EP3249309B1 - Unité d'échange de chaleur pour dispositif de climatisation - Google Patents
Unité d'échange de chaleur pour dispositif de climatisation Download PDFInfo
- Publication number
- EP3249309B1 EP3249309B1 EP16740050.6A EP16740050A EP3249309B1 EP 3249309 B1 EP3249309 B1 EP 3249309B1 EP 16740050 A EP16740050 A EP 16740050A EP 3249309 B1 EP3249309 B1 EP 3249309B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat transfer
- fin
- heat exchanger
- heat exchange
- transfer fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004378 air conditioning Methods 0.000 title claims description 56
- 238000012546 transfer Methods 0.000 claims description 202
- 238000003780 insertion Methods 0.000 claims description 180
- 230000037431 insertion Effects 0.000 claims description 180
- 230000002265 prevention Effects 0.000 claims description 84
- 125000006850 spacer group Chemical group 0.000 claims description 66
- 230000002093 peripheral effect Effects 0.000 claims description 44
- 238000005452 bending Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000003507 refrigerant Substances 0.000 description 94
- 239000007788 liquid Substances 0.000 description 25
- 238000001816 cooling Methods 0.000 description 20
- 238000012986 modification Methods 0.000 description 20
- 230000004048 modification Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 16
- 238000010792 warming Methods 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000010257 thawing Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 4
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
- F24F1/16—Arrangement or mounting thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F13/00—Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
- F24F13/30—Arrangement or mounting of heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/001—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
- F28F9/002—Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core with fastening means for other structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/12—Fins with U-shaped slots for laterally inserting conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
- F28F2225/06—Reinforcing means for fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2240/00—Spacing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2280/00—Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
- F28F9/0131—Auxiliary supports for elements for tubes or tube-assemblies formed by plates
Definitions
- the present invention relates to a heat exchange unit of an air conditioning apparatus, and particularly relates to a heat exchange unit of an air conditioning apparatus provided with a heat exchanger having a plurality of heat transfer tubes and heat transfer fins, and a casing having a support part on which the heat exchanger is placed.
- the prior art includes a heat exchanger which has a plurality of heat transfer tubes that are disposed along a vertical direction and that extend horizontally, and a plurality of heat transfer fins that are disposed horizontally at intervals and that extend vertically, as shown in Patent Literature 1 (Japanese Laid-open Patent Publication No. H9-276940 ).
- This heat exchanger is used as being placed on a bottom plate (support part) of a casing configuring an outdoor unit or the like (heat exchange unit) of an air conditioning apparatus.
- This heat exchanger is also bent as appropriate in accordance with an arrangement of devices within the casing, in which case the mandrel used for bending is designed so as to ensure the heat transfer fins are not crushed during the bending of the heat exchanger.
- JP S60-14426 relates to a heat exchanger comprising a means for holding fins at a distance from a bottom plate.
- the weight (load) of the heat exchanger concentrates in one part thereof due to the effect of, inter alia, the center of gravity of the heat exchanger being displaced, and there is a risk that the heat transfer fins would be readily crushed in the lower end of the part where this load concentrates.
- An object of the present invention is to suppress crushing of heat transfer fins in a lower end of a heat exchanger, in a heat exchange unit of an air conditioning apparatus provided with the heat exchanger having a plurality of heat transfer tubes and heat transfer fins, and a casing having a support part on which the heat exchanger is placed.
- a heat exchange unit of an air conditioning apparatus has the features of claim 1.
- the weight (load) of the heat exchanger exerted on the heat transfer fins can be dispersed to the fin crushing prevention member; therefore, the heat transfer fins can be protected, and the crushing of the heat transfer fins in the lower end of the heat exchanger can be suppressed.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to the first aspect, wherein the fin crushing prevention member is separate from the spacer member.
- the fin crushing prevention member disposed between the lowest-row heat transfer tube and the spacer member, the horizontal position of the heat exchanger on the support part can be finely adjusted, and the ease of assembling the heat exchange unit can therefore be improved from the standpoint of positional adjustment.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to the first aspect, wherein the fin crushing prevention member is integrated with the spacer member.
- the work of placing the heat exchanger on the support part with the spacer member therebetween and the work of disposing the fin crushing prevention member between the lowest-row heat transfer tube and the spacer member can be performed simultaneously, and the ease of assembling the heat exchange unit can therefore be improved from the standpoint of the number of man-hours.
- the fin crushing prevention member has a first fin insertion part extending vertically and horizontally, and the fin crushing prevention member is disposed between the lowest-row heat transfer tube and the spacer member by inserting the first fin insertion part between the heat transfer fins.
- the first fin insertion part is inserted between the heat transfer fins, whereby the fin crushing prevention member can easily be disposed between the lowest-row heat transfer tube and the spacer member.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus, wherein a vertical height dimension of the first fin insertion part is equal to or greater than the height from a lower end of the lowest-row heat transfer tube to a lower end of the heat transfer fins.
- the weight (load) of the heat exchanger exerted on the heat transfer fins can be reliably dispersed to the fin crushing prevention member.
- the fin crushing prevention member is disposed between the lowest-row heat transfer tube and the spacer member by horizontally inserting the first fin insertion part between the heat transfer fins.
- the fin crushing prevention member further has a fin insertion base extending in a horizontal direction intersecting an insertion direction of the first fin insertion part from an insertion frontal end part, which is the end part of the first fin insertion part on the front side in the insertion direction.
- the fin insertion base is pressed in the insertion direction of the first fin insertion part, whereby the first fin insertion part can be easily inserted between the heat transfer fins.
- the fin crushing prevention member has a plurality of first fin insertion parts, and the insertion frontal end parts of the first fin insertion parts are joined to each other via the fin insertion base.
- the fin insertion base is pressed in the insertion direction of the first fin insertion parts, whereby the plurality of first fin insertion parts can be inserted all together between the heat transfer fins, and the degree to which the weight (load) of the heat exchanger exerted on the heat transfer fins is dispersed can be increased.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to the seventh or eighth aspect, wherein, when the first fin insertion part has been inserted between the heat transfer fins, a gap for preventing the fin insertion base from coming into contact with end parts of the heat transfer fins on a side near the insertion frontal end part is ensured between the fin insertion base and the end parts of the heat transfer fins on the side near the insertion frontal end part.
- water can be prevented from remaining adhered to the fin insertion base, the end part of the heat transfer fin on the side near the insertion frontal end part, and the vicinities thereof by the gap between the fin insertion base and the end parts of the heat transfer fins on the side near the insertion frontal end part; therefore, water drainage from the heat exchanger can be ensured, and ice growth (ice-up) in the lower end of the heat exchanger can be suppressed.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the sixth through ninth aspects, wherein the fin crushing prevention member further has, higher than the lowest-row heat transfer tube, a second fin insertion part horizontally inserted between the heat transfer fins.
- the first fin insertion part can be impeded from coming loose from between the heat transfer fins by inserting the second fin insertion part between the heat transfer fins along with the first fin insertion part.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the sixth through tenth aspects, wherein the casing has a rectangular parallelepiped shape, the support part forms a bottom surface of the casing, and the heat exchanger is disposed inside the casing so as to run along a peripheral surface of the casing, excluding a top surface and the bottom surface of the casing.
- the fin crushing prevention member is disposed between the lowest-row heat transfer tube and the spacer member by horizontally inserting the first fin insertion part between the heat transfer fins from a side near the peripheral surface of the heat exchanger.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the sixth through tenth aspects, wherein the casing has a rectangular parallelepiped shape, the support part forms a bottom surface of the casing, and the heat exchanger is disposed inside the casing so as to run along a peripheral surface of the casing, excluding a top surface and the bottom surface of the casing.
- the fin crushing prevention member is disposed between the lowest-row heat transfer tube and the spacer member by horizontally inserting the first fin insertion part between the heat transfer fins from a side far from the peripheral surface of the heat exchanger.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the eleventh, twelfth, and fourteenth aspects, wherein the heat exchanger has a heat exchange rounded part bent so as to run along a corner of the peripheral surface of the casing, and the spacer member is disposed between the heat exchange rounded part and the support part.
- the fin crushing prevention member is disposed between the spacer member and the lowest-row heat transfer tube configuring the heat exchange rounded part by inserting the first fin insertion part between the heat transfer fins configuring the heat exchange rounded part.
- the heat exchanger has the heat exchange rounded part and the spacer member is disposed between the heat exchange rounded part and the support part, the weight (load) of the heat exchanger readily concentrates in the heat transfer fins configuring the heat exchange rounded part.
- the fin crushing prevention member is disposed between the spacer member and the lowest-row heat transfer tube configuring the heat exchange rounded part by inserting the first fin insertion part between the heat transfer fins configuring the heat exchange rounded part as described above, the heat transfer fins configuring the heat exchange rounded part can be protected, and crushing of the heat transfer fins in a lower end of the heat exchange rounded part can be suppressed.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to the fifteenth aspect, wherein, after the heat exchange rounded part has been formed by bending the heat exchanger, the fin crushing prevention member is disposed between the lowest-row heat transfer tube and the spacer member.
- the heat exchange rounded part can be formed more easily by bending the heat exchanger than in a case in which the fin crushing prevention member is disposed in advance so as to correspond to the lowest-row heat transfer tube configuring the heat exchange rounded part before the heat exchanger is bent.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the eleventh, twelfth, and fourteenth through sixteenth aspects, wherein the heat exchanger has a structure in which the heat transfer fins are aligned in a plurality of columns from a side near the peripheral surface of the casing to a side far from the peripheral surface.
- the first fin insertion part is inserted in all of the columns of the heat transfer fins aligned in the plurality of columns.
- the first fin insertion part is inserted in all of the columns in the heat exchanger structured with the heat transfer fins aligned in a plurality of columns, crushing of the heat transfer fins is suppressed throughout the entire space from the side near the peripheral surface of the casing to the side far from the peripheral surface.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the eleventh, twelfth, and fourteenth through sixteenth aspects, wherein the heat exchanger has a structure in which the heat transfer fins are aligned in a plurality of columns from a side near the peripheral surface of the casing to a side far from the peripheral surface.
- the first fin insertion part is inserted either only in the column that, of the heat transfer fins aligned in the plurality of columns, is on the side nearest to the peripheral surface, or only in the column that is on the side farthest from the peripheral surface.
- the work of inserting the first fin insertion part between the heat transfer fins can be performed more easily than in cases in which the first fin insertion part is inserted in all of the columns.
- a heat exchange unit of an air conditioning apparatus is the heat exchange unit of the air conditioning apparatus according to any of the first through eighteenth aspects, wherein the heat exchanger is formed from a different type of metal than the support part.
- the heat exchanger and the support part are formed from different types of metals, there is a risk of electric corrosion when the entire heat exchanger is placed directly on the support part without the spacer member.
- a structure is employed in which the heat exchanger is placed on the support part with the spacer member therebetween, whereby a large part of the heat exchanger is lifted off the support part and the fin crushing prevention member is disposed between the lowest-row heat transfer tube and the spacer member; therefore, both electric corrosion and crushing of the heat transfer fins can be suppressed.
- FIG. 1 is a schematic configuration diagram of an air conditioning apparatus 1 that employs an outdoor unit 2 as a heat exchange unit according to an embodiment of the present invention.
- the air conditioning apparatus 1 is capable of performing air-cooling and air-warming in a room of a building etc. by performing a vapor-compression refrigerating cycle.
- the air conditioning apparatus 1 is mainly composed of the outdoor unit 2 and an indoor unit 4 that are connected to each other.
- the outdoor unit 2 and the indoor unit 4 are connected via a liquid refrigerant communication pipe 5 and a gas refrigerant communication pipe 6.
- a vapor-compression refrigerant circuit 10 of the air conditioning apparatus 1 is configured by the outdoor unit 2 and the indoor unit 4 being connected together via the refrigerant communication pipes 5, 6.
- the indoor unit 4 is disposed indoors and configures a portion of the refrigerant circuit 10.
- the indoor unit 4 mainly has an indoor heat exchanger 41.
- the indoor heat exchanger 41 functions as an evaporator for refrigerant during air-cooling operation to cool indoor air, and functions as a radiator for refrigerant during air-warming operation to heat indoor air.
- a liquid side of the indoor heat exchanger 41 is connected to the liquid refrigerant communication pipe 5, and a gas side of the indoor heat exchanger 41 is connected to the gas refrigerant communication pipe 6.
- the indoor unit 4 has an indoor fan 42 for drawing indoor air into the indoor unit 4, and supplying the air as supply air into the room after the air has undergone heat exchange with refrigerant in the indoor heat exchanger 41.
- the indoor unit 4 has the indoor fan 42 as a fan for supplying the indoor heat exchanger 41 with the indoor air used as a source for heating or cooling refrigerant flowing through the indoor heat exchanger 41.
- the outdoor unit 2 as a heat exchange unit is installed outdoors and configures a portion of the refrigerant circuit 10.
- the outdoor unit 2 mainly has a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 24, a liquid-side shutoff valve 25, and a gas-side shutoff valve 26.
- the compressor 21 is a device for compressing low-pressure refrigerant in the refrigerating cycle to produce high-pressure refrigerant.
- the compressor 21 is an airtight structure for rotatably driving a rotary-type, scroll-type, or other positive-displacement compression element (not shown) with the aid of a compressor motor 21a.
- the compressor 21 has an intake pipe 31 connected to an intake side and a discharge pipe 32 connected to a discharge side.
- the intake pipe 31 is a refrigerant pipe for connecting the intake side of the compressor 21 and the four-way switching valve 22.
- the discharge pipe 32 is a refrigerant pipe for connecting the discharge side of the compressor 21 and the four-way switching valve 22.
- the four-way switching valve 22 switches a direction of a flow of refrigerant in the refrigerant circuit 10. During air-cooling operation, the four-way switching valve 22 switches to an air-cooling cycle state for causing the outdoor heat exchanger 23 to function as a radiator of refrigerant which has compressed in the compressor 21, and for causing the indoor heat exchanger 41 to function as an evaporator of refrigerant which has radiated heat in the outdoor heat exchanger 23.
- the four-way switching valve 22 connects the discharge side (in this case, the discharge pipe 32) of the compressor 21 and the gas side (in this case, a first gas refrigerant pipe 33) of the outdoor heat exchanger 23 (see a solid line of the four-way switching valve 22 in FIG. 1 ). Also, the intake side (in this case, the intake pipe 31) of the compressor 21 and the gas refrigerant communication pipe 6 side (in this case, a second gas refrigerant pipe 34) are connected together (see a solid line of the four-way switching valve 22 in FIG. 1 ).
- the four-way switching valve 22 switches to an air-warming cycle state for causing the outdoor heat exchanger 23 to function as an evaporator of refrigerant which has radiated heat in the indoor heat exchanger 41, and for causing the indoor heat exchanger 41 to function as a radiator of refrigerant which has compressed in the compressor 21.
- the four-way switching valve 22 connects the discharge side (in this case, the discharge pipe 32) of the compressor 21 and the gas refrigerant communication pipe 6 side (in this case, the second gas refrigerant pipe 34) (see a broken line of the four-way switching valve 22 in FIG. 1 ).
- the intake side (in this case, the intake pipe 31) of the compressor 21 and the gas side (in this case, the first gas refrigerant pipe 33) of the outdoor heat exchanger 23 are connected together (see a broken line of the four-way switching valve 22 in FIG. 1 ).
- the first gas refrigerant pipe 33 connects the four-way switching valve 22 and the gas side of the outdoor heat exchanger 23.
- the second gas refrigerant pipe 34 connects the four-way switching valve 22 and the gas-side shutoff valve 26.
- the outdoor heat exchanger 23 functions as a refrigerant radiator using outdoor air as a cooling source during air-cooling operation, and functions as a refrigerant evaporator using outdoor air as a heating source during air-warming operation.
- the liquid side of the outdoor heat exchanger 23 is connected to a liquid refrigerant pipe 35, and the gas side is connected to the first gas refrigerant pipe 33.
- the liquid refrigerant pipe 35 is a refrigerant pipe connecting the liquid side of the outdoor heat exchanger 23 and the liquid refrigerant communication pipe 5 side.
- the expansion valve 24 decompresses high-pressure refrigerant in the refrigerating cycle which has radiated heat in the outdoor heat exchanger 23 to the low pressure of the refrigerating cycle.
- the expansion valve 24 decompresses high-pressure refrigerant in the refrigerating cycle which has radiated heat in the indoor heat exchanger 41 to the low pressure of the refrigerating cycle.
- the expansion valve 24 is provided to a portion of the liquid refrigerant pipe 35 nearer to a liquid-side shutoff valve 25. In this case, an electric expansion valve is used as the expansion valve 24.
- the liquid-side shutoff valve 25 and the gas-side shutoff valve 26 are provided to connection ports of exterior devices and pipes (specifically, the liquid refrigerant communication pipe 5 and the gas refrigerant communication pipe 6).
- the liquid-side shutoff valve 25 is provided to an end part of the liquid refrigerant pipe 35.
- the gas-side shutoff valve 26 is provided to an end part of the second gas refrigerant pipe 34.
- the outdoor unit 2 has an outdoor fan 36 for drawing outdoor air into the outdoor unit 2, and then discharging the air outside after the air has undergone heat exchange with refrigerant in the outdoor heat exchanger 23.
- the outdoor unit 2 has the outdoor fan 36 as a fan that supplies the outdoor heat exchanger 23 with the outdoor air used as a source for cooling or heating refrigerant flowing through the outdoor heat exchanger 23.
- a propeller fan or the like driven by an outdoor fan motor 36a is used as the outdoor fan 36.
- the refrigerant communication pipes 5, 6 are installed on site when the air conditioning apparatus 1 is set up in a building or other installation location, and pipes having various lengths and/or diameters are used in accordance with the installation location and/or installation conditions such as the combination of the outdoor unit 2 and the indoor unit 4.
- the air conditioning apparatus 1 can perform air-cooling operation, air-warming operation, and defrosting operation as basic actions.
- the four-way switching valve 22 is switched to the air-cooling cycle state (the state shown by the solid lines in FIG. 1 ).
- gas refrigerant at the low pressure of the refrigerating cycle is drawn into the compressor 21, compressed to the high pressure of the refrigerating cycle, and then discharged.
- the high-pressure gas refrigerant discharged from the compressor 21 is sent through the four-way switching valve 22 to the outdoor heat exchanger 23.
- the high-pressure gas refrigerant sent to the outdoor heat exchanger 23 exchanges heat with outdoor air supplied as a cooling source by the outdoor fan 36, and radiates heat to become high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 23 is sent to the expansion valve 24.
- the high-pressure liquid refrigerant sent to the expansion valve 24 is decompressed to the low pressure of the refrigerating cycle by the expansion valve 24, becoming low-pressure gas-liquid two-phase refrigerant.
- the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 24 is sent through the liquid-side shutoff valve 25 and the liquid refrigerant communication pipe 5 to the indoor heat exchanger 41.
- the low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger 41 exchanges heat in the indoor heat exchanger 41 with indoor air supplied as a heating source by the indoor fan 42, and the refrigerant evaporates.
- the indoor air is thereby cooled and then supplied into the room, whereby air-cooling of the room interior is performed.
- the low-pressure gas refrigerant evaporated in the indoor heat exchanger 41 is drawn back into the compressor 21 through the gas refrigerant communication pipe 6, the gas-side shutoff valve 26, and the four-way switching valve 22.
- the four-way switching valve 22 is switched to the air-warming cycle state (the state shown by the broken lines in FIG. 1 ).
- gas refrigerant at the low pressure of the refrigerating cycle is drawn into the compressor 21, compressed to the high pressure of the refrigerating cycle, and then discharged.
- the high-pressure gas refrigerant discharged from the compressor 21 is sent through the four-way switching valve 22, the gas-side shutoff valve 26, and the gas refrigerant communication pipe 6, to the indoor heat exchanger 41.
- the high-pressure gas refrigerant sent to the indoor heat exchanger 41 exchanges heat in the indoor heat exchanger 41 with indoor air supplied as a cooling source by the indoor fan 42, and radiates heat to become high-pressure liquid refrigerant.
- the indoor air is thereby heated and then supplied into the room, whereby air-warming of the room interior is performed.
- the high-pressure liquid refrigerant that has radiated heat in the indoor heat exchanger 41 is sent through the liquid refrigerant communication pipe 5 and the liquid-side shutoff valve 25 to the expansion valve 24.
- the high-pressure liquid refrigerant sent to the expansion valve 24 is decompressed to the low pressure of the refrigerating cycle by the expansion valve 24, becoming low-pressure gas-liquid two-phase refrigerant.
- the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 24 is sent to the outdoor heat exchanger 23.
- the low-pressure gas-liquid two-phase refrigerant sent to the outdoor heat exchanger 23 exchanges heat in the outdoor heat exchanger 23 functioning as a refrigerant evaporator with outdoor air supplied as a heating source by the outdoor fan 36, and the refrigerant evaporates to become low-pressure gas refrigerant.
- the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is drawn back into the compressor 21 through the four-way switching valve 22.
- the defrosting operation is performed to melt frost adhering to the outdoor heat exchanger 23.
- the defrosting operation similar to during the air-cooling operation, entails switching the four-way switching valve 22 to the air-cooling cycle state (the state shown by the solid lines in FIG. 1 ), whereby a reverse cycle defrosting operation is performed in which the outdoor heat exchanger 23 is caused to function as a radiator for refrigerant.
- the frost adhering to the outdoor heat exchanger 23 can thereby be melted.
- This defrosting operation is performed until a condition to end the defrosting operation is met due to a factor such as a predetermined defrosting operation time elapsing, after which the air-warming operation is resumed.
- the flow of refrigerant through the refrigerant circuit 10 in the defrosting operation is the same as during the air-cooling operation described above, and is therefore not described at this time.
- FIG. 2 is a perspective view showing an external view of the outdoor unit 2.
- FIG. 3 is a plan view showing the outdoor unit 2 with a top plate 57 removed.
- FIG. 4 is a perspective view showing the outdoor unit 2 with the top plate 57, front plates 55, 56, and side plates 53, 54 removed.
- FIG. 5 is a schematic perspective view of the outdoor heat exchanger 23.
- FIG. 6 is a partial enlarged perspective view of the outdoor heat exchanger 23.
- the outdoor unit 2 has a structure (so-called “trunk structure") in which an interior of a unit casing 51 is partitioned by a vertically extending partition plate 58 into an air blower compartment S1 and a machine compartment S2.
- the outdoor unit 2 is configured so as to take outdoor air into the interior from a portion of the back surface and a portion of the side surface of the unit casing 51, and then expel the air from the front surface of the unit casing 51.
- the outdoor unit 2 mainly has the unit casing 51; the devices and pipes configuring the refrigerant circuit 10, including the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the expansion valve 24, the shutoff valves 25, 26, and the refrigerant pipes 31 to 35 connecting these devices; as well as the outdoor fan 36 and the outdoor fan motor 36a.
- the air blower compartment S1 is formed near the left-side surface of the unit casing 51 and the machine compartment S2 is formed near the right-side surface of the unit casing 51, but this left-right arrangement may be reversed.
- the unit casing 51 is a steel member having a substantially rectangular parallelepiped shape, mainly accommodating the outdoor fan 36, the outdoor fan motor 36a, and the devices and piping configuring the refrigerant circuit 10, including the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the expansion valve 24, the shutoff valves 25, 26, and the refrigerant pipes 31 to 35 connecting these devices.
- the unit casing 51 has a bottom plate 52 serving as a support part on which the outdoor fan 36 and the devices and pipes 21-26, 31-35 configuring the refrigerant circuit 10, etc. are placed; an air blower compartment-side side plate 53; a machine compartment-side side plate 54; an air blower compartment-side front plate 55; a machine compartment-side front plate 56; the top plate 57; and two mounting legs 59.
- the bottom plate 52 is a steel plate-shaped member configuring a bottom surface portion of the unit casing 51.
- the air blower compartment-side side plate 53 is a steel plate-shaped member configuring a side surface portion (in this embodiment, the left-side surface portion) of the unit casing 51, that is near the air blower compartment S1.
- a lower part of the air blower compartment-side side plate 53 is fixed to the bottom plate 52, and in this embodiment, a front-surface-side end part of the air blower compartment-side side plate 53 is a member integrated with a left-side-surface-side end part of the air blower compartment-side front plate 55.
- Formed in the air blower compartment-side side plate 53 is a side surface fan intake port 53a for outdoor air to be drawn by the outdoor fan 36 into the unit casing 51 from the side-surface side of the unit casing 51.
- the air blower compartment-side side plate 53 may also be a separate member from the air blower compartment-side front plate 55.
- the machine compartment-side side plate 54 is a steel plate-shaped member configuring a side-surface portion (in this embodiment, the right-side surface portion) of the unit casing 51, that is near the machine compartment S2, and a back-surface portion of the unit casing 51, that is near the machine compartment S2.
- a lower part of the machine compartment-side side plate 54 is fixed to the bottom plate 52.
- a back-surface-side end part of the air blower compartment-side side plate 53 and an air blower compartment S1-side end part of the machine compartment-side side plate 54 is formed between a back-surface-side end part of the air blower compartment-side side plate 53 and an air blower compartment S1-side end part of the machine compartment-side side plate 54.
- the air blower compartment-side front plate 55 is a steel plate-shaped member configuring a front surface portion of the air blower compartment S1 of the unit casing 51.
- a lower part of the air blower compartment-side front plate 55 is fixed to the bottom plate 52, and in this embodiment, a left-surface-side end part of the air blower compartment-side front plate 55 is an integrated member with a front-surface-side end part of the air blower compartment-side side plate 53.
- the air blower compartment-side front plate 55 is provided with a fan blow-out port 55a for blowing to the outside the outdoor air drawn into the unit casing 51 by the outdoor fan 36.
- the front side of the air blower compartment-side front plate 55 is provided with the fan blow-out grill 55b that covers the fan blow-out port 55a.
- the air blower compartment-side front plate 55 may also be a separate member from the air blower compartment-side side plate 53.
- the machine compartment-side front plate 56 is a steel plate-shaped member configuring part of the front-surface portion of the machine compartment S2 of the unit casing 51, and part of the side-surface portion of the machine compartment S2 of the unit casing 51.
- the end part of the machine compartment-side front plate 56 on the air blower compartment S1 side is fixed to the end part of the air blower compartment-side front plate 55 on the machine compartment S2 side, and the end part of the machine compartment-side front plate 56 on the back surface side is fixed to the end part of the machine compartment-side side plate 54 on the front surface side.
- the top plate 57 is a steel plate-shaped member configuring the top surface portion of the unit casing 51.
- the top plate 57 is fixed to the air blower compartment-side side plate 53, the machine compartment-side side plate 54, and the air blower compartment-side front plate 55, which form the peripheral surfaces (in this embodiment, the front surface, side surfaces, and back surface) of the unit casing 51, excluding the top surface and bottom surface of the unit casing 51.
- the partition plate 58 is a steel plate-shaped member disposed on the bottom plate 52 and extending vertically.
- the partition plate 58 in this case divides the interior of the unit casing 51 into left and right spaces, thereby forming the air blower compartment S1, which is near the left side surface, and the machine compartment S2, which is near the right side surface.
- the lower part of the partition plate 58 is fixed to the bottom plate 52, the end part on the front surface side is fixed to the air blower compartment-side front plate 55, and the end part on the back surface side extends to the side end part of the outdoor heat exchanger 23, that is near the machine compartment S2.
- the mounting legs 59 are longitudinally extending steel plate-shaped members of the unit casing 51.
- the mounting legs 59 are members fixed to a mounting surface of the outdoor unit 2.
- the outdoor unit 2 has two mounting legs 59, one being disposed near the air blower compartment S1, and the other being disposed near the machine compartment S2.
- the outdoor fan 36 is a propeller fan having a plurality of blades, and is disposed at a position on the front surface side of the outdoor heat exchanger 23 within the air blower compartment S1 so as to face the front surface of the unit casing 51. Specifically, the outdoor fan 36 is disposed so as to face the fan blow-out port 55a formed in the front surface of the unit casing 51.
- the outdoor fan motor 36a is disposed longitudinally between the outdoor fan 36 and the outdoor heat exchanger 23 within the air blower compartment S1.
- the outdoor fan motor 36a is supported by a motor support stand 36b placed on the bottom plate 52.
- the outdoor fan 36 is axially supported on the outdoor fan motor 36a.
- the outdoor heat exchanger 23 which is a heat exchanger panel substantially describing an L shape as seen in a plan view, is disposed inside the air blower compartment S1, so as to face the peripheral surfaces (in this embodiment, the left side surface and the back surface) of the unit casing 51, on the bottom plate 52 serving as a support part.
- the portion of the outdoor heat exchanger 23 that is bent so as to run along a corner (in this embodiment, the corner formed by the left side surface and the back surface) of the peripheral surfaces of the unit casing 51 is designated as a heat exchange rounded part 23a.
- the outdoor heat exchanger 23 is an inserted-fin type all-aluminum heat exchanger, configured from numerous heat transfer tubes 61 composed of flat tubes, and numerous heat transfer fins 64 composed of inserted fins.
- the heat transfer tubes 61 which are made of aluminum or an aluminum alloy, are flat perforated tubes having a flat surface 62 that serves as a heat transfer surface, and numerous small internal flow channels 63 through which the refrigerant flows.
- the numerous heat transfer tubes 61 are disposed in a plurality of rows at intervals along the vertical direction, with the flat surfaces 62 facing each other.
- the numerous heat transfer tubes 61 are arranged in two columns along a direction in which outdoor air is ventilated, one end (the right end in this embodiment) of each tube in the longitudinal direction being connected to a refrigerant diverter 66, an exit/entry header 67, or an intermediate header 68, and the other end (the left front end in this embodiment) of each tube in the longitudinal direction being connected to a linking header 69.
- the refrigerant diverter 66, the exit/entry header 67, the intermediate header 68, and the linking header 69 are vertically long members made of aluminum or an aluminum alloy, having refrigerant flow channels formed inside.
- the heat transfer fins 64 are made of aluminum or an aluminum alloy, and a plurality of the heat transfer fins are disposed at intervals along the longitudinal direction of the heat transfer tubes 61. In this embodiment, to conform to the two-column disposition of the heat transfer tubes 61 along the direction in which outdoor air is ventilated, the heat transfer fins 64 are also disposed in two columns along the direction in which outdoor air is ventilated. Numerous recesses 65 for inserting the heat transfer tubes 61 are formed in the heat transfer fins 64. The recesses 65 extend thinly in the horizontal direction from the edges of the heat transfer fins 64 on one side in the horizontal direction (in this embodiment, the edges on the upstream side relative to the direction in which outdoor air is ventilated).
- the outdoor heat exchanger 23 composed of such an all-aluminum heat exchanger, is placed on the bottom plate 52 forming the bottom surface of the unit casing 51, as described above. At this time, a large part of the outdoor heat exchanger 23 is lifted off the bottom plate 52 by placing the outdoor heat exchanger 23 on the bottom plate 52, as the support part, with spacer members 71, 72, 73 therebetween for purposes such as improving water drainage from the outdoor heat exchanger 23 and suppressing the growth of ice (ice-up) in the lower end of the outdoor heat exchanger 23.
- the spacer members 71, 72, 73 are composed of rubber or another electrically insulating material so that electric corrosion can be prevented between the steel bottom plate 52 and the outdoor heat exchanger 23 made of aluminum or an aluminum alloy.
- the spacer member 71 is a plate-shaped member disposed vertically between lower ends of the refrigerant diverter 66, the exit/entry header 67, and the intermediate header 68, and a portion of the bottom plate 52 near the right of the back surface side.
- the spacer member 72 is a plate-shaped member disposed vertically between a lower end of the linking header 69 and a portion of the bottom plate 52 near the left of the front surface side.
- the spacer member 73 is a plate-shaped member disposed vertically between a lower end of the heat exchange rounded part 23a of the outdoor heat exchanger 23 and a corner of the bottom plate 52 near the left of the back surface side.
- the outdoor heat exchanger 23 is supported from below on the bottom surface of the unit casing 51 via the spacer members 71, 72, 73.
- the portion of the outdoor heat exchanger 23 near the left of the front surface side and the portion near the right of the back surface side are supported on the peripheral surfaces (e.g., the front surface, the left side surface, and the back surface) of the unit casing 51 via brackets composed of resin or another electrically insulating material.
- the heat transfer tubes 61 and the heat transfer fins 64 are disposed in two columns along the direction in which outdoor air is ventilated, but this arrangement is not provided by way of limitation, and the heat transfer tubes 61 and heat transfer fins 64 may be disposed in a single column, or disposed in three or more columns.
- the refrigerant diverter and/or the header are preferably connected to the longitudinal end parts of the heat transfer tubes 61 in accordance with the alignment of and/or the paths taken by the heat transfer tubes 61.
- the locations where the spacer members are disposed are not limited to the three aforementioned locations, and the spacer members may be disposed in other locations such as, e.g., near the longitudinal center of the portion of the outdoor heat exchanger 23 that runs along the left side surface and/or back surface of the unit casing 51.
- the compressor 21 in this case is a hermetic compressor in the shape of a vertical cylinder, and is placed on the bottom plate 52 within the machine compartment S2.
- the weight (load) of the outdoor heat exchanger 23 concentrates in one part thereof due to the effect of, e.g., the center of gravity of the outdoor heat exchanger 23 being displaced, and there is a risk that the heat transfer fins 64 would be readily crushed in the lower end of the part where this load concentrates.
- the center of gravity of the outdoor heat exchanger 23 is positioned near the heat exchange rounded part 23a, and the effect of this positioning is that the heat transfer fins 64 are readily crushed in the lower end of the heat exchange rounded part 23a.
- a fin crushing prevention member 80 which has higher rigidity than the heat transfer fins 64, is disposed between the spacer member 73 and a lowest-row heat transfer tube 61a, which is the lowest positioned heat transfer tube of the plurality of heat transfer tubes 61, whereby the weight (load) of the outdoor heat exchanger 23 exerted on the heat transfer fins 64 is dispersed to the fin crushing prevention member 80, the heat transfer fins 64 are protected, and crushing of the heat transfer fins 64 in the lower end of the outdoor heat exchanger 23 is suppressed.
- the configuration for suppressing the crushing of the heat transfer fins 64 in the lower end of such an outdoor heat exchanger 23 is described below using FIGS. 2 to 10 . In this embodiment, FIG.
- FIG. 7 is an enlarged view of part A in FIG. 3 .
- FIG. 8 is a perspective view of the fin crushing prevention member 80.
- FIG. 9 is a cross-sectional view (only the lower end of the outdoor heat exchanger 23) along line I-I of FIG. 7 .
- FIG. 10 is a cross-sectional view (only the lower end of the outdoor heat exchanger 23) along line II-II of FIG. 7 .
- “up,” “down,” “left,” “right,” “vertical,” “front surface,” “side surface,” “back surface,” “top surface,” “bottom surface,” and other terms refer to directions and surfaces in a case of the surface on the fan blow-out grill 55b side being the front surface, unless otherwise specified.
- the fin crushing prevention member 80 is disposed between the spacer member 73 and the lowest-row heat transfer tube 61a, which is the lowest positioned heat transfer tube of the plurality of heat transfer tubes 61, and the fin crushing prevention member 80 has higher rigidity than the heat transfer fins 64.
- the thickness of the fin crushing prevention member 80 is made to be greater than the plate thickness of the heat transfer fins 64 in order for the rigidity to be higher than that of the heat transfer fins 64.
- the weight (load) of the outdoor heat exchanger 23 exerted on the heat transfer fins 64 can thereby be dispersed to the fin crushing prevention member 80, the heat transfer fins 64 can be protected, and crushing of the heat transfer fins 64 in the lower end of the outdoor heat exchanger 23 can be suppressed.
- the outdoor heat exchanger 23 is made of aluminum or an aluminum alloy
- the bottom plate 52 is made of steel, and both are formed from different types of metals, there would be a risk of electric corrosion should the entire outdoor heat exchanger 23 be placed directly on the bottom plate 52 without the spacer members 71, 72, 73.
- the structure is employed in which the large part of the outdoor heat exchanger 23 is lifted off the bottom plate 52 by placing the outdoor heat exchanger 23 on the bottom plate 52 with spacer members 71, 72, 73 therebetween, and the fin crushing prevention member 80 is disposed between the lowest-row heat transfer tube 61a and the spacer member 73; therefore, both electric corrosion and crushing of the heat transfer fins 64 can be suppressed.
- the fin crushing prevention member 80 is separate from the spacer member 73.
- the fin crushing prevention member 80 is configured from polypropylene (PP), polyethylene terephthalate (PET), or another resin material in this embodiment.
- the fin crushing prevention member 80 may be the same material (aluminum or an aluminum alloy in this embodiment) as the heat transfer tubes 61 or the heat transfer fins 64.
- the horizontal position of the outdoor heat exchanger 23 on the bottom plate 52 can thereby be finely adjusted with the fin crushing prevention member 80 disposed between the lowest-row heat transfer tube 61a and the spacer member 73, and the ease of assembling the outdoor unit 2 can therefore be improved from the standpoint of positional adjustment.
- the fin crushing prevention member 80 which has horizontally extending first fin insertion parts 81, is disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by horizontally inserting the first fin insertions parts 81 between the heat transfer fins 64.
- the fin crushing prevention member 80 is disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by horizontally inserting the first fin insertion parts 81 between the heat transfer fins 64 from a side near the left side surface or back surface of the unit casing 51 (i.e., a side near a peripheral surface of the outdoor heat exchanger 23).
- the fin crushing prevention member 80 is disposed between the spacer member 73 and the lowest-row heat transfer tube 61a configuring the heat exchange rounded part 23a by inserting the first fin insertion parts 81 between the heat transfer fins 64 configuring the heat exchange rounded part 23a. Additionally, the fin crushing prevention member 80 is disposed between the lowest-row heat transfer tube 61a and the spacer member 73 after the heat exchange rounded part 23a has been formed by bending the outdoor heat exchanger 23. The fin crushing prevention member 80 can thereby easily be disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by inserting the first fin insertion parts 81 between the heat transfer fins 64.
- the heat transfer fins 64 configuring the heat exchange rounded part 23a where the weight (load) of the outdoor heat exchanger 23 readily concentrates can be protected, and crushing of the heat transfer fins 64 in the lower end of the heat exchange rounded part 23a can be suppressed.
- the heat exchange rounded part 23a can be more easily formed by bending the outdoor heat exchanger 23 than in cases in which the fin crushing prevention member 80 is disposed in advance so as to correspond to the lowest-row heat transfer tube 61a configuring the heat exchange rounded part 23a before the heat exchanger 23 is bent.
- the first fin insertion parts 81 are plate-shaped members extending from a side near the peripheral surface of the outdoor heat exchanger 23 toward a side far from the peripheral surface.
- a vertical height dimension H of the first fin insertion parts 81 is equal to or greater than a height hf from a lower end of the lowest-row heat transfer tube 61a to a lower end of the heat transfer fins 64.
- the weight (load) of the outdoor heat exchanger 23 exerted on the heat transfer fins 64 can thereby be reliably dispersed to the fin crushing prevention member 80.
- the first fin insertion parts 81 are inserted only in the column that, of the heat transfer fins 64 aligned in the plurality of columns (two columns in this embodiment), is on the side nearest to the peripheral surface.
- the first fin insertion parts 81 are thereby inserted in only one column in the outdoor heat exchanger 23 which is structured with the heat transfer fins 64 aligned in the plurality of columns, and the work of inserting the first fin insertion parts 81 between the heat transfer fins 64 can thereby be performed more easily than in cases in which the first fin insertion parts 81 are inserted in all of the columns (two columns in this embodiment).
- insertion deep end parts 81b which are the end parts of the first fin insertion parts 81 on a deep side in a direction of insertion, have tapers formed therein which narrow in the direction in which the first fin insertion parts 81 are inserted. The work of inserting the first fin insertion parts 81 between the heat transfer fins 64 can thereby be performed smoothly.
- the fin crushing prevention member 80 further has a fin insertion base part 83 extending from insertion frontal end parts 81a, which are end parts of the first fin insertion parts 81 on a frontal side in the direction of insertion, the fin insertion base part 83 extending in a horizontal direction that intersects the direction in which the first fin insertion parts 81 are inserted.
- the fin insertion base part 83 is a substantially rectangular plate-shaped member. The first fin insertion parts 81 can thereby easily be inserted between the heat transfer fins 64 by pressing the fin insertion base part 83 in the direction in which the first fin insertion parts 81 are inserted.
- the fin crushing prevention member 80 has a plurality (two in this embodiment) of the first fin insertion parts 81, and the insertion frontal end parts 81a of the first fin insertion parts 81 are joined to each other via the fin insertion base part 83.
- the insertion frontal end parts 81a of the two first fin insertion parts 81 extend from both end parts of the fin insertion base part 83 on the sides that intersect with the direction in which the first fin insertion parts 81 are inserted.
- the plurality (two in this embodiment) of first fin insertion parts 81 can thereby be inserted all together between the heat transfer fins 64 by pressing the fin insertion base part 83 in the direction in which the first fin insertion parts 81 are inserted, and the degree to which the weight (load) of the outdoor heat exchanger 23 exerted on the heat transfer fins 64 is dispersed can be increased.
- the fin crushing prevention member 80 furthermore has, above the lowest-row heat transfer tube 61a, second fin insertion parts 82 which are horizontally inserted between the heat transfer fins 64.
- the second fin insertion parts 82 are plate-shaped members which, above the first fin insertion parts 81, extend from the side near the peripheral surface of the outdoor heat exchanger 23 toward the side far from the peripheral surface.
- the second fin insertion parts 82 are a plurality (two) in number, as are the first fin insertion parts 81. Insertion frontal end parts 82a of the two second fin insertion parts 82 extend from both end parts of the fin insertion base part 83 on the sides intersecting the direction in which the first fin insertion parts 81 are inserted.
- first fin insertion parts 81 and the second fin insertion parts 82 Formed vertically between the first fin insertion parts 81 and the second fin insertion parts 82 are slit parts 84 into which the heat transfer tubes 61 (in this embodiment, the lowest-row heat transfer tube 61a) can be inserted when the first fin insertion parts 81 are inserted between the heat transfer fins 64.
- the first fin insertion parts 81 can thereby be made less likely to fall out from the heat transfer fins 64 by inserting both the first fin insertion parts 81 and the second fin insertion parts 82 together between the heat transfer fins 64.
- a gap S is ensured between the fin insertion base 83 and the end parts of the heat transfer fins 64 on the side near the insertion frontal end parts 81a, the purpose of the gap S being to prevent the fin insertion base 83 from coming into contact with the end parts of the heat transfer fins 64 on the side near the insertion frontal end parts 81a.
- insertion-limiting parts 85 which close the portions of the slit parts 84 near the fin insertion base part 83, are formed vertically between the first fin insertion parts 81 and the second fin insertion parts 82 so that the gap S can easily be ensured when the first fin insertion parts 81 are inserted between the heat transfer fins 64.
- the insertion-limiting parts 85 are plate-shaped members formed so that the first fin insertion parts 81 and the second fin insertion parts 82 are joined.
- the degree to which the first fin insertion parts 81 are inserted is limited by the heat transfer tubes 61 (the lowest-row heat transfer tube 61a in this embodiment) coming into contact with the insertion-limiting parts 85, whereby the gap S is ensured.
- the size of the gap S is at least 5 mm, taking into consideration an amount of drain water produced in the outdoor heat exchanger 23 during air-warming operation and/or during defrosting operation, the degree of expected ice growth, etc.
- the fin crushing prevention member 80 is disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by horizontally inserting the first fin insertion parts 81 between the heat transfer fins 64 from the side near the left side surface or the back surface of the unit casing 51 (i.e., the side near the peripheral surface of the outdoor heat exchanger 23), as shown in FIG. 10 . Additionally, the first fin insertion parts 81 are inserted only in the column that, of the heat transfer fins 64 aligned in the plurality of columns (two columns in this modification), is on the side nearest to the left side surface or the back surface of the unit casing 51 (i.e., the side nearest to the peripheral surface of the outdoor heat exchanger 23).
- the fin crushing prevention member 80 may be disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by horizontally inserting the first fin insertion parts 81 between the heat transfer fins 64 from the side far from the left side surface or the back surface of the unit casing 51 (the side far from the peripheral surface of the outdoor heat exchanger 23), as shown in FIG. 11 .
- first fin insertion parts 81 may be inserted only in the column that, of the heat transfer fins 64 aligned in the plurality of columns (two columns in this modification), is on the side farthest from the left side surface or the back surface of the unit casing 51 (i.e., the side farthest from the peripheral surface of the outdoor heat exchanger 23), as shown in FIG. 11 .
- the first fin insertion parts 81 are inserted only in the column that, of the heat transfer fins 64 aligned in the plurality of columns (two columns in this modification), is on the side nearest to the peripheral surface, as shown in FIG. 10 .
- the first fin insertion parts 81 may be inserted in all of the columns of the heat transfer fins 64 aligned in the plurality of columns (two columns in this modification), as shown in FIGS. 12 and 13 .
- the configuration shown in FIG. 12 entails two fin crushing prevention members 80 disposed between the lowest-row heat transfer tubes 61a and the spacer member 73 by inserting the first fin insertion parts 81 from both the side near the left side surface or the back surface of the unit casing 51 (the side near the peripheral surface of the outdoor heat exchanger 23) and the side far from the left side surface or the back surface of the unit casing 51 (the side far from the peripheral surface of the outdoor heat exchanger 23).
- the configuration shown in FIG. 13 entails one fin crushing prevention member 80 disposed between the lowest-row heat transfer tubes 61a and the spacer member 73 by inserting the first fin insertion parts 81, which span two columns of the heat transfer fins 64, from the side near the left side surface or the back surface of the unit casing 51 (the side near the peripheral surface of the outdoor heat exchanger 23).
- the work of inserting the first fin insertion parts 81 between the heat transfer fins 64 requires slightly more labor than inserting the first fin insertion parts 81 in only one column, but crushing of the heat transfer fins 64 can be suppressed throughout the entire space from the side near the peripheral surface of the unit casing 51 to the side far from the peripheral surface.
- the fin crushing prevention member 80 has a plurality (two in the above embodiment) of first fin insertion parts 81, and the insertion frontal end parts 81a of the first fin insertion parts 81 are joined to each other via the fin insertion base part 83, forming a U shape in a plan view, as shown in FIG. 8 .
- one first fin insertion part 81 may extend from the fin insertion base part 83 so as to have a T shape in a plan view, as shown in FIG. 14 .
- the fin crushing prevention member 80 has the second fin insertion parts 82 only between the lowest-row heat transfer tube 61a and the heat transfer tube 61 one row above, as shown in FIGS. 8 and 10 . Specifically, the fin crushing prevention member 80 has the second fin insertion parts 82 only in the one row above the first fin insertion parts 81.
- the fin crushing prevention member 80 may also have the second fin insertion parts 82 in the next row above as shown in FIG. 15 , or no second fin insertion parts 82 as shown in FIG. 16 .
- the fin crushing prevention member 80 is disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by horizontally inserting the first fin insertion parts 81 between the heat transfer fins 64, as shown in FIGS. 8 and 9 .
- the fin crushing prevention member 80 may be disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by vertically inserting the first fin insertion parts 81 between the heat transfer fins 64, as shown in FIGS. 17 and 18 .
- the fin crushing prevention member 80 is disposed between the lowest-row heat transfer tube 61a and the spacer member 73 by vertically inserting the first fin insertion parts 81 between the heat transfer fins 64 from a side near the bottom surface of the unit casing 51 (i.e., the side near the bottom surface of the outdoor heat exchanger 23).
- the first fin insertion parts 81 are plate-shaped members extending from the side near the bottom surface of the outdoor heat exchanger 23 toward the side far from the bottom surface.
- the first fin insertion parts 81 are tapered so as to narrow in the direction of insertion.
- the fin crushing prevention member 80 furthermore has the fin insertion base part 83 extending from the end parts of the first fin insertion parts 81 on the frontal side in the direction of insertion, the fin insertion base part 83 extending in a horizontal direction intersecting the direction in which the first fin insertion parts 81 are inserted.
- the fin insertion base part 83 is a substantially arcuate plate-shaped member.
- the fin crushing prevention member 80 has a plurality (six in this modification) of first fin insertion parts 81, and the lower ends of the first fin insertion parts 81 are joined via the fin insertion base part 83.
- the fin crushing prevention member 80 and the spacer member 73 are separate members, as shown in FIGS. 8 and 14 to 17 .
- the fin crushing prevention member 80 may be integrated with the spacer member 73.
- the work of placing the outdoor heat exchanger 23 on the bottom plate 52 (support part) with the spacer member 73 therebetween and the work of disposing the fin crushing prevention member 80 between the lowest-row heat transfer tube 61a and the spacer member 73 can be performed simultaneously, and the ease of assembling the outdoor unit 2 can therefore be improved from the standpoint of the number of man-hours.
- the fin crushing prevention member 80 and an intake grill (not shown) provided to the back surface fan intake port 53b may also be integrated.
- the fin crushing prevention member 80 is disposed to correspond to the spacer member 73 disposed at the lower end of the heat exchange rounded part 23a, as shown in FIG. 7 .
- the fin crushing prevention member may be disposed to correspond to the other spacer members 71, 72.
- the outdoor heat exchanger 23 is employed in which flat tubes are used as the heat transfer tubes 61, as shown in FIGS. 6 and 10 to 13 .
- the outdoor unit 2 is used in the above descriptions as an example of the heat exchange unit, and the specifics of applying the above-described fin crushing prevention member 80 are described.
- fin crushing prevention member 80 can also be applied to heat exchange units other than outdoor units.
- the present invention is widely applicable to heat exchange units of air conditioning apparatuses which are provided with a heat exchanger having a plurality of heat transfer tubes and heat transfer fins, and a casing having a support part on which the heat exchanger is placed.
- Patent Literature 1 Japanese Laid-open Patent Application No. H9-276940
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Other Air-Conditioning Systems (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
Claims (13)
- Unité d'échange de chaleur (2) d'un appareil de climatisation, comprenant :un échangeur de chaleur (23) ayant une pluralité de tubes de transfert de chaleur (61) qui sont disposés le long d'une direction verticale et qui s'étendent horizontalement, et une pluralité d'ailettes de transfert de chaleur (64) qui sont disposées horizontalement à des intervalles et s'étendent verticalement ; etun boîtier (51) ayant une partie de support (52) sur laquelle est placé l'échangeur de chaleur ;l'unité d'échange de chaleur de l'appareil de climatisation comprenant en outre :un élément d'espacement (71, 72, 73) disposé entre l'échangeur de chaleur et la partie de support ; etun élément de prévention d'écrasement d'ailettes (80) disposé entre l'élément d'espacement et un tube de transfert de chaleur de la rangée la plus basse (61a), qui est le tube de transfert de chaleur le plus bas de la pluralité de tubes de transfert de chaleur,l'élément de prévention d'écrasement d'ailettes ayant une rigidité plus élevée que les ailettes de transfert de chaleur,dans laquellel'élément de prévention d'écrasement d'ailettes (80) a une première partie d'insertion entre ailettes (81) s'étendant verticalement et horizontalement, et l'élément de prévention d'écrasement d'ailettes est disposé entre le tube de transfert de chaleur de la rangée la plus basse (61a) et l'élément d'espacement (71, 72, 73) par insertion de la première partie d'insertion entre ailettes entre les ailettes de transfert de chaleur (64), dans laquellel'élément de prévention d'écrasement d'ailettes (80) est disposé entre le tube de transfert de chaleur de la rangée la plus basse (61a) et l'élément d'espacement (71, 72, 73) par insertion de la première partie d'insertion entre ailettes (81) horizontalement entre les ailettes de transfert de chaleur (64),l'élément de prévention d'écrasement d'ailettes (80) possède en outre une base d'insertion entre ailettes (83) s'étendant dans une direction horizontale coupant une direction d'insertion de la première partie d'insertion entre ailettes depuis une partie d'extrémité frontale d'insertion (81a), qui est une partie d'extrémité de la première partie d'insertion entre ailettes (81) sur un côté avant dans la direction d'insertion,le premier élément de prévention d'écrasement d'ailettes (80) possède une pluralité de premières parties d'insertion entre ailettes (81), etles parties d'extrémité frontales d'insertion (81a) des premières parties d'insertion entre ailettes sont assemblées l'une à l'autre via la base d'insertion (83).
- Unité d'échange de chaleur (2) de l'appareil de climatisation selon la revendication 1, dans laquelle
l'élément de prévention d'écrasement d'ailettes (80) est séparé de l'élément d'espacement (71, 72, 73). - Unité d'échange de chaleur (2) de l'appareil de climatisation selon la revendication 1, dans laquelle
l'élément de prévention d'écrasement d'ailettes (80) est intégré à l'élément d'espacement (71, 72, 73). - Unité d'échange de chaleur (2) de l'appareil de climatisation selon une des revendications précédentes, dans laquelle
une dimension de hauteur verticale de la première partie d'insertion entre ailettes (81) est supérieure ou égale à une hauteur d'une extrémité inférieure du tube de transfert de chaleur de la rangée la plus basse (61a) à une extrémité inférieure des ailettes de transfert de chaleur (64). - Unité d'échange de chaleur (2) de l'appareil de climatisation selon une des revendications précédentes, dans laquelle
lorsque la première partie d'insertion entre ailettes (81) a été insérée entre les ailettes de transfert de chaleur (64), un espace pour empêcher la base d'insertion entre ailettes (83) de venir en contact avec des parties d'extrémité des ailettes de transfert de chaleur sur un côté proche de la partie d'extrémité frontale d'insertion (81a) est assuré entre la base d'insertion entre ailettes et les parties d'extrémité des ailettes de transfert de chaleur sur le côté proche de la partie d'extrémité frontale d'insertion. - Unité d'échange de chaleur (2) de l'appareil de climatisation selon l'une quelconque des revendications précédentes, dans laquelle
l'élément de prévention d'écrasement d'ailettes (80) possède en outre, plus haut que le tube de transfert de chaleur de la rangée la plus basse (61a), une seconde partie d'insertion entre ailettes (82) insérée horizontalement entre les ailettes de transfert de chaleur (64). - Unité d'échange de chaleur (2) de l'appareil de climatisation selon l'une quelconque des revendications précédentes, dans laquelle
le boîtier (51) a une forme de parallélépipède rectangle ;
la partie de support (52) forme une surface inférieure du boîtier ;
l'échangeur de chaleur (23) est disposé à l'intérieur du boîtier de sorte à s'étendre le long d'une surface périphérique du boîtier, à l'exception d'une surface supérieure et d'une surface inférieure du boîtier ; et
l'élément de prévention d'écrasement d'ailettes (80) est disposé entre le tube de transfert de chaleur de la rangée la plus basse (61a) et l'élément d'espacement (71, 72, 73) par insertion de la première partie d'insertion entre ailettes (81) horizontalement entre les ailettes de transfert de chaleur (64) depuis un côté proche de la surface périphérique de l'échangeur de chaleur. - Unité d'échange de chaleur (2) de l'appareil de climatisation selon l'une quelconque des revendications 1 à 6, dans laquelle
le boîtier (51) a une forme de parallélépipède rectangle :la partie de support (52) forme une surface inférieure du boîtier ;l'échangeur de chaleur (23) est disposé à l'intérieur du boîtier de sorte à s'étendre le long d'une surface périphérique du boîtier, à l'exception d'une surface supérieure et d'une surface inférieure du boîtier ; etl'élément de prévention d'écrasement d'ailettes (80) est disposé entre le tube de transfert de chaleur de la rangée la plus basse (61a) et l'élément d'espacement (71, 72, 73) par insertion de la première partie d'insertion entre ailettes (81) horizontalement entre les ailettes de transfert de chaleur (64) depuis un côté éloigné de la surface périphérique de l'échangeur de chaleur. - Unité d'échange de chaleur (2) de l'appareil de climatisation selon la revendication 7 ou 8, dans laquelle
l'échangeur de chaleur (23) a une partie arrondie d'échange de chaleur (23a) courbée de sorte à s'étendre le long d'un angle de la surface périphérique du boîtier (51) ;
l'élément d'espacement (73) est disposé entre la partie arrondie d'échange de chaleur et la partie de support (52) ; et
l'élément de prévention d'écrasement d'ailettes (80) est disposé entre l'élément d'espacement et le tube de transfert de chaleur de la rangée la plus basse (61a) configurant la partie arrondie d'échange de chaleur par insertion de la première partie d'insertion entre ailettes (81) entre les ailettes de transfert de chaleur (64) configurant la partie arrondie d'échange de chaleur. - Unité d'échange de chaleur (2) de l'appareil de climatisation selon la revendication 9, dans laquelle
une fois que la partie arrondie d'échange de chaleur (23a) a été formée en courbant l'échangeur de chaleur (23), l'élément de prévention d'écrasement d'ailettes (80) est disposé entre le tube de transfert de chaleur de la rangée la plus basse (61a) et l'élément d'espacement (73). - Unité d'échange de chaleur (2) de l'appareil de climatisation selon l'une quelconque des revendications 7, 8 et 10, dans laquelle
l'échangeur de chaleur (23) a une structure dans laquelle les ailettes de transfert de chaleur (64) sont alignées dans une pluralité de colonnes depuis un côté proche de la surface périphérique du boîtier (51) à un côté éloigné de la surface périphérique ; et
la première partie d'insertion entre ailettes (81) est insérée dans toutes les colonnes des ailettes de transfert de chaleur alignées dans la pluralité de colonnes. - Unité d'échange de chaleur (2) de l'appareil de climatisation selon l'une quelconque des revendications 7, 8 et 10, dans laquelle
l'échangeur de chaleur (23) a une structure dans laquelle les ailettes de transfert de chaleur (64) sont alignées dans une pluralité de colonnes depuis un côté proche de la surface périphérique du boîtier (51) jusqu'à un côté éloigné de la surface périphérique ; et
la première partie d'insertion entre ailettes (81) est insérée soit uniquement dans la colonne, des ailettes de transfert de chaleur alignées dans la pluralité de colonnes, qui est sur le côté le plus proche de la surface périphérique, soit uniquement dans la colonne qui est sur le côté le plus éloigné de la surface périphérique. - Unité d'échange de chaleur (2) de l'appareil de climatisation selon l'une quelconque des revendications 1 à 12, dans laquelle
l'échangeur de chaleur (23) est formé à partir d'un type de métal différent de celui de la partie de support (52).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015008083A JP6028815B2 (ja) | 2015-01-19 | 2015-01-19 | 空気調和装置の熱交換ユニット |
PCT/JP2016/050959 WO2016117443A1 (fr) | 2015-01-19 | 2016-01-14 | Unité d'échange de chaleur pour dispositif de climatisation |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3249309A1 EP3249309A1 (fr) | 2017-11-29 |
EP3249309A4 EP3249309A4 (fr) | 2018-02-21 |
EP3249309B1 true EP3249309B1 (fr) | 2019-06-05 |
Family
ID=56416990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16740050.6A Active EP3249309B1 (fr) | 2015-01-19 | 2016-01-14 | Unité d'échange de chaleur pour dispositif de climatisation |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3249309B1 (fr) |
JP (1) | JP6028815B2 (fr) |
CN (1) | CN107208904B (fr) |
MY (1) | MY165129A (fr) |
WO (1) | WO2016117443A1 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3035955B1 (fr) * | 2015-05-06 | 2019-04-19 | Valeo Systemes Thermiques | Echangeur de chaleur comportant un dispositif de protection |
US10545000B2 (en) * | 2017-03-15 | 2020-01-28 | Denso International America, Inc. | Reinforcing clip and heat exchanger |
US11493244B2 (en) | 2017-12-18 | 2022-11-08 | Daikin Industries, Ltd. | Air-conditioning unit |
EP3730574B1 (fr) | 2017-12-18 | 2023-08-30 | Daikin Industries, Ltd. | Composition comprenant un fluide frigorigène, utilisation correspondante, machine de réfrigération la comprenant et procédé de fonctionnement de ladite machine de réfrigération |
US11549695B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Heat exchange unit |
US11506425B2 (en) | 2017-12-18 | 2022-11-22 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11441819B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
US11365335B2 (en) | 2017-12-18 | 2022-06-21 | Daikin Industries, Ltd. | Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine |
US11435118B2 (en) | 2017-12-18 | 2022-09-06 | Daikin Industries, Ltd. | Heat source unit and refrigeration cycle apparatus |
US11906207B2 (en) | 2017-12-18 | 2024-02-20 | Daikin Industries, Ltd. | Refrigeration apparatus |
US11820933B2 (en) | 2017-12-18 | 2023-11-21 | Daikin Industries, Ltd. | Refrigeration cycle apparatus |
CN111479910A (zh) | 2017-12-18 | 2020-07-31 | 大金工业株式会社 | 制冷剂用或制冷剂组合物用的制冷机油、制冷机油的使用方法、以及作为制冷机油的用途 |
WO2019123897A1 (fr) * | 2017-12-18 | 2019-06-27 | ダイキン工業株式会社 | Dispositif à cycle frigorifique |
US11549041B2 (en) | 2017-12-18 | 2023-01-10 | Daikin Industries, Ltd. | Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator |
US11441802B2 (en) | 2017-12-18 | 2022-09-13 | Daikin Industries, Ltd. | Air conditioning apparatus |
JP6583489B1 (ja) * | 2018-06-15 | 2019-10-02 | ダイキン工業株式会社 | 熱交換ユニット |
WO2020021706A1 (fr) * | 2018-07-27 | 2020-01-30 | 三菱電機株式会社 | Échangeur de chaleur, unité d'échangeur de chaleur et dispositif à cycle de réfrigération |
JP2023087481A (ja) * | 2021-12-13 | 2023-06-23 | ダイキン工業株式会社 | 熱交換ユニット |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855662A (ja) * | 1981-09-28 | 1983-04-02 | 松下電器産業株式会社 | 空気調和機のフアンモ−タの取付け構造 |
JPS6014426U (ja) * | 1983-07-08 | 1985-01-31 | 株式会社富士通ゼネラル | 空気調和機 |
JPH0250033A (ja) * | 1988-08-06 | 1990-02-20 | Mitsubishi Electric Corp | 熱交換器の取付構造 |
JP3188088B2 (ja) * | 1994-01-05 | 2001-07-16 | 三菱重工業株式会社 | 空気調和機の室外ユニット |
US20080142190A1 (en) * | 2006-12-18 | 2008-06-19 | Halla Climate Control Corp. | Heat exchanger for a vehicle |
CN101267014A (zh) * | 2007-03-12 | 2008-09-17 | 五邑大学 | 一种集制冷制热及温差发电功能的温差半导体模块 |
JP5401685B2 (ja) * | 2008-12-25 | 2014-01-29 | 三菱電機株式会社 | 空気調和機の室外機 |
JP5586571B2 (ja) * | 2011-11-28 | 2014-09-10 | 三菱電機株式会社 | 空気調和機の室外機 |
JP2013127341A (ja) * | 2011-12-19 | 2013-06-27 | Daikin Industries Ltd | 熱交換器 |
JP5464207B2 (ja) * | 2011-12-28 | 2014-04-09 | ダイキン工業株式会社 | 冷凍装置の室外ユニット |
JP5447580B2 (ja) * | 2012-04-27 | 2014-03-19 | ダイキン工業株式会社 | 空調機の室外機 |
-
2015
- 2015-01-19 JP JP2015008083A patent/JP6028815B2/ja active Active
-
2016
- 2016-01-14 WO PCT/JP2016/050959 patent/WO2016117443A1/fr active Application Filing
- 2016-01-14 EP EP16740050.6A patent/EP3249309B1/fr active Active
- 2016-01-14 MY MYPI2017702451A patent/MY165129A/en unknown
- 2016-01-14 CN CN201680006217.0A patent/CN107208904B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN107208904A (zh) | 2017-09-26 |
EP3249309A4 (fr) | 2018-02-21 |
MY165129A (en) | 2018-02-28 |
CN107208904B (zh) | 2018-08-24 |
JP6028815B2 (ja) | 2016-11-24 |
WO2016117443A1 (fr) | 2016-07-28 |
JP2016133256A (ja) | 2016-07-25 |
EP3249309A1 (fr) | 2017-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3249309B1 (fr) | Unité d'échange de chaleur pour dispositif de climatisation | |
EP3650798B1 (fr) | Échangeur de chaleur | |
EP3220093B1 (fr) | Échangeur de chaleur | |
JP5218628B2 (ja) | 空気調和装置の室外機 | |
EP2667140B1 (fr) | Échangeur de chaleur et climatiseur | |
EP2851633B1 (fr) | Dispositif de climatisation | |
EP2821718B1 (fr) | Unité extérieure pour dispositif de réfrigération | |
EP3006842B1 (fr) | Unité extérieure pour dispositif de conditionnement de l'air | |
CN102455087B (zh) | 集管单元和具有该集管单元的热交换器 | |
EP3203158B1 (fr) | Ensemble échangeur thermique, et unité extérieure de dispositif de réfrigération | |
US20170234587A1 (en) | Refrigerant evaporator | |
EP3617613B1 (fr) | Unité de commutation de canal de fluide frigorigène et climatiseur | |
JP6826805B2 (ja) | 冷凍装置の室外ユニット | |
CN102141275B (zh) | 空气调节装置的室外单元 | |
JP2019011923A (ja) | 熱交換器 | |
JP2016095086A (ja) | 熱交換器 | |
EP3514457B1 (fr) | Unité de source de chaleur | |
JP6137114B2 (ja) | 空気調和装置の熱源ユニット | |
JP2012132641A (ja) | 冷凍装置の室外ユニット | |
JP5963958B2 (ja) | 空気調和機の室外機、及び空気調和機の室外機の製造方法 | |
KR20160077835A (ko) | 공기 조화기의 실외기 | |
JP6954429B2 (ja) | 冷凍装置の室外ユニット | |
JP6755401B2 (ja) | 空気調和装置 | |
WO2019107121A1 (fr) | Procédé de fabrication de dispositif à cycle de réfrigération, et dispositif à cycle de réfrigération | |
JP5609624B2 (ja) | 冷凍装置の室外ユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170811 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180123 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24F 13/30 20060101ALI20180117BHEP Ipc: F28F 9/00 20060101ALI20180117BHEP Ipc: F28F 1/32 20060101ALI20180117BHEP Ipc: F28F 9/013 20060101ALI20180117BHEP Ipc: F28D 1/047 20060101ALI20180117BHEP Ipc: F24F 1/16 20110101ALI20180117BHEP Ipc: F28D 1/053 20060101ALI20180117BHEP Ipc: F24F 1/14 20110101AFI20180117BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180625 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190201 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1140406 Country of ref document: AT Kind code of ref document: T Effective date: 20190615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016014869 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190605 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190905 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190905 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190906 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1140406 Country of ref document: AT Kind code of ref document: T Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191005 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016014869 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
26N | No opposition filed |
Effective date: 20200306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190605 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231130 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231212 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231128 Year of fee payment: 9 |