d'extraction de lithium utilisant ledit materiau
FR3024445A1 (fr) Procede de preparation d'un materiau adsorbant en presence d'un liant comprenant une etape de traitement hydrothermal et procede d'extraction de lithium a partir de solutions salines utilisant ledit materiau
WO2015097204A1 (fr) Materiau et procede de preparation d'un materiau adsorbant sous forme d'extrudes en presence d'un liant organique et procede d'extraction de lithium a partir de solutions salines utilisant ledit mater
EP4304773A1 (fr) Produit comprenant un adsorbant du lithium
WO2022189743A1 (fr) Produit comprenant un adsorbant du lithium
FR3049595A1 (fr) Procede de preparation d'une alumine mesoporeuse et macroporeuse a partir d'au moins un precurseur de type dawsonite
CN116603500A (zh) 一种铝盐型锂吸附剂及其制备方法与应用

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

Owner name: ERAMET

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211109