EP3221298B1 - 4-oxo-3,4-dihydro-1,2,3-benzotriazine derivatives as modulators of gpr139 - Google Patents

4-oxo-3,4-dihydro-1,2,3-benzotriazine derivatives as modulators of gpr139 Download PDF

Info

Publication number
EP3221298B1
EP3221298B1 EP15816275.0A EP15816275A EP3221298B1 EP 3221298 B1 EP3221298 B1 EP 3221298B1 EP 15816275 A EP15816275 A EP 15816275A EP 3221298 B1 EP3221298 B1 EP 3221298B1
Authority
EP
European Patent Office
Prior art keywords
triazin
oxobenzo
acetamide
ethyl
methoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15816275.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3221298A1 (en
Inventor
Stephen Hitchcock
Betty Lam
Holger Monenschein
Holly REICHARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RS20190776A priority Critical patent/RS59078B1/sr
Application filed by Takeda Pharmaceutical Co Ltd filed Critical Takeda Pharmaceutical Co Ltd
Priority to PL19152036T priority patent/PL3536324T3/pl
Priority to SI201530772T priority patent/SI3221298T1/sl
Priority to DK19152036.0T priority patent/DK3536324T3/da
Priority to EP19152036.0A priority patent/EP3536324B1/en
Priority to PL15816275T priority patent/PL3221298T3/pl
Publication of EP3221298A1 publication Critical patent/EP3221298A1/en
Application granted granted Critical
Publication of EP3221298B1 publication Critical patent/EP3221298B1/en
Priority to HRP20191003TT priority patent/HRP20191003T1/hr
Priority to CY20211101111T priority patent/CY1124929T1/el
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/08Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 condensed with carbocyclic rings or ring systems

Definitions

  • the present invention relates to medicinal chemistry, pharmacology, and medicine.
  • GPR139 is an orphan G-protein coupled receptor. GPR139 may be coupled with Gs, Gq and Gi signaling and appears to be constitutively active when recombinantly expressed in mammalian cells. GPR139 is abundantly expressed in the CNS (central nervous system) and to a lesser extent in the pancreas and pituitary and at low levels in other peripheral tissue.
  • GPR139 is highly conserved among different species. For example, human, mouse, and rat GPR139 protein sequences share greater than 94% identity at the amino acid level. The predominant expression in the brain and high degree of sequence homology across different species, suggests that GPR139 has an important role in physiology.
  • GPR139 has its strongest expression in the medial habenular nucleus of mice.
  • the habenula receives inputs from the basal ganglia and the limbic system and sends outputs to midbrain and forebrain structures which contain dopaminergic and serotonergic neurons.
  • Habenular nuclei are involved in pain processing, reproductive behavior, nutrition, sleep-wake cycles, stress responses, and learning.
  • modulators of GPR139 are expected to be useful for treating schizophrenia and other CNS disorders such as depression.
  • the present invention provides agonists of GPR139 and GPR139 agonists for use in treating diseases, disorders, and conditions associated with GPR139 in the form of compounds of formula 1 and other embodiments described herein.
  • Certain activators of GPR139 are described in WO 2014/152917 .
  • Certain agonists of GPR139 are described in J. Chem. Inf. Model. 2014, 54, 1553-1557 and Med. Chem. Lett. 2011, 2, 303-306 .
  • Certain compounds of formula 1 are commercially available but have no known utility in the CNS.
  • US3794726 describes 1,2,3-benzotriazin-(3H)-one as an anti-aggression agent and US4959367 describes 4-oxo-1,2,3-benzotriazine derivatives as having 5-HT 3 receptor agonist activity.
  • the compounds of the invention are agonists of GPR139 and may be useful for the treatment of a disease, disorder or condition associated with GPR139.
  • One aspect of the invention provides a compound of formula 2: or a pharmaceutically acceptable salt thereof, wherein
  • Another aspect of the invention provides a compound of formula 2: or a pharmaceutically acceptable salt thereof, wherein
  • a further aspect of the invention provides a compound of formula 3: or a pharmaceutically acceptable salt thereof, wherein
  • An additional aspect of the invention provides a compound which is (S)-2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)-N-(1-(4-(trifluoromethoxy)phenyl)ethyl)acetamide or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention provides a compound which is (S)-2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)-N-(1-(4-(trifluoromethyl)phenyl)ethyl)acetamide or a pharmaceutically acceptable salt thereof.
  • a further aspect of the invention provides a compound which is (S)-2-(5-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)-N-(1-p-tolylethyl)acetamide or a pharmaceutically acceptable salt thereof.
  • An additional aspect of the invention provides a compound which is (S)-2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)-N-(1-(4-(trifluoromethyl)phenyl)ethyl)acetamide or a pharmaceutically acceptable salt thereof.
  • Another aspect of the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound or pharmaceutically acceptable salt as defined in the preceding paragraphs, and a pharmaceutically acceptable excipient.
  • a further aspect of the invention provides a compound or pharmaceutically acceptable salt as defined in the preceding paragraphs for use as a medicament.
  • An additional aspect of the invention provides a compound of formula 1, or a pharmaceutically acceptable salt thereof, for use as a medicament, wherein:
  • Another aspect of the invention provides a compound or pharmaceutically acceptable salt as defined in the preceding paragraphs, for use in treating a disease, disorder or condition selected from the group consisting of schizophrenia, autism spectrum disorder, sleep disorders, depression, bipolar disorder, cognitive impairment, attention deficit hyperactivity disorder, post-traumatic stress disorder, substance abuse, drug addiction, eating disorders, obsessive compulsive disorder, anxiety disorders, pain, and fibromyalgia.
  • a disease, disorder or condition selected from the group consisting of schizophrenia, autism spectrum disorder, sleep disorders, depression, bipolar disorder, cognitive impairment, attention deficit hyperactivity disorder, post-traumatic stress disorder, substance abuse, drug addiction, eating disorders, obsessive compulsive disorder, anxiety disorders, pain, and fibromyalgia.
  • a further aspect of the invention provides a combination comprising a compound or pharmaceutically acceptable salt as defined in the preceding paragraphs, and at least one additional pharmacologically active agent.
  • An additional aspect of the invention provides processes from making GPR139 agonists and intermediates thereof.
  • C 1-4 alkyl refers to a straight or branched alkyl chain of one to four carbon atoms.
  • C 1-4 alkoxy refers to a C 1-4 alkyl attached through an oxygen atom.
  • halogen and halo refer to chloro, fluoro, bromo or iodo.
  • pharmaceutically acceptable salt refers to a salt of pharmaceutically acceptable organic acids and bases or inorganic acids and bases, and includes those described in Journal of Pharmaceutical Science, 66, 2-19 (1977 ).
  • An example is the hydrochloride salt.
  • amino refers to -NH 2 .
  • agonist refers to both full agonists and partial agonists and other agonists.
  • substantially enantiomerically pure refers to greater than 90% enantiomeric purity for a given stereocenter.
  • substantially enantiomerically pure refers to greater than 80% ee (enantiomeric excess).
  • stereoisomers may be substantially enantiomerically pure, or preferably, may have greater than 97% enantiomeric purity, or more preferably, may have greater than 99% enantiomeric purity at the stereocenter.
  • Compounds of the invention also include all isotopic variations, in which at least one atom is replaced by an atom having the same atomic number, but an atomic mass different from the atomic mass most commonly found in nature.
  • the compounds of the invention and "a compound of the invention” include the embodiment of formula 1, formula 2, formula 3, and the other more particular embodiments encompassed by formula 1, 2 and 3 described herein, each of the exemplified compounds described herein, and a pharmaceutically acceptable salt of each of these embodiments.
  • Another embodiment relates to a pharmaceutically acceptable salt of each of the above embodiments, specifically, formula 1, formula 2, formula 3, embodiments (1a)-(1z), embodiments (2a)-(2n), and embodiments (3a)-(3k).
  • Another embodiment relates to a pharmaceutically acceptable salt of each of the exemplified compounds.
  • the compounds of the invention can be prepared by a variety of procedures, some of which are described below. All substituents, unless otherwise indicated, are as previously defined. It is understood that formulae 2 and 3 are encompassed by formula 1 and that the general procedures below for preparing compounds of formula 1 are also applicable to preparing compounds of formulae 2 and 3.
  • the products of each step can be recovered by conventional methods including extraction, evaporation, precipitation, chromatography, filtration, trituration, and crystallization.
  • the procedures may require protection of certain groups, for example hydroxy, amino, or carboxy groups to minimize unwanted reactions.
  • the selection, use, and removal of protecting groups are well known and appreciated as standard practice, for example T.W. Greene and P. G. M.
  • step a depicts an amide forming reaction of an appropriate compound of formula (a) with an appropriate compound of formula (b) to give a compound of formula 1.
  • An appropriate compound of formula (a) is one in which R 1 , R 2 , and m are as desired in the final compound of formula 1 or give rise to R 1 and R 2 as desired in the final product of formula 1 and X is hydroxyl or a leaving group, such as halo, specifically chloro, or imidazolyl, an activating moiety, a mixed anhydride of another carboxylic acid, such as formic acid, acetic acid, or represents the other part of a symmetrical anhydride formed from two compounds of formula (a).
  • An appropriate compound of formula (b) is one in which R 3 , R 4 , G, and n are as desired in the final compound of formula 1 or give rise to R 3 and R 4 as desired in the final product of formula 1.
  • Compounds of formula (a) and (b) are readily prepared by procedures that are well known in the art and analogously to procedures specifically provided herein.
  • standard amide forming conditions can be used, such as those using coupling agents, including those used in peptide couplings, such as 2-(1H-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate methanaminium (HATU), dicyclohexylcarbodiimide (DCC), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride.
  • an additive such as 4-(dimethylamino)pyridine or, 1-hydroxybenzotriazole may be used to facilitate the reaction.
  • Such reactions are generally carried out using a base, such as N-methylmorpholine or triethylamine, in a wide variety of suitable solvents such as DCM, DMF, NMP, dimethylacetamide and THF.
  • a base such as N-methylmorpholine or triethylamine
  • suitable solvents such as DCM, DMF, NMP, dimethylacetamide and THF.
  • the compounds of formula 1 bearing acidic or basic groups can be converted to a pharmaceutically acceptable salt by methods well known and appreciated in the art.
  • NMR proton nuclear magnetic resonance
  • Characteristic chemical shifts ( ⁇ ) are given in parts-per-million downfield from tetramethylsilane using conventional abbreviations for designation of major peaks, including s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad).
  • the following abbreviations are used for common solvents: CDCl 3 (deuterochloroform), DMSO-d 6 (deuterodimethylsulfoxide), and CD 3 OD (deuteromethanol or methanol-d 4 ).
  • the mass spectra were recorded using either electrospray ionization (ESI) or atmospheric pressure chemical ionization.
  • ESI electrospray ionization
  • atmospheric pressure chemical ionization atmospheric pressure chemical ionization.
  • RT room temperature
  • MeOH methanol
  • EtOH ethanol
  • IPA acetonitrile
  • MeCN or AcCN tetrahydrofuran
  • EtOAc tetrahydrofuran
  • DCM dimethyl sulfoxide
  • DMF dimethylformamide
  • HBT hydroxybenzotriazole
  • EDC hydroxybenzotriazole
  • the title compound was prepared in a manner similar to Preparation 1 using 8-fluoro-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (106 mg, 43 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 5-fluoro-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (64 mg, 26 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 6-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (74 mg, 30 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 6-chloro-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (172 mg, 71 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 7-chloro-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (204 mg, 84 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 8-chloro-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a yellow solid (167 mg, 69 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 8-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (98 mg, 40 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 6-methyl-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (91 mg, 37 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 6,8-dichloro-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (180 mg, 76 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 8-methyl-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (65 mg, 26 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 7-methyl-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as an off-white solid (81 mg, 33 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 5-methyl-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (71 mg, 29 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 7-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (236 mg, 78 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 6-(trifluoromethyl)-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (153 mg, 65 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 5-methoxy-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (42 mg, 14 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 6,8-dimethyl-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a tan solid (185 mg, 76 %).
  • the title compound was prepared in a manner similar to Preparation 1 using 8-fluoro-6-methyl-1H-benzo[d][1,3]oxazine-2,4-dione to give the title compound as a grey solid (486 mg, 80%).
  • n-Butyl lithium (6.17 mL, 9.87 mmol) was added drop-wise at -78 °C to a solution of 1-bromo-2-fluoro-4-(trifluoromethoxy)benzene (2.13 g, 8.22 mmol) in diethyl ether (16.5 mL). The reaction was stirred for 30 minutes before drop-wise addition of N-methoxy-N-methylacetamide (1.272 g, 12.34 mmol). The reaction was stirred for 5 minutes at -78 °C then warmed to room temperature and stirred for 30 minutes. The solution was quenched with saturated NH 4 Cl, extracted with EtOAc, dried with Na 2 SO 4 , filtered, and concentrated under reduced pressure.
  • the title compound was prepared in a manner similar to Preparation 2 using 2-(2,3-dimethyl-7-oxothieno[2,3-d]pyridazin-6(7H)-yl)acetic acid and (S)-1-(2-chloro-4-methoxyphenyl)propan-2-amine, HCl to give the title compound as a white solid (26.7 mg, 76 %).
  • the title compound was prepared in a manner similar to Preparation 25 using 4-(trifluoromethyl)benzaldehyde to give the title compound as an off-white solid (570 mg, 99 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (21 mg, 88 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (R)-1-(p-tolyl)ethanamine to give the title compound as a white solid (39.3 mg, 83 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (14 mg, 58 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-chlorophenyl)ethanamine to give the title compound as a white solid (10 mg, 40 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2,4-dimethylphenyl)ethanamine, HCl to give the title compound as a white solid (16.3 mg, 66 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(o-tolyl)ethanamine to give the title compound as a white solid (1 mg, 4 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-ethoxyphenyl)ethanamine, HCl to give the title compound as a white solid (19.4 mg, 75 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2,4-dimethoxyphenyl)ethanamine, HCl to give the title compound as a white solid (17.2 mg, 64 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (81 mg, 88 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (23.4 mg, 77 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (18.6 mg, 58 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as an off-white solid (13.0 mg, 43 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as an off-white solid (22.4 mg, 70 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as an off-white solid (18.1 mg, 60 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-chloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as an off-white solid (15.6 mg, 52 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-chloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as an off-white solid (20.4 mg, 66 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-chloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as an white solid (15.3 mg, 51 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-chloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as an off-white solid (18.6 mg, 63 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-chloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as an off-white solid (14.2 mg, 46 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (8.0 mg, 26 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (6.0 mg, 19 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6,8-dichloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (12.1 mg, 42 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6,8-dichloro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (16.2 mg, 55 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (9.1 mg, 30 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as an off- white solid (7.0 mg, 22 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (12.3 mg, 41 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (11.8 mg, 38 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (11.3 mg, 37 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (8.4 mg, 26 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (28.2 mg, 92 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (24.1 mg, 75 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (23.3 mg, 78 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (20.6 mg, 66 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (4.2 mg, 13 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (1.2 mg, 4 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (0.5 mg, 2 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6,8-dimethyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (10.7 mg, 36 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6,8-dimethyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (9.0 mg, 29 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxo-6-(trifluoromethyl)benzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (16.8 mg, 59 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxo-6-(trifluoromethyl)benzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-methoxyphenyl)ethanamine to give the title compound as a white solid (20.3 mg, 68 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-fluoro-6-methyl-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(p-tolyl)ethanamine to give the title compound as a white solid (25.5 mg, 57 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-methoxy-4-methylphenyl)ethanamine, HCl to give the title compound as a tan solid (38.8 mg, 75 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-chloro-4-fluorophenyl)ethanamine, HCl to give the title compound as a white solid (30.1 mg, 57 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-bromo-4-fluorophenyl)ethanamine, HCl to give the title compound as a white solid (37.4 mg, 63 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-fluorophenyl)ethanamine to give the title compound as a white solid (27.9 mg, 59 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2,4-dimethylphenyl)ethanamine, HCl to give the title compound as a white solid (23.6 mg, 74 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-methylphenyl)ethanamine, HCl to give the title compound as a white solid (23.4 mg, 71 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-methylphenyl)ethanamine, HCl to give the title compound as a white solid (13.6 mg, 42 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethoxy)phenyl)ethanamine to give the title compound as a white solid (13.2 mg, 36 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethoxy)phenyl)ethanamine to give the title compound as a white solid (21.8 mg, 81 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethoxy)phenyl)ethanamine to give the title compound as a white solid (17.3 mg, 64 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethoxy)phenyl)ethanamine to give the title compound as a white solid (16.2 mg, 60 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(7-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (22.5 mg, 87 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (19.9 mg, 77 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (12.9 mg, 50 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(8-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethoxy)phenyl)ethanamine to give the title compound as a white solid (4.8 mg, 18 %).
  • the title compound was prepared in a manner similar to Example 4 using 2-(8-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (2.6 mg, 10 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (10.6 mg, 40 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (11.3 mg, 60 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(difluoromethoxy)phenyl)ethanamine, HCl to give the title compound as a white solid (19.2 mg, 53 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-(trifluoromethyl)phenyl)ethanamine to give the title compound as a white solid (15.0 mg, 73 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(difluoromethoxy)phenyl)ethanamine, HCl to give the title compound as a white solid (12.1 mg, 55 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(4-(difluoromethoxy)phenyl)ethanamine, HCl to give the title compound as a white solid (17.5 mg, 78 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-(trifluoromethoxy)phenyl)ethanamine, HCl to give the title compound as a white solid (6.0 mg, 27 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(6-fluoro-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-(trifluoromethoxy)phenyl)ethanamine, HCl to give the title compound as a white solid (7.8 mg, 33 %).
  • the title compound was prepared in a manner similar to Example 2 using 2-(5-methoxy-4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)acetic acid and (S)-1-(2-fluoro-4-(trifluoromethoxy)phenyl)ethanamine, HCl to give the title compound as a white solid (11.8 mg, 49 %).
  • the compounds of the invention can be administered alone or in the form of a pharmaceutical composition.
  • the compounds of the invention are usually administered in the form of pharmaceutical compositions, that is, in admixture with at least one pharmaceutically acceptable excipient.
  • the proportion and nature of any pharmaceutically acceptable excipient(s) are determined by the properties of the selected compound of the invention, the chosen route of administration, and standard pharmaceutical practice.
  • the present invention provides pharmaceutical compositions comprising: a compound of invention and at least one pharmaceutically acceptable excipient.
  • a compound of the invention can be administered in any form and route which makes the compound bioavailable.
  • the compounds of the invention can be administered by a variety of routes, including orally, in particularly by tablets and capsules.
  • the compounds of the invention can be administered by parenteral routes, more particularly by inhalation, subcutaneously, intramuscularly, intravenously, intraarterially, transdermally, intranasally, rectally, vaginally, occularly, topically, sublingually, and buccally, intraperitoneally, intraadiposally, intrathecally and via local delivery for example by catheter or stent.
  • compositions of the invention may be administered to the patient, for example, in the form of tablets, capsules, cachets, papers, lozenges, wafers, elixirs, ointments, transdermal patches, aerosols, inhalants, suppositories, solutions, and suspensions.
  • compositions of the present invention are prepared in a manner well known in the pharmaceutical art and include at least one of the compounds of the invention as the active ingredient.
  • the amount of a compound of the invention may be varied depending upon its particular form and may conveniently be between 1 % to about 50% of the weight of the unit dose form.
  • pharmaceutically acceptable excipient refers to those typically used in preparing pharmaceutical compositions and should be pharmaceutically pure and non-toxic in the amounts used. They generally are a solid, semisolid, or liquid material which in the aggregate can serve as a vehicle or medium for the active ingredient.
  • compositions include diluents, vehicles, carriers, ointment bases, binders, disintegrates, lubricants, glidants, sweetening agents, flavoring agents, gel bases, sustained release matrices, stabilizing agents, preservatives, solvents, suspending agents, buffers, emulsifiers, dyes, propellants, coating agents, and others.
  • the present pharmaceutical compositions are preferably formulated in a unit dose form, each dose typically containing from about 0.5 mg to about 100 mg of a compounds of the invention.
  • unit dose form refers to a physically discrete unit containing a predetermined quantity of active ingredient, in association with a suitable pharmaceutical excipient, by which one or more is used throughout the dosing regimen to produce the desired therapeutic effect.
  • One or more "unit dose form” may be taken to affect the treatment dosage, typically on a daily schedule.
  • the composition is a pharmaceutical composition adapted for oral administration, such as a tablet or a capsule or a liquid formulation, for example, a solution or suspension, adapted for oral administration.
  • the pharmaceutical composition is a liquid formulation adapted for parenteral administration.
  • a compound of the invention for use as a medicament.
  • the invention also provides the use of a compound of the invention, including the use for the manufacture of a medicament, to treat a disease, disorder or condition associated with GPR139 described herein.
  • the compounds of the invention are GPR139 agonists for use in treating a variety of subjects (e.g., humans, non-human mammals and non-mammals).
  • condition relate to any unhealthy or abnormal state.
  • the compounds of the invention are GPR139 agonists and may be useful for treating a variety of conditions.
  • disease, disorder or condition associated with GPR139 includes conditions, disorders, and diseases in which an agonist of GPR139 may provide a therapeutic benefit, such as CNS disorders, disorders of the pancreas, such as pancreatitis, phenylketonuria, and pituitary disorders.
  • disease, disorder or condition associated with GPR139 includes specifically, but is not limited to, CNS disorders such as schizophrenia, autism spectrum disorder, sleep disorders, depression, bipolar disorder, cognitive impairment, including mild cognitive impairment, Alzheimer's Disease, disorders affecting short term memory, disorders affecting long term memory, attention deficit hyperactivity disorder, post-traumatic stress disorder, substance abuse, drug addiction, eating disorders, obsessive compulsive disorder, anxiety disorders, including generalized anxiety disorder and social anxiety disorder, pain, fibromyalgia and other disorders mentioned herein, among others.
  • CNS disorders such as schizophrenia, autism spectrum disorder, sleep disorders, depression, bipolar disorder, cognitive impairment, including mild cognitive impairment, Alzheimer's Disease, disorders affecting short term memory, disorders affecting long term memory, attention deficit hyperactivity disorder, post-traumatic stress disorder, substance abuse, drug addiction, eating disorders, obsessive compulsive disorder, anxiety disorders, including generalized anxiety disorder and social anxiety disorder, pain, fibromyalgia and other disorders mentioned herein, among others.
  • Schizophrenia is a chronic, severe, and disabling disorder characterized, in part, by negative symptoms, such as blunted affect, deficits in social functioning, anhedonia, avolition and poverty of speech, and by congnitive impairment associated with schizophrenia (CIAS), such as impairment in attention, working memory, executive function and social cognition.
  • schizophrenia congnitive impairment associated with schizophrenia
  • Autism spectrum disorder is a group of developmental disabilities that can cause significant social, communication and behavioral challenges (repetitive and stereotyped behavior). Because of the pro-social effects expected from GPR139 agonists, the present compounds may be used to treat schizophrenia and autism spectrum disorder.
  • disease, disorder or condition associated with GPR139 includes schizophrenia.
  • disease, disorder or condition associated with GPR139 includes autism spectrum disorder.
  • the term "disease, disorder or condition associated with GPR139” includes addiction. Examples include addiction to nicotine, alcohol, and/or cocaine.
  • disease, disorder or condition associated with GPR139 includes attention deficit hyperactivity disorder.
  • disease, disorder or condition associated with GPR139 includes bipolar disorder.
  • disease, disorder or condition associated with GPR139 includes depression, such as major depressive disorder.
  • treat include improvement of the conditions described herein.
  • the terms “treat,” “treatment,” and “treating” include all processes providing slowing, interrupting, arresting, controlling, or stopping of the state or progression of the conditions described herein, but does not necessarily indicate a total elimination of all symptoms or a cure of the condition.
  • the terms “treat,” “treatment,” and “treating” are intended to include therapeutic treatment of such disorders.
  • the terms “treat,” “treatment,” and “treating” are intended to include prophylactic treatment of such disorders.
  • patient and “subject” includes humans and non-human animals, for example, mammals, such as mice, rats, guinea pigs, dogs, cats, rabbits, cows, horses, sheep, goats, and pigs.
  • mammals such as mice, rats, guinea pigs, dogs, cats, rabbits, cows, horses, sheep, goats, and pigs.
  • the term also includes birds, fish, reptiles, and amphibians. It is understood that a more particular patient is a human. Also, more particular patients and subjects are non-human mammals, such as mice, rats, and dogs.
  • the term "effective amount" refers to the amount of compound of the invention which treats, upon single or multiple dose administration, a patient suffering from the mentioned condition.
  • An effective amount can be readily determined by the attending diagnostician, as one skilled in the art, by the use of known techniques and by observing results obtained under analogous circumstances, In determining the effective amount, the dose, a number of factors are considered by the attending diagnostician, including, but not limited to: the species of patient; its size, age, and general health; the specific condition, disorder, or disease involved; the degree of or involvement or the severity of the condition, disorder, or disease, the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; the use of concomitant medication; and other relevant circumstances.
  • an effective amount of the present invention is expected to range from 1 mg to 100 mg. Specific amounts can be determined by the skilled person. Although these dosages are based on an average human subject having a mass of about 60 kg to about 70 kg, the physician will be able to determine the appropriate dose for a patient having a mass that falls outside of this weight range.
  • the compounds of the invention may be combined with one or more other pharmacologically active compounds or therapies for use in the treatment of one or more disorders, diseases or conditions for which GPR139 is indicated may be administered simultaneously, sequentially or separately in combination with one or more compounds or therapies for use in treating a particular disease, disorder or condition associated with GPR139.
  • the compounds of the invention may be administered in combination with sedatives, hypnotics, anxiolytics, antipsychotics, antianxiety agents, cyclopyrrolones, imidazopyridines, pyrazolopyrimidines, minor tranquilizers, melatonin agonists and antagonists, melatonergic agents, benzodiazepines, barbiturates, mGlu2/3 agonists, 5HT-2 antagonists, PDE10 antagonists, GlyT1 inhibitors, such as: adinazolam, allobarbital, alonimid, alprazolam, amisulpride, amitriptyline, amobarbital, amoxapine, aripiprazole, bentazepam, benzoctamine, brotizolam, bupropion, busprione, butabarbital, butalbital, capuride, carbocloral, chloral betaine, chloral hydrate, c
  • the compounds of the invention may be administered in combination with an anti-depressant or anti-anxiety agent, including norepinephrine reuptake inhibitors (including tertiary amine tricyclics and secondary amine tricyclics), selective serotonin reuptake inhibitors (SSRIs), monoamine oxidase inhibitors (MAOIs), reversible inhibitors of monoamine oxidase (RIMAs), serotonin and noradrenaline reuptake inhibitors (SNRIs), corticotropin releasing factor (CRF) antagonists, adrenoreceptor antagonists, neurokinin-1 receptor antagonists, atypical anti-depressants, benzodiazopines, 5-HTA agonists or antagonists, especially 5-HTA partial agonists, and corticotropin releasing factor (CRF) antagonists.
  • norepinephrine reuptake inhibitors including tertiary amine tricyclics and secondary amine tricyclics
  • Specific agents include: amitriptyline, clomipramine, doxepin, imipramine and trimipramine; amoxapine, desipramine, maprotiline, nortriptyline and protriptyline; fluoxetine, fluvoxamine, paroxetine and sertraline; isocarboxazid, phenelzine, tranylcypromine and selegiline; moclobemide, venlafaxine; duloxetine; aprepitant; bupropion, lithium, nefazodone, trazodone and viloxazine; alprazolam, chlordiazepoxide, clonazopam, chlorazepate, diazopam, halazepam, lorazepam, oxazopam and prazepam; buspirone, flesinoxan, gepirone and ipsapirone.
  • the compounds of the invention may be administered in combination with anti-Alzheimer's agents, beta-secretase inhibitors, gamma-secretase inhibitors, HMG-CoA reductase inhibitors, NSAID's including ibuprofen, vitamin E, anti-amyloid antibodies, also sedatives, hypnotics, anxiolytics, antipsychotics, antianxiety agents, and tranquilizers, and such other medications as are used in the treatment of Alzheimer's disease or mild cognitive impairment.
  • the activity of compounds as GPR139 agonists may be determined by a variety of methods, including in vitro and in vivo methods.
  • This membrane based assay measures the ability of compounds to competitively bind GPR139 in stably transfected CHO-TRex membranes.
  • CHO-TRex (Life Technologies) cells were stably expressed with human GPR139 receptor, whose expression is controlled by a tetracycline inducible element. The cells were cultured in medium containing F12K, 10% Tetracycline free FBS, 1% Penn/Strep, 200 ⁇ g/mL Hygromycin. GPR139 receptor expression was induced for 18 hrs with 1 ⁇ g/mL doxycycline (Sigma D9891) in growth media. After addition of doxycycline, cells were harvested in PBS and pelleted by centrifugation for 5 minutes at 200xG.
  • doxycycline Sigma D9891
  • Liquid was aspirated off and cells were resuspended in ice cold Lysis buffer (20 mM HEPES/5 mM EDTA pH 7.4/1X Roche protease inhibitor). Samples were vortexed until homogenous and then placed on ice and homogenized using Dounce homogenizer on 50% power 3 separate times for 10 strokes each time. Lysate was centrifuged at 4°C for 10 minutes in a tabletop Sorvall at 2000xG and supernatant was recovered and centrifuged in a Sorvall Ultracentrifuge at 35,000 rpm for 30 minutes at 4°C.
  • Membranes were removed from -80°C, thawed and diluted in cold radioligand assay buffer (20 mM HEPES pH 7.4/5 mM MgCl 2 /1 mM CaCl 2 /Roche protease inhibitor).
  • Membranes (10 ⁇ g) were added to the assay plate, spun for 30 seconds at 300 rpm in a tabletop Eppendorf centrifuge, and then incubated at room temperature for 20 minutes.
  • Filtermat A Perkin Elmer No.1450-421
  • PEI Polymer I
  • the contents of the assay plate were transferred to Filtermat A (Perkin Elmer No. 1450-421) using Tomtec harvester and washed 5 times with cold wash buffer (Tris-HCl pH 7.5). Filtermats were dried using a microwave oven and placed in sample bags (Perkin Elmer No. 1450-432) with scintillator sheets (Perkin Elmer No. 1450-411).
  • This cell based assay measures the ability of compounds to activate GPR139 in stably transfected CHO-TRex cells.
  • CHO-TRex (Life Technologies) cells were stably expressed with human GPR139 receptor, whose expression is controlled by a tetracycline inducible element. The cells were cultured in medium containing F12K, 10% Tetracycline free FBS, 1% Penn/Strep, 200 ⁇ g/mL Hygromycin. GPR139 receptor expression was induced for 18 hours with 1 ⁇ g/mL doxycycline (Sigma D9891) in growth media. After addition of doxycycline, cells were plated at a density of 30,000 cells per well in black 96 well clear bottom plates (Costar) and placed in an incubator (37°, 5% CO 2 ) for 18 hours prior to calcium assays.
  • Example C Balb/c Social Interaction Test
  • Balb/c mice show a natural deficit in sociable behaviors when put in a laboratory situation exposing them to an unfamiliar or "stimulus" mouse of a different strain.
  • Social withdrawal or flattening of social behaviors is a feature of several disorders including schizophrenia and autism. Therefore this natural deficit seen in BalbC mice may be used (as a pre-clinical, non-pharmacologically induced model) to test potential pro-social effects of compounds intended to be used to treat the social aspects of disorders.
  • SI Social Interaction
  • test mouse As soon as the stimulus C57BL/6 mouse is placed in the SI box the test mouse will be placed back into the center chamber and allowed to run freely around for a further 5 minutes. The activity of the test mouse is automatically monitored via Panlab's SMART tracking software throughout. The scoring (blinded to treatment) of sniffing interactions with either the stimulus cylinder or empty cylinder is manually recorded. Sniffing index (time sniffing stimulus cylinder-empty cylinder / time spent sniffing stimulus cylinder + empty cylinder) is used as the key measure of sociable behavior. Table C provides results for the exemplified compounds in Example C.
  • mice are social animals. Disturbance of social approach and avoidance are disabling symptoms of social phobia, social anxiety, autism, schizophrenia, and depression which may be modeled in mice.
  • the Poly(I:C) Social Interaction Test is based on the free choice by a subject mouse to spend time interacting with an unfamiliar mouse or empty cylinder. Offspring from GD17 Poly(I:C) treated mothers show a deficit in social interaction in this test as compared to offspring from vehicle injected mothers. The reversal of this deficit may be used to test the potential pro-social effects of compounds intended to be used to treat the social aspects of disorders.
  • the activity of the test mouse is automatically monitored via Panlab's SMART tracking software throughout.
  • the scoring (blinded to treatment) of sniffing interactions with either the stimulus cylinder or empty cylinder is manually recorded.
  • Sniffing index time sniffing stimulus cylinder-empty cylinder / time spent sniffing stimulus cylinder + empty cylinder
  • Table D Sniffing Index for Poly(I:C) Social Interaction Test Test Compound Offspring Tested Dose Sniffing Index SEM Vehicle Vehicle 10mL/kg 0.6940 0.03800 Vehicle Poly(I:C) 10mL/kg 0.3347 0.09289 Example 2 Poly(I:C) 0.01mg/kg 0.3906 0.07594 Example 2 Poly(I:C) 0.1mg/kg 0.6183 0.04157 Example 2 Poly(I:C) 1.0mg/kg 0.5794 0.04119 Vehicle* Vehicle 10mL/kg 0.7085 0.03369 Vehicle* Poly(I:C) 10mL/kg 0.3321 0.08627 Vehicle*/ Example 2 Poly(I:C) 0.01mg/kg 0.6308 0.04213 Example 2*/ Example 2 Poly(I:C) 0.1mg/kg 0.5910 0.06561 Vehicle Vehicle 10mL/kg 0.6002 0.05238 Example 5 Vehicle 30mg/kg 0.6104 0.04409 Vehicle Poly(I:C) 10mL/kg
  • Example E cFos Staining
  • c-Fos immunoreactivity was measured in the dorsal medial habenula following oral dosing. Since GPR139 is Gq-coupled, dosing with present compounds induced c-Fos expression, a common signaling mechanism in activated neurons ( Cohen & Greenberg, Ann. Rev. Cell Dev. Biol. (2008 )).
  • C57/Bl6 mice After dosing C57/Bl6 mice for various time courses their brains were prepared for immunohistochemistry. One hour after the final oral dose is administered C57/Bl6 mice are perfused with 100 mL 4% paraformaldehyde in PBS. Brains are extracted and placed in 4% paraformaldehyde for 3 hours, changed into 20% sucrose/PBS solution to avoid freezing artifacts, and frozen with dry ice. Frozen brain sections are obtained with sliding microtome at 20 um and washed in PBS (2 times for 10 minutes each). Endogenous peroxidase enzyme is blocked with 0.3% H 2 O 2 solution in water for 10 minutes.
  • Sections are rinsed in PBS (3 times for 10 minutes each) and incubated in primary antibody against cFos (Santa Cruz SC-42) at a dilution of 1:10,000 at 4°C overnight in PBS+0.3% triton and 1% bovine serum albumin. Sections are subsequently rinsed in PBS (3 times for 10 minutes each) and incubated in secondary antibody: goat against rabbit-biotinylated antibody, at a dilution of 1:200 for 1 hour at room temperature in PBS+0.3% triton and 1% bovine serum albumin. Sections are rinsed in PBS (3 times for 10 minutes each) and incubated in ABC mix in PBS: ABC Elite Kit from Vector (PK-1000) for 1 hour at room temperature.
  • PK-1000 ABC Elite Kit from Vector
  • Table E.1 cFos cell count in desensitization experiment with Example 2 vehicle 1d vehicle 10d 0.1mg/kg 1d 0.1mg/kg 5d 0.1mg/kg 10d Number of mice 5 5 5 5 5 5 Mean 352 450 1486 1928 1684 Std. Deviation 218.6 192.2 789.7 833.6 457.4 SEM 97.74 85.97 353.2 372.8 204.5
  • Table E.2 cFos cell count in dose response curve experiment with Example 2 vehicle 0.01mg/kg 0.03mg/kg 0.1mg/kg 0.3mg/kg 1mg/kg Number of mice 5 5 4 4 4 5 Mean 267 1376 986.3 1381 1408 1368 Std.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Obesity (AREA)
  • Addiction (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP15816275.0A 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazine derivatives as modulators of gpr139 Active EP3221298B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL19152036T PL3536324T3 (pl) 2014-11-20 2015-11-19 4-okso-3,4-dihydro-1,2,3-benzotriazyny jako modulatory gpr139
SI201530772T SI3221298T1 (sl) 2014-11-20 2015-11-19 Derivati 4-okso-3,4-dihidro-1,2,3-benzotriazina kot modulatorji GPR139
DK19152036.0T DK3536324T3 (da) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriaziner som modulatorer af gpr139
EP19152036.0A EP3536324B1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazines as modulators of gpr139
RS20190776A RS59078B1 (sr) 2014-11-20 2015-11-19 Derivati 4-okso-3,4-dihidro-1,2,3-benzotriazina kao modulatori gpr139
PL15816275T PL3221298T3 (pl) 2014-11-20 2015-11-19 Pochodne 4-okso-3,4-dihydro-1,2,3-benzotriazyny jako modulatory gpr139
HRP20191003TT HRP20191003T1 (hr) 2014-11-20 2019-06-03 Derivati 4-okso-3,4-dihidro-1,2,3-benzotriazina kao modulatori gpr139
CY20211101111T CY1124929T1 (el) 2014-11-20 2021-12-17 4-οξο-3,4-διυδρο-1,2,3-βενζοτριαζινες ως ρυθμιστες του gpr139

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462082539P 2014-11-20 2014-11-20
US201562184729P 2015-06-25 2015-06-25
PCT/US2015/061607 WO2016081736A1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazines as modulators of gpr139

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP19152036.0A Division EP3536324B1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazines as modulators of gpr139
EP19152036.0A Division-Into EP3536324B1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazines as modulators of gpr139

Publications (2)

Publication Number Publication Date
EP3221298A1 EP3221298A1 (en) 2017-09-27
EP3221298B1 true EP3221298B1 (en) 2019-04-03

Family

ID=55022667

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19152036.0A Active EP3536324B1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazines as modulators of gpr139
EP15816275.0A Active EP3221298B1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazine derivatives as modulators of gpr139

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19152036.0A Active EP3536324B1 (en) 2014-11-20 2015-11-19 4-oxo-3,4-dihydro-1,2,3-benzotriazines as modulators of gpr139

Country Status (40)

Country Link
US (5) US9556130B2 (pt)
EP (2) EP3536324B1 (pt)
JP (2) JP6637501B2 (pt)
KR (1) KR102582021B1 (pt)
CN (2) CN112062730B (pt)
AU (1) AU2015349866B2 (pt)
BR (1) BR112017010311A2 (pt)
CA (1) CA2968242C (pt)
CL (1) CL2017001292A1 (pt)
CO (1) CO2017005959A2 (pt)
CR (1) CR20170275A (pt)
CY (2) CY1122613T1 (pt)
DK (2) DK3221298T3 (pt)
DO (1) DOP2017000120A (pt)
EA (1) EA033728B1 (pt)
EC (1) ECSP17038999A (pt)
ES (2) ES2897545T3 (pt)
GE (1) GEP20196961B (pt)
HR (2) HRP20212009T1 (pt)
HU (2) HUE044145T2 (pt)
IL (1) IL252311B (pt)
JO (1) JO3719B1 (pt)
LT (2) LT3221298T (pt)
MA (1) MA40993B1 (pt)
MD (1) MD3221298T2 (pt)
MX (1) MX2017006448A (pt)
MY (1) MY187423A (pt)
NZ (1) NZ732208A (pt)
PE (1) PE20170899A1 (pt)
PH (1) PH12017500920A1 (pt)
PL (2) PL3536324T3 (pt)
PT (2) PT3536324T (pt)
RS (2) RS62563B1 (pt)
SG (1) SG11201704002UA (pt)
SI (2) SI3221298T1 (pt)
TN (1) TN2017000196A1 (pt)
TW (1) TWI684590B (pt)
UA (1) UA120375C2 (pt)
UY (1) UY36406A (pt)
WO (1) WO2016081736A1 (pt)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3719B1 (ar) * 2014-11-20 2021-01-31 Takeda Pharmaceuticals Co 4- أوكسو-4،3- داي هيدرو-3،2،1- بنزوترايازينات كمواد ضابطة لأجل gpr139
US20210338680A1 (en) * 2018-10-16 2021-11-04 The Scripps Research Institute Methods related to opioid therapeutics
WO2020097609A1 (en) * 2018-11-09 2020-05-14 Blackthorn Therapeutics, Inc. Gpr139 receptor modulators
BR112022004819A2 (pt) 2019-09-16 2022-06-07 Takeda Pharmaceuticals Co Derivados de piridazin-3(2h)-ona azol-fundidos
WO2021127459A1 (en) * 2019-12-20 2021-06-24 Blackthorn Therapeutics, Inc. Gpr139 receptor modulators
WO2021224680A1 (en) * 2020-05-08 2021-11-11 Takeda Pharmaceutical Company Limited Substituted benzotriazinone metabolites of a gpr139 agonist
WO2022058791A1 (en) 2020-09-21 2022-03-24 Takeda Pharmaceutical Company Limited Treatment for schizophrenia
US11760788B2 (en) 2021-03-02 2023-09-19 Pathways Neuro Pharma, Inc. Neuroreceptor compositions and methods of use
WO2023165263A1 (zh) * 2022-03-01 2023-09-07 上海科技大学 吡咯并三嗪酮类化合物、含其的药物组合物、其制备方法及其应用
CN116693545A (zh) * 2022-03-01 2023-09-05 上海科技大学 噻吩并含氮杂环类化合物、含其的药物组合物、其制备方法及其应用
CN117986183A (zh) * 2022-10-28 2024-05-07 浙江友宁生物医药科技有限公司 一种gpr139受体激动剂、其制备方法及其应用
WO2024102802A1 (en) * 2022-11-11 2024-05-16 Takeda Pharmaceutical Company Limited Zelatriazin for the treatment of depression

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3794726A (en) * 1972-08-21 1974-02-26 Uniroyal Inc Inhibiting aggressive behavior with 1,2,3-benzotriazin-(3h)-one
US4959368A (en) 1986-02-24 1990-09-25 Mitsui Petrochemical Industries Ltd. Therapeutic agent for neurological diseases
EP0315390B1 (en) * 1987-11-04 1994-07-20 Beecham Group Plc Novel 4-oxobenzotriazines and 4-oxoquinazolines
PE20050630A1 (es) 2003-06-09 2005-09-22 Boehringer Ingelheim Int Compuestos heterociclicos como inhibidores del papiloma virus
CN100471856C (zh) 2003-07-31 2009-03-25 Irm责任有限公司 作为pdf抑制剂的二环化合物和组合物
FR2875805B1 (fr) 2004-09-27 2006-12-29 Genfit S A Composes derives de n-(benzyl) phenylacetamide substitues, preparation et utilisations
TW200736227A (en) 2005-12-23 2007-10-01 Astrazeneca Ab New compounds III
TWI433839B (zh) 2006-08-11 2014-04-11 Neomed Inst 新穎的苯并咪唑衍生物290
CA2680775A1 (en) * 2007-03-23 2008-10-02 F. Hoffmann-La Roche Ag Aza-pyridopyrimidinone derivatives
AU2008345225A1 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
WO2011138265A2 (en) 2010-05-03 2011-11-10 Evotec Ag Indole and indazole derivatives as orexin receptor antagonists
US20160022636A1 (en) 2013-03-14 2016-01-28 Janssen Pharmaceutica Nv Physiological ligands for gpr139
JO3719B1 (ar) * 2014-11-20 2021-01-31 Takeda Pharmaceuticals Co 4- أوكسو-4،3- داي هيدرو-3،2،1- بنزوترايازينات كمواد ضابطة لأجل gpr139

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201625566A (zh) 2016-07-16
CN112062730A (zh) 2020-12-11
AU2015349866A1 (en) 2017-06-15
EA201791096A1 (ru) 2017-11-30
ES2734735T3 (es) 2019-12-11
CY1122613T1 (el) 2021-05-05
HUE044145T2 (hu) 2019-09-30
SG11201704002UA (en) 2017-06-29
EP3536324A1 (en) 2019-09-11
WO2016081736A1 (en) 2016-05-26
DK3221298T3 (da) 2019-06-24
CY1124929T1 (el) 2023-01-05
US20200129518A1 (en) 2020-04-30
ES2897545T3 (es) 2022-03-01
MA40993B1 (fr) 2019-07-31
JO3719B1 (ar) 2021-01-31
KR20170084324A (ko) 2017-07-19
PH12017500920B1 (en) 2017-11-20
US20170095480A1 (en) 2017-04-06
US20170348319A1 (en) 2017-12-07
TN2017000196A1 (en) 2018-10-19
RS62563B1 (sr) 2021-12-31
SI3221298T1 (sl) 2019-10-30
EP3221298A1 (en) 2017-09-27
US10159677B2 (en) 2018-12-25
RS59078B1 (sr) 2019-09-30
GEP20196961B (en) 2019-03-25
US20190070187A1 (en) 2019-03-07
JP2020063285A (ja) 2020-04-23
HRP20212009T1 (hr) 2022-04-01
US9556130B2 (en) 2017-01-31
PL3221298T3 (pl) 2019-10-31
IL252311A0 (en) 2017-07-31
PH12017500920A1 (en) 2017-11-20
EA033728B1 (ru) 2019-11-20
CN112062730B (zh) 2023-09-29
CN107108531B (zh) 2020-10-20
LT3221298T (lt) 2019-08-12
PL3536324T3 (pl) 2022-02-07
DK3536324T3 (da) 2021-10-25
BR112017010311A2 (pt) 2017-12-26
US20160145218A1 (en) 2016-05-26
JP2017535559A (ja) 2017-11-30
UA120375C2 (uk) 2019-11-25
US10561662B2 (en) 2020-02-18
SI3536324T1 (sl) 2021-12-31
DOP2017000120A (es) 2017-06-15
TWI684590B (zh) 2020-02-11
JP6637501B2 (ja) 2020-01-29
JP6918088B2 (ja) 2021-08-11
CA2968242A1 (en) 2016-05-26
PT3221298T (pt) 2019-06-28
PE20170899A1 (es) 2017-07-12
CA2968242C (en) 2022-11-08
KR102582021B1 (ko) 2023-09-22
HUE057451T2 (hu) 2022-05-28
MD3221298T2 (ro) 2019-10-31
CN107108531A (zh) 2017-08-29
CO2017005959A2 (es) 2017-10-20
IL252311B (en) 2020-07-30
NZ732208A (en) 2023-02-24
MA40993A (fr) 2017-09-27
HRP20191003T1 (hr) 2019-08-23
MY187423A (en) 2021-09-22
EP3536324B1 (en) 2021-10-06
CR20170275A (es) 2017-10-30
ECSP17038999A (es) 2017-10-31
US9770450B2 (en) 2017-09-26
US11173161B2 (en) 2021-11-16
AU2015349866B2 (en) 2020-12-03
LT3536324T (lt) 2021-12-10
MX2017006448A (es) 2017-09-12
CL2017001292A1 (es) 2018-02-16
PT3536324T (pt) 2021-11-10
UY36406A (es) 2016-06-30

Similar Documents

Publication Publication Date Title
US11173161B2 (en) 4-oxo-3,4-dihydro-1,2,3-benzotriazine modulators of GPR139
TWI393566B (zh) 作為週期素依賴性激酶之新穎吡唑并嘧啶
WO2018196677A1 (zh) 氟代烯丙胺衍生物及其用途
TW201113267A (en) Quinazolines as potassium ion channel inhibitors
TW200918521A (en) Heterocyclic amides and methods of use thereof
TW200817393A (en) Compounds and compositions as hedgehog pathway modulators
TW201307284A (zh) 脂肪酸醯胺水解酶(faah)抑制劑
AU2003245442A1 (en) 2-ureido-6-heteroaryl-3h-benzoimidazole-4-carboxylic acid derivatives and related compounds as gyrase and/or topoisomerase iv inhibitors for the treatment of bacterial infections
JP2015516428A (ja) RORγのアゴニストとしての使用のためおよび疾患の処置のためのテトラヒドロ[1,8]ナフチリジンスルホンアミドおよび関連化合物
TW200916458A (en) Heterocyclic compounds and methods of use thereof
US20100256108A1 (en) Indazole acrylic acid amide compound
JP2017534572A (ja) CaMKII阻害剤及びその使用
EP1648897B1 (en) N- [3-(3-substituted-pyrazolo[1,5-a] pyrimidin-7-yl) phenyl]-sulfonamides, and compositions, and methods related thereto
JP3012338B2 (ja) アリールおよびヘテロアリールアルコキシナフタレン誘導体
CA2545786A1 (en) Pyridin-4-ylamine compounds useful in the treatment of neuropathic pain

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1241859

Country of ref document: HK

17Q First examination report despatched

Effective date: 20180607

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181005

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REICHARD, HOLLY

Inventor name: MONENSCHEIN, HOLGER

Inventor name: LAM, BETTY

Inventor name: HITCHCOCK, STEPHEN

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190220

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1115565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015027743

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20191003

Country of ref document: HR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190619

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3221298

Country of ref document: PT

Date of ref document: 20190628

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190619

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 40993

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E017618

Country of ref document: EE

Effective date: 20190619

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20191003

Country of ref document: HR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 31333

Country of ref document: SK

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190403

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20190401819

Country of ref document: GR

Effective date: 20190906

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E044145

Country of ref document: HU

REG Reference to a national code

Ref country code: MD

Ref legal event code: VAGR

Ref document number: 3221298

Country of ref document: MD

Kind code of ref document: T2

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191003

Country of ref document: HR

Payment date: 20191111

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2734735

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015027743

Country of ref document: DE

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20191104

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200106

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1115565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190403

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191003

Country of ref document: HR

Payment date: 20201103

Year of fee payment: 6

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20201105

Year of fee payment: 6

Ref country code: MA

Payment date: 20191112

Year of fee payment: 5

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191003

Country of ref document: HR

Payment date: 20211108

Year of fee payment: 7

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20211103

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191003

Country of ref document: HR

Payment date: 20221103

Year of fee payment: 8

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20221107

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20221125

Year of fee payment: 8

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20191003

Country of ref document: HR

Payment date: 20231106

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231126

Year of fee payment: 9

Ref country code: LU

Payment date: 20231127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231031

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231127

Year of fee payment: 9

Ref country code: GR

Payment date: 20231129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20231103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20231107

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231106

Year of fee payment: 9

Ref country code: SM

Payment date: 20231109

Year of fee payment: 9

Ref country code: SI

Payment date: 20231102

Year of fee payment: 9

Ref country code: SE

Payment date: 20231127

Year of fee payment: 9

Ref country code: RS

Payment date: 20231101

Year of fee payment: 9

Ref country code: RO

Payment date: 20231103

Year of fee payment: 9

Ref country code: PT

Payment date: 20231108

Year of fee payment: 9

Ref country code: NO

Payment date: 20231129

Year of fee payment: 9

Ref country code: MT

Payment date: 20231103

Year of fee payment: 9

Ref country code: LV

Payment date: 20231101

Year of fee payment: 9

Ref country code: LT

Payment date: 20231031

Year of fee payment: 9

Ref country code: IT

Payment date: 20231122

Year of fee payment: 9

Ref country code: IE

Payment date: 20231127

Year of fee payment: 9

Ref country code: HU

Payment date: 20231108

Year of fee payment: 9

Ref country code: HR

Payment date: 20231106

Year of fee payment: 9

Ref country code: FR

Payment date: 20231127

Year of fee payment: 9

Ref country code: FI

Payment date: 20231127

Year of fee payment: 9

Ref country code: EE

Payment date: 20231102

Year of fee payment: 9

Ref country code: DK

Payment date: 20231127

Year of fee payment: 9

Ref country code: DE

Payment date: 20231129

Year of fee payment: 9

Ref country code: CZ

Payment date: 20231102

Year of fee payment: 9

Ref country code: CY

Payment date: 20231101

Year of fee payment: 9

Ref country code: CH

Payment date: 20231201

Year of fee payment: 9

Ref country code: BG

Payment date: 20231121

Year of fee payment: 9

Ref country code: AT

Payment date: 20231102

Year of fee payment: 9

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20231101

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231102

Year of fee payment: 9

Ref country code: BE

Payment date: 20231127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20231101

Year of fee payment: 9