EP3201469A1 - Pumpsystem zur vakuumerzeugung und verfahren zum pumpen mit diesem pumpsystem - Google Patents
Pumpsystem zur vakuumerzeugung und verfahren zum pumpen mit diesem pumpsystemInfo
- Publication number
- EP3201469A1 EP3201469A1 EP14781160.8A EP14781160A EP3201469A1 EP 3201469 A1 EP3201469 A1 EP 3201469A1 EP 14781160 A EP14781160 A EP 14781160A EP 3201469 A1 EP3201469 A1 EP 3201469A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- vacuum pump
- pumping system
- main
- pumping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 25
- 239000007789 gas Substances 0.000 claims abstract description 61
- 239000000126 substance Substances 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 239000012530 fluid Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 238000012384 transportation and delivery Methods 0.000 abstract description 4
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 3
- 239000003380 propellant Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/123—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/005—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/02—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/046—Combinations of two or more different types of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F5/00—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
- F04F5/14—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
- F04F5/16—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
- F04F5/20—Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/06—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
Definitions
- the present invention relates to the field of vacuum techniques. More specifically, it relates to a pumping system comprising at least one pin pump, and a pumping method by means of this pumping system.
- the rotational speed of the pump plays a very important role, defining the operation of the pump during the different phases succeeding during the emptying of the vacuum chamber.
- the electrical power required in the first pumping phases when the suction pressure is between the atmospheric pressure and about 100 mbar, that is to say during operation at high mass flow rate, would be very high if the speed of rotation of the pump could not be reduced.
- the trivial solution is to use a speed variator which allows the reduction or the increase of the speed and consequently of the power according to the different criteria of the pressure type, maximum current, limit torque, temperature, etc. But during the periods of operation in reduced speed of rotation there are drops of flow at high pressure, the flow rate being proportional to the speed of rotation. Also, the variation of speed by frequency converter imposes an additional cost and a congestion.
- Roots booster pumps arranged upstream of the main dry pumps.
- This type of system is cumbersome, works either with by-pass valves having reliability problems, or by employing means of measurement, control, adjustment or control.
- these means of control, adjustment or control must be actively controlled, which necessarily results in an increase in the number of components of the system, its complexity and cost.
- the object of the present invention is to enable a better vacuum to be obtained than that (of the order of 0.01 mbar) that a single pin pump is capable of generating in a vacuum chamber.
- Another object of the present invention is to obtain a discharge rate that is greater than low pressure than that which can be obtained by means of a single pin pump when pumping to make a vacuum. in a vacuum chamber.
- the present invention also aims to allow a reduction of the electrical energy required for the emptying of a vacuum chamber and the maintenance of the vacuum, as well as a decrease in the temperature of the outlet gas.
- a pumping system for generating a vacuum comprising a main vacuum pump which is a pin pump having a gas inlet suction connected to a vacuum vessel and a gas outlet discharge in a gas discharge conduit to an exhaust outlet of the gases out of the pumping system.
- the pumping system further comprises
- a non-return valve positioned between the gas outlet discharge and the exhaust gas outlet
- the auxiliary vacuum pump can be of various types, including another spool pump, a screw-type dry pump, a multi-stage Roots pump, a diaphragm pump, a dry vane pump, a vane pump lubricated or also a gas ejector.
- the invention also relates to a method of pumping by means of a pumping system as defined above. This process comprises steps in which:
- the main vacuum pump is started in order to pump the gases contained in the vacuum chamber and to discharge these gases by its gas outlet discharge;
- the auxiliary vacuum pump continues to pump all the time that the main vacuum pump pumps the gases contained in the vacuum chamber and / or all the time that the main vacuum pump maintains a defined pressure in the vacuum chamber.
- the auxiliary pump is operated continuously all the time that the main vacuum pump with pins empty the vacuum chamber, but also all the time that the main vacuum pump with pins maintains a pressure defined (eg the final vacuum) in the enclosure by evacuating gases by its discharge.
- the coupling of the main vacuum pump with pins and the auxiliary pump can be carried out without requiring measurements or specific devices (eg pressure, temperature, current sensors). , etc.), servos, data management and calculation. Therefore, the pumping system adapted for the implementation of the pumping method according to the present invention may comprise only a minimal number of components, be very simple and cost considerably less than existing systems.
- the main vacuum pump pins can operate at a single constant speed, that of the electrical network, or rotate at variable speeds according to its own mode of operation. Therefore, the complexity and cost of the pumping system adapted for carrying out the pumping method according to the present invention can be further reduced.
