EP3287720B1 - Dispositif de réfrigération - Google Patents

Dispositif de réfrigération Download PDF

Info

Publication number
EP3287720B1
EP3287720B1 EP15889890.8A EP15889890A EP3287720B1 EP 3287720 B1 EP3287720 B1 EP 3287720B1 EP 15889890 A EP15889890 A EP 15889890A EP 3287720 B1 EP3287720 B1 EP 3287720B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
compressor
refrigeration apparatus
pressure value
leaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15889890.8A
Other languages
German (de)
English (en)
Other versions
EP3287720A4 (fr
EP3287720A1 (fr
Inventor
Yusuke Arii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of EP3287720A1 publication Critical patent/EP3287720A1/fr
Publication of EP3287720A4 publication Critical patent/EP3287720A4/fr
Application granted granted Critical
Publication of EP3287720B1 publication Critical patent/EP3287720B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing

Definitions

  • the present invention relates to a refrigeration apparatus configured to, when refrigerant leaks, retain the refrigerant in a refrigerant tank.
  • a conventional air-conditioning apparatus is configured to stop the compressor from operating when refrigerant leaks (see Patent Literature 1).
  • Patent Literature 1 Japanese Unexamined Patent Application Publication No. 10-281569
  • Patent Literature 1 because the operation of the compressor is simply stopped when the refrigerant leaks, the refrigerant keeps leaking from the location of leakage.
  • JP-A-2002 228281 discloses a refrigeration apparatus having the features of the preamble of claim 1.
  • a refrigeration apparatus according to claim 1.
  • Fig. 1 is a diagram schematically illustrating an example of a configuration of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • a refrigeration apparatus 50 according to the present embodiment is, for example, configured to cool the contents such as food and/or other items stored indoors on the inside of a chamber 1.
  • the refrigeration apparatus 50 includes a refrigerant leakage detecting unit 11 provided on the inside of the chamber 1.
  • the refrigerant leakage detecting unit 11 may be, for example, a refrigerant leakage detecting device configured to detect refrigerant leaking from a refrigerant circuit 60.
  • the refrigeration apparatus 50 according to the present embodiment is configured to reduce the amount of leakage of the refrigerant by having the refrigerant retained in a refrigerant tank 103, when the refrigerant leaks.
  • the refrigeration apparatus 50 includes the refrigerant circuit 60 in which the refrigerant circulates.
  • the part of the refrigerant circuit 60 indicated with the dotted line corresponds to refrigerant pipes between the suction side of the compressor 101 and the valve device 104.
  • the part of the refrigerant circuit 60 indicated with the solid line corresponds to refrigerant pipes between the discharge side of the compressor 101 and the valve device 104.
  • the refrigerant used in the present embodiment may be, for example, refrigerant having a small Global Warming Potential (GWP) value such as R410A, R32, or CO 2 .
  • GWP Global Warming Potential
  • the refrigerant may be refrigerant mixture containing at least one selected from among those or may be another type of refrigerant different from any of those.
  • the refrigerant circuit 60 is structured by connecting together, with refrigerant pipes, at least the compressor 101, a condenser 102, a refrigerant tank 103, the valve device 104, a pressure reducing device 201, and an evaporator 202.
  • the refrigerant circuit 60 may further include, for example, an oil separator or a gas-liquid separator for the purpose of protecting the compressor 101, a heat exchanger for the purpose of adjusting the degree of subcooling, and other elements.
  • the refrigeration apparatus 50 according to the present embodiment includes a heat source side unit 100 and a load side unit 200 connected to each other with refrigerant pipes.
  • the heat source side unit 100 is provided outdoors on the outside of the chamber 1.
  • the heat source side unit 100 includes the compressor 101, the condenser 102, the refrigerant tank 103, the valve device 104, a controller 110, a storage unit 120, an alarm device 130, a suction side pressure sensor 111, and a discharge side pressure sensor 112.
  • the compressor 101 may be, for example, an inverter compressor controlled by using an inverter. By arbitrarily changing the operation frequency of the compressor 101, it is possible to change the capacity thereof (the volume of refrigerant output by the compressor 101 per unit time period).
  • the compressor 101 may be a constant speed compressor configured to operate at a constant operation frequency. Also, although Fig. 1 illustrates the one compressor 101, two or more compressors 101 may be provided.
  • the condenser 102 is configured, for example, to condense the refrigerant, by exchanging heat between the refrigerant flowing through the condenser 102 and air.
  • a fan (not illustrated) configured to introduce the air to the condenser 102 is installed in the vicinity of the condenser 102.
  • the refrigerant tank 103 is a container configured to store the refrigerant condensed by the condenser 102.
  • the refrigerant tank 103 also has a function of storing refrigerant and causing liquid refrigerant to flow out.
