EP3215744B1 - Verfahren zum erstellen eines kennlinienfelds einer fluidpumpe, verwendung eines limitierten ventils, verwendung eines stufenventils und steuergerät für ein fluidfördersystem - Google Patents

Verfahren zum erstellen eines kennlinienfelds einer fluidpumpe, verwendung eines limitierten ventils, verwendung eines stufenventils und steuergerät für ein fluidfördersystem Download PDF

Info

Publication number
EP3215744B1
EP3215744B1 EP15788053.5A EP15788053A EP3215744B1 EP 3215744 B1 EP3215744 B1 EP 3215744B1 EP 15788053 A EP15788053 A EP 15788053A EP 3215744 B1 EP3215744 B1 EP 3215744B1
Authority
EP
European Patent Office
Prior art keywords
valve
fluid
conveying system
pressure
fluid pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15788053.5A
Other languages
English (en)
French (fr)
Other versions
EP3215744A1 (de
Inventor
Gerald BEHRENDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3215744A1 publication Critical patent/EP3215744A1/de
Application granted granted Critical
Publication of EP3215744B1 publication Critical patent/EP3215744B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils

Definitions

  • the invention relates to a method for creating a characteristic field of a fluid pump of a pressure-dependent fluid delivery system for a working area of the fluid pump.
  • the invention further relates to the use of a limited valve, the use of a step valve and a control device for a fluid delivery system.
  • Fluid delivery systems are used, for example, as fuel delivery systems in motor vehicles. Such fluid delivery systems have a fluid pump which is driven by an electric motor and are pressure-dependent.
  • document US 2014/105758 A1 discloses a closed loop control system for a fuel pump that includes calibration functionality and enables useful pressure regulation. A pressure generated by the pump system can be adjusted by measuring a characteristic phase current as a function of the speed.
  • document WO 2008/067622 A2 discloses a method and apparatus for controlling fuel flow in an internal combustion engine.
  • a control system is provided which provides a fuel flow which corresponds to the fuel requirement of the internal combustion engine with respect to a flow rate.
  • DE 102011015154 A1 describes a method for monitoring an electric motor-driven fuel pump. When monitoring an electric motor driven fuel pump of a fuel delivery unit for a motor vehicle, a pumping is carried out current is monitored depending on a pump voltage or a pump speed.
  • the object of the invention is to provide a method for the improved creation of a characteristic field of a fluid pump of a pressure-dependent fluid delivery system for a working area of the fluid pump. It is a further object of the invention to demonstrate the use of a limited valve and the use of a step valve as calibration valves as well as a control device for a fluid delivery system.
  • the characteristic field can be assigned to areas and values of pressure and speed and can thus be leveled.
  • the fluid delivery system is designed as a fuel delivery system for a motor vehicle and is designed for gasoline.
  • the recorded characteristic field comprises characteristic curves of constant control current, which are a dependency between the speed of the fluid pump and the pressure in the fluid delivery system.
  • the fluid delivery system is designed, for example, as a fuel delivery system for a motor vehicle and is designed for diesel. Since fluid pumps for diesel are designed differently than petrol pumps, this configuration allows the characteristic field to be leveled more precisely.
  • the fluid delivery system further comprises a calibration valve, which is located on an outlet side the fluid pump is arranged and opens as a function of a predetermined pressure in order to provide a pressure-dependent calibration function and the step of taking up additionally depends on the calibration function.
  • a calibration valve can uniquely assign the control current and pressure. This is achieved in that a kink is created in a recorded pressure characteristic by opening the valve. This supports the leveling of the characteristic field for the control current that is recorded later.
  • the calibration valve is designed as one of the following valve types: threshold pressure valve; limited valve; Step valve.
  • valve types each produce one or more kinks in the pressure characteristic of the fluid delivery system, and thus enable further anchor points for leveling the characteristic field.
  • the calibration valve is designed to derive a predetermined maximum volume flow from the fluid delivery system if the calibration valve is designed as a limited valve.
  • the calibration valve is designed to derive a predetermined maximum volume flow from the fluid delivery system for each stage if the calibration valve is designed as a stage valve.
  • An assignment of the additional anchor points for the characteristic field can take place more reliably if the derived volume flows are predefined.
  • the step of setting the drive current and changing a flow volume takes place after the fluid pump has been switched on.
  • a limited valve is used as a calibration valve in a fuel delivery system.
  • a method can be carried out according to the first aspect.
  • a step valve is set up as a calibration valve in a fluid delivery system.
  • a method according to the first aspect can also be carried out here.
  • the control unit is set up to carry out a method according to the first aspect.
  • Figure 1 shows a fluid delivery system 10.
  • the fluid delivery system 10 is a fuel delivery system for delivering gasoline from a tank.
  • the fluid delivery system 10 can be designed to deliver diesel.
  • the fuel here the gasoline
  • fuel rail system for reasons of clarity, in Figure 1 no representation of both the tank and the injection system. In the exemplary embodiment, it is a so-called pre-conveyor system.
  • Other configurations may also be different fluid delivery systems or parts of a fluid delivery system.
  • the fluid delivery system 10 comprises an electric motor 11.
  • the electric motor 11 is current-controlled in the exemplary embodiment.
  • the electric motor 11 is controlled by an engine control unit 12.
  • the engine control unit has a control unit and an additional computing unit 12a.
  • the computing unit 12a is spatially separated from the engine control unit 12 and is therefore outsourced.
  • the electric motor 11 drives a fluid pump 13.
  • the fluid pump 13 is a fuel pump.
  • the electric motor 11 is connected to the fluid pump 13 via a mechanical coupling 17.
  • the fluid pump 13 pumps gasoline via a fluid line 15 from the tank through the fluid delivery system 10 and via a line 16 to the injection system.
  • a calibration valve 14 is connected and hydraulically coupled to the fluid pump 13.
  • the calibration valve 14 is connected to the line 16 and thus to the fluid pump 13 via the hydraulic connection 18.
  • the calibration valve 14 is set up to open at a predetermined pressure, for example 8 bar.
  • the electric motor 11 is controlled by the motor control device 12 in such a way that the fluid pump 13 runs at a specific speed of the motor 11. In an alternative embodiment, no calibration valve 14 is provided.
  • a filter 16a is installed in line 16. It is a fuel filter. In other configurations, other filters or components that influence the fluid can be involved. In a further embodiment, the filter 16a can also be omitted.
  • a pressure sensor 19 is also connected to line 16.
  • the pressure sensor 19 measures a fluid pressure in the line 16 downstream of the filter 16a.
  • the signal of the pressure sensor 19 is evaluated in an evaluation unit 19a.
  • the evaluation unit 19a provides the engine control unit 12, in the exemplary embodiment of the computing unit 12a of the engine control unit 12, with an evaluated pressure signal for plausibility checking.
  • Figure 2 shows a graph which represents a drive current for the electric motor 11 (ordinate axis) over the rotational speed (abscissa axis) for various pressures.
  • the pressures increase from function 21 to 22 up to function 25.
  • Figure 3 shows an example of a schematic representation of a characteristic field of an industrial pump in general.
  • the delivery head (ordinate axis) is applied above the speed (abscissa axis).
  • This example is the " Pump manual "2004, GRUNDFOS, page 119 , taken.
  • FIG. 4 shows a flow diagram according to an embodiment of the method.
  • a drive current is set to a predetermined value, for example 3A.
  • a flow volume of the fluid delivery system 10 is changed.
  • a corresponding, characteristic pressure behavior can be generated in the fluid delivery system 10 for the control current set in step 41.
  • the speed is proportional to the delivery volume of the fluid pump 13.
  • the change in the flow volume is achieved automatically, for example, by building up a pressure increase in the fluid delivery system 10. This can also take place during operation, for example when the fluid delivery system 10 is started up.
  • step 43 pressure data of the fluid delivery system 10 are recorded.
  • the pressure sensor 19 is used for this. This creates a volume of data that represents the pressure in the fluid delivery system for the selected control current as a function of the changed flow volume.
  • step 44 it is evaluated whether all the specified values for creating the characteristic field are available. If, for example, there is a lack of data on a specific predetermined drive current for the electric motor 11, the steps 41, 42 and 43 are repeated with correspondingly changed parameters.
  • a characteristic field is created from the recorded data. For this purpose, pressure values for a set control current are assigned to a speed.
  • the characteristic field is leveled and aligned using anchor points and boundary parameters as described below.
  • Figure 5 shows an example of such a characteristic field.
  • the individual functions increase from bottom to top and represent a control current.
  • the speed is plotted on the abscissa axis, the pressure in the fluid delivery system 10 on the ordinate axis characteristic parameters are run. It is therefore necessary to level the characteristic field.
  • the zero delivery rate of the fluid pump 13 is used for a fluid pump 13 for pumping gasoline. Further parameters result from a maximum speed of the electric motor 11, a maximum delivery volume of the fluid pump 13 or a minimum operating current of the electric motor 11. These parameters are in each case characteristic of different, specific fluids at different pressures. In the case of the zero delivery rate, the outlet pressure and the applied pressure at the fluid pump 13 are identical, so that the fluid is not delivered and a delivery volume is therefore zero. These Parameters and the resulting measurement data serve as anchor points for the characteristic field.
  • FIG. 6 shows a schematic representation of a controlled system.
  • Block 61 represents a control module that uses a characteristic field for a gasoline fluid system for control purposes.
  • the block 61 has two inputs 62, 63, an input 62 is for the speed and input 63 is for the drive current.
  • the output variable of block 61 is a pressure value 64.
  • Figure 7 shows an example of a characteristic field for a diesel fluid delivery system.
  • the pressure plotted against the speed are the individual diagonal curves of increasing current from bottom to top.
  • an additional calibration valve 14 is used in the fluid delivery system 10 in a further embodiment.
  • the calibration valve 14 generates, as in Figure 8 shown, a kink in the pressure characteristic curves 81 to 84. This allows the characteristic curve field for the control current to be leveled, since an anchor point is created for alignment.
  • Figure 10 shows a further representation for a characteristic field for diesel. Important anchor points are also not defined here.
  • a special calibration valve 14 is used.
  • a different number and different configurations of valves are conceivable in different configurations.
  • a limited valve as shown schematically in FIG. 11, is used. Once opened, the limited valve only allows a defined amount (bypass amount) to drain. For example, the limited valve opens at 3 bar and then allows a constant flow of 5 l / h.
  • a pressure-dependent inlet 112 leads to a resistor (valve flap), which is represented schematically by a spring 110. If the pressure is high enough, the outlet 111 is opened and the fluid can flow away.
  • FIG 12 shows a schematic representation of a calibration valve 14 according to a further embodiment.
  • the calibration valve 14 is a step valve.
  • the step valve enables different bypass quantities of the fluid to flow off at different pressure levels. For example, 5 1 / h at 3 bar. and from 4 bar 10 l / h derived.
  • a pressure-dependent inlet 121 leads to a resistance (valve flap), which is represented schematically by a spring 120. If the pressure is high enough, the outlet 121 is opened and the fluid can flow away. If the pressure continues to rise, the outlet 122 is additionally opened, so that the discharge quantity increases.
  • valve flap resistance
  • the outlet 121 is opened and the fluid can flow away.
  • the outlet 122 is additionally opened, so that the discharge quantity increases.
  • different numbers of stages with different values and outlet pressures are conceivable. It is important here that the recorded pressure characteristics of the fluid pump 13 have different buckling levels exhibit. The characteristic field of the control current curves can be leveled using this.
  • a further embodiment of the calibration valve 14 is a step valve that only allows an outflow within a certain pressure range.
  • Figure 13 shows a schematic representation of such a valve. The valve is closed at 1 bar, opened at 2 bar and closes again completely at 3 bar. Between 2.3 bar, a constant amount of 5 1 / hour. drained.
  • a pressure coupling 131 leads to a resistor, which is represented schematically by a spring 130. If the pressure is high enough, the bypass volume inlet 132 is released and the fluid can flow off via the bypass volume outlet 133, which is also released. If the pressure continues to rise, the valve closes.
  • Figure 14 shows different pump characteristics. Pressure characteristics of the fluid delivery system 10 are shown in bold (abscissa axis: speed; ordinate axis: pressure and control current). It can be seen here that the pressure characteristics shown in bold have different kinks. The characteristic field of the control current (thin lines) can now be leveled on the basis of these kinks. The measurement can be speed controlled. That is, the speed is reduced by the control of the electric motor 11. This can be done, for example, when the fluid pump 13 is switched on.
  • Figure 15 shows similar to Figure 14 Different characteristics, but for different valve types (axis of abscissa: speed; axis of ordinate: pressure and control current).
  • the additional characteristics provided by the modified valve enable flawless calibration during operation of the fluid delivery system under various realistic conditions.
  • the current control can be switched on slightly below the expected operating point and the control current can be increased slightly. As soon as a speed jump occurs, it can be assumed that a calibration valve opens and the characteristic field can be aligned at this anchor point. This control current can be used to level the characteristic field. In the further work operation, speed-controlled work can be continued. Such a leveling can be used at any time, also and especially during operation. Such a bypass function has no effect on operation and does not influence the characteristic field of the control current (compare Figure 10 ). The characteristic field remains identical even when using the bypass valve or stepped valve (generally the calibration valve 14).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Erstellen eines Kennlinienfelds einer Fluidpumpe eines druckabhängigen Fluidfördersystems für einen Arbeitsbereich der Fluidpumpe. Die Erfindung betrifft des Weiteren die Verwendung eines limitierten Ventils, die Verwendung eines Stufenventils und ein Steuergerät für ein Fluidfördersystem.
  • Fluidfördersysteme werden beispielsweise als Kraftstofffördersysteme in Kraftfahrzeugen eingesetzt. Derartige Fluidfördersysteme weisen eine Fluidpumpe auf, die von einem elektrischen Motor angetrieben wird und sind druckabhängig. Dokument US 2014/105758 A1 offenbart ein Closed Loop-Steuersystem für eine Kraftstoffpumpe, welches eine Kalibrierfunktionalität umfasst und eine nutzbringende Druckregulierung ermöglicht. Dabei ist ein vom Pumpensystem erzeugter Druck durch Messen eines charakteristischen Phasenstromes als eine Funktion der Geschwindigkeit einstellbar.
  • Dokument WO 2008/067622 A2 offenbart ein Verfahren und eine Vorrichtung zum Kontrollieren eines Kraftstoffdurchflusses in einem Verbrennungsmotor. Zu diesem Zweck ist ein Steuersystem vorgesehen, welches einen Kraftstoffdurchfluss bereitstellt, der in Bezug auf eine Strömungsrate dem Kraftstoffbedarf des Verbrennungsmotors entspricht. In Dokument DE 102011015154 A1 ist ein Verfahren zur Überwachung einer elektromotorisch angetriebenen Kraftstoffpumpe beschrieben. Bei einer Überwachung einer elektromotorisch angetriebenen Kraftstoffpumpe einer Kraftstofffördereinheit für ein Kraftfahrzeug wird ein Pumpen strom in Abhängigkeit von einer Pumpenspannung oder einer Pumpendrehzahl überwacht.
  • Zur Steuerung eines Ansteuerstroms des elektrischen Motors zur Regelung der Fluidpumpe ist es vorteilhaft, einen Zusammenhang zum Druck im Fluidfördersystem herzustellen. Eine derartige Beziehung zwischen dem Ansteuerstrom für den elektrischen Motor und dem Druck in dem Fluidfördersystem kann mittels eines Kennlinienfelds hergestellt werden. Werte zur Ansteuerung können aus dem Kennlinienfeld ausgelesen werden.
  • Aufgabe der Erfindung ist es, ein Verfahren zur verbesserten Erstellung eines Kennlinienfelds einer Fluidpumpe eines druckabhängigen Fluidfördersystems für einen Arbeitsbereich der Fluidpumpe aufzuzeigen. Es ist weiter Aufgabe der Erfindung, die Verwendung eines limitierten Ventils und die Verwendung eines Stufenventils als Kalibrierventile sowie ein Steuergerät für ein Fluidfördersystem aufzuzeigen.
  • Gemäß einem ersten Aspekt der Erfindung wird die Aufgabe durch ein Verfahren zum Erstellen eines Kennlinienfelds einer Fluidpumpe eines druckabhängigen Fluidfördersystems in einem Arbeitsbereich der Fluidpumpe gelöst. Das Fluidfördersystem umfasst hierbei einen stromgesteuerten elektrischen Motor, der von einem Motorsteuergerät mit einem Ansteuerstrom angesteuert wird. Die Fluidpumpe wird von dem elektrischen Motor angetrieben. Das Verfahren umfasst hierbei die Schritte:
    • Einstellen des Ansteuerstroms auf einen vorbestimmten Wert;
    • Verändern eines Durchflussvolumens des Fluidfördersystems, nachdem der Ansteuerstrom eingestellt ist;
    • Aufnehmen einer einen Druck in dem Fluidfördersystem beschreibende Datenmenge in Abhängigkeit der Veränderung des Durchflussvolumens;
    • Wiederholen der Schritte des Einstellens, Veränderns und Aufnehmens für eine vorbestimmte Anzahl an Wiederholungen und vorbestimmte, verschiedene Ansteuerströme; und
    • Erstellen eines Kennlinienfelds aus der aufgenommenen Datenmenge.
  • Durch die Erstellung des Kennlinienfelds aus der aufgenommenen Datenmenge können Daten, die zur Einstellung des elektrischen Motors dienen, direkt aus dem Kennlinienfeld ausgelesen werden.
  • Gemäß einer vorteilhaften Ausgestaltung umfasst das Verfahren zusätzlich den folgenden Schritt:
    • Bestimmen von Randbereichen und/oder Randpunkten des Kennlinienfelds basierend auf das Fluidfördersystem charakterisierenden Parametern.
  • Ein Vorteil hierbei ist es, dass das Kennlinienfeld Bereichen und Werten von Druck- und Drehzahl zugeordnet und somit nivelliert werden kann. Beispielsweise ist das Fluidfördersystem als Kraftstofffördersystem für ein Kraftfahrzeug ausgebildet und für Benzin ausgelegt. Das Aufgenommene Kennlinienfeld umfasst Kennlinien konstanten Ansteuerstroms, die eine Abhängigkeit zwischen Drehzahl der Fluidpumpe und dem Druck im Fluidfördersystem herstellen.
  • Gemäß einer weiteren Ausgestaltung umfasst das Verfahren zusätzlich den folgenden Schritt:
    • Kalibrieren des Kennlinienfelds durch Abfahren wenigstens eines Teilbereichs einer Kennlinie.
  • Dadurch, dass wenigstens ein Teil der Kennlinie abgefahren wird, kann unkompliziert und praktisch eine Zuordnung des Kennlinienfelds stattfinden. Das Fluidfördersystem ist beispielsweise als Kraftstofffördersystem für ein Kraftfahrzeug ausgebildet und für Diesel ausgelegt. Da Fluidpumpen für Diesel anders konstruiert sind als Benzinpumpen, kann durch diese Ausgestaltung eine Nivellierung des Kennlinienfelds genauer erfolgen.
  • Gemäß einer vorteilhaften Ausgestaltung umfassen die das Fluidfördersystem charakterisierenden Parameter, wenigstens einen der folgenden Parameter:
    • Nullfördermenge der Fluidpumpe;
    • maximale Drehzahl des elektrischen Motors;
    • maximales Fördervolumen der Fluidpumpe;
    • minimaler Betriebsstrom des elektrischen Motors.
  • Vorteilhaft bei der Verwendung solcher charakterisierenden Parameter ist, sodass diese Parameter einfach zu erlangen sind. Somit kann bei jedem Fluidfördersystem ein Ansatzpunkt für die Zuordnung des Kennfelds stattfinden. Unterschiedliche Pumpentypen verlangen jedoch möglicherweise unterschiedliche Parameter. Eine Verdrängerpumpe, beispielsweise für Diesel, kann bauartbedingt nicht bei der Nullfördermenge betrieben werden.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung umfasst das Fluidfördersystem weiter ein Kalibrierventil, das an einer Auslassseite der Fluidpumpe angeordnet ist und sich in Abhängigkeit eines vorbestimmten Drucks öffnet, um eine druckabhängige Kalibrierfunktion bereitzustellen und wobei der Schritt des Aufnehmens zusätzlich von der Kalibrierfunktion abhängt.
  • Durch ein Kalibrierventil kann eine eindeutige Zuordnung von Ansteuerstrom und Druck stattfinden. Dies wird dadurch erreicht, dass in einer aufgenommenen Druckkennlinie durch das Öffnen des Ventils ein Knick erzeugt wird. Dieser unterstützt die Nivellierung des später aufgenommenen Kennlinienfelds für den Ansteuerstrom.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Kalibrierventil als eines der folgenden Ventilarten ausgebildet: Schwellendruckventil; limitiertes Ventil; Stufenventil.
  • Vorteilhaft bei der Ausbildung als eines dieser Ventile ist es, dass diese Ventiltypen jeweils einen oder mehrere Knicke in der Druckkennlinie des Fluidfördersystems erzeugen, und somit weitere Ankerpunkte für ein Nivellieren des Kennlinienfelds ermöglichen.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Kalibrierventil dazu ausgebildet, einen vorbestimmten maximalen Volumenstrom aus dem Fluidfördersystem abzuleiten, wenn das Kalibrierventil als limitiertes Ventil ausgebildet ist. Alternativ ist das Kalibrierventil dazu ausgebildet, pro Stufe einen vorbestimmten maximalen Volumenstrom aus dem Fluidfördersystem abzuleiten, wenn das Kalibrierventil als Stufenventil ausgebildet ist.
  • Eine Zuordnung der zusätzlichen Ankerpunkte für das Kennlinienfeld kann verlässlicher stattfinden, wenn die abgeleiteten Volumenströme vordefiniert sind.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung erfolgt der Schritt des Einstellens des Ansteuerstroms und des Veränderns eines Durchflussvolumens im Anschluss an ein Einschalten der Fluidpumpe.
  • Somit kann bei Beginn des Förderns durch das Fluidfördersystems eine aktuelle Kalibrierung des Kennlinienfelds stattfinden. Dies erhöht die Genauigkeit von dem Fluidfördersystem, speziell in Hinsicht auf Alterungsprozesse.
  • Gemäß einem zweiten Aspekt der Erfindung wird ein limitiertes Ventil als Kalibrierventil in einem Kraftstofffördersystem verwendet. Hierbei kann ein Verfahren nach dem ersten Aspekt durchgeführt werden.
  • Gemäß einem dritten Aspekt der Erfindung wird ein Stufenventil als Kalibrierventil in einem Fluidfördersystem eingerichtet. Hierbei kann ebenso ein Verfahren nach dem ersten Aspekt durchgeführt werden.
  • Gemäß einem vierten Aspekt der Erfindung wird ein Steuergerät für ein Fluidfördersystem beschrieben. Das Fluidfördersystem umfasst:
    • einen stromgesteuerten elektrischen Motor, der von einem Motorsteuergerät geregelt wird; und
    • eine Fluidpumpe, die von dem elektrischen Motor angetrieben wird.
  • Das Steuergerät ist hierbei dazu eingerichtet, ein Verfahren nach dem ersten Aspekt durchzuführen.
  • Die Erfindung wird im Folgenden anhand von Figuren und Ausführungsbeispielen näher erläutert. Es zeigen:
  • Figur 1
    ein Fluidfördersystem (schematische Darstellung);
    Figur 2
    ein Feld mehrerer Druckkennlinien eines Fluidsystems;
    Figur 3
    eine exemplarische Darstellung eines Kennlinienfelds einer Industriepumpe (Pumpenhandbuch 2004, GRUNDFOS, Seite 119);
    Figur 4
    ein Flussdiagramm für ein Verfahren gemäß einer Ausgestaltung der Erfindung;
    Figur 5
    eine exemplarische Darstellung eines Kennlinienfelds einer Fluidpumpe gemäß einer Ausgestaltung der Erfindung;
    Figur 6
    eine schematische Darstellung einer Regelstrecke;
    Figur 7
    eine weitere exemplarische Darstellung eines Kennlinienfelds einer Fluidpumpe gemäß einer Ausgestaltung der Erfindung;
    Figur 8
    eine weitere exemplarische Darstellung eines Kennliniefelds mehrerer Druckkennlinien eines Fluidsystems;
    Figur 9
    zwei exemplarische Kennlinienfelder mit Markierungen für eine Nivellierung;
    Figur 10
    ein weiteres exemplarisches Kennlinienfeld mit Nivellierungsmarkierugen;
    Figur 11
    eine schematische Darstellung eines Ventils;
    Figur 12
    eine weitere schematische Darstellung eines Ventils;
    Figur 13
    eine weitere schematische Darstellung eines Ventils;
    Figur 14
    ein exemplarisches Kennlinienfeld von Druckkennlinien und Stromkennlinien und
    Figur 15
    ein weiteres exemplarisches Kennlinienfeld von Drucckennlinien und Stromkennlinien.
  • Figur 1 zeigt ein Fluidfördersystem 10. Das Fluidfördersystem 10 ist im Ausführungsbeispiel ein Kraftstofffördersystem zum Fördern von Benzin aus einem Tank. In einer anderen Ausgestaltung kann das Fluidfördersystem 10 zum Fördern von Diesel ausgelegt sein. Der Kraftstoff, hier das Benzin, wird durch das Fluidfördersystem 10 einer Einspritzanlage (sogenanntes Fuel Rail-System) zugeführt. Aus Gründen der Übersichtlichkeit wurde in Figur 1 auf eine Darstellung sowohl des Tanks, als auch der Einspritzanlage verzichtet. Im Ausführungsbeispiel handelt es sich um ein sogenanntes Vorfördersystem. Ebenso kann es sich in anderen Ausgestaltungen um andere Fluidfördersysteme oder Teile eines Fluidfördersystems handeln.
  • Im Ausführungsbeispiel umfasst das Fluidfördersystem 10 einen elektrischen Motor 11. Der elektrische Motor 11 ist im Ausführungsbeispiel stromgesteuert. Der elektrische Motor 11 wird von einem Motorsteuergerät 12 angesteuert. Das Motorsteuergerät hat im Ausführungsbeispiel eine Ansteuereinheit und eine zusätzliche Recheneinheit 12a. Die Recheneinheit 12a ist in alternativen Ausgestaltungen räumlich von dem Motorsteuergerät 12 getrennt und somit ausgelagert. Der elektrische Motor 11 treibt eine Fluidpumpe 13 an. Die Fluidpumpe 13 ist im Ausführungsbeispiel eine Kraftstoffpumpe. Der elektrische Motor 11 ist über eine mechanische Kopplung 17 mit der Fluidpumpe 13 verbunden. Die Fluidpumpe 13 pumpt Benzin über eine Fluidleitung 15 von dem Tank durch das Fluidfördersystem 10 und über eine Leitung 16 zu der Einspritzanlage. An einer Auslassseite der Fluidpumpe 13 ist ein Kalibrierventil 14 angeschlossen und mit der Fluidpumpe 13 hydraulisch gekoppelt. Hierbei ist das Kalibrierventil 14 über die hydraulische Verbindung 18 mit der Leitung 16 und somit mit der Fluidpumpe 13 verbunden. Das Kalibrierventil 14 ist dazu eingerichtet, bei einem vorbestimmten Druck, beispielsweise 8 bar, zu öffnen. Der elektrische Motor 11 wird von dem Motorsteuergerät 12 so gesteuert, dass die Fluidpumpe 13 mit einer bestimmten Drehzahl des Motors 11 läuft. In einer alternativen Ausgestaltung ist kein Kalibrierventil 14 vorgesehen.
  • In die Leitung 16 ist ein Filter 16a eingebaut. Es handelt sich hierbei um einen Kraftstofffilter. In anderen Ausgestaltungen kann es sich um andere Filter oder fluidbeeinflussende Komponenten handeln. Der Filter 16a kann in einer weiteren Ausgestaltung auch entfallen.
  • An die Leitung 16 ist des Weiteren ein Drucksensor 19 angeschlossen. Im Ausführungsbeispiel misst der Drucksensor 19 einen Fluiddruck in der Leitung 16 nach dem Filter 16a. Das Signal des Drucksensors 19 wird in einer Auswertungseinheit 19a ausgewertet. Die Auswertungseinheit 19a stellt dem Motorsteuergerät 12, im Ausführungsbeispiel der Recheneinheit 12a des Motorsteuergeräts 12, ein ausgewertetes Drucksignal zur Plausibilisierung bereit.
  • Figur 2 zeigt einen Graphen, der einen Ansteuerstrom für den elektrischen Motor 11 (Ordinatenachse) über die Drehzahl (Abszissenachse) für verschiedene Drücke darstellt. Die Drücke sind von Funktion 21 über 22 bis hin zu Funktion 25 hin steigend.
  • Eine derartige Darstellung ist jedoch wenig geeignet, um eine Regelung der Fluidpumpe 13 vorzunehmen, da das Ergebnis des Kennlinienfelds Strom ist, wobei Strom eine Eingangsgröße war. Ein Auslesen von Werten für eine Steuerung des Fluidfördersystems 10 ist daher nicht ohne Umrechnung möglich.
  • Figur 3 zeigt beispielhaft eine schematische Darstellung eines Kennlinienfelds einer Industriepumpe im Allgemeinen. Hierbei wird die Förderhöhe (Ordinatenachse) über der Drehzahl (Abszissenachse) aufgebracht. Dieses Beispiel ist dem "Pumpenhandbuch" 2004, GRUNDFOS, Seite 119, entnommen.
  • Eine derartige Darstellung wäre auch wünschenswert für die verwendete Fluidpumpe 13.
  • Figur 4 zeigt ein Flussdiagramm gemäß einer Ausgestaltung des Verfahrens. Im Schritt 41 wird ein Ansteuerstrom auf einen vorbestimmten Wert gesetzt, beispielsweise 3A.
  • In Schritt 42 wird ein Durchflussvolumen des Fluidfördersystems 10 verändert. Durch die Veränderung des Durchflussvolumens kann zu dem in Schritt 41 eingestellten Ansteuerstrom ein entsprechendes, charakteristisches Druckverhalten im Fluidfördersystem 10 erzeugt werden. Im Fluidfördersystem 10 gilt hierbei, dass die Drehzahl proportional zum Fördervolumen der Fluidpumpe 13 ist. Die Veränderung des Durchflussvolumens wird hierbei beispielsweise automatisch erzielt, indem eine Druckerhöhung im Fluidfördersystem 10 aufgebaut wird. Dies kann auch im laufenden Betrieb erfolgen, beispielsweise bei einem Hochfahren des Fluidfördersystems 10.
  • In Schritt 43 werden Druckdaten des Fluidfördersystems 10 aufgezeichnet. Hierfür wird beispielsweise der Drucksensor 19 verwendet. Hierdurch entsteht eine Datenmenge, die zu dem eingestellten Ansteuerstrom in Abhängigkeit des veränderten Durchflussvolumens dem Druck im Fluidfördersystem darstellt.
  • In Schritt 44 wird ausgewertet, ob alle vorgegebenen Werte für die Erstellung des Kennlinienfelds vorhanden sind. Fehlen beispielsweise Daten zu einem bestimmten vorgegebenen Ansteuerstrom für den elektrischen Motor 11, so werden die Schritte 41, 42 und 43 mit entsprechend veränderten Parametern wiederholt.
  • In Schritt 45 wird ein Kennlinienfeld aus den aufgezeichneten Daten erstellt. Hierzu werden jeweils Druckwerte zu einem eingestellten Ansteuerstrom einer Drehzahl zugeordnet. Das Kennlinienfeld wird anhand von Ankerpunkten und Randparametern wie unten beschrieben nivelliert und ausgerichtet.
  • Figur 5 zeigt beispielhaft ein derartiges Kennlinienfeld. Die einzelnen Funktionen von unten nach oben hin steigend und stellen einen Ansteuerstrom dar. Auf der Abszissenachsen-Achse ist die Drehzahl aufgetragen, auf der Ordinaten-Achse der Druck im Fluidfördersystem 10. Um auch die Randbereiche des Kennlinienfelds korrekt darzustellen, ist es notwendig, dass charakteristische Parameter abgefahren werden. Es ist also eine Nivellierung des Kennlinienfelds notwendig.
  • Diese Parameter werden im Verfahren des Ausführungsbeispiels, wie im Flussdiagramm in Figur 4 dargestellt in Schritt 45 auf das Kennlinienfeld aufgerechnet. Je nach Fluidfördersystem 10 können sich hierbei unterschiedliche Parameter eignen. Beispielsweise wird für eine Fluidpumpe 13 zum Pumpen von Benzin die Nullfördermenge der Fluidpumpe 13 verwendet. Weitere Parameter ergeben sich aus einer maximalen Drehzahl des elektrischen Motors 11, einem maximalen Fördervolumen der Fluidpumpe 13 oder einem minimalen Betriebsstrom des elektrischen Motors 11. Diese Parameter sind jeweils charakteristisch für unterschiedliche, bestimmte Fluide bei unterschiedlichen Drücken. Ausgangsdruck und anliegender Druck bei der Fluidpumpe 13 sind, im Falle der Nullfördermenge, identisch, so dass das Fluid nicht befördert wird und ein Fördervolumen somit Null ist. Diese Parameter und die hieraus resultierenden Messdaten dienen als Ankerpunkte für das Kennlinienfeld.
  • Figur 6 zeigt eine schematische Darstellung einer Regelstrecke. Im Ausführungsbeispiel einer Regelstrecke des Computerprogramms. Block 61 stellt einen Regelbaustein dar, der zur Regelung ein Kennlinienfeld für ein Benzinfluidsystem nutzt. Der Block 61 hat zwei Eingänge 62, 63, ein Eingang 62 ist für die Drehzahl und Eingang 63 ist für den Ansteuerstrom. Ausgangsgröße des Blocks 61 ist ein Druckwert 64.
  • Figur 7 zeigt beispielhaft ein Kennlinienfeld für ein Dieselfluidfördersystem. Hierbei sind ebenso, wie in Figur 5 der Druck über der Drehzahl aufgetragen. Ebenso wie in Figur 5 sind von unten nach oben die einzelnen diagonalen Kennlinien Kurven steigenden Stroms.
  • Um eine bessere Einordnung des Kennlinienfelds zu ermöglichen, wird in einer weiteren Ausgestaltung ein zusätzliches Kalibrierventil 14 im Fluidfördersystem 10 verwendet. Das Kalibrierventil 14 erzeugt, wie in Figur 8 dargestellt, einen Knick in den Druckkennlinien 81 bis 84. Hierdurch kann das Kennlinienfeld für den Ansteuerstrom nivelliert werden, da ein Ankerpunkt zur Ausrichtung geschaffen wird.
  • Verschiedene Eckparameter sind nach einer Aufzeichnung jedoch noch nicht definiert. Dies ist in den beiden Graphen von Figur 9 dargestellt. Zwar sind Teilbereiche (OK) der Kennlinienfelder in Figur 9 ordentlich zugeordnet (verankert), jedoch weisen andere Bereiche (X) der beiden in Figur 9 dargestellten Kennlinienfelder Ungenauigkeiten auf.
  • Figur 10 zeigt eine weitere Darstellung für ein Kennlinienfeld für Diesel. Hier sind ebenfalls wichtige Ankerpunkte nicht definiert. Durch die übliche Verwendung einer Verdrängerpumpe kann beispielsweise auch eine Nullfördermenge nicht zur Nivellierung verwendet werden, da die Art und Weise, mit der eine Verdrängerpumpe fördert, eine Nullfördermenge erlaubt.
  • Um weitere Parameterwerte für die Nivellierung des Kennlinienfelds zu erlangen, wird ein spezielles Kalibrierventil 14 eingesetzt. Hierbei ist in unterschiedlichen Ausgestaltungen eine verschiedene Anzahl und verschiedene Ausgestaltungen von Ventilen denkbar.
  • In einer Ausgestaltung wird ein limitiertes Ventil, wie in Figur 11 schematisch dargestellt, eingesetzt. Das limitierte Ventil lässt, nachdem es einmal geöffnet ist, nur eine definierte Menge (Bypassmenge) abfließen. Beispielsweise öffnet das limitierte Ventil bei 3 bar und erlaubt dann einen konstanten Abfluss von 5 1/Std. Hierbei führt ein druckabhängiger Einlass 112 auf einen Widerstand (Ventilklappe), der schematisch durch eine Feder 110 dargestellt ist. Ist der Druck groß genug, so wird der Auslass 111 freigegeben und das Fluid kann abfließen.
  • Figur 12 zeigt eine schematische Darstellung eines Kalibrierventils 14 gemäß einer weiteren Ausgestaltung. Hierbei ist das Kalibrierventil 14 ein Stufenventil. Das Stufenventil ermöglicht es, bei unterschiedlichen Druckstufen unterschiedliche Bypassmengen des Fluids abfließen zu lassen. Beispielsweise werden hier bei 3 bar 5 1/Std. und ab 4 bar 10 l/Std. abgeleitet. Hierbei führt ein druckabhängiger Einlass 121 auf einen Widerstand (Ventilklappe), der schematisch durch eine Feder 120 dargestellt ist. Ist der Druck groß genug, so wird der Auslass 121 freigegeben und das Fluid kann abfließen. Steigt der Druck weiter, wird zusätzlich der Auslass 122 freigegeben, so dass die Abflussmenge steigt. Selbstverständlich sind unterschiedliche Anzahlen von Stufen mit unterschiedlichen Werten und Auslassdrücken denkbar. Wichtig hierbei ist, dass die aufgenommenen Druckkennlinien der Fluidpumpe 13 unterschiedliche Knickstufen aufweisen. Anhand dieser kann das Kennlinienfeld der Ansteuerstromkurven nivelliert werden.
  • Eine weitere Ausgestaltung des Kalibrierventils 14 ist ein Stufenventil, das einen Abfluss nur innerhalb eines bestimmten Druckbereichs zulässt. Figur 13 zeigt eine schematische Darstellung eines derartigen Ventils. Das Ventil ist bei 1 bar geschlossen, bei 2 bar geöffnet und schließt wieder bei 3 bar komplett. Zwischen 2, 3 bar wird eine konstante Menge von 5 1/Std. abgelassen. Hierbei führt eine Druckkopplung 131 auf einen Widerstand, der schematisch durch eine Feder 130 dargestellt ist. Ist der Druck groß genug, so wird der Bypassvolumeneingang 132 freigegeben und das Fluid kann über den ebenfalls freigegebenen Bypassvolumenausgang 133 abfließen. Steigt der Druck weiter, so sperrt das Ventil.
  • Figur 14 zeigt verschiedene Pumpenkennlinien. Fett dargestellt sind Druckkennlinien des Fluidfördersystems 10. (Abszissenachse: Drehzahl; Ordinatenachse: Druck und Ansteuerstrom). Hierbei ist ersichtlich, dass die in Fett dargestellten Druckkennlinien unterschiedliche Knicke aufweisen. Anhand dieser Knicke lässt sich nun das Kennlinienfeld des Ansteuerstroms (dünne Linien) nivellieren. Die Messung kann drehzahlgesteuert durchgeführt werden. Das heißt, die Drehzahl wird durch die Ansteuerung des elektrischen Motors 11 abgefahren. Dies kann beispielsweise beim Einschalten der Fluidpumpe 13 vorgenommen werden.
  • Figur 15 zeigt ähnlich wie Figur 14 verschiedene Charakteristika, jedoch für verschiedene Ventiltypen (Abszissenachse: Drehzahl; Ordinatenachse: Druck und Ansteuerstrom). Die durch das modifizierte Ventil vorhandenen zusätzlichen Charakteristika ermöglichen eine einwandfreie Kalibrierung während eines Betriebs des Fluidfördersystems unter verschiedenen realistischen Bedingungen.
  • Hierbei kann etwas unterhalb des erwarteten Arbeitspunkts die Stromregelung eingeschaltet werden und der Ansteuerstrom leicht erhöht werden. Sobald ein Drehzahlsprung eintritt, ist davon auszugehen, dass ein Kalibrierventil öffnet und das Kennlinienfeld kann an diesem Ankerpunkt ausgerichtet werden. Dieser Ansteuerstrom kann zur Nivellierung des Kennlinienfelds verwendet werden. Im weiteren Arbeitsbetrieb kann wiederum drehzahlgeführt weitergearbeitet werden. Ein derartiges Nivellieren ist zu jedem Zeitpunkt anwendbar, auch und vor allem während des laufenden Betriebs. Eine derartige Bypassfunktion wirkt sich nicht auf den betrieb aus und beeinflusst nicht das Kennlinienfeld des Ansteuerstroms (vergleiche Figur 10). Das Kennlinienfeld bleibt auch mit Einsatz des Bypassventils oder Stufenventils (im Allgemeinen des Kalibrierventils 14) identisch.

Claims (11)

  1. Verfahren zum Erstellen eines Kennlinienfelds einer Fluidpumpe (13) eines druckabhängigen Fluidfördersystems (10) für einen Arbeitsbereich der Fluidpumpe (13), das Fluidfördersystem (10) umfassend:
    - Einen stromgesteuerten elektrischen Motor (11), der von einem Motorsteuergerät (12) mit einem Ansteuerstrom gesteuert wird und die Fluidpumpe (13) antreibt;
    umfassend die Schritte:
    - Einstellen des Ansteuerstroms auf einen vorbestimmten Wert;
    - Verändern eines Durchflussvolumens des Fluidfördersystems (10), nachdem der Ansteuerstrom eingestellt ist;
    - Aufnehmen einer einen Druck in dem Fluidfördersystem (10) beschreibende Datenmenge in Abhängigkeit der Veränderung des Durchflussvolumens;
    - Wiederholen der Schritte des Einstellens, Veränderns und Aufnehmens für eine vorbestimmte Anzahl an Wiederholungen und vorbestimmte verschiedene Ansteuerströme; und
    - Erstellen eines Kennlinienfelds aus der aufgenommenen Datenmenge.
  2. Verfahren nach Anspruch 1, wobei zusätzlich der folgende Schritt durchgeführt wird:
    - Bestimmen von Randbereichen und/oder Randpunkten des Kennlinienfelds basierend auf das Fluidfördersystem (10) charakterisierenden Parametern.
  3. Verfahren nach Anspruch 1 oder 2, wobei zusätzlich der folgende Schritt durchgeführt wird:
    - Kalibrieren des Kennlinienfelds durch Abfahren wenigstens einer Kennlinie eines Ansteuerstroms in wenigstens einem Teilbereich der Kennlinie.
  4. Verfahren nach Anspruch 2, wobei die das Fluidfördersystem (10) charakterisierenden Parameter wenigstens einen der folgenden Parameter umfasst:
    - Nullfördermenge der Fluidpumpe (13);
    - Maximale Drehzahl des elektrischen Motors (11);
    - Maximales Fördervolumen der Fluidpumpe (13);
    - Minimaler Betriebsstrom des elektrischen Motors (11).
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Fluidfördersystem weiter ein Kalibrierventil (14) umfasst, das an einer Auslassseite der Fluidpumpe (13) angeordnet ist und sich in Abhängigkeit eines vorbestimmten Drucks öffnet, um eine druckabhängige Kalibrierfunktion bereitzustellen und wobei der Schritt des Aufnehmens zusätzlich von der der Kalibrierfunktion abhängt.
  6. Verfahren nach Anspruch 5, wobei das Kalibrierventil (14) als eine der folgenden Ventilarten ausgebildet ist:
    - Schwellendruckventil;
    - Limitiertes Ventil;
    - Stufenventil.
  7. Verfahren nach Anspruch 6, wobei das Kalibrierventil (14) dazu ausgebildet ist, einen vorbestimmten maximalen Volumenstrom aus dem Fluidfördersystem (10) abzuleiten, wenn das Kalibrierventil (14) als limitiertes Ventil ausgebildet ist, oder dazu ausgebildet ist, pro Stufe einen vorbestimmten maximalen Volumenstrom aus dem Fluidfördersystem (10) abzuleiten, wenn das Kalibrierventil (14) als Stufenventil ausgebildet ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei der Schritt des Einstellens des Ansteuerstroms und des Veränderns eines Durchflussvolumens im Anschluss an ein Einschalten der Fluidpumpe (13) erfolgt, während die Fluidpumpe (13) hochgefahren wird.
  9. Verwendung eines limitierten Ventils als Kalibrierventil (14) in einem Fluidfördersystem (10), das dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 bis 4 durchzuführen.
  10. Verwendung eines Stufenventils als Kalibrierventil (14) in einem Fluidfördersystem (10), das dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 oder 2 durchzuführen.
  11. Steuergerät für ein Fluidfördersystem (10), das Fluidfördersystem (10) umfassend:
    - Einen stromgesteuerten elektrischen Motor (11), der von einem Motorsteuergerät (12) geregelt wird;
    - Eine Fluidpumpe (13), die von dem elektrischen Motor (11) gesteuert wird;
    wobei das Steuergerät dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 bis 4 durchzuführen.
EP15788053.5A 2014-11-03 2015-11-02 Verfahren zum erstellen eines kennlinienfelds einer fluidpumpe, verwendung eines limitierten ventils, verwendung eines stufenventils und steuergerät für ein fluidfördersystem Active EP3215744B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014222390.3A DE102014222390A1 (de) 2014-11-03 2014-11-03 Verfahren zum Erstellen eines Kennlinienfelds einer Fluidpumpe, Verwendung eines limitierten Ventils, Verwendung eines Stufenventils und Steuergerät für ein Fluidfördersystem
PCT/EP2015/075473 WO2016071285A1 (de) 2014-11-03 2015-11-02 Verfahren zum erstellen eines kennlinienfelds einer fluidpumpe, verwendung eines limitierten ventils, verwendung eines stufenventils und steuergerät für ein fluidfördersystem

Publications (2)

Publication Number Publication Date
EP3215744A1 EP3215744A1 (de) 2017-09-13
EP3215744B1 true EP3215744B1 (de) 2020-05-13

Family

ID=54365261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15788053.5A Active EP3215744B1 (de) 2014-11-03 2015-11-02 Verfahren zum erstellen eines kennlinienfelds einer fluidpumpe, verwendung eines limitierten ventils, verwendung eines stufenventils und steuergerät für ein fluidfördersystem

Country Status (3)

Country Link
EP (1) EP3215744B1 (de)
DE (1) DE102014222390A1 (de)
WO (1) WO2016071285A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859592B2 (en) * 2017-01-31 2020-12-08 Tecan Trading Ag Method of aspirating by pipetting and pipetting apparatus
DE102017221342B4 (de) * 2017-11-28 2021-01-28 Vitesco Technologies GmbH Toleranz- und Verschleißkompensation einer Kraftstoffpumpe
DE102017221333B4 (de) * 2017-11-28 2021-01-28 Vitesco Technologies GmbH Toleranz- und Verschleißkompensation einer Kraftstoffpumpe
CN112032035B (zh) * 2020-08-13 2022-06-07 四川虹美智能科技有限公司 阀片损坏的确定方法及压缩机、电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3402120A1 (de) * 1984-01-23 1985-07-25 Rheinhütte vorm. Ludwig Beck GmbH & Co, 6200 Wiesbaden Verfahren und vorrichtung zur regelung verschiedener betriebsparameter bei pumpen und verdichtern
DE3824057A1 (de) * 1988-07-15 1990-01-25 Loewe Pumpenfabrik Gmbh Verfahren zur regelung des betriebes von pumpen
DE4243118A1 (de) * 1992-12-21 1994-06-23 Continental Ag Verfahren zur Konstanthaltung des Druckes in einem hydraulischen System
DE10257657A1 (de) * 2001-12-21 2003-07-03 Ksb Ag Hydraulische Anlage
WO2008067622A2 (en) * 2006-12-06 2008-06-12 Delphi Technologies, Inc. Method and apparatus for fuel flow control in an internal combustion engine
DE102009050083B4 (de) * 2009-10-20 2016-08-18 Viessmann Werke Gmbh & Co Kg Verfahren zur Bestimmung eines Volumenstroms in einer mit einer Strömungsmaschine und mit einer Regelungseinheit versehenen, geschlossenen Strömungsanlage
DE102011015154B4 (de) * 2011-03-25 2017-01-12 Continental Automotive Gmbh Verfahren zur Überwachung einer elektromotorisch angetriebenen Kraftstoffpumpe und Kraftstofffördereinheit mit einer Kraftstoffpumpe
ES2541584T3 (es) * 2012-09-07 2015-07-21 Gidelmar, S.A. Método y equipo de control de un sistema de distribución de líquido, multipunto
US9528519B2 (en) * 2012-10-12 2016-12-27 Continental Automotive Systems, Inc. Pressure control by phase current and initial adjustment at car line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3215744A1 (de) 2017-09-13
WO2016071285A1 (de) 2016-05-12
DE102014222390A1 (de) 2016-05-04

Similar Documents

Publication Publication Date Title
DE102008045524B4 (de) Verfahren zur autonomen Steuerung eines Chemikalien-Einspritzsystems für Öl- und Gas-Bohrlöcher
DE60208499T2 (de) Steuerungsverfahren für ein Common Rail Einspritzsystem bei Ausfall des Raildrucksensor
EP1568874B1 (de) Verfahren und Vorrichtung zur Steuerung des Volumenstroms in einem Kraftstoff-Einspritzsystem einer Brennkraftmaschine
EP3215744B1 (de) Verfahren zum erstellen eines kennlinienfelds einer fluidpumpe, verwendung eines limitierten ventils, verwendung eines stufenventils und steuergerät für ein fluidfördersystem
DE102005017837A1 (de) Kraftstoffversorgungseinrichtung für Brennkraftmaschinen und zugehöriges Verfahren
EP2205846B1 (de) Verfahren zur steuerung eines kraftstoffeinspritzsystems einer brennkraftmaschine
DE102012108027A1 (de) Ölpumpenregelungssystem für ein Fahrzeug und Betriebsverfahren davon
DE102007010768B4 (de) Verfahren für die Optimierung der Ventilstellung und der Pumpendrehzahl in einem Ventilsystem mit PID-Regelung ohne die Verwendung externer Signale
DE112015003127B4 (de) Dieselabgasfluidabgabesystem und Verfahren zum Betreiben eines Dieselabgasfluidabgabesystems
DE102014226259B4 (de) Verfahren zum Betrieb eines Verbrennungsmotors
DE102015212121A1 (de) Verfahren zum Ermitteln von Betriebsparametern einer Kraftstoffpumpe
DE102008017160B3 (de) Verfahren zum Bestimmen des effektiven Kompressibilitätsmoduls eines Einspritzsystems
DE19845441C2 (de) Verfahren zum elektronischen Trimmen einer Einspritzvorrichtung
DE102018205542A1 (de) Verfahren zum Vermessen und Betreiben einer elektrischen Fluidpumpe
WO2017093031A1 (de) Verfahren zum ermitteln einer viskosität eines kraftstoffs
EP2044317B1 (de) Verfahren zur ermittlung eines fehlers in einer kraftstoffzumesseinheit eines einspritzsystems
EP3234328B1 (de) Verfahren und vorrichtung zur diagnose eines kraftstofffördersystems
DE102013220831B3 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftstoffeinspritzsystems
EP3212914B1 (de) Verfahren zum kalibrieren einer fluidpumpenanordnung
DE102015207578B3 (de) Verfahren zur Bestimmung der Kraftstofftemperatur und/oder der Kraftstoffqualität
DE102013000060B3 (de) Verfahren und Regeleinrichtung zum Betreiben einer Brennkraftmaschine
EP3642472B1 (de) Vorrichtung und verfahren zur rücklaufdruckeinstellung für einen injektor
DE102017214519A1 (de) Verfahren zur Erfassung der Viskosität des Kraftstoffs
DE102010028799A1 (de) Verfahren zum Betreiben einer Einspritzanlage
DE102021209569A1 (de) Elektronische Steuereinheit, Hydrauliksystem und Verfahren zur Steuerung eines Hydrauliksvstems

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015012597

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1270656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200913

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015012597

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015012597

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1270656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 9

Ref country code: DE

Payment date: 20231130

Year of fee payment: 9