- the auxiliary pump integrated in the pumping system can still operate according to the pumping method according to the invention without suffering mechanical damage. Its dimensioning is conditioned by a minimum energy consumption for the operation of the device. Its nominal flow rate is chosen according to the volume of the exhaust duct between the main vacuum pump with pins and the non-return valve. This flow rate may advantageously be 1/500 to 1/20 of the nominal flow rate of the main vacuum pump with pins, but may also be less than or greater than these values, in particular from 1/500 to 1/10 or from 1 / 500 to 1 / 5u nominal flow rate of the main vacuum pump.
- the non-return valve, placed in the duct downstream of the main vacuum pump pin can for example be a standard element commercially available but it is also conceivable to design an element dedicated to the specific application. It is dimensioned according to the nominal flow rate of the main vacuum pump with pins. In particular, it is expected that the check valve will close when the suction pressure of the main vacuum pump with pins is between 500 mbar absolute and the final vacuum (eg 100 mbar).
- the auxiliary pump may be made of materials and / or coatings with high chemical resistance to substances and gases commonly used in the semiconductor industry.
- the auxiliary pump is preferably small.
- the auxiliary vacuum pump always pumps in the volume between the gas outlet discharge of the main vacuum pump with pins and the non-return valve.
- the startup of the auxiliary vacuum pump is controlled "all or nothing".
- the piloting therefore consists in measuring one or more parameters and according to certain rules, start the auxiliary vacuum pump or stop it.
- the parameters provided by suitable sensors, are p. ex. the motor current of the main vacuum pump with pins, the temperature or the pressure of the gases at its discharge, that is to say in the volume upstream of the non-return valve in the discharge pipe, or a combination of these parameters.
- the dimensioning of the auxiliary vacuum pump aims at a minimum energy consumption of its engine. Its nominal flow rate is chosen as a function of the flow rate of the main vacuum pump with pins, but also taking into account the volume that the gas evacuation duct delimits between the main vacuum pump and the non-return valve. This flow rate can be from 1/500 to 1/20 of the nominal flow rate of the main vacuum pump with pins, but may also be lower or higher than these values.
- the pressure is high, for example equal to the atmospheric pressure. Due to compression in the main vacuum pump with pins, the pressure of the gases discharged at its outlet is higher than the atmospheric pressure (if the gases at the outlet of the main pump are discharged directly to the atmosphere) or higher than the pressure at the input of another device connected downstream. This causes the non-return valve to open.
- the pressure at the outlet of the main vacuum pump with pins becomes that at the inlet of the auxiliary vacuum pump, that of its outlet always being the pressure in the duct after the non-return valve.
- the more the pump with auxiliary vacuum pump the more the pressure at the outlet of the main vacuum pump with pins, in the volume limited by the non-return valve closed, is reduced and consequently the pressure difference between the enclosure and the output of the main vacuum pump with drop pins. This small difference reduces internal leakage in the main vacuum pump with pins and lowers the pressure in the enclosure, which improves the final vacuum.
- main lug vacuum pump consumes less and less energy for compression and produces less and less compression heat.
- FIG. 1 schematically shows a pumping system adapted for carrying out a pumping method according to a first embodiment of the present invention
- FIG. 2 schematically shows a pumping system adapted for carrying out a pumping method according to a second embodiment of the present invention.
- FIG. 1 represents a pump system SP for generating a vacuum, which is adapted for implementing a pumping method according to a first embodiment of the present invention.
- This pumping system SP comprises an enclosure 1, which is connected to the suction 2 of a main vacuum pump constituted by a pin pump 3.
- the outlet gas outlet of the main vacuum pump pins 3 is connected 5.
- a discharge non-return valve 6 is placed in the discharge pipe 5, which after this non-return valve continues in the gas outlet pipe 8.
- the non-return valve 6, when it is closed, allows the formation of a volume 4, between the gas outlet discharge of the main vacuum pump with pins 3 and himself.
- the pumping system SP also comprises the auxiliary vacuum pump 7, connected in parallel with the non-return valve 6.
- the suction of the auxiliary vacuum pump is connected to the volume 4 of the exhaust pipe 5 and its delivery is connected to the leads 8.
- the auxiliary vacuum pump 7 is started up as well.
- the main vacuum pump with pins 3 draws the gases into the chamber 1 through the duct 2 connected to its inlet and compresses them to discharge them thereafter as it leaves the evacuation duct 5 via the non-return valve 6
- the closing pressure of the non-return valve 6 is reached, it closes.
- the pumping of the auxiliary vacuum pump 7 gradually lowers the pressure in the volume 4 to the value of its limit pressure.
