EP3231048B1 - Électrode de bougie d'allumage avec cordon de soudure profond ainsi que bougie d'allumage avec l'électrode de bougie d'allumage et procédé de fabrication de l'électrode de bougie d'allumage - Google Patents

Électrode de bougie d'allumage avec cordon de soudure profond ainsi que bougie d'allumage avec l'électrode de bougie d'allumage et procédé de fabrication de l'électrode de bougie d'allumage Download PDF

Info

Publication number
EP3231048B1
EP3231048B1 EP15784299.8A EP15784299A EP3231048B1 EP 3231048 B1 EP3231048 B1 EP 3231048B1 EP 15784299 A EP15784299 A EP 15784299A EP 3231048 B1 EP3231048 B1 EP 3231048B1
Authority
EP
European Patent Office
Prior art keywords
wearing part
electrode
spark plug
longitudinal axis
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15784299.8A
Other languages
German (de)
English (en)
Other versions
EP3231048A1 (fr
Inventor
Sabine BLANKL
Andreas Benz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3231048A1 publication Critical patent/EP3231048A1/fr
Application granted granted Critical
Publication of EP3231048B1 publication Critical patent/EP3231048B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/08Mounting, fixing or sealing of sparking plugs, e.g. in combustion chamber
    • H01T13/10Mounting, fixing or sealing of sparking plugs, e.g. in combustion chamber by bayonet-type connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the invention is based on an electrode for a spark plug according to the preamble of the independent claim.
  • the invention further comprises a spark plug with at least one spark plug electrode according to the invention and a manufacturing method for the spark plug electrode according to the invention.
  • the center electrode or ground electrode is typically made up of an electrode base body and a wear surface containing precious metal arranged on it.
  • the wear surface is generally more resistant to oxidation and corrosion and therefore less subject to wear than the material of the electrode base body.
  • the wear surface is bonded to the respective electrode base body by welding. There are various welding techniques, such as resistance welding, laser welding or electron beam welding, that are used in spark plug production.
  • the desired wear resistance of the precious metal-containing wear part is reduced in melted areas of the wear part.
  • a certain minimum volume of the unchanged precious metal-containing material is required.
  • the precious metal required for a wear part is relatively expensive, so that the volume containing precious metal is generally kept to a minimum.
  • the known joining methods produce poorer results as the radius increases. Either the material bond does not achieve sufficient strength or too much of the volume of the precious metal-containing wear part has to be melted in order to achieve sufficient strength of the material bond.
  • the invention is based on the finding that for a reliable and long-lasting material connection of the wearing part with the electrode base body, a minimum volume of the wearing part must melt so that sufficient material is available for an alloy with the electrode base body material.
  • a line AC in the wearing part has an angle ⁇ to the longitudinal axis xx of the wearing part and ⁇ is greater than or equal to 45°, with points A and C in a cutting plane along the longitudinal axis xx marking transitions between at least one first area that is not melted and at least one second area that is melted in the wearing part.
  • Point A marks a first transition on the outer surface of the cylindrical wearing part.
  • Point C marks a further transition that is closest to the longitudinal axis xx.
  • the second region having at least the same length or a longer extension in a radial direction to the longitudinal axis as or than in a direction parallel to the longitudinal axis. This ensures that the volume of material required for a stable, material-locking connection is melted not only at the edge of the wearing part, but also inside the wearing part.
  • the electrode has a deep and at the same time narrow connecting seam, a so-called deep weld seam, between the wearing part and the electrode base body.
  • a deep and narrow connecting seam between the electrode base body and the wearing part is achieved if the distance AC preferably has an angle ⁇ of greater than or equal to 60° to the longitudinal axis x-x, in particular preferably ⁇ is greater than or equal to 70° or even greater than or equal to 80°.
  • the longitudinal axis x-x of the wearing part extends from a side of the wearing part facing the electrode base body to the front side of the wearing part opposite this side.
  • the longitudinal axis x-x is perpendicular to the front side of the wearing part. If the wearing part has a cylindrical shape, then the longitudinal axis x-x corresponds to the cylinder axis of the wearing part.
  • the front sides or end faces of the wearing part can be round, elliptical or polygonal.
  • the number of corners on a polygonal front side is, for example, less than 12, preferably the number of corners is three, four, five or six.
  • the height H of the wearing part is measured along the longitudinal axis x-x within the first area of the wearing part.
  • the radius R of the wearing part corresponds to the radius of the circumference of the front side of the wearing part. If the longitudinal axis x-x of the wearing part passes through the center of the circumference of the wearing part, then the radius R of the wearing part corresponds to a maximum distance of the outer surface of the wearing part from the longitudinal axis x-x. If the front side of the wearing part is round, the radius R of the wearing part is the circle radius. According to the invention, the radius R of the wearing part is greater than or equal to twice the height H of the wearing part.
  • the distance from point A to the front side of the wearing part is not greater than 90% of the height H of the wearing part. This ensures that sufficient volume of the wearing part has been melted for a stable, material-locking connection. Additionally or alternatively, it can be provided that the distance from point A to the front side of the wearing part is not less than 50% of the height H of the wearing part, so that there is sufficient non-melted volume of the wearing part for sufficient wear resistance of the wearing part.
  • a shortest distance from the outer surface of the wearing part to the point C is not less than 50% of the radius R of the wearing part and/or not greater than 100% of the radius of the wearing part. This ensures that sufficient volume has been melted inside the wearing part for a stable, material-locking connection and that the connecting seam has a sufficient depth perpendicular to the longitudinal axis x-x.
  • the radius R of the wearing part is not smaller than 0.75 mm and/or not larger than 2 mm, preferably the radius R of the wearing part is in the range of 1 mm to 1.5 mm.
  • the height H of the wearing part is not less than 0.4 mm and/or not greater than 1 mm, preferably the height H of the wearing part is in the range of 0.5 mm to 0.8 mm.
  • the invention further relates to a spark plug which has at least one electrode according to the invention.
  • the at least one electrode can be designed as a center electrode and/or ground electrode.
  • the ground electrode can have the form of a roof electrode, side electrode and/or bracket electrode. If the spark plug has several ground electrodes, the ground electrodes can have the same shape or different shapes.
  • the invention also relates to a method for producing an electrode, in which a wear part is arranged on an electrode base body.
  • the wear part is bonded to the electrode base body by welding, the wear part preferably being cylindrical.
  • the wear part is in direct contact with the electrode base body with one of its front sides.
  • a welding beam is irradiated at an angle ⁇ relative to the longitudinal axis xx of the wear part, preferably into the contact area between the wear part and the electrode base body.
  • the heat energy required to create at least one melted area in the wear part is introduced into the wear body by the welding beam.
  • the energy deposited in the electrode base body by the welding beam also creates at least one melted area in the electrode base body.
  • the melted areas in the wear part and in the electrode base body border on one another at least in some areas.
  • an alloy area forms at least in some areas, in which the materials of the wear part and the electrode base body alloy with one another, thus creating a material bond between the wear part and the electrode base body.
  • the angle ⁇ is not less than 75°, preferably not less than 81°. This achieves the technical effect that the second, melted area in the wearing part extends from the outer surface far in the direction of the longitudinal axis x-x and overall results in a deep and at the same time relatively slim connecting seam, a so-called deep weld seam.
  • relatively slim means that the maximum extent of the second area in the wearing part in a radial direction to the longitudinal axis x-x is greater than the maximum extent in a parallel direction to the longitudinal axis x-x.
  • the welding beam has a focus diameter of no larger than 50 ⁇ m.
  • the focal point for the welding beam is advantageously placed within the contact area between the wear part and the electrode base body.
  • the focal point has a distance from the outer surface of the wear part in the direction of the longitudinal axis x-x of at least 50% of the wear part radius.
  • welding is carried out at least along part of the circumference of the wearing part.
  • a continuous weld seam is created along the entire circumference of the wearing part.
  • the weld seam can also be divided into several sections, wherein the sections are spaced apart on the outer surface of the wearing part and/or overlap within the contact area and/or the wearing part and/or the electrode base body.
  • the non-melted regions in the wearing part are contiguous, so that there is preferably only a first region in the wearing part.
  • a laser or an electrode beam can be used as the source for the welding beam.
  • the laser can be operated in pulsed or continuous wave (CW).
  • CW continuous wave
  • solid-state lasers, fiber lasers, disk lasers and/or diode lasers can be used in the welding process.
  • the source of the welding beam and thus also the welding beam can rotate around the electrode base body and the wearing part during welding.
  • the source of the welding beam is stationary and the electrode with the electrode base body and the wearing part rotates around an axis, in particular around the longitudinal axis x-x of the wearing part.
  • the power of the welding beam can be varied during welding. This allows power losses, for example due to shadowing effects, to be compensated for and thus a connection seam that is as uniform as possible to be produced.
  • the power of the welding beam in a first operating phase of the welding process is constant.
  • the power is continuously reduced or reduced to a low value which is kept constant during the second operating phase.
  • the second operating phase is interrupted by a third operating phase.
  • the third operating phase is preferably shorter in time than the individual time periods of the second operating phase.
  • the power of the welding beam is briefly increased again. After the end of the third operating phase, for example, the power of the welding beam is reset to its last value in the second operating phase before the interruption by the third operating phase.
  • Shadowing effects on the power of the welding beam occur when, during welding, the rotation of the electrode or welding source causes, for example, a leg of a ground electrode to get into the welding beam and thus shadows part of the welding beam.
  • FIG. 1 shows a schematic representation of a spark plug 1.
  • the spark plug 1 has a metal housing 2 with a thread 3 for mounting the spark plug 1 in an engine block.
  • An insulator 4 is arranged inside the housing 2.
  • a center electrode 5 and a connecting bolt 7 are arranged inside the insulator 4 and are electrically connected via a resistance element (not shown here).
  • the center electrode 5 typically protrudes from the insulator 4 at the end of the spark plug 1 on the combustion chamber side.
  • a ground electrode 6 is arranged at the end of the housing 2 on the combustion chamber side. This forms an ignition gap together with the center electrode 5.
  • the ground electrode 6 can be designed as a roof electrode, side electrode or bracket electrode.
  • the bracket electrode has two legs, each of which is welded to the housing 2 with its leg 16. The legs have an angle of 30° to 180° to one another.
  • the bracket electrode can be constructed in one piece or in several parts, whereby in a multi-part construction the individual parts are connected to one another by a material connection such as welding.
  • FIG 2 a section of an electrode 5, 6 according to the invention is shown.
  • the electrode 5, 6 has an electrode base body 8 and a wear part 10, wherein the wear part 10 is arranged on the electrode base body 8 in such a way that it, together with the opposite electrode 6, 5 or a second wearing part arranged on the opposite electrode 6, 5 forms the ignition gap.
  • the electrode base body 8 consists of a nickel alloy that is low or high alloyed.
  • the nickel alloy is low alloyed with yttrium or high alloyed with chromium.
  • the chromium content in the nickel alloy is, for example, at least 20% by weight, preferably even at least 25% by weight.
  • the wearing part 10 is cylindrical with round, elliptical or polygonal end faces and has a cylinder axis or longitudinal axis x-x.
  • the longitudinal axis x-x extends from the end face 13 of the wearing part to the opposite side 14 of the wearing part facing the electrode base body 8.
  • the height H of the wearing part 10 is measured along the longitudinal axis x-x.
  • the radius R of the wearing part 10 corresponds to the maximum distance of the outer surface 15 of the wearing part 10 to the longitudinal axis x-x, wherein the distance is measured perpendicular to the longitudinal axis x-x, for example to an end face 13 of the wearing part.
  • the wearing part 10 has a circular shape, i.e.
  • the radius R of the wearing part 10 is greater than or equal to the height H of the wearing part 10.
  • the radius R of the wearing part 10 is greater than or equal to 1.5 times the height H of the wearing part 10 or even the radius R of the wearing part 10 is greater than or equal to 2 times the height H of the wearing part 10.
  • the radius R of the wearing part 10 is not smaller than 0.75 mm and/or not larger than 2 mm.
  • the radius R of the wearing part 10 is not smaller than 1 mm and/or not larger than 1.5 mm.
  • the height H of the wearing part 10 is not smaller than 0.4 mm and/or not larger than 1 mm.
  • the height H of the wearing part 10 is not smaller than 0.6 mm and/or not larger than 0.8 mm.
  • the radius R of the wearing part 10 is 1.2 mm and the height H of the wearing part 10 is 0.6 mm.
  • the wearing part 10 consists of a precious metal or a precious metal alloy, such as iridium, platinum, rhodium, ruthenium and/or rhenium or alloys with at least one of these precious metals.
  • the side 14 of the wearing part 10 facing the electrode base body 8 is in direct contact with the electrode base body 8.
  • the wearing part 10 is integrally connected to the electrode base body 8 by welding, as a result of which areas 12, 18 are formed in the wearing body 10 and in the electrode base body 8, which are melted during the connection process.
  • the wearing part 10 can be divided into first regions 11, which were not melted during the joining process, and second regions 12, which were melted during the joining process.
  • the transitions between the non-melted areas 11 of the wearing part 10 and the melted areas 12 of the wearing part 10 are clearly visible.
  • the transition on the outer surface 15 between the first area 11 of the wearing part 10 and the second area 12 of the wearing part 10 is referred to as point A.
  • the transition between the first area 11 of the wearing part 10 and the second area 12 of the wearing part 10, which is closest to the longitudinal axis x-x, is referred to as point C.
  • the line AC has an angle ⁇ to the longitudinal axis x-x or to a parallel x'-x' of the longitudinal axis x-x passing through point C.
  • points A and C on the same second area 12 of the wearing part 10 are typically considered.
  • the angle ⁇ is greater than or equal to 45°.
  • the angle ⁇ is even greater than or equal to 60°.
  • the front side 13 of the wearing part 10 does not have a second region 12 of the wearing part 10, i.e. the front side 13 of the wearing part 10 is not completely melted and belongs to the first region 11 of the wearing part 10.
  • a distance from point A to the front side 13 of the wearing part 10 is not less than 50% of the height H of the wearing part 10.
  • the distance is not greater than 90% of the height H of the wearing part 10 so that enough material from the wearing part 10 has been melted for a firm, material-locking connection.
  • a shortest distance from the lateral surface 15 of the wearing part 10 to the point C is not less than 50% of the radius R of the wearing part 10 or the end face 13 and/or not greater than 100% of the radius R of the wearing part 10.
  • This shortest distance corresponds to a depth t of the second region 12 of the wearing part 10 along a radial direction to the longitudinal axis xx.
  • the fact that the second region 12 of the wearing part 10 has a depth t of at least half the radius R of the wearing part 10 ensures that sufficient material of the wearing part 10 has been melted onto a firm, material-locking connection of the wearing part 10 to the electrode base body 8.
  • the boundary conditions result from the minimum and maximum height b and the minimum and maximum depth t of the second area 12 in the wearing part.
  • the height b of the second area 12 of the wearing part 10 is measured along the outer surface 15.
  • the height b of the second area 12 of the wearing part 10 should correspond to at least 10% and a maximum of 50% of the height H of the wearing part 10.
  • the depth t of the second area 12 of the wearing part 10 corresponds to the distance from point C to the outer surface 15 in a plane perpendicular to the longitudinal axis xx.
  • the depth t of the second area 12 of the wearing part 10 should correspond to at least 50% and a maximum of 100% of the radius R of the wearing part 10.
  • Table 1 R/H b t ⁇ [°] 1 10% H 50% R 78.5 1 10% H 100%
  • R 84 1 50% H 50% R 45 1
  • 50% H 100% R 63 1.5
  • H 50% R 82.5 1.5
  • the angle ⁇ has values in the range of 45° to 84°.
  • Small angles for ⁇ are particularly likely when the second areas 12 of the wearing part 10 have a large height b, i.e. 50% of the height H of the wearing part 10, and at the same time a small depth t, i.e. only 50% of the radius R of the wearing part 10.
  • the values for the angle ⁇ are in the range of 63°- 83°.
  • the values for the angle ⁇ are in the range of 84°-87°. From this it can be deduced that in a particularly preferred embodiment of the invention the angle ⁇ is preferably greater than or equal to 80°.
  • the material connection of the wearing part 10 to the electrode base body 8 is preferably carried out by a welding process, such as laser beam welding or electrode beam welding.
  • a welding process such as laser beam welding or electrode beam welding.
  • laser beam welding a pulsed laser beam or a continuous laser beam, i.e. continuous wave (CW) laser, can be used.
  • Solid-state lasers, disk lasers, diode lasers and/or fiber lasers can be used to generate the laser radiation.
  • the welding beam 20 is directed at an angle ⁇ relative to the longitudinal axis xx onto the contact area between the wear part 10 and the electrode base body 8, as shown in Figure 2 shown schematically.
  • the welding beam 20 is irradiated into the contact region at an angle ⁇ of not less than 75°, preferably not less than 81°.
  • the focal point for the welding beam 20 is, for example, within the contact area, i.e. preferably on the distance between the point C and the lateral surface 15.
  • the welding beam 20 advantageously has a diameter of no greater than 50 ⁇ m at the focal point. This produces a weld seam or connecting seam that is as deep as possible and at the same time not too high.
  • the shape of the weld seam correlates with the geometry of the melted areas 12, 18 in the wear part 10 and in the electrode base body 8.
  • the angle of incidence ⁇ of the welding beam 20 must also increase in order to achieve a sufficient depth t of the second region 12 of the wear part 10 and thus also a to create a reliable, firm connection between the electrode base body 8 and the wearing part 10 without having to melt too much of the height of the jacket surface 15.
  • welding is carried out at least along part of the circumference of the wearing part 10.
  • a continuous weld seam is created along the entire circumference of the wearing part 10.
  • the weld seam can also be divided into several sections, wherein the sections are spaced apart on the outer surface 15 of the wearing part 10 and/or overlap within the contact region and/or within the wearing body 10 and/or within the electrode base body 8.
  • the non-melted regions 11 in the wearing part 10 are connected, so that there is preferably only a first region 11 in the wearing part 10.
  • FIG 3 shows two possible realizations for the production of an electrode according to the invention as a center electrode 5.
  • the welding beam source 21 is stationary and the electrode 5 with the electrode base body 8 and the wear part 10 rotates about an axis, in this example the longitudinal axis xx of the wear part 10.
  • Figure 3b the welding beam source 21 rotates around the electrode 5.
  • FIG 4 shows two possible realizations for the production of an electrode according to the invention as a ground electrode 6.
  • the welding beam source 21 is stationary and the electrode 6 with the electrode base body 8 and the wear part 10 rotates about an axis, in this example the longitudinal axis xx of the wear part 10.
  • Figure 4b the welding beam source 21 rotates around the electrode 6.
  • the power of the welding beam 21 is varied during welding of the ground electrode 6. This makes it possible to compensate for power losses during welding if, for example, during the rotation of the electrode 6 or the welding source 21, a leg 16 of a ground electrode 6 gets into the welding beam 20 and thus shades part of the welding beam 20.
  • Figure 5 shows an example of a time course T of the power P of the welding beam 20 during the welding of a bracket ground electrode 6.
  • the power P is kept at a constant value.
  • the areas 12, 18 to be melted in the wearing part 10 and in the electrode base body 8 are heated, thereby generating the molten pools required for deep welding in the electrode base body 8 and in the wearing part 10.
  • the power P is reduced to 80% to 90% of the initial power. This reduced power P is sufficient for the molten pools, together with the welding beam 20, to move along the circumference of the wearing part 10 in accordance with the rotational speed of the electrode 6 or the welding beam source 21, thereby generating the connecting seam.
  • the second operating phase in this exemplary embodiment is interrupted twice by a third operating phase, in which the power P is increased again to the initial value in order to compensate for the shading effects on the power P deposited in the electrode 6 caused by the legs 16 of the ground electrode 6, which are temporarily located in the welding beam 20. After at least one full rotation, the power P is reduced to 0% in a fourth operating phase and the welding process is ended.
  • the initial position of the welding and/or the direction of rotation during welding is selected such that the components of the spark plug 1 causing shadowing effects enter the welding beam 20 as late as possible within one rotation cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)

Claims (13)

  1. Electrode (5, 6) pour une bougie d'allumage (1), présentant un corps de base d'électrode (8) et une pièce d'usure (10) cylindrique, dans laquelle la pièce d'usure (10) présente un axe longitudinal (x-x) qui s'étend d'une face frontale (14), tournée vers le corps de base d'électrode (8), de la pièce d'usure jusqu'à une face frontale (13) opposée à ladite face frontale (14), et dans laquelle la pièce d'usure (10) présente au moins une première zone (11) et au moins une deuxième zone (12), dans laquelle la pièce d'usure (10) n'est pas fondue dans ladite au moins une première zone (11) et la pièce d'usure (10) est fondue dans ladite au moins une deuxième zone (12), et dans laquelle la pièce d'usure (10) cylindrique présente une hauteur (H) et un rayon (R), dans laquelle la hauteur (H) peut être mesurée dans la première zone (11) le long de l'axe longitudinal (x-x), et dans laquelle le rayon (R) est un rayon de circonférence pour des faces frontales polygonales (13, 14) et un rayon de cercle pour des faces frontales rondes (13, 14), dans laquelle la hauteur (H) de la pièce d'usure (10) n'est pas inférieure 1a 0,4 mm, et dans un plan de coupe de l'axe longitudinal, un point A désigne une première transition entre ladite au moins une première zone (11) et ladite au moins une deuxième zone (12) sur une surface latérale (15) de la pièce d'usure (10), et dans laquelle, dans le plan de coupe, un point C désigne une deuxième transition entre ladite au moins une première zone (11) et ladite au moins une deuxième zone (12) qui est la plus proche de l'axe longitudinal (x-x) dans le plan de coupe, et la droite AC présente un angle α par rapport à l'axe longitudinal (x-x) et α est supérieur ou égal à 45°, caractérisée en ce que R ≥ 2H.
  2. Electrode (5, 6) selon la revendication 1, caractérisée en ce qu'une distance du point A à la face frontale (13) détournée du corps de base d'électrode (8) n'est pas supérieure à 90 % de la hauteur (H) de la pièce d'usure (10) et/ou n'est pas inférieure à 50 % de la hauteur (H) de la pièce d'usure (10).
  3. Electrode (5, 6) selon l'une quelconque des revendications 1 à 2, caractérisée en ce qu'une distance la plus courte de la surface latérale (15) de la pièce d'usure (10) jusqu'au point C n'est pas inférieure à 50 % du rayon (R) de la face frontale (13, 14), et/ou n'est pas supérieure à 100 % du rayon de la face frontale (13, 14) de la pièce d'usure (10).
  4. Electrode (5, 6) selon l'une quelconque des revendications précédentes 1 à 3, caractérisée en ce que le rayon (R) de la face frontale (13, 14) n'est pas inférieur à 0,75 mm et/ou n'est pas supérieur à 2 mm, et/ou en ce que la hauteur (H) de la pièce d'usure (10) n'est pas supérieure à 1 mm.
  5. Bougie d'allumage (1), caractérisée en ce que la bougie d'allumage (1) présente au moins une électrode (5, 6) selon l'une quelconque des revendications d'électrode précédentes 1 à 4.
  6. Bougie d'allumage (1) selon la revendication 5, caractérisée en ce que ladite au moins une électrode (5, 6) est une électrode centrale (5) et/ou une électrode de masse (6), dans laquelle en particulier l'électrode de masse (6) est une électrode de toit, une électrode latérale et/ou une électrode en étrier.
  7. Procédé de fabrication d'une électrode (5, 6) selon l'une quelconque des revendications 1 à 4, ou d'une bougie d'allumage (1) selon la revendication 5 ou 6, dans lequel l'électrode (5, 6) présente un corps de base d'électrode (8) et une pièce d'usure (10) cylindrique, dans lequel la pièce d'usure (10) présente un axe longitudinal (x-x) qui s'étend d'une face frontale (14), tournée vers le corps de base d'électrode (8), de la pièce d'usure jusqu'à une face frontale (13) opposée à ladite face frontale (14), caractérisé en ce qu'un faisceau de soudage (20) pour produire au moins une zone fondue (12) dans la pièce d'usure (10) est injecté selon un angle β par rapport à l'axe longitudinal (x-x), l'angle β n'étant pas inférieur à 75°.
  8. Procédé selon la revendication 7, caractérisé en ce que le faisceau de soudage (20) présente un diamètre de foyer qui n'est pas supérieur à 50 µm.
  9. Procédé selon l'une quelconque des revendications 7 et 8, caractérisé en ce qu'une puissance (P) du faisceau de soudage (20) est amenée à varier pendant le soudage.
  10. Procédé selon l'une quelconque des revendications 7 à 9, caractérisé en ce que le soudage est effectué au moins le long d'une partie de la circonférence de la pièce d'usure (10).
  11. Procédé selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la source (21) du faisceau de soudage (20) tourne pendant le soudage autour du corps de base d'électrode (8) et de la pièce d'usure (10).
  12. Procédé selon l'une quelconque des revendications précédentes 7 à 10, caractérisé en ce que pendant le soudage, le corps de base d'électrode (8) et la pièce d'usure (10) tournent autour de l'axe longitudinal (X-X) de la pièce d'usure (10).
  13. Procédé selon l'une quelconque des revendications 7 à 12, caractérisé en ce qu'un laser, en particulier un laser à ondes entretenues (CW) ou un faisceau d'électrons est utilisé comme source (21) pour le faisceau de soudage (20) .
EP15784299.8A 2014-12-10 2015-10-09 Électrode de bougie d'allumage avec cordon de soudure profond ainsi que bougie d'allumage avec l'électrode de bougie d'allumage et procédé de fabrication de l'électrode de bougie d'allumage Active EP3231048B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225402.7A DE102014225402A1 (de) 2014-12-10 2014-12-10 Zündkerzenelektrode mit Tiefschweißnaht sowie Zündkerze mit der Zündkerzenelektrode und Herstellungsverfahren für die Zündkerzenelektrode
PCT/EP2015/073350 WO2016091430A1 (fr) 2014-12-10 2015-10-09 Électrode de bougie d'allumage avec cordon de soudure profond ainsi que bougie d'allumage avec l'électrode de bougie d'allumage et procédé de fabrication de l'électrode de bougie d'allumage

Publications (2)

Publication Number Publication Date
EP3231048A1 EP3231048A1 (fr) 2017-10-18
EP3231048B1 true EP3231048B1 (fr) 2024-04-24

Family

ID=54345468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15784299.8A Active EP3231048B1 (fr) 2014-12-10 2015-10-09 Électrode de bougie d'allumage avec cordon de soudure profond ainsi que bougie d'allumage avec l'électrode de bougie d'allumage et procédé de fabrication de l'électrode de bougie d'allumage

Country Status (7)

Country Link
US (1) US10096976B2 (fr)
EP (1) EP3231048B1 (fr)
JP (1) JP6431607B2 (fr)
CN (1) CN107210587B (fr)
DE (1) DE102014225402A1 (fr)
RU (1) RU2715609C2 (fr)
WO (1) WO2016091430A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020211897A1 (de) 2020-09-23 2022-03-24 Robert Bosch Gesellschaft mit beschränkter Haftung Zündkerzenelektrode sowie Zündkerze mit der Zündkerzenelektrode und Herstellungsverfahren für die Zündkerzenelektrode
DE102020127575A1 (de) 2020-10-20 2022-04-21 Trumpf Laser Gmbh Laserbearbeitungsmaschine mit wenigstens einer Schutzeinrichtung gegen Röntgenabschattung
JP2024099168A (ja) 2023-01-12 2024-07-25 日本特殊陶業株式会社 スパークプラグ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60000298T2 (de) * 1999-04-30 2002-12-05 Ngk Spark Plug Co., Ltd. Herstellungsverfahren einer Zündkerze und Zündkerze
EP2393172A1 (fr) * 2009-01-29 2011-12-07 NGK Sparkplug Co., Ltd. Bougie d'allumage
US20130200773A1 (en) * 2010-09-29 2013-08-08 Ngk Spark Plug Co., Ltd. Spark plug
DE102013105698A1 (de) * 2012-06-01 2013-12-05 Federal-Mogul Ignition Company Elektrodenmaterial für eine Zündkerze

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853108B2 (ja) * 1992-06-17 1999-02-03 日本特殊陶業 株式会社 スパークプラグ
JP2002237370A (ja) 1999-04-30 2002-08-23 Ngk Spark Plug Co Ltd スパークプラグ
JP4304843B2 (ja) * 2000-08-02 2009-07-29 株式会社デンソー スパークプラグ
JP3878807B2 (ja) * 2000-11-30 2007-02-07 日本特殊陶業株式会社 スパークプラグの製造方法
JP3798633B2 (ja) * 2001-01-31 2006-07-19 日本特殊陶業株式会社 スパークプラグの製造方法
JP4271379B2 (ja) * 2001-02-08 2009-06-03 株式会社デンソー スパークプラグ
US6997767B2 (en) * 2003-03-28 2006-02-14 Ngk Spark Plug Co., Ltd. Method for manufacturing a spark plug, and spark plug
JP4069826B2 (ja) 2003-07-30 2008-04-02 株式会社デンソー スパークプラグおよびその製造方法
DE102006036440B4 (de) * 2006-08-04 2015-08-27 Robert Bosch Gmbh Verfahren zum Aufbringen eines Stiftes auf einen Elektrodengrundkörper, Verfahren zur Herstellung einer Zündkerze sowie eine Zündkerze
JP2008270185A (ja) * 2007-03-29 2008-11-06 Ngk Spark Plug Co Ltd スパークプラグの製造方法
KR100865337B1 (ko) * 2007-11-06 2008-10-27 주식회사 유라테크 점화플러그 전극팁 용접방법
JP2010272212A (ja) 2009-05-19 2010-12-02 Ngk Spark Plug Co Ltd スパークプラグ
WO2012067199A1 (fr) * 2010-11-17 2012-05-24 日本特殊陶業株式会社 Bougie d'allumage
EP2736132B1 (fr) * 2011-07-19 2018-10-03 NGK Spark Plug Co., Ltd. Bougie d'allumage
JP5942473B2 (ja) * 2012-02-28 2016-06-29 株式会社デンソー 内燃機関用のスパークプラグ及びその製造方法
JP5923011B2 (ja) 2012-08-08 2016-05-24 日本特殊陶業株式会社 スパークプラグ
JP2014157765A (ja) 2013-02-18 2014-08-28 Ngk Insulators Ltd 微小径先端段付溶接電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60000298T2 (de) * 1999-04-30 2002-12-05 Ngk Spark Plug Co., Ltd. Herstellungsverfahren einer Zündkerze und Zündkerze
EP2393172A1 (fr) * 2009-01-29 2011-12-07 NGK Sparkplug Co., Ltd. Bougie d'allumage
US20130200773A1 (en) * 2010-09-29 2013-08-08 Ngk Spark Plug Co., Ltd. Spark plug
DE102013105698A1 (de) * 2012-06-01 2013-12-05 Federal-Mogul Ignition Company Elektrodenmaterial für eine Zündkerze

Also Published As

Publication number Publication date
CN107210587A (zh) 2017-09-26
EP3231048A1 (fr) 2017-10-18
DE102014225402A1 (de) 2016-06-16
JP6431607B2 (ja) 2018-11-28
US10096976B2 (en) 2018-10-09
RU2017124193A3 (fr) 2019-02-18
US20170338631A1 (en) 2017-11-23
RU2715609C2 (ru) 2020-03-03
RU2017124193A (ru) 2019-01-10
WO2016091430A1 (fr) 2016-06-16
JP2017537444A (ja) 2017-12-14
CN107210587B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
DE102005005321B4 (de) Zündkerze und Herstellungsverfahren dafür
DE112011103796B4 (de) Zündkerze
DE102007012368B4 (de) Zündkerze für einen Verbrennungsmotor
DE102006000027B4 (de) Zündkerze für eine Brennkraftmaschine und Verfahren zu deren Herstellung
EP3694684B1 (fr) Bougie d'allumage et procédé de fabrication d'une bougie d'allumage
DE69400185T2 (de) Zündkerzenelektrode zur Anwendung in einem Verbrennungsmotor
EP3231048B1 (fr) Électrode de bougie d'allumage avec cordon de soudure profond ainsi que bougie d'allumage avec l'électrode de bougie d'allumage et procédé de fabrication de l'électrode de bougie d'allumage
EP3221937B1 (fr) Électrode de bougie d'allumage, son procédé de fabrication et bougie d'allumage correspondante
DE10354439B4 (de) Zündkerze und Herstellungsverfahren dafür
DE212021000499U1 (de) Zusammengesetzte Funkenbildungskomponente für eine Zündkerze und Zündkerze
DE3941649A1 (de) Verfahren zur herstellung von elektroden fuer zuendkerzen sowie zuendkerzen-elektroden
DE102013108613B4 (de) Zündkerze mit Verfahren zum Anbringen eines Zündplättchens an einer Elektrode
DE69225686T2 (de) Zündkerzenelektrode und Herstellungsverfahren
DE602004009769T2 (de) Zündkerze und verfahren zu ihrer herstellung
EP2719037A1 (fr) Électrode pour une bougie d'allumage ainsi que procédé pour sa fabrication
EP1356555A1 (fr) Procede pour la production d'une electrode de bougie d'allumage
DE10205588B4 (de) Zündkerze mit einem höheren Verschleißwiderstand an der Mittelelektrode, und Verfahren zum Herstellen derselben
DE102012212791B4 (de) Verfahren zur Herstellung eines Kolbens für einen Verbrennungsmotor
DE102015118935B4 (de) Verfahren zum Herstellen einer Zündkerze
DE102020119092A1 (de) Verfahren zum Herstellen eines Nockenwellenverstellers und Nockenwellenversteller
DE102004060866A1 (de) Zündkerze mit verbesserter Verbindungsfestigkeit zwischen Edelmetallelement und Masseelektrode
EP1338065A2 (fr) Bougie d'allumage pour moteur a combustion interne et procede de fabrication d'une electrode centrale pour une bougie d'allumage d'un moteur a combustion interne
DE112017006667B4 (de) Verfahren zur Herstellung von Zündkerzen und Zündkerze
DE102004044397A1 (de) Zündkerze für Gasmotor
DE102015103666B3 (de) Verfahren zum Herstellen einer Zündkerze

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190910

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016825

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240826