  • the valve device 104 is configured to control passing of the refrigerant flowing out of the refrigerant tank 103 by opening and closing.
  • the valve device 104 may be structured by using a solenoid valve or other elements.
  • the controller 110 is configured to control the entirety of the heat source side unit 100.
  • the controller 110 is structured to include an analog circuit, a digital circuit, a CPU, or a set made up of at least two selected from among these. For example, by using a detection result obtained by the refrigerant leakage detecting unit 11 provided on the inside of the chamber 1, the controller 110 controls the heat source side unit 100. Alternatively, the controller 110 may be configured to control the entirety of the refrigeration apparatus 50.
  • the storage unit 120 is structured to include a non-volatile memory, for example.
  • the storage unit 120 stores data, a program, and other information used for controlling the heat source side unit 100.
  • the alarm device 130 is configured to issue an alarm in response to an instruction received from the controller 110.
  • the alarm device 130 is structured to include, for example, a lamp configured to issue an alarm with light, a buzzer configured to issue an alarm with sound, or other devices.
  • the suction side pressure sensor 111 is provided between the suction side of the compressor 101 and the evaporator 202 and is configured to detect the pressure of the refrigerant sucked by the compressor 101.
  • the discharge side pressure sensor 112 is provided between the discharge side of the compressor 101 and the condenser 102 and is configured to detect the pressure of the refrigerant discharged from the compressor 101.
  • the load side unit 200 is provided indoors on the inside of the chamber 1 and includes the pressure reducing device 201 and the evaporator 202.
  • the pressure reducing device 201 is configured to reduce the pressure of the refrigerant flowing to the pressure reducing device 201.
  • the pressure reducing device 201 may be an electronic expansion valve of which the opening degree is adjustable or may be a capillary tube or other devices.
  • the evaporator 202 is configured, for example, to evaporate the refrigerant by exchanging heat between the refrigerant flowing to the evaporator 202 and air.
  • a fan (not illustrated) configured to introduce the air to the evaporator 202 is installed in the vicinity of the evaporator 202.
  • the refrigeration apparatus 50 is configured to cool the inside of the chamber 1 by performing a normal operation when the refrigeration apparatus 50 is not in an abnormal state, while the inside of the chamber 1 is not sufficiently cooled.
  • the determination of whether the refrigeration apparatus 50 is in an abnormal state or not is made, for example, by using a detection result obtained by the refrigerant leakage detecting unit 11, as well as either temperatures or pressure levels in various locations within the refrigerant circuit 60, and/or other factors.
  • the valve device 104 is in an open state.
  • the refrigerant compressed by the compressor 101 included in the heat source side unit 100 flows into the condenser 102.
  • the refrigerant is condensed by the condenser 102, as a result of the heat exchange process with the air.
  • the refrigerant condensed by the condenser 102 flows into the refrigerant tank 103.
  • the refrigerant flowing out of the refrigerant tank 103 passes through the valve device 104, and the pressure thereof is reduced by the pressure reducing device 201 included in the load side unit 200.
  • the refrigerant of which the pressure has been reduced by the pressure reducing device 201 is evaporated by the evaporator 202 as a result of the heat exchange process with the air.
  • the refrigerant evaporated by the evaporator 202 is sucked into the compressor 101 included in the heat source side unit 100 and is compressed again.
  • the controller 110 adjusts the temperature on the inside of the chamber 1, by controlling the compressor 101 and other elements, with the use of detection results obtained from, for example, the suction side pressure sensor 111, the discharge side pressure sensor 112, a temperature sensor (not illustrated), a pressure sensor (not illustrated), and/or other elements.
  • FIG. 2 is a chart for explaining the example of the operation of the heat source side unit illustrated in Fig. 1 .
  • the refrigeration apparatus 50 is performing the normal operation.
  • the controller 110 illustrated in Fig. 1 obtains a detection result from the refrigerant leakage detecting unit 11 and determines whether or not the refrigerant is leaking.
  • step S04 in Fig. 2 when it is determined that the refrigerant is not leaking, the process proceeds to step S06.
  • step S06 the controller 110 illustrated in Fig. 1 brings the valve device 104 into an open state and sets a low pressure threshold pressure value of the compressor 101 to a first low pressure threshold pressure value A (MPa), and the process returns to step S04.
  • the low pressure threshold pressure value is a value related to a suction pressure value P1 on the suction side of the compressor 101.
  • the controller 110 stops the compressor 101.
  • the first low pressure threshold pressure value A (MPa) is a low pressure threshold pressure value for when the refrigerant is not leaking and is stored in the storage unit 120 in advance.
  • the open state of the valve device 104 is maintained at stepS06, while the low pressure threshold pressure value of the compressor 101 is kept at the first low pressure threshold pressure value A (MPa).
  • step S04 in Fig. 2 when it is determined that the refrigerant is leaking, the process proceeds to step S08.
  • the controller 110 illustrated in Fig. 1 switches the valve device 104 into a closed state and changes the low pressure threshold pressure value of the compressor 101 to a second low pressure threshold pressure value B (MPa).
  • MPa second low pressure threshold pressure value
  • the refrigerant circuit 60 is divided into a section positioned on the suction side of the compressor 101 and another section positioned on the discharge side of the compressor 101. Accordingly, the refrigerant positioned in the section from the valve device 104 to the suction side of the compressor 101 moves to the section from the discharge side of the compressor 101 to the valve device 104.
  • the refrigerant in the section from the valve device 104 to the suction side of the compressor 101 is sucked into the compressor 101 and compressed.
  • the refrigerant compressed by the compressor 101 is condensed by the condenser 102 and is retained in the refrigerant tank 103. Further, when it is determined that the refrigerant is leaking, the low pressure threshold pressure value of the compressor 101 is set to the second low pressure threshold pressure value B (MPa) that is smaller than the first low pressure threshold pressure value A to which the low pressure threshold pressure value is set when it is determined that the refrigerant is not leaking.
  • MPa second low pressure threshold pressure value
  • the second low pressure threshold pressure value B (MPa) is a value set in advance and is stored in the storage unit 120 in advance.
  • the second low pressure threshold pressure value B (MPa) may be, for example, equal to or larger than 0 (MPa) in gauge pressure.
  • the second low pressure threshold pressure value B (MPa) is set to 0.01 (MPa) in gauge pressure.
  • step S08 the second low pressure threshold pressure value B (MPa) is equal to or larger than 0 (MPa) in gauge pressure, the possibility of having air entering the inside of the refrigerant circuit 60 through the refrigerant leakage location of the refrigerant circuit 60 is reduced.
  • step S08 the procedure at step S08 in Fig. 2 has been performed.
  • the process returns to step S04.
  • step S04 the process returns from step S08 to step S04, and it is determined at step S04 that the refrigerant is not leaking
  • the process proceeds to step S06.
  • the controller 110 switches the valve device 104 into an open state and changes the low pressure threshold pressure value of the compressor 101 to the first low pressure threshold pressure value A (MPa).
  • the process then returns to step S04.
  • step S08 the process returns from step S08 to step S04 and it is determined that the refrigerant is leaking at step S04, the process proceeds to step S08.
  • the controller 110 illustrated in Fig. 1 obtains a detection result from the suction side pressure sensor 111.
  • the controller 110 is configured to stop the operation of the compressor 101, when the suction pressure value P1 on the suction side of the compressor 101 becomes equal to or smaller than the second low pressure threshold pressure value B (MPa).
  • MPa second low pressure threshold pressure value
  • the controller 110 does not allow the heat source side unit 100 to perform the normal operation until an instruction indicating that the abnormality of the refrigeration apparatus 50 is resolved is received from the user.
  • the refrigeration apparatus 50 includes: the refrigerant circuit 60 including the compressor 101 configured to compress the refrigerant, the condenser 102 configured to condense the refrigerant compressed by the compressor 101, the refrigerant tank 103 configured to store the refrigerant condensed by the condenser 102, and the valve device 104 configured to control the passing of the refrigerant flowing out of the refrigerant tank 103; the refrigerant leakage detecting unit 11 configured to detect the refrigerant leaking from the refrigerant circuit 60, and the controller 110 configured to obtain the detection result from the refrigerant leakage detecting unit 11 and, when it is determined that the refrigerant is leaking, to bring the valve device 104 into the closed state to retain, in the refrigerant tank 103, the refrigerant, the refrigerant being compressed by the compressor 101 and condensed by the condenser 102.
  • the refrigerant circuit 60 including the compressor 101 configured to compress the refrigerant, the condens
  • the control to stop the operation of the compressor 101 is performed.
  • the controller 110 controls the compressor 101 by, when determining that the refrigerant is leaking, setting the low pressure threshold pressure value to the second low pressure threshold pressure value B that is smaller than the first low pressure threshold pressure value A set when determining that the refrigerant is not leaking. Accordingly, in the present embodiment, the compressor 101 keeps operating, even when the amount of the refrigerant positioned on the suction side of the compressor 101 becomes smaller and the pressure on the suction side of the compressor 101 becomes lower. It is therefore possible to decrease the amount of refrigerant remaining on the suction side of the compressor 101 in the refrigerant circuit 60 and to increase the amount of refrigerant retained on the discharge side of the compressor 101 in the refrigerant circuit 60.
  • the second low pressure threshold pressure value B serving as the low pressure threshold pressure value for when it is determined that the refrigerant is leaking is arranged to be equal to or larger than 0 (MPa) in gauge pressure. Consequently, the possibility of having air entering the inside of the refrigerant circuit 60 is reduced.
  • the refrigerant circuit 60 includes the evaporator 202 provided on the inside of the chamber 1 and configured to evaporate the refrigerant, while the refrigerant leakage detecting unit 11 is installed inside the chamber 1. Consequently, according to the present embodiment, the possibility of having the interior of the chamber 1 filled with the refrigerant is reduced.
  • the refrigeration apparatus 50 includes the heat source side unit 100 structured to include the compressor 101 and the controller 110.
  • the heat source side unit 100 takes measures against the leakage of the refrigerant, the measures against refrigerant leakage are taken, regardless of the specification of the load side unit 200 and other factors.
  • a heat source side unit and a load side unit constituting a refrigeration apparatus often have mutually-different manufacturers and mutually-different specifications. Further, it is often the case that a heat source side unit and a load side unit having mutually-different manufacturers and having mutually-different specifications are controlled independently of each other. In those situations, measures taken against refrigerant leakage are insufficient.
  • the refrigeration apparatus 50 is configured so that the heat source side unit 100 takes the measures against refrigerant leakage occurring on the inside of the chamber 1 where the load side unit 200 is provided. Accordingly, the measures taken against refrigerant leakage are improved.
  • the heat source side unit 100 is installed outside the chamber 1, so that the heat source side unit 100 installed on the outside of the chamber 1 takes measures against refrigerant leakage occurring on the inside of the chamber 1. As a result, the measures taken by the refrigeration apparatus 50 against refrigerant leakage are improved.
  • the refrigerant tank 103 and the valve device 104 are installed outdoors, when the refrigerant leaks, the refrigerant is retained in the section of the refrigerant circuit 60 positioned outdoors.
  • the possibility of having the interior of the chamber 1 filled with the refrigerant is reduced.
  • the compressor 101, the condenser 102, the refrigerant tank 103, the valve device 104, and the refrigerant pipes connecting these elements together are provided outdoors.
  • the part indicated with the solid line where the refrigerant is retained is provided outdoors, the possibility of having the interior of the chamber 1 filled with the refrigerant is reduced.
  • the refrigeration apparatus 50 is configured to cool the contents such as food and/or other items stored indoors on the inside of the chamber 1, abnormalities occurring on the inside of the chamber 1, in particular, are not easily noticed. According to the present embodiment, when the refrigerant leaks on the inside of the chamber 1, because the heat source side unit 100 takes the measures against the leakage of the refrigerant, the measures taken against refrigerant leakage are improved.
  • Fig. 3 is a chart for explaining Modification Example 1 of the present invention obtained by modifying the example in Fig. 2 .
  • Modification Example 1 illustrated in Fig. 3 has steps S21 and S22 added thereto.
  • Steps S02 through S08 in Modification Example 1 illustrated in Fig. 3 are the same as steps S02 through S08 in the example according to Embodiment 1 illustrated in Fig. 2 . Accordingly, the explanations thereof will be either simplified or omitted.
  • step S04 in Fig. 3 when it is determined that the refrigerant is leaking, the procedure at step S08 is performed, and the process proceeds to step S21.
  • the controller 110 illustrated in Fig. 1 causes the alarm device 130 to issue an abnormality alarm.
  • the controller 110 determines whether or not the abnormality alarm has been reset. When the abnormality alarm has been reset, the process returns to step S04.
  • the abnormality alarm is reset by a user who received the abnormality alarm or other parties.
  • the refrigeration apparatus 50 includes an alarm cancelling device such as a switch or other devices (not illustrated). When having confirmed that the refrigeration apparatus 50 has no abnormality, the user resets the abnormality alarm by operating the alarm cancelling device.
  • the alarm device 130 configured to issue the alarm is provided.
  • the controller 110 causes the alarm device 130 to issue the alarm. Consequently, according to Modification Example 1, for example, the user who receives the alarm indicating that the refrigerant is leaking is able to check on the state of the refrigeration apparatus 50.
  • the refrigerant keeps being retained on the discharge side of the compressor 101 until the user resets the abnormality alarm. Also, even after the user resets the abnormality alarm, the refrigerant keeps being retained on the discharge side of the compressor 101 until the controller 110 determines that the refrigerant is no longer leaking. According to Modification Example 1, the refrigeration apparatus 50 is brought into normal operation when the abnormality alarm is reset, and also, the controller 110 determines that the refrigerant is no longer leaking. Consequently, the measures taken by the refrigeration apparatus 50 against refrigerant leakage are improved.
  • Fig. 4 is a chart for explaining Modification Example 2 of the present invention obtained by modifying the example in Fig. 3 .
  • Modification Example 2 illustrated in Fig. 4 has step S31 added thereto.
  • Steps S02 through S08, steps S21 and S22 in Modification Example 2 illustrated in Fig. 4 are the same as steps S02 through S08, steps S21 and S22 in Modification Example 1. Accordingly, the explanations thereof will be either simplified or omitted.
  • the controller 110 illustrated in Fig. 1 determines whether or not the refrigerant leakage detecting unit 11 is connected.
  • the process proceeds to step S02.
  • Modification Example 2 is provided with an interlocking function where the refrigeration apparatus 50 is not allowed to operate when the refrigerant leakage detecting unit 11 is not connected.
  • an interlocking unit configured to realize the interlocking function is structured to include the controller 110 and the refrigerant leakage detecting unit 11.
  • the controller 110 receives a signal from the refrigerant leakage detecting unit 11, the controller 110 determines that the refrigerant leakage detecting unit 11 is connected.
  • the refrigeration apparatus 50 is configured so as not to operate when the refrigerant leakage detecting unit 11 is not connected to the controller 110. Accordingly, the measures taken by the refrigeration apparatus 50 against the leakage of the refrigerant explained in the example in Embodiment 1 or Modification Example 1 are implemented reliably.
  • Fig. 5 is a diagram schematically illustrating an example of a configuration of a refrigeration apparatus according to Embodiment 2 of the present invention.
  • a heat source side unit 100A of a refrigeration apparatus 50A includes a heat source unit 300 and an outdoor heat exchange unit 400 that are connected to each other with refrigerant pipes.
  • the heat source unit 300 is provided indoors on the inside of a machine chamber 2, whereas the outdoor heat exchange unit 400 is provided outdoors on the outside of the chamber 1 and the machine chamber 2.
  • the machine chamber 2 may be provided with a ventilation device (not illustrated).
  • the refrigeration apparatus 50A includes a machine chamber refrigerant leakage detecting unit 12 provided on the inside of the machine chamber 2, in addition to the refrigerant leakage detecting unit 11 provided on the inside of the chamber 1.
  • the machine chamber refrigerant leakage detecting unit 12 may be a refrigerant leakage detecting device configured to detect refrigerant leaking from a refrigerant circuit 60A.
  • the refrigeration apparatus 50A is configured to reduce the leakage amount of the refrigerant by having the refrigerant retained in a refrigerant tank 103A when the refrigerant is leaking on the inside of either the chamber 1 or the machine chamber 2.
  • the heat source unit 300 includes the compressor 101, a check valve 105, a liquid receptor 303, a controller 110A, a storage unit 120A, the alarm device 130, the suction side pressure sensor 111, and the discharge side pressure sensor 112.
  • the check valve 105 is provided between the discharge side of the compressor 101 and the condenser 102 in the refrigerant circuit 60A.
  • the check valve 105 is configured to prevent the refrigerant from flowing backward from the condenser 102 to the compressor 101.
  • the liquid receptor 303 is configured to store the refrigerant and to cause liquid refrigerant to flow out.
  • the controller 110A is configured to control the entirety of the heat source side unit 100A.
  • the controller 110A is structured to include an analog circuit, a digital circuit, a CPU, or a set made up of at least two selected from among these.
  • the controller 110A is configured to control the heat source side unit 100A, by using a detection result obtained by the refrigerant leakage detecting unit 11 and a detection result obtained by the machine chamber refrigerant leakage detecting unit 12.
  • the controller 110A may be configured to control the entirety of the refrigeration apparatus 50A.
  • the storage unit 120A is structured to include a non-volatile memory, for example.
  • the storage unit 120A stores data, a program, and other information used for controlling the heat source side unit 100A.
  • the alarm device 130 is configured to issue an alarm by receiving an instruction from the controller 110A.
  • the alarm device 130 may be, for example, a lamp configured to issue an alarm with light, a buzzer configured to issue an alarm with sound, or other devices.
  • the outdoor heat exchange unit 400 includes the condenser 102, the refrigerant tank 103A, and a valve device 104A.
  • the refrigerant tank 103A is a container configured to store the refrigerant condensed by the condenser 102.
  • the liquid receptor 303 in the heat source unit 300 may be omitted.
  • the valve device 104A is configured to control the passing of the refrigerant flowing out of the refrigerant tank 103A by opening and closing.
  • the valve device 104A may be structured by using a solenoid valve or other elements.
  • the refrigerant circuit 60A is structured by connecting together, with refrigerant pipes, the heat source side unit 100A and the load side unit 200.
  • the refrigerant circuit 60A is structured by connecting together, with refrigerant pipes, at least the compressor 101, the check valve 105, the condenser 102, the refrigerant tank 103A, the valve device 104A, the liquid receptor 303, the pressure reducing device 201, and the evaporator 202.
  • the controller 110A obtains the detection result from the refrigerant leakage detecting unit 11 and the detection result from the machine chamber refrigerant leakage detecting unit 12 and further determines whether or not the refrigerant is leaking by using the detection result from the refrigerant leakage detecting unit 11 and the detection result from the machine chamber refrigerant leakage detecting unit 12.
  • the valve device 104A When it is determined that the refrigerant is leaking, similarly to Embodiment 1, the valve device 104A is brought into the closed state, while the low pressure threshold pressure value of the compressor 101 is set to the second low pressure threshold pressure value B (MPa), and the refrigerant is retained in the refrigerant tank 103A.
  • MPa second low pressure threshold pressure value
  • the compressor 101 is provided on the inside of the machine chamber 2.
  • the machine chamber refrigerant leakage detecting unit 12 is provided on the inside of the machine chamber 2 and is configured to detect refrigerant leaking from the refrigerant circuit 60A.
  • the controller 110A is configured to obtain the detection result from the refrigerant leakage detecting unit 11 and the detection result from the machine chamber refrigerant leakage detecting unit 12 to judge whether or not the refrigerant is leaking. Further, when it is determined that the refrigerant is leaking, the refrigerant is retained in the refrigerant tank 103A. Consequently, the possibility of having either the chamber 1 or the machine chamber 2 filled with the refrigerant is reduced.
  • the refrigerant circuit 60A of the refrigeration apparatus 50A includes the check valve 105 configured to prevent the refrigerant from flowing backward from the condenser 102 to the compressor 101. Accordingly, it is possible to lower the possibility of having the retained refrigerant flowing backward and flowing into the machine chamber 2 or the chamber 1.
  • Fig. 6 is a diagram for explaining Modification Example 3 of the present invention obtained by modifying the example in Fig. 5 .
  • an outdoor heat exchange unit 400A of a refrigeration apparatus 50B according to Modification Example 3 illustrated in Fig. 6 is configured so that a valve device 104B is connected in parallel to a refrigerant tank 103B.
  • the valve device 104B while the valve device 104B is in an open state, the refrigerant condensed by the condenser 102 is branched into refrigerant stored in the refrigerant tank 103B and refrigerant flowing to the valve device 104B.
  • the configurations described in the embodiments above may be modified as appropriate. Further, at least a part of the configurations may be replaced with another configuration.
  • some of the constituent elements of which the positional arrangements are not particularly specified do not necessarily have to be placed in the positions disclosed in the embodiments and may be provided in any position that can realize the functions thereof.
  • the example is explained in which the refrigerant leakage detecting unit 11 is structured separately from the load side unit 200.
  • the refrigerant leakage detecting unit 11 may be incorporated into the load side unit 200 to be integrally formed with the load side unit 200.
  • the example is explained in which the machine chamber refrigerant leakage detecting unit 12 is structured separately from the heat source unit 300.
  • the machine chamber refrigerant leakage detecting unit 12 may be incorporated into the heat source unit 300 to be integrally formed with the heat source unit 300.
  • the refrigerant leakage detecting unit 11 and the machine chamber refrigerant leakage detecting unit 12 each do not necessarily have to be a refrigerant leakage detecting device configured to detect leakage of the refrigerant.
  • the refrigerant leakage detecting unit 11 and the machine chamber refrigerant leakage detecting unit 12 may each be structured to include a temperature sensor configured to detect temperatures in various locations in the refrigerant circuit, a pressure sensor configured to detect pressure levels in various locations in the refrigerant circuit, and a controller configured to judge whether or not the refrigerant is leaking by using detection results from the temperature sensor and detection results from the pressure sensor.
  • the check valve 105 in Embodiment 2 may be provided on the refrigerant discharge side of the compressor 101 in the refrigerant circuit 60 illustrated in Fig. 1 .
  • the refrigeration apparatus is configured so that the one load side unit is connected to the one heat source side unit.
  • the refrigeration apparatus may be configured to include a plurality of load side units connected in parallel to a single heat source side unit.
  • the plurality of load side units may be provided on the inside of a single chamber.
  • one or more load side units may be provided on the inside of each of a plurality of chambers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Claims (9)

  1. Appareil de réfrigération comprenant :
    un circuit de fluide frigorigène (60) qui comprend un compresseur (101) configuré pour comprimer le fluide frigorigène, un condenseur (102) configuré pour condenser le fluide frigorigène comprimé par le compresseur (101), un réservoir de fluide frigorigène (103) configuré pour stocker le fluide frigorigène condensé par le condenseur (102), et un dispositif de soupape (104) configuré pour commander le passage du fluide frigorigène qui s'écoule hors du réservoir de fluide frigorigène (103) ;
    une unité de détection d'une fuite de fluide frigorigène (11), configurée pour détecter une fuite de fluide frigorigène hors du circuit de fluide frigorigène (60) ; et
    un contrôleur (110) configuré pour obtenir le résultat d'une détection en provenance de l'unité de détection d'une fuite de fluide frigorigène (11) et, quand il est déterminé une fuite de fluide frigorigène, pour amener le dispositif de soupape (104) dans un état fermé afin de retenir, dans le réservoir de fluide frigorigène (103), le fluide frigorigène comprimé par le compresseur (101) et condensé par le condenseur (102),
    dans lequel
    le contrôleur (110) est configuré pour
    commander l'arrêt du fonctionnement du compresseur (101) lorsque la pression d'aspiration du côté aspiration du compresseur (101) devient égale ou inférieure à une valeur de pression de seuil de basse pression, et
    quand il est déterminé que le fluide frigorigène ne fuit pas, régler la valeur de pression de seuil de basse pression à une première valeur de pression de seuil de basse pression, et caractérisé par,
    quand il est déterminé que le fluide frigorigène fuit, régler la valeur de pression de seuil de basse pression à une seconde valeur de pression de seuil de basse pression, qui est inférieure à la première valeur de pression de seuil de basse pression.
  2. Appareil de réfrigération selon la revendication 1, dans lequel
    la seconde valeur de pression de seuil de basse pression est égale ou supérieure à 0 MPa en pression effective.
  3. Appareil de réfrigération selon la revendication 1 ou 2, dans lequel
    le circuit de fluide frigorigène (60) comprend en outre un évaporateur disposé à l'intérieur d'une chambre, et configuré pour faire évaporer le fluide frigorigène, et
    l'unité de détection d'une fuite de fluide frigorigène (11) est installée à l'intérieur de la chambre.
  4. Appareil de réfrigération selon l'une quelconque des revendications 1 à 3, comprenant :
    une unité source de chaleur qui comprend le compresseur (101) et le contrôleur (110).
  5. Appareil de réfrigération selon l'une quelconque des revendications 1 à 4, dans lequel
    le réservoir de fluide frigorigène (103) et le dispositif de soupape (104) sont installés à l'extérieur.
  6. Appareil de réfrigération selon l'une quelconque des revendications 1 à 5, dans lequel
    le compresseur (101) et le condenseur (102) sont installés à l'extérieur.
  7. Appareil de réfrigération selon l'une quelconque des revendications 1 à 5, dans lequel
    le compresseur (101) est installé à l'intérieur d'une salle des machines,
    l'appareil de réfrigération comprend en outre une unité de détection d'une fuite de fluide frigorigène dans la salle des machines (12), qui est installée à l'intérieur de la salle des machines, et qui est configurée pour détecter une fuite de fluide frigorigène en provenance du circuit de fluide frigorigène (60), et
    le contrôleur (110) est configuré pour déterminer la présence ou l'absence d'une fuite de fluide frigorigène, en obtenant le résultat d'une détection en provenance de l'unité de détection d'une fuite de fluide frigorigène (11), et le résultat d'une détection en provenance de l'unité de détection d'une fuite de fluide frigorigène dans la salle des machines (12).
  8. Appareil de réfrigération selon l'une quelconque des revendications 1 à 7, dans lequel
    le circuit de fluide frigorigène (60) comprend en outre une soupape anti-retour (105) configurée pour empêcher le fluide frigorigène de s'écouler en sens inverse à partir du condenseur (102) vers le compresseur (101).
  9. Appareil de réfrigération selon l'une quelconque des revendications 1 à 8, comprenant en outre :
    un dispositif d'alarme (130) configuré pour émettre une alarme, dans lequel
    le contrôleur (110) est configuré pour faire émettre une alarme par le dispositif d'alarme (130), lorsque le fluide frigorigène fuit.
EP15889890.8A 2015-04-23 2015-04-23 Dispositif de réfrigération Active EP3287720B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062419 WO2016170651A1 (fr) 2015-04-23 2015-04-23 Dispositif de réfrigération