- the power consumed by the main vacuum pump pins 3 gradually decreases. This occurs in a short period of time, for example for a certain cycle in 5 to 10 seconds depending on the ratio between the volume 4 and the nominal flow rate of the auxiliary vacuum pump 7, but can also last longer.
- the auxiliary vacuum pump 7 can be another pin pump, a screw-type dry pump, a multi-stage Roots pump, a diaphragm pump, a dry vane pump, a vacuum pump. lubricated pallets or even an ejector.
- the ejector may be either a "simple" ejector in the sense that the flow of its propellant comes from a distribution network on the industrial site or is equipped with a compressor that provides the ejector the flow of propellant gas at the pressure necessary for its operation. More specifically, this compressor can be driven by the main pump or, alternatively or addition, independently, independent of the main pump. This compressor can draw atmospheric air or gases into the gas outlet duct after the non-return valve. The presence of such a compressor makes the pump system independent of a source of compressed gas, which can meet certain industrial environments.
- FIG. 2 represents an SPP pumping system adapted for the implementation of a pumping method according to a second embodiment of the present invention.
- the system represented in FIG. 2 represents the controlled pumping system SPP, furthermore comprising suitable sensors 1 1, 12, 13 which control either the motor current (sensor 1 1) of the main vacuum pump with pins 3, ie the pressure (sensor 13) of the gases in the volume of the outlet duct of the main vacuum pump with pins, limited by the non-return valve 6, or the temperature (sensor 12) gases in the volume of the outlet duct of the main vacuum pump pins, limited by the non-return valve 6, a combination of these parameters.
- suitable sensors 1 1, 12, 13 which control either the motor current (sensor 1 1) of the main vacuum pump with pins 3, ie the pressure (sensor 13) of the gases in the volume of the outlet duct of the main vacuum pump with pins, limited by the non-return valve 6, or the temperature (sensor 12) gases in the volume of the outlet duct of the main vacuum pump pins, limited by the non-return valve 6, a combination of these parameters.
- the main vacuum pump with pins 3 begins to pump the gases from the vacuum chamber 1, the parameters such as the current of its engine, the temperature and the pressure of the gases in the volume of the outlet duct 4 start to change and reach threshold values detected by the sensors. After a delay this causes the auxiliary vacuum pump 7 to start. When these parameters return to initial ranges (out of set points) with a delay, the auxiliary vacuum pump is stopped.
- the auxiliary vacuum pump can also be of pin type, screw type, multi-stage Roots, diaphragm type, vane type, vane type or an ejector (without or with compressor supplying its propellant), as in the first embodiment of the invention of FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PT147811608T PT3201469T (pt) | 2014-10-02 | 2014-10-02 | Sistema de bombagem para gerar um vácuo e processo de bombagem por meio deste sistema de bombagem |
PL14781160T PL3201469T3 (pl) | 2014-10-02 | 2014-10-02 | Układ pompujący do wytwarzania próżni oraz sposób pompowania za pomocą tego układu |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/071197 WO2016050313A1 (fr) | 2014-10-02 | 2014-10-02 | Systeme de pompage pour generer un vide et procede de pompage au moyen de ce systeme de pompage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3201469A1 true EP3201469A1 (de) | 2017-08-09 |
EP3201469B1 EP3201469B1 (de) | 2020-03-25 |
Family
ID=51662095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14781160.8A Revoked EP3201469B1 (de) | 2014-10-02 | 2014-10-02 | Pumpsystem zur vakuumerzeugung und verfahren zum pumpen mit diesem pumpsystem |
Country Status (15)
Country | Link |
---|---|
US (1) | US10808730B2 (de) |
EP (1) | EP3201469B1 (de) |
JP (1) | JP6512674B2 (de) |
KR (1) | KR102330815B1 (de) |
CN (1) | CN107002681A (de) |
AU (1) | AU2014407987B2 (de) |
BR (1) | BR112017006572B1 (de) |
CA (1) | CA2961979A1 (de) |
DK (1) | DK3201469T3 (de) |
ES (1) | ES2785202T3 (de) |
PL (1) | PL3201469T3 (de) |
PT (1) | PT3201469T (de) |
