EP3260380A1 - Methode de fabrication d'un aimant fritté - Google Patents
Methode de fabrication d'un aimant fritté Download PDFInfo
- Publication number
- EP3260380A1 EP3260380A1 EP17182752.0A EP17182752A EP3260380A1 EP 3260380 A1 EP3260380 A1 EP 3260380A1 EP 17182752 A EP17182752 A EP 17182752A EP 3260380 A1 EP3260380 A1 EP 3260380A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- powder
- hopper
- container
- alloy powder
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/004—Filling molds with powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/30—Feeding material to presses
- B30B15/302—Feeding material in particulate or plastic state to moulding presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/04—Methods of, or means for, filling the material into the containers or receptacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B1/00—Packaging fluent solid material, e.g. powders, granular or loose fibrous material, loose masses of small articles, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
- B65B1/04—Methods of, or means for, filling the material into the containers or receptacles
- B65B1/16—Methods of, or means for, filling the material into the containers or receptacles by pneumatic means, e.g. by suction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B7/00—Closing containers or receptacles after filling
- B65B7/16—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons
- B65B7/28—Closing semi-rigid or rigid containers or receptacles not deformed by, or not taking-up shape of, contents, e.g. boxes or cartons by applying separate preformed closures, e.g. lids, covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0273—Imparting anisotropy
Definitions
- the present invention relates to a powder-filling system for filling a container with powder.
- a powder-filling system for putting powder into a container (shaping container) designed for molding (shaping) the powder is used.
- the container In such a powder-filling system, the container must be uniformly filled with powder at a predetermined density. Furthermore, in many cases, the filling density of the powder is required to be higher than the level achieved by simply pouring the powder into the container (this is called the “natural filling").
- the operation of filling the container at a higher density than the density achieved by the natural filling is hereinafter called the "dense filling.”
- Patent Literature 1 discloses a system which employs the air-tapping method to fill a container with powder.
- a hopper having an opening in its lower portion is attached to a powder-filling container in a removable and hermetically closable fashion so that the hopper communicates with the container at the opening.
- the system also has a powder supplier for supplying powder to the hopper and a gas supplier for supplying compressed gas to the hopper.
- compressed gas air can be used if the filling powder is a hard-to-oxidize powder.
- inert gas should be used, such as nitrogen or argon gas.
- a planer sieve member having a sieve with a predetermined size of openings.
- the sieve may consist of a grid mesh, parallel wires (a set of parallel wires arranged with predetermined spacing), perforated plate (a thin plate with a number of punched holes) or the like.
- the size of the openings of the sieve is adjusted so that the powder to be supplied to the container as a whole will not fall naturally but will fall when pressure is applied by compressed gas in a manner to be described later. Needless to say, the size of the openings of the sieve should be greater than the size of the individual particles forming the powder (which are hereinafter called "powder particles").
- the size of the openings of the sieve needs to be much greater than the powder particles, since the problem in this situation is to control the passage of aggregates of powder particles rather than individual powder particles.
- the degree of cohesion of the powder particles depends on the electric charges (static electricity) and magnetism possessed by the powder particles or wetness on the surface of the powder particles, the shape of the powder particles, and other factors. In general, finer powder particles have a higher degree of cohesion.
- Patent Literature 1 The powder-filling system of Patent Literature 1 is used as follows: Initially, an amount of powder is supplied from the powder supplier to the hopper. At this stage, the powder does not fall off the hopper, since the size of the openings of the sieve is adjusted in the previously described manner. Next, the hopper is attached to the container and hermetically closed. Subsequently, compressed gas is rapidly charged through a gas introduction port into the space above the powder within the hopper, and after a short period of time, the compressed gas is discharged from the hopper. Such a charge and discharge of the compressed gas is alternately repeated at a frequency of several tens of times per second (several tens of Hz), to repeatedly apply pulsed pressures to the top face of the powder within the hopper by the compressed gas.
- a frequency of several tens of times per second severe tens of Hz
- This operation makes the powder gradually pass through the sieve member and fall into the container.
- the hopper is removed from the container. This separates the powder held in the container from the powder remaining in the hopper, with the sieve member as the boundary.
- Patent Literature 1 JP 11-049101 A
- the filling density will vary depending on the position within the container; i.e. the filling density will be non-uniform. Naturally, such a non-uniformity in the density distribution affects various properties of the product of the filling material (shaped object).
- the problem to be solved by the present invention is to provide a powder-filling system capable of filling a container with powder at an approximately uniform filling density.
- the present inventors have studied the cause of the aforementioned non-uniformity of the filling density and as a result have reached the conclusion that the cohesive force of the powder particles contributes to the non-uniformity.
- the probable cause is as follows:
- the cohesive force is an interaction among powder particles and therefore is lower in a region near the side wall of the hopper than in a central region of the hopper.
- a stronger cohesive force means a lower level of fluidity. Accordingly, the fluidity of the powder near the side wall of the hopper is higher than that of the powder at the center of the hopper.
- the powder near the side wall of the hopper passes more easily through the sieve member and falls into the container than the powder at the center of the hopper. Consequently, the density distribution within the container will be such that the filling density at a position closer to the side wall of the opening of the hopper is higher than at a position closer to the center and more distant from the side wall.
- the present inventors have further studied the configuration of the powder-filling system employing the air-tapping method so as to prevent the occurrence of such a non-uniformity in the filling density, and have reached the present invention.
- a powder-filling system according to the present invention developed for solving the previously described problem is a system for filling a container with powder, including:
- the "sieve member” in the present application is a member with a number of openings or holes.
- the sieve typically consists of, but is not limited to, a number of linear members (e.g. wires) arranged parallel to and intersecting with each other forming square or rectangular openings.
- the sieve member in the present application also includes a simple sieve member consisted of a number of linear members arranged parallel to (but not intersecting with) each other and a plate-shaped member with a number of holes.
- the operation of "repeatedly supplying compressed gas in a pulsed form to the hopper” means repeating the process of charging compressed gas into the hopper and discharging the compressed gas from the hopper.
- the discharge of the compressed gas may be performed as a forced process using a means for drawing the gas or through a natural process (or leak).
- the hopper is attached to the container, whereby the container and the hopper are hermetically closed. Subsequently, compressed gas in a pulsed form is repeatedly supplied to the hopper by the gas supplier to make the powder in the hopper pass through the sieve member and fill the container. Since the sieve member has openings with smaller sizes in the region near the side wall of the hopper than in the central region, the powder particles in the region near the side wall of the opening of the hopper, which have been the cause of the high filling density in the conventional air-tapping, do not easily fall into the container. Consequently, the filling density in the region near the side wall is prevented from being higher, so that the filling density of the powder will be approximately uniform within the entire container.
- the container to be filled with the powder may either have only one space (cavity) to be filled with the powder or a plurality of such cavities.
- those cavities are hermetically closed while communicating with a common (single) hopper.
- a common (single) hopper By repeatedly injecting and discharging compressed gas into and from the hopper in this state, each cavity is filled with the powder. If such an operation is performed by the conventional air-tapping method, the filling density in a cavity near the side wall of the opening of the hopper will be higher than in a cavity near the center of the hopper due to the same reason as previously described.
- the sieve member having smaller openings formed in the region near the side wall than in the central region of the hopper is used, which impedes the fall of the powder in the region above the cavities near the side wall of the opening of the hopper, whereby the filling density in the cavities located near the side wall of the opening of the hopper is prevented from being higher. Consequently, the filling densities of the powder in the cavities will be approximately equal to each other.
- the powder-filling system according to the present invention is suitable for the production of sintered magnets, and particularly, for the production of sintered magnets by a press-less method.
- the press-less method is a technique in which a sintered magnet is obtained by a process including: filling a container with alloy powder obtained by pulverizing alloy to be used as the material of the sintered magnet (filling process); and magnetically orienting the alloy powder (orienting process) and heating it for sintering (sintering process) while holding the powder in the container without applying pressure.
- the press-less method can improve the magnetic properties of the eventually obtained sintered magnet for two reasons: (i) in the process of orienting the alloy powder within the magnetic field, the particles of the alloy powder can more easily rotate in the direction of the magnetic field, so that a higher degree of orientation can be achieved, and (ii) since it is unnecessary to use a large pressing machine, the processes from the filling through the sintering can be performed within a closed space, so that oxidization can be prevented.
- the powder-filling system according to the present invention can be used as a system for filling a cavity with alloy powder.
- inert gas should be used as the gas supplied from the gas supplier to the hopper in order to prevent oxidization of the alloy powder.
- a sintered magnet production system includes:
- the filling density of the alloy powder in the container will be approximately uniform, so that the properties of the sintered magnet will also be approximately uniform regardless of the position within the sintered magnet.
- the sintered magnet production system according to the present invention also allows the container to have either only one space (cavity) to be filled with the alloy powder or to have a plurality of such cavities.
- the filling densities of the alloy powder in the cavities will be approximately equal to each other, and the plurality of sintered magnets thereby obtained will also have approximately equal magnetic properties.
- the powder-filling system 10 of the present embodiment is described.
- the powder-filling system 10 shown in Fig. 1 is intended to be used in a sintered magnet production system 20 of the present embodiment (which will be described later) to fill a container 30 with alloy powder to be used as the material of a sintered magnet, although it can also be used, without any change, to fill a container with any other type of powder.
- the container 30 used in the present embodiment has two cavities 301 each of which has a roughly rectangular parallelepiped shape measuring 95.2 mm in length, 17.9 mm in width and 7.7 mm in depth and which are arranged side-by-side in their width direction.
- the powder-filling system 10 has a hopper 11, a powder supplier 12 for supplying alloy powder to the hopper 11, a gas supplier 13 for supplying compressed gas to the hopper 11, and a moving means (not shown) for moving the hopper 11 to connect or disconnect it to or from the container 30.
- a container conveyer 24 included in the sintered magnet production system 20 (which will be described later) included in the sintered magnet production system 20 (which will be described later)
- the container 30 is conveyed to a position directly below the hopper 11 and then transported away from that position.
- the hopper 11 has a funnel-like shape with the horizontal sectional area decreasing from the upper opening 111 toward the lower opening 112.
- the lower opening 112 of the hopper 11 can be attached to the container 30 in a removable fashion so as to hermetically close the upper side of the container 30.
- the lower opening 112 has a rectangular shape corresponding to the shape of the top face of the container 30 and is surrounded by the vertical side wall on all sides.
- a plate-shaped sieve member 113 shown in Fig. 3A is provided at the lower opening 112.
- the sieve member 113 is a plate member having two roughly rectangular areas (sieve-formed areas) corresponding to the two cavities 301 of the container 30, with a sieve 114 provided in each area.
- the plate member is made of stainless steel (SUS304).
- the sieve 114 consists of a large number of roughly rectangular holes (openings) bored in the plate member and arranged in the length and width directions of the sieve -formed areas.
- the size of the openings of the sieve 114 is set to be smaller in a region closer to the ends of the long side of the sieve-formed area (a region closer to the side wall of the lower opening 112 of the hopper 11) than in a region closer to the center.
- the sieve 114 is divided into seven virtual sections arranged in the length direction ( Fig.
- the size of the openings of the sieve 114 is 8.6 ⁇ 2.5 mm in Section A, 8.6 ⁇ 2.2 mm in Sections B, 8.6 ⁇ 2.0 mm in Sections C, and 8.6 ⁇ 1.8 mm in Sections D.
- the openings of the sieve 114 are three orders of magnitude greater than the average particle size.
- the alloy powder in the hopper 11 will not easily pass through the openings of the sieve 114 since the particles of the alloy powder aggregate due to their magnetism.
- the powder supplier 12 has a storage unit 121 for storing alloy powder and a powder discharge opening 122 for discharging the alloy powder from the lower portion of the storage unit 121. Furthermore, the powder supplier 12 is provided with a moving means (not shown) for moving the powder discharge opening 122 to a position above the upper opening 111 of the hopper 11.
- the gas supplier 13 has a compressed-gas source 131 for producing compressed gas, a cover member 132 for hermetically closing the upper opening 111 of the hopper 11, and a gas supply tube 133 (which will be described later). Furthermore, the gas supplier 13 is provided with a moving means (not shown) for moving the cover member 132 so as to attach or detach the cover member 132 to or from the top face of the hopper 11.
- nitrogen gas which is a kind of inert gas
- Inert gas other than nitrogen (e.g. argon), or a mixture of two or more kinds of inert gas may also be used. Air is also available in the case of filling a container with a hard-to-oxidize powder (though not available in the case of producing sintered magnets).
- the gas supply tube 133 has one end connected to the compressed-gas source 131 and the other end (closer to the cover) connected to a hole penetrating through the cover member 132.
- a branch tube 134 extends from a first branching section 136 in the middle of the gas supply tube 133, and an aspirator (ejector) 135 is connected to this branch tube 134.
- the aspirator 135 consists of a passage tube 135A with a narrowed section in the middle of itself and a suction tube 135B branching from the narrowed section. The pressure within the suction tube 135B can be reduced by passing a stream of compressed gas through the passage tube 135A.
- the suction tube 135B is connected to the gas supply tube 133 at a second branching section 137 which is closer to the cover member 132 than the first branching section 136.
- a first valve 138 is provided in the gas supply tube 133 between the first and second branching sections 136 and 137, while a second valve 139 is provided in the branch tube 134.
- the compressed gas With the compressed gas being supplied from the compressed-gas source 131 to the gas supply tube 133, if the first valve 138 is opened and the second valve 139 is closed, the compressed gas is ejected from the cover-side end of the gas supply tube 133. Conversely, if the first valve 138 is closed and the second valve 139 is opened, the compressed gas is supplied through the branch tube 134 to the passage tube 135A of the aspirator 135, whereby the pressure within the suction tube 135B is reduced and the gas is suctioned from the cover-side end of the gas supply tube 133 communicating with the suction tube 135B. Accordingly, by alternately and repeatedly opening and closing the first and second valves 138 and 139, it is possible to repeatedly charge the compressed gas and discharge the same gas (and attach the cover) in a pulsed form through the cover-side end of the gas supply tube 133.
- the powder supplier 12 is moved to a position above the upper opening 111 of the hopper 11 and supplies an amount of alloy powder from the powder discharge opening 122 to the hopper 11 ( Fig. 4A ).
- the alloy powder in the hopper 11 barely falls through the sieve member 133 since the particles of the alloy powder aggregate due to their magnetism. If the alloy powder is previously supplied to the hopper 11 in a sufficiently larger quantity than the capacity of the cavities 301 of one container 30 (e.g. several tens or hundreds of times), this first step can be omitted when the second or subsequent container 30 is to be filled with the alloy powder.
- the container 30 is conveyed to a position directly below the hopper 11 by the conveying means. Then, the hopper 11 is lowered to bring its lower side in contact with the container 30 and hermetically close the lower opening 112. Simultaneously, the cover member 132 of the gas supplier 13 is attached to the top face of the hopper 11 to hermetically close the upper opening 111. As a result, the inside of the hopper 11 and the cavities 301 of the container 30 are hermetically closed in a mutually communicating state ( Fig. 4B ).
- the operation of charging and discharging compressed gas through the cover-side end of the gas supply tube 133 is repeated by alternately and repeatedly opening and closing the first and second valves 138 and 139 while supplying the compressed gas from the compressed-gas source 131 to the gas supply tube 133.
- the compressed gas in a pulsed form is repeatedly supplied, whereby the alloy powder within the hopper 11 is pressed toward the sieve member 113 and gradually falls through the openings of the sieve 114 into the cavities 301 of the container 30 ( Fig. 4C ).
- the container 30 After a predetermined amount of alloy powder has been put into the container 30 by repeating the charge and discharge of the compressed gas for a predetermined period of time, the container 30 is detached from the hopper 11 ( Fig. 4D ). As a result, the powder held in the container 30 is separated from the powder remaining in the hopper 11, with the sieve member 113 as the boundary. Thus, the operation of filling one container 30 with alloy powder is completed.
- a sieve member 1131 as a modified example is described.
- the sieve member 1131 is used to put alloy powder into a container 30A shown in Figs. 5A and 5B .
- the container 30A has twelve cavities 3011 arranged in four columns in the length direction and three rows in the width direction at regular intervals, with each cavity having a roughly rectangular-parallelepiped shape measuring 23.8 mm in length, 17.0 mm in width and 4.6 mm in depth ( Fig. 5B ).
- the sieve member 1131 has twelve sieves 1141 arranged in four columns in the length direction and three rows in the width direction ( Fig. 5C ).
- the size of the openings of the twelve sieves 1141 is set to be uniform within each individual sieve 1141 but vary among the sieves 1141 depending on the distances from the long and short sides of the sieve member 1131, or depending on the distance from the side wall of the lower opening 112 of the hopper 11 to be attached to the upper end of those long and short sides.
- the size of the openings of each sieve 1141 is set as follows: The sieves 1141 which are not adjacent to any of the long and short sides and are separated from the lower opening 112 (i.e. the two sieves labelled "A" in Fig.
- sieves A have a size of 8.0 ⁇ 2.0 mm; those adjacent to the long sides (one face of the side wall) have a size of 8.0 ⁇ 1.8 mm (“sieves B”, four); those adjacent to the short sides (the other face of the side wall) have a size of 8.0 ⁇ 1.6 mm (“sieves C", two); and those adjacent to both long and short sides (two faces of the side wall) have a size of 8.0 ⁇ 1.4 mm (“sieves D", four).
- the sieve member 1131 of the present modified example when used, the cavities into which the alloy powder is more likely to fall from the hopper 11 are in contact with the sieves having a smaller size of the openings, so that the movement of the alloy powder into the hopper 11 is impeded at those cavities. Consequently, the filling densities in the cavities 3011 will be equalized.
- the sintered magnet production system 20 of the present embodiment is a system for producing a sintered magnet by the press-less method in which alloy powder to be used as the material of the sintered magnet is sintered without being compression-molded.
- the sintered magnet production system 20 has a powder-filling system 10, a cover-attaching section 21, an orienting section 22 and a sintering section 23. Furthermore, the sintered magnet production system 20 is provided with a container conveyer (belt conveyer) 24 for sequentially conveying a container 30 to the powder-filling system 10, cover-attaching section 21, orienting section 22 and sintering section 23.
- a container conveyer belt conveyer
- the powder-filling system 10, cover-attaching section 21 and orienting section 22 are contained in a closed chamber 25 which can be filled with inert gas, such as argon or nitrogen gas. It should be noted that, as will be described later, part of the powder-filling system 10 is located outside the closed chamber 25.
- the sintering section 23 is located outside the closed chamber 25, but as will be described later, it can be filled with inert gas independently of the closed chamber 25.
- the powder-filling system 10 has the previously described configuration. It should be noted that some components of the gas supplier 13, exclusive of the entire cover member 132 and a portion of the gas supply tube 133, are placed outside the closed chamber 25 since those components will not directly affect oxidization of the alloy powder.
- the cover-attaching section 21 is a system for attaching a cover 302 (which is not the cover member 132 of the powder-filling system 10) to the container 30 filled with the alloy powder by the powder-filling system 10.
- the cover 302 is used to prevent scattering of the alloy powder due to the magnetic field in the orienting section 22, the convection of gas in the sintering section 23 and other factors.
- the orienting section 22 has a coil 221 and a container elevator 222.
- the coil 221 has a substantially vertical axis and is located above the container elevator 222.
- the container elevator 222 is a system having a stage 2221 which can be vertically moved into or removed from the coil 221, with the container 30 transferred from the container conveyer 24 placed on it.
- the direction of the application of the magnetic field i.e. the direction of the axis of the coil, must be set according to the shape of the cavities and the intended use of the magnet to be produced.
- the aforementioned configuration is adopted to apply a magnetic field in a substantially vertical direction to the container 30.
- the system may be configured as shown in Fig. 7 , in which the axis of the coil 221A is substantially horizontal and the container 30 is directly conveyed into the coil 221A by the container conveyer 24.
- the sintering section 23 has a sintering chamber 231 for containing a number of containers 30, a carry-in entrance 232 with a heat-insulating door for allowing the container 30 to be carried from the closed chamber 25 into the sintering chamber 231, a carry-out exit (not shown) for allowing the container 30 to be carried away from the sintering chamber 231, and a heater (not shown) for heating the inside of the sintering chamber 231.
- the closed chamber 25 and the sintering chamber 231 communicate with each other at the carry-in entrance 232 but can be thermally separated by closing the heat-insulating door.
- the sintering chamber 231 can be filled with inert gas (independently of the closed chamber 25).
- the sintering chamber 231 may also be evacuated instead of being filled with inert gas.
- a container 30 is conveyed by the container conveyer 24 to the powder-filling system 10, in which the cavities 301 of the container 30 are filled with alloy powder in the previously described manner.
- the container 30 is conveyed by the container conveyer 24 to the cover-attaching section 21.
- the cover-attaching section 21 puts the cover 302 on it.
- the container 30 with the cover 302 attached is conveyed by the container conveyer 24 onto the stage 2221 of the orienting section 22.
- the container 30 placed on the stage 2221 is moved upward by the container elevator 222, to be set within the coil 221.
- a magnetic field is applied in the vertical direction by the coil 221, whereby the particles of the alloy powder in the cavities 301 are oriented in one direction. Since the cavities 301 in the container 30 used in the present embodiment are designed to produce plate-shaped sintered magnets whose thickness direction corresponds to the vertical direction, the magnetic field is applied in a substantially perpendicular direction to the plate. No mechanical pressure is applied to the alloy powder in the cavities 301 during the application of this magnetic field.
- the container 30 is lowered by the container elevator 222 from the coil 221 to the level of the container conveyer 24, and is subsequently carried into the sintering chamber 231 by the container conveyer 24.
- the door of the carry-in entrance 232 is closed, and the inside of the sintering chamber 231 is heated by the heater to a predetermined sintering temperature (normally, 900 to 1100°C).
- a predetermined sintering temperature normally, 900 to 1100°C
- the description thus far is concerned with the case of using the container 30.
- the sintered magnet production system 20 operates in the same way even if the previously described container 30A is used.
- the cavities 301 can be filled with alloy powder at an approximately uniform density by using the powder-filling system 10, so that the properties of the eventually obtained sintered magnet will be approximately homogeneous regardless of the position in the sintered magnet.
- a sintered magnet was produced using the sieve member 113 and the container 30 (Present Example 1).
- Another sintered magnet was also produced using a sieve member having the same size of openings (8.6 ⁇ 2.2 mm) across the entire grid instead of the sieve member 113, and the container 30 (Comparative Example 1).
- the obtained sintered magnets approximately measured 80 mm ⁇ 15 mm ⁇ 5 mm and were slightly smaller than the cavity 301 due to shrinkage which occurs during the sintering process.
- the sintered magnets obtained in Present Example 1 and Comparative Example 1 were each equally divided into six pieces along the length direction. Thus, six sintered-magnet pieces were obtained for each ( Fig. 8A ). For each of these sintered-magnet pieces, the residual magnetic flux density B r was measured. The result is shown in Fig. 8B .
- Comparative Example 1 the sintered-magnet pieces near the center in the length direction before the division (labelled as Nos. 3 and 4 in Fig. 8A ) had the highest residual magnetic flux densities B r , while those located at both ends in the length direction (Nos. 1 and 6) had the lowest residual magnetic flux densities B r .
- a higher filling density leads to a lower residual magnetic flux density B r . Therefore, it can be considered that a density distribution in which the filling density at both ends is higher than at central regions in the length direction was formed in Comparative Example 1.
- a sintered magnet was produced using the sieve member 1131 and the container 30A (Present Example 2).
- Another sintered magnet was also produced using a sieve member having the same size of openings (8.0 ⁇ 2.0 mm) across the entire sieve instead of the sieve member 1131, and the container 30A (Comparative Example 2).
- twelve pieces of sintered magnets were obtained from the alloy powder placed in the twelve cavities of the container 30A.
- Fig. 9 shows the measured result of the residual magnetic flux density B r for each sintered magnet.
- the distribution of the residual magnetic flux density B r was such that the sintered magnets produced from the alloy powder placed in the cavities corresponding to sieves A ( Fig. 5C ) had the highest residual magnetic flux densities B r , followed by sieves B, C (no difference could be recognized between B and C at the precision of the present experiment) and D. Accordingly, the cavity-filling density in the production process is highest at cavities D, second highest at cavities B and C, and lowest at cavities A.
- a system for filling a container with powder including:
- a sintered magnet production system comprising:
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Hard Magnetic Materials (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013019891 | 2013-02-04 | ||
EP14745964.8A EP2952436B1 (fr) | 2013-02-04 | 2014-02-03 | Dispositif de remplissage de poudre |
PCT/JP2014/052411 WO2014119778A1 (fr) | 2013-02-04 | 2014-02-03 | Dispositif de remplissage de poudre |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14745964.8A Division EP2952436B1 (fr) | 2013-02-04 | 2014-02-03 | Dispositif de remplissage de poudre |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3260380A1 true EP3260380A1 (fr) | 2017-12-27 |
EP3260380B1 EP3260380B1 (fr) | 2018-08-15 |
Family
ID=51262476
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17182752.0A Not-in-force EP3260380B1 (fr) | 2013-02-04 | 2014-02-03 | Methode de fabrication d'un aimant fritté |
EP14745964.8A Not-in-force EP2952436B1 (fr) | 2013-02-04 | 2014-02-03 | Dispositif de remplissage de poudre |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14745964.8A Not-in-force EP2952436B1 (fr) | 2013-02-04 | 2014-02-03 | Dispositif de remplissage de poudre |
Country Status (6)
Country | Link |
---|---|
US (2) | US9384890B2 (fr) |
EP (2) | EP3260380B1 (fr) |
JP (2) | JP5852752B2 (fr) |
KR (1) | KR101587395B1 (fr) |
CN (2) | CN104981404B (fr) |
WO (1) | WO2014119778A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107088656B (zh) * | 2016-02-18 | 2019-06-28 | 大同特殊钢株式会社 | 粉末填充装置、烧结磁体制造设备和烧结磁体制造方法 |
JP2017145477A (ja) * | 2016-02-18 | 2017-08-24 | インターメタリックス株式会社 | 粉末充填装置、焼結磁石製造装置、及び焼結磁石製造方法 |
JP6848544B2 (ja) * | 2017-03-09 | 2021-03-24 | 大同特殊鋼株式会社 | 粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法 |
CA3067225A1 (fr) | 2017-06-16 | 2018-12-20 | Credence Medsystems, Inc. | Systeme et procede pour seringue de securite |
CN110871271B (zh) * | 2018-08-29 | 2022-02-25 | 大同特殊钢株式会社 | 粉末填充装置、烧结磁体制造装置以及烧结磁体制造方法 |
CN110116204B (zh) * | 2019-05-20 | 2021-06-18 | 江苏聚之再生科技有限公司 | 一种反推式粉末压坯成型装置 |
KR102224809B1 (ko) * | 2019-10-16 | 2021-03-09 | 현대자동차주식회사 | 소결용 분말 충진 시스템 |
EP4168067A1 (fr) | 2020-06-17 | 2023-04-26 | Credence Medsystems, Inc. | Système et procédé pour l'injection de microdoses |
CN111974988B (zh) * | 2020-07-10 | 2022-12-09 | 瑞声科技(南京)有限公司 | 用于制备薄片磁体的填充装置及填充方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1149101A (ja) | 1997-08-07 | 1999-02-23 | Inter Metallics Kk | 充填方法及びその装置 |
EP0988959A2 (fr) * | 1998-09-24 | 2000-03-29 | Intermetallics Co., Ltd. | Procédé de compactage de poudre |
US6155028A (en) * | 1997-08-07 | 2000-12-05 | Intermetallics Co., Ltd. | Method and apparatus for packing material |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5932568Y2 (ja) * | 1980-10-30 | 1984-09-12 | 三菱マテリアル株式会社 | 粉末充填装置 |
JP3884140B2 (ja) * | 1997-09-22 | 2007-02-21 | インターメタリックス株式会社 | 粉末圧縮成形装置 |
US6475430B1 (en) * | 1998-09-24 | 2002-11-05 | Intermetallics Co., Ltd. | Method and apparatus for packing material including air tapping |
US6764643B2 (en) * | 1998-09-24 | 2004-07-20 | Masato Sagawa | Powder compaction method |
JP2000328102A (ja) * | 1999-05-18 | 2000-11-28 | Inter Metallics Kk | 金型プレス機の粉末充填装置 |
JP4759889B2 (ja) * | 2000-09-12 | 2011-08-31 | 日立金属株式会社 | 粉末充填装置、それを用いたプレス成形装置および焼結磁石製造方法 |
US6656416B2 (en) * | 2000-09-12 | 2003-12-02 | Sumitomo Special Metals Co., Ltd. | Powder feeding apparatus, pressing apparatus using the same, powder feeding method and sintered magnet manufacturing method |
JP2002158127A (ja) * | 2000-11-17 | 2002-05-31 | Sii Micro Parts Ltd | 希土類磁石の製造装置及び希土類磁石の製造方法 |
GB0318437D0 (en) | 2003-08-06 | 2003-09-10 | Meridica Ltd | Method and apparatus for filling a container |
JP4391897B2 (ja) * | 2004-07-01 | 2009-12-24 | インターメタリックス株式会社 | 磁気異方性希土類焼結磁石の製造方法及び製造装置 |
JP2006059994A (ja) * | 2004-08-19 | 2006-03-02 | Sumitomo Metal Mining Co Ltd | 希土類−鉄−マンガン−窒素系磁石粉末とその製造方法 |
JP2008012741A (ja) * | 2006-07-05 | 2008-01-24 | Matsui Mfg Co | 圧縮成形加工における粉粒体材料の充填装置 |
MX2009005272A (es) | 2006-11-17 | 2009-07-24 | Hoeganaes Ab | Una zapata de llenado y metodo para llenado y compactacion de polvo. |
US7866312B2 (en) * | 2006-12-18 | 2011-01-11 | Bsh Home Appliances Corporation | Ventilation hood and cooktop safety system and method |
US20120176212A1 (en) * | 2009-08-28 | 2012-07-12 | Intermetallics Co., Ltd. | METHOD AND SYSTEM FOR PRODUCING SINTERED NdFeB MAGNET, AND SINTERED NdFeB MAGNET PRODUCED BY THE PRODUCTION METHOD |
JP5744858B2 (ja) * | 2010-05-10 | 2015-07-08 | インターメタリックス株式会社 | NdFeB系焼結磁石製造装置 |
-
2014
- 2014-02-03 EP EP17182752.0A patent/EP3260380B1/fr not_active Not-in-force
- 2014-02-03 KR KR1020157023040A patent/KR101587395B1/ko active IP Right Grant
- 2014-02-03 WO PCT/JP2014/052411 patent/WO2014119778A1/fr active Application Filing
- 2014-02-03 JP JP2014559798A patent/JP5852752B2/ja active Active
- 2014-02-03 CN CN201480007428.7A patent/CN104981404B/zh active Active
- 2014-02-03 US US14/765,130 patent/US9384890B2/en active Active
- 2014-02-03 CN CN201610262508.8A patent/CN105719828B/zh active Active
- 2014-02-03 EP EP14745964.8A patent/EP2952436B1/fr not_active Not-in-force
-
2015
- 2015-12-04 JP JP2015237717A patent/JP6280096B2/ja active Active
-
2016
- 2016-05-31 US US15/168,555 patent/US9449758B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1149101A (ja) | 1997-08-07 | 1999-02-23 | Inter Metallics Kk | 充填方法及びその装置 |
US6155028A (en) * | 1997-08-07 | 2000-12-05 | Intermetallics Co., Ltd. | Method and apparatus for packing material |
EP0988959A2 (fr) * | 1998-09-24 | 2000-03-29 | Intermetallics Co., Ltd. | Procédé de compactage de poudre |
Also Published As
Publication number | Publication date |
---|---|
US20150364252A1 (en) | 2015-12-17 |
CN104981404B (zh) | 2016-05-25 |
US9449758B1 (en) | 2016-09-20 |
KR101587395B1 (ko) | 2016-01-20 |
US20160293329A1 (en) | 2016-10-06 |
EP2952436A4 (fr) | 2016-03-02 |
EP2952436A1 (fr) | 2015-12-09 |
JPWO2014119778A1 (ja) | 2017-01-26 |
CN104981404A (zh) | 2015-10-14 |
WO2014119778A1 (fr) | 2014-08-07 |
KR20150102125A (ko) | 2015-09-04 |
JP6280096B2 (ja) | 2018-02-14 |
EP2952436B1 (fr) | 2017-08-09 |
JP2016105482A (ja) | 2016-06-09 |
JP5852752B2 (ja) | 2016-02-03 |
US9384890B2 (en) | 2016-07-05 |
EP3260380B1 (fr) | 2018-08-15 |
CN105719828B (zh) | 2017-05-31 |
CN105719828A (zh) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9449758B1 (en) | Powder-filling system | |
JP6280137B2 (ja) | 希土類焼結磁石の製造方法及び当該製法にて使用される製造装置 | |
KR20170134210A (ko) | 수지 씰링품 제조 방법 및 수지 씰링 장치 | |
EP2571035B1 (fr) | SYSTÈME DE FABRICATION D'UN AIMANT FRITTÉ À SYSTÈME NdFeB | |
JP5475325B2 (ja) | 焼結磁石製造装置 | |
EP2955731B1 (fr) | Dispositif de production d'aimant fritté et procédé de production d'aimant fritté | |
JP6834249B2 (ja) | 粉末充填装置及び焼結磁石製造装置 | |
JP6848544B2 (ja) | 粉末充填装置、焼結磁石製造装置及び焼結磁石製造方法 | |
CN110871271B (zh) | 粉末填充装置、烧结磁体制造装置以及烧结磁体制造方法 | |
JPH10264134A (ja) | 粉末充填方法および粉末充填装置 | |
CN107088656B (zh) | 粉末填充装置、烧结磁体制造设备和烧结磁体制造方法 | |
JPH1190694A (ja) | 粉末圧縮成形装置 | |
CN111968814A (zh) | 一种布粉装置及其布粉方法、NdFeB系薄片磁体的制造方法 | |
WO2017141815A1 (fr) | Dispositif de remplissage de poudre, dispositif de fabrication d'aimant fritté et procédé de fabrication d'aimant fritté |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2952436 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180109 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180323 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2952436 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Ref country code: AT Ref legal event code: REF Ref document number: 1029459 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014030701 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1029459 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181115 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181215 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181116 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190325 Year of fee payment: 9 Ref country code: FR Payment date: 20190125 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014030701 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190203 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602014030701 Country of ref document: DE Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE Ref country code: DE Ref legal event code: R081 Ref document number: 602014030701 Country of ref document: DE Owner name: DAIDO STEEL CO., LTD., NAGOYA-SHI, JP Free format text: FORMER OWNERS: DAIDO STEEL CO., LTD., NAGOYA-SHI, AICHI, JP; INTERMETALLICS CO., LTD., NAKATSUGAWA-SHI, GIFU, JP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200121 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181215 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190203 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602014030701 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180815 |