Publications (3)

Publication Number Publication Date
EP3287720A1 EP3287720A1 (fr) 2018-02-28
EP3287720A4 EP3287720A4 (fr) 2018-12-05
EP3287720B1 true EP3287720B1 (fr) 2022-01-12

Family

ID=57143058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15889890.8A Active EP3287720B1 (fr) 2015-04-23 2015-04-23 Dispositif de réfrigération

Country Status (3)

Country Link
EP (1) EP3287720B1 (fr)
JP (1) JP6456487B2 (fr)
WO (1) WO2016170651A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151178A1 (fr) * 2017-02-14 2018-08-23 ダイキン工業株式会社 Dispositif de réfrigération
US11473821B2 (en) * 2017-08-10 2022-10-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2019053771A1 (fr) * 2017-09-12 2019-03-21 三菱電機株式会社 Dispositif de climatisation
JP7424870B2 (ja) 2020-03-09 2024-01-30 株式会社Nttファシリティーズ 空調装置
US11732916B2 (en) 2020-06-08 2023-08-22 Emerson Climate Technologies, Inc. Refrigeration leak detection
US11359846B2 (en) 2020-07-06 2022-06-14 Emerson Climate Technologies, Inc. Refrigeration system leak detection
US11885516B2 (en) 2020-08-07 2024-01-30 Copeland Lp Refrigeration leak detection
US11754324B2 (en) 2020-09-14 2023-09-12 Copeland Lp Refrigerant isolation using a reversing valve
US11609032B2 (en) 2020-10-22 2023-03-21 Emerson Climate Technologies, Inc. Refrigerant leak sensor measurement adjustment systems and methods
US11940188B2 (en) 2021-03-23 2024-03-26 Copeland Lp Hybrid heat-pump system
JP7168022B2 (ja) * 2021-03-26 2022-11-09 株式会社富士通ゼネラル 空気調和機
WO2023132023A1 (fr) * 2022-01-06 2023-07-13 三菱電機株式会社 Unité de condenseur distante, dispositif à cycle frigorifique et dispositif de réfrigération

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113462U (fr) * 1976-02-26 1977-08-29
JPS5833457B2 (ja) * 1976-10-15 1983-07-20 三菱電機株式会社 冷暖房装置
JP3162132B2 (ja) * 1991-10-30 2001-04-25 株式会社日立製作所 冷凍装置の制御方法
JPH09318141A (ja) * 1996-05-30 1997-12-12 Mitsubishi Electric Corp 空気調和機の制御装置及びその制御方法
JP2002228281A (ja) * 2001-01-31 2002-08-14 Sanyo Electric Co Ltd 空気調和機
JP2009115325A (ja) * 2007-11-01 2009-05-28 Yazaki Corp 冷却装置
JP4926098B2 (ja) * 2008-03-14 2012-05-09 三菱電機株式会社 冷凍装置

Also Published As

Publication number Publication date
JPWO2016170651A1 (ja) 2017-11-02
WO2016170651A1 (fr) 2016-10-27
JP6456487B2 (ja) 2019-01-23
EP3287720A4 (fr) 2018-12-05
EP3287720A1 (fr) 2018-02-28

Similar Documents

Publication Publication Date Title
EP3287720B1 (fr) Dispositif de réfrigération
EP3633277B1 (fr) Système de climatisation
EP3683524B1 (fr) Dispositif frigorifique
JP6366742B2 (ja) 空気調和装置
US20230134047A1 (en) Refrigeration cycle apparatus and refrigeration apparatus
JP6463470B2 (ja) 冷凍装置
JP6498289B2 (ja) 冷凍サイクルシステム
EP3222924B1 (fr) Dispositif de conditionnement d'air
EP3553424A1 (fr) Procédé et appareil de détection de fuite de réfrigérant d'un système de refroidissement par air seulement
KR20150016407A (ko) 냉동 장치
JP2021081187A (ja) 空気調和装置
JP2008241065A (ja) 冷凍装置及び冷凍装置の油戻し方法
JP6890555B2 (ja) 冷凍装置
JP6588626B2 (ja) 冷凍装置
JP6785974B2 (ja) 空気調和装置
JP2009243847A (ja) マルチ形空気調和機
JP4867503B2 (ja) 冷却装置
KR20120085403A (ko) 냉매 순환 장치 및 그의 제어방법
JP2008232564A (ja) 冷凍装置及び冷凍装置の制御方法
JP6848027B2 (ja) 冷凍装置
JP5434985B2 (ja) 冷凍装置
JP2011257040A (ja) 冷凍機およびこの冷凍機用電子膨張弁の制御装置
JP5858022B2 (ja) 空気調和装置
JP2021139601A (ja) 空調装置
KR20150006505A (ko) 공기 조화기 및 그 제어방법

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20181107

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/00 20060101ALI20181031BHEP

Ipc: F25B 41/04 20060101ALI20181031BHEP

Ipc: F25B 49/02 20060101AFI20181031BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/02 20060101AFI20210706BHEP

Ipc: F25B 49/00 20060101ALI20210706BHEP

INTG Intention to grant announced

Effective date: 20210805

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015076489

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1462649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220112

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1462649

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015076489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20221013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220423

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220423

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230228

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 602015076489

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240229

Year of fee payment: 10