RU (1) | RU2674297C2 (de) |
TW (1) | TWI696760B (de) |
WO (1) | WO2016050313A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL3123030T3 (pl) * | 2014-03-24 | 2020-03-31 | Ateliers Busch S.A. | Sposób pompowania w układzie pomp próżniowych i układ pomp próżniowych |
US10041495B2 (en) * | 2015-12-04 | 2018-08-07 | Clay Valley Holdings Inc. | High volume vacuum pump for continuous operation |
CN108533494B (zh) * | 2018-06-19 | 2024-02-20 | 浙江维朋制冷设备有限公司 | 一种真空泵 |
FR3097599B1 (fr) * | 2019-06-18 | 2021-06-25 | Pfeiffer Vacuum | Pompe à vide primaire de type sèche et procédé de contrôle de l’injection d’un gaz de purge |
CN112901450A (zh) * | 2019-11-19 | 2021-06-04 | 核工业西南物理研究院 | 可移动式快速高真空抽气系统 |
US20230003208A1 (en) * | 2019-12-04 | 2023-01-05 | Ateliers Busch Sa | Redundant pumping system and pumping method by means of this pumping system |
JP2021110315A (ja) * | 2020-01-15 | 2021-08-02 | 株式会社アルバック | 補助ポンプ制御装置、および、真空ポンプシステム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3842886A1 (de) * | 1987-12-21 | 1989-07-06 | Rietschle Masch App | Vakuumpumpstand |
DE8816875U1 (de) * | 1987-12-21 | 1991-04-11 | Werner Rietschle Maschinen- Und Apparatebau Gmbh, 7860 Schopfheim | Vakuumpumpstand |
FR2647853A1 (fr) * | 1989-06-05 | 1990-12-07 | Cit Alcatel | Pompe primaire seche a deux etages |
SU1756637A1 (ru) * | 1990-12-14 | 1992-08-23 | Сморгонский завод оптического станкостроения | Вакуумна откачна система |
FR2822200B1 (fr) * | 2001-03-19 | 2003-09-26 | Cit Alcatel | Systeme de pompage pour gaz a faible conductivite thermique |
WO2003023229A1 (fr) * | 2001-09-06 | 2003-03-20 | Ulvac, Inc. | Systeme de pompe a vide et procede de fonctionnement d'un systeme de pompe a vide |
US6589023B2 (en) * | 2001-10-09 | 2003-07-08 | Applied Materials, Inc. | Device and method for reducing vacuum pump energy consumption |
JP4365059B2 (ja) * | 2001-10-31 | 2009-11-18 | 株式会社アルバック | 真空排気装置の運転方法 |
SE0201335L (sv) * | 2002-05-03 | 2003-03-25 | Piab Ab | Vakuumpump och sätt att tillhandahålla undertryck |
JP2004263635A (ja) * | 2003-03-03 | 2004-09-24 | Tadahiro Omi | 真空装置および真空ポンプ |
US20090112370A1 (en) * | 2005-07-21 | 2009-04-30 | Asm Japan K.K. | Vacuum system and method for operating the same |
JP4745779B2 (ja) | 2005-10-03 | 2011-08-10 | 神港精機株式会社 | 真空装置 |
TWI467092B (zh) * | 2008-09-10 | 2015-01-01 | Ulvac Inc | 真空排氣裝置 |
FR2952683B1 (fr) * | 2009-11-18 | 2011-11-04 | Alcatel Lucent | Procede et dispositif de pompage a consommation d'energie reduite |
FR2993614B1 (fr) * | 2012-07-19 | 2018-06-15 | Pfeiffer Vacuum | Procede et dispositif de pompage d'une chambre de procedes |
DE102012220442A1 (de) * | 2012-11-09 | 2014-05-15 | Oerlikon Leybold Vacuum Gmbh | Vakuumpumpensystem zur Evakuierung einer Kammer sowie Verfahren zur Steuerung eines Vakuumpumpensystems |
-
2014
- 2014-10-02 CA CA2961979A patent/CA2961979A1/fr active Pending
- 2014-10-02 PL PL14781160T patent/PL3201469T3/pl unknown
- 2014-10-02 AU AU2014407987A patent/AU2014407987B2/en active Active
- 2014-10-02 ES ES14781160T patent/ES2785202T3/es active Active
- 2014-10-02 CN CN201480082418.XA patent/CN107002681A/zh active Pending
- 2014-10-02 US US15/513,574 patent/US10808730B2/en active Active
- 2014-10-02 JP JP2017516049A patent/JP6512674B2/ja active Active
- 2014-10-02 PT PT147811608T patent/PT3201469T/pt unknown
- 2014-10-02 WO PCT/EP2014/071197 patent/WO2016050313A1/fr active Application Filing
- 2014-10-02 KR KR1020177011440A patent/KR102330815B1/ko active IP Right Grant
- 2014-10-02 EP EP14781160.8A patent/EP3201469B1/de not_active Revoked
- 2014-10-02 DK DK14781160.8T patent/DK3201469T3/da active
- 2014-10-02 BR BR112017006572-0A patent/BR112017006572B1/pt active IP Right Grant
- 2014-10-02 RU RU2017114342A patent/RU2674297C2/ru active
-
2015
- 2015-09-23 TW TW104131478A patent/TWI696760B/zh active
Also Published As
Publication number | Publication date |
---|---|
ES2785202T3 (es) | 2020-10-06 |
AU2014407987B2 (en) | 2019-10-31 |
JP6512674B2 (ja) | 2019-05-15 |
US20170284394A1 (en) | 2017-10-05 |
EP3201469B1 (de) | 2020-03-25 |
DK3201469T3 (da) | 2020-04-27 |
PL3201469T3 (pl) | 2020-07-27 |
KR20170062513A (ko) | 2017-06-07 |
KR102330815B1 (ko) | 2021-11-24 |
BR112017006572A2 (pt) | 2017-12-19 |
WO2016050313A1 (fr) | 2016-04-07 |
CN107002681A (zh) | 2017-08-01 |
BR112017006572B1 (pt) | 2022-08-23 |
CA2961979A1 (fr) | 2016-04-07 |
TWI696760B (zh) | 2020-06-21 |
RU2017114342A3 (de) | 2018-11-07 |
JP2017531754A (ja) | 2017-10-26 |
PT3201469T (pt) | 2020-04-23 |
RU2017114342A (ru) | 2018-11-07 |
TW201623798A (zh) | 2016-07-01 |
AU2014407987A1 (en) | 2017-04-13 |
RU2674297C2 (ru) | 2018-12-06 |
US10808730B2 (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3201469B1 (de) | Pumpsystem zur vakuumerzeugung und verfahren zum pumpen mit diesem pumpsystem | |
EP2501936B1 (de) | Pumpverfahren und vorrichtung mit verringertem energieverbrauch | |
EP3161318B1 (de) | Verfahren zum pumpen in einem system aus vakuumpumpen und system aus vakuumpumpen | |
EP3198148B1 (de) | Vakuumerzeugendes pumpsystem und pumpverfahren mit diesem pumpsystem | |
EP3676589B1 (de) | Leckdetektor und lecksuchverfahren zur dichtheitsprüfung von objekten | |
CA2944825C (fr) | Methode de pompage dans un systeme de pompage et systeme de pompes a vide | |
CA2943315C (fr) | Methode de pompage dans un systeme de pompes a vide et systeme de pompes a vide | |
WO2020201218A1 (fr) | Pompe à vide de type sèche et installation de pompage | |
FR2968730A1 (fr) | Dispositif de pompage a consommation d'energie reduite | |
EP2823182B1 (de) | Verbesserte pumpeinrichtung und ein steuerungsverfahren für solch eine pumpeinrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170501 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190102 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20191015 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1248863 Country of ref document: AT Kind code of ref document: T Effective date: 20200415 Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014062855 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3201469 Country of ref document: PT Date of ref document: 20200423 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200416 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20200420 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200625 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200626 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2785202 Country of ref document: ES Kind code of ref document: T3 Effective date: 20201006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200725 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602014062855 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: EDWARDS LIMITED Effective date: 20210111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210927 Year of fee payment: 8 Ref country code: TR Payment date: 20210929 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20211020 Year of fee payment: 8 Ref country code: PT Payment date: 20210923 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1248863 Country of ref document: AT Kind code of ref document: T Effective date: 20200325 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20211021 Year of fee payment: 8 Ref country code: SE Payment date: 20211020 Year of fee payment: 8 Ref country code: DK Payment date: 20211022 Year of fee payment: 8 Ref country code: ES Payment date: 20211224 Year of fee payment: 8 Ref country code: GB Payment date: 20211022 Year of fee payment: 8 Ref country code: IE Payment date: 20211020 Year of fee payment: 8 Ref country code: MC Payment date: 20211025 Year of fee payment: 8 Ref country code: LU Payment date: 20211020 Year of fee payment: 8 Ref country code: DE Payment date: 20211020 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211022 Year of fee payment: 8 Ref country code: FR Payment date: 20211022 Year of fee payment: 8 Ref country code: CH Payment date: 20211011 Year of fee payment: 8 Ref country code: BE Payment date: 20211020 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 602014062855 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 602014062855 Country of ref document: DE |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200325 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MGE |
|
27W | Patent revoked |
Effective date: 20220401 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20220401 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 1248863 Country of ref document: AT Kind code of ref document: T Effective date: 20220401 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |