EP3181772B1 - Use of a reinforcing element for installations in concrete structures - Google Patents

Use of a reinforcing element for installations in concrete structures Download PDF

Info

Publication number
EP3181772B1
EP3181772B1 EP16205449.8A EP16205449A EP3181772B1 EP 3181772 B1 EP3181772 B1 EP 3181772B1 EP 16205449 A EP16205449 A EP 16205449A EP 3181772 B1 EP3181772 B1 EP 3181772B1
Authority
EP
European Patent Office
Prior art keywords
force
structural element
concrete
zone
embedded elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16205449.8A
Other languages
German (de)
French (fr)
Other versions
EP3181772A1 (en
Inventor
Clément GUTZWILLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acg Holding AG
Robert Andre
Original Assignee
Acg Holding AG
Robert Andre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41647193&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3181772(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Acg Holding AG, Robert Andre filed Critical Acg Holding AG
Publication of EP3181772A1 publication Critical patent/EP3181772A1/en
Application granted granted Critical
Publication of EP3181772B1 publication Critical patent/EP3181772B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0645Shear reinforcements, e.g. shearheads for floor slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/48Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/18Spacers of metal or substantially of metal

Definitions

  • the present invention relates to the use of a device for reinforcing concrete buildings according to the preamble of patent claim 1.
  • Concrete structures that are used as ceilings, walls and supports are used, among other things, to accommodate media pipes for water, wastewater, ventilation, electrical and communication in all modern buildings.
  • ventilation pipes usually have large diameters, they were built separately for buildings with air conditioning systems and the ventilation ducts were often designed rectangular so that they could be integrated into the infrastructure, e.g. B. could be hidden in suspended ceilings.
  • energy saving which is becoming more and more popular, more and more pipes and ducts for forced ventilation have been installed. This means that ventilation pipes with a large cross-section have to be inserted. Since no one appreciates openly laid cables in private homes and commercial buildings, which, in addition to aesthetic defects, also trap dust and dirt and reduce the room height, more and more cables are being installed in the concrete structure.
  • the shear capacity is of crucial importance.
  • Previously known punching systems only allow reinforcement of the concrete structure in the area of force application areas of supports and the like. They are not suitable for solving the problems caused by media pipe weakening in the middle of concrete structures. This is particularly because a full concrete cross-section without inserts (e.g. media lines) must be present for the load-bearing capacity of these punching systems to be determined. However, such deposits create large zones of no bearing capacity. This would have to be taken into account by installing special devices locally at the point of weakening. Such devices are not known to date.
  • a structural steel structure is specified as reinforcement for a concrete slab element, a concrete ceiling or a concrete floor with an integrated heating or cooling function, which has at least one reinforcement grid and supports attached to it for the heating or cooling pipes.
  • the publication EP 1 207 354 A2 shows a support bar for reinforcement for flat elements made of hardenable material.
  • the support strip presented has clamping points where, for example, cables or heating/cooling pipes can be connected.
  • the font DE 19937414A1 describes a component by means of which recesses in the column area of flat ceilings made of reinforced concrete or prestressed concrete can be reinforced. This document recognizes the problem that the arrangement of recesses has a fundamental influence on the load-bearing capacity of the construction. It is also recognized that it must be possible to install such devices during construction, shortly before the concrete is poured.
  • the JPH06322890A concerns beams that are provided with reinforcing reinforcement in the area of through holes.
  • the present invention now has the task of using a component to improve the concrete structures of the type mentioned in such a way that means are made available in the planning phase which, when used locally, can reduce or even eliminate the weakening caused by media lines.
  • means are also made available that can be installed locally at the time of acceptance of the reinforcement, which ensures the reinforcement of the concrete structure after the concrete has been poured in by means of a clear force model in the area of the media pipes that is easily recognizable to the civil engineer Shear-bearing behavior is reinforced in such a way that the statics of the concrete structure either completely or at least approximately correspond to the design originally made by the structural engineer when calculating the reinforcement.
  • the basis of the invention is a method that allows the civil engineer both in the Effective measures must be taken in the planning phase as well as on site using structural elements with force models in order to locally reinforce the conventionally reinforced concrete structure using suitable means in such a way that the building structure is not excessively weakened by media lines or that unnecessary over-dimensioning of the same does not lead to uneconomical building structures.
  • the inserts and media lines referred to below as internals 20, are surrounded by components 1, 21, 22, 23, which transmit forces and form clearly recognizable force-neutral zones 31.
  • the shear forces 16.16' act on every concrete structure.
  • the figures show such building structures in a horizontal arrangement, but apply to any position.
  • the ZD force model 40 is solved using a ZD component 21
  • the SB force model 41 is solved by an SB component 22
  • the requirements of a HS force model 42 enable an HS component 23.
  • the ZD power model 40 is in Fig. 1 shown.
  • the force-neutral zone 31 is formed by a tension zone 33 and a pressure zone 32.
  • the compressive forces are caused by the concrete 12 and other parts of the component 1 such as those in Fig. 21 , 22
  • the extensions 8 shown are taken over, while a ZD component 21 with at least one tension element 2 is used to absorb the thrust forces 16, 16 '.
  • the SB force model 41 is in Fig. 2 shown.
  • the force-neutral zone 31 is made possible by an MQ zone 37, which can transmit the bending moments 34 and the shear forces 36.
  • the bending moments 34 and the shear forces 36 are taken over by an SB component 22 with at least one rigid element 6.
  • Any two force models and force-neutral zones can be combined by connecting via an HS force model 42 in such a way that a horizontal shear zone 35 is created, which absorbs the horizontal shear forces 18 ( Fig. 3 ).
  • the same combination can be made with an SB force model 41 and the HS force model 42, but this is not shown here.
  • the invention ensures the necessary shear-bearing behavior in the transverse direction in the area of the cavities mentioned by creating a clear flow of forces.
  • the resulting tensile component resulting from the shear forces (e.g. truss model) is absorbed by the systems and devices described below.
  • the systems create a locally reinforced area for power transmission. Depending on the force model, this is done using means such as reinforcing brackets, frame systems, rings, dowels and the like, which are described below.
  • the result is an increased shear resistance of the concrete structure. It enables the necessary arrangement and routing of the media lines and the suspension of the resulting tensile forces in such a way that the necessary force flows and concrete pressure diagonals can be formed. This is done by means of loops, bands, iron, etc. arranged on the above-mentioned systems and devices. It is also possible to leave the media lines in place and to arrange the new components 1 in such a way that the necessary pressure diagonals can be formed freely despite the media lines.
  • the ZD component 21 An embodiment of the component 1 on which the invention is based, the ZD component 21, is in the Figs. 4 and 5 pictured.
  • the most important part of the ZD component 21 is the tie rod 2.
  • the pull rod 2 can be straight or in any conceivable version, e.g. B. be designed as a curved rod or frame.
  • an anchor 3 In order to securely anchor the ZD component 21 in the concrete 12, it can be equipped with an anchor 3 at least at one end.
  • These anchors 3 can consist of round or square upsets, conventional end anchors such as welded cross bars or bends. They always serve to anchor the tie rod 2 in the concrete 12 after pouring.
  • Fig. 6 shows an installed ZD component 21.
  • the pressure diagonals 30 act on the tie rod 2 connected to the anchors 3, 3 ', so that the internals 20 can be accommodated in a force-neutral zone 31.
  • the ZD component 21 takes over the transmission of the forces, so that even when installing many and / or large internals 20 such as. B. media lines, the concrete structure 10 with an already designed and existing conventional reinforcement 11 is statically weakened little or not at all.
  • a holder 4 is fixed or detachable with the tie rod 2 or the anchors 3, 3 ' tied together.
  • This consists e.g. B. from rods, bands or loops with which the possible cavity for guiding the media lines is controlled and defined.
  • Fig. 7 shows which embodiments are possible.
  • these holders 4 as wires or bands, which have at least one end on the pull rod 2 or the Anchors 3, 3 'are releasably secured.
  • a ZD component 21, or an SB component 22 and also a HS component 23 can be inserted at the last moment before the concrete 12 is poured in and the internals 20 can be enclosed with the holder 4 loose at one end and so on be connected to the corresponding component 21, 22 or 23.
  • the point of this action is to keep the internals 20 in the cavity provided for this purpose, the force-neutral zone 30, even during pouring.
  • the tension element 2 also forms the holder 4 for the internals 20.
  • Elements shown in these figures are suitable for planned installation, so that the craftsmen are told where they can and should lay their media lines. If a component 21, 22 or 23 is provided at an early stage, for example in the planning by the plumber, the ventilation engineer or the electrician, he can insert his cables into the holders 4 of the components 21, 22 or 23 that are already on site. The invention thus offers the builders an opportunity to provide static safety for the laying of fixtures 20 at an early stage.
  • connections 5 ( Fig. 12 ) can be connected to each other. This is necessary if there is a risk that the structural elements 21, 22 and/or 23 could be displaced by pouring the concrete 12 and would therefore not work exactly at the location where the civil engineer wants the reinforcement.
  • the anchoring 3 does not have to be an upset or a welded part, as described above.
  • the pull rod 2 and the anchor 3 can also consist of a bent angle. Tie rod 2 and anchor 3 then take over the thrust forces 16 in the pressure diagonals 30 alternately. Tie rod 2 and anchor 3 can both take over the tensile forces caused by the shear forces 16. They are usually arranged at an angle of 90°. As in Fig. 13 - 15 shown, a force-neutral zone 31 can also be created with this arrangement for the internals 20 and especially for media lines with large diameters.
  • Fig. 16 shows such rigid elements 6, which have the advantage that they create an even larger, precisely specified, force-neutral zone 31 for internals 20.
  • the internals 20 can be bundled accurately with such rigid elements 6.
  • a rigid element 6 consists, for example, of a frame 7, which takes over the shear forces 16 in the form of bending moments and transverse forces and thereby an SB component 22 according to Fig. 2 represents.
  • Fig. 17 a few variations of such SB components 22 are shown in the form of frame 7.
  • Such frames 7 can also be connected to one another using connections 5.
  • variants should be presented that enable the structural engineer to take precautions even at the last moment before pouring the concrete 12 so that the concrete structure 10 does not have any weak points and meets the requirements.
  • the goal is not to make conventional reinforcement less stable.
  • the goal is rather to be able to reduce or even eliminate weakening caused by unplanned installations.
  • the ZD components 21' - 21' shown ensure the necessary shear-bearing behavior in the area of the internals 20 by creating a clear flow of forces with the force-neutral zone 31.
  • the resulting tensile component comes from the shear forces (e.g. truss model) through the ZD -Components 21' - 21′′′ added and locally reinforced area created for power transmission. This is done through means such as reinforcement brackets and the like.
  • the result is a clearly quantifiable, increased shear resistance of the concrete structure. It enables the necessary arrangement and guidance of the internals 20 (media lines) and the connection of the resulting tensile forces in such a way that the necessary force flows and concrete pressure diagonals can be formed.
  • the most important part of the ZD components 21' - 21' is the tie rod 2, 2'. This acts as a tension band element in both directions.
  • the anchors 3 consist, for example, of: B. from welded crossbars, screwed approaches, upsets or bends. They serve to anchor the tie rod 2, 2' in the concrete after pouring. They can do this in the Fig. 21 and Fig. 22
  • the extensions shown take on 8 additional functions, such as: B. preventing cracks and avoiding major deformations etc. in close proximity to the components 21' - 21'. They also serve a “gentle” transfer of forces from the ZD components 21' - 21′′′ to the concrete.
  • the ZD components 21' - 21′′′ transfer the forces locally and can be used anywhere, even multiple times.
  • the concrete structure 10 is weakened statically little or not at all with an already designed and existing conventional reinforcement 11.
  • the local weakenings caused by internals 20 are compensated for by using ZD components 21′-21′′′ according to the invention.

Description

Die vorliegende Erfindung betrifft eine Verwendung einer Vorrichtung zur Verstärkung von Betonbauten gemäß Oberbegriff des Patentanspruchs 1.The present invention relates to the use of a device for reinforcing concrete buildings according to the preamble of patent claim 1.

Betonkonstruktionen die als Decken, Wände und Träger eingesetzt werden, dienen unter anderen in allen modernen Bauten der Unterbringung von Medienleitungen für Wasser, Abwasser, Lüftung, Elektro und Kommunikation. Weil Lüftungsrohre normalerweise große Durchmesser aufweisen, wurden diese für Gebäude mit Klimaanlagen separat gebaut und die Lüftungskanäle vielfach rechteckig ausgestaltet, so dass sie in der Infrastruktur, z. B. in herunter gehängten Decken versteckt werden konnten. Im Zusammenhang mit dem Energiesparen, das immer mehr Anwendung findet, wurden immer mehr Rohre und Kanäle für Zwangslüftungen eingebaut. Dies bringt es mit sich, dass Lüftungsleitungen großen Querschnitts eingelegt werden müssen. Da Niemand in Privathäusern und Geschäftsgebäuden offen verlegte Leitungen schätzt, die nebst ästhetischen Mängeln auch Staubfänger und Schmutzzonen sind und die Raumhöhe vermindern, werden vermehrt Leitungen in die Betonkonstruktion eingebaut.Concrete structures that are used as ceilings, walls and supports are used, among other things, to accommodate media pipes for water, wastewater, ventilation, electrical and communication in all modern buildings. Because ventilation pipes usually have large diameters, they were built separately for buildings with air conditioning systems and the ventilation ducts were often designed rectangular so that they could be integrated into the infrastructure, e.g. B. could be hidden in suspended ceilings. In connection with energy saving, which is becoming more and more popular, more and more pipes and ducts for forced ventilation have been installed. This means that ventilation pipes with a large cross-section have to be inserted. Since no one appreciates openly laid cables in private homes and commercial buildings, which, in addition to aesthetic defects, also trap dust and dirt and reduce the room height, more and more cables are being installed in the concrete structure.

Allgemein werden durch fortschreitende Bedürfnisse des Komforts mehr Leerrohre für Medienleitungen wie Elektro, Audio, Heizungen und Wasser eingelegt, so dass in vielen Fällen eine akute Schwächung der Betonkonstruktionen vorliegt.In general, increasing comfort requirements mean that more empty pipes are being installed for media lines such as electrical, audio, heating and water, so that in many cases there is an acute weakening of the concrete structures.

Im Umfeld solcher Medienleitungen entstehen in der Betonkonstruktion mehrere Hohlräume mit einer Längenausdehnung die oftmals große Bereiche der Betonkonstruktion durchlaufen. Dadurch wird insbesondere das Schubtragverhalten der Betonkonstruktionen massiv beeinträchtigt.In the vicinity of such media lines, several cavities with a length expansion arise in the concrete structure, which often pass through large areas of the concrete structure. This massively affects the shear-bearing behavior of the concrete structures in particular.

Insbesondere für das Funktionieren der Statik z. B. einer armierten Stahlbetondecke ist jedoch die Schubtragfähigkeit von entscheidender Wichtigkeit.Especially for the functioning of the statics, e.g. B. a reinforced concrete ceiling, however, the shear capacity is of crucial importance.

Bisher bekannte Durchstanzsysteme erlauben nur Verstärkungen der Betonkonstruktion im Bereich von Krafteinleitungsbereichen von Stützen und dergleichen. Sie sind nicht geeignet die Probleme, welche durch Medienleitungen verursachte Schwächungen inmitten von Betonkonstruktionen bringen, zu lösen. Dies insbesondere deshalb, weil für die ermittelte Tragfähigkeit dieser Durchstanzsysteme ein voller Betonquerschnitt ohne Einlagen (z. B. Medienleitungen) vorhanden sein muss. Solche Einlagen schaffen jedoch große Zonen ohne Tragfähigkeit. Dies müsste berücksichtigt werden, indem spezielle Vorrichtungen lokal am Ort der Schwächung eingebaut werden. Solche Vorrichtungen sind bis heute nicht bekannt.Previously known punching systems only allow reinforcement of the concrete structure in the area of force application areas of supports and the like. They are not suitable for solving the problems caused by media pipe weakening in the middle of concrete structures. This is particularly because a full concrete cross-section without inserts (e.g. media lines) must be present for the load-bearing capacity of these punching systems to be determined. However, such deposits create large zones of no bearing capacity. This would have to be taken into account by installing special devices locally at the point of weakening. Such devices are not known to date.

In der DE 200 22 421 U1 ist eine Baustahlkonstruktion als Bewehrung für ein Betonplattenelement, eine Betondecke oder einen Betonfußboden mit integrierter Heiz- oder Kühlfunktion angegeben, die zumindest ein Bewehrungsgitter und daran angebrachte Träger für die Heiz- bzw. Kühlrohre aufweist.In the DE 200 22 421 U1 a structural steel structure is specified as reinforcement for a concrete slab element, a concrete ceiling or a concrete floor with an integrated heating or cooling function, which has at least one reinforcement grid and supports attached to it for the heating or cooling pipes.

Die Druckschrift EP 1 207 354 A2 zeigt eine Auflageleiste für eine Bewehrung für flächige Elemente aus aushärtbarem Werkstoff. Die vorgestellte Auflageleiste weist Klemmstellen auf, wo beispielsweise Leitungen oder Heiz-/Kühlrohre angeschlossen werden können.The publication EP 1 207 354 A2 shows a support bar for reinforcement for flat elements made of hardenable material. The support strip presented has clamping points where, for example, cables or heating/cooling pipes can be connected.

Die Schrift DE 19937414A1 beschreibt ein Bauelement, mittels welchem Aussparungen im Stützenbereich von Flachdecken aus Stahlbeton oder Spannbeton verstärkt werden können. In dieser Schrift wird das Problem erkannt, dass die Anordnung von Aussparungen einen elementaren Einfluss auf die Tragfähigkeit der Konstruktion hat. Ebenso wird erkannt, dass die Möglichkeit bestehen muss, solche Vorrichtungen auch noch während der Bauausführung, kurz vor dem Eingießen des Betons, eingebaut werden zu können.The font DE 19937414A1 describes a component by means of which recesses in the column area of flat ceilings made of reinforced concrete or prestressed concrete can be reinforced. This document recognizes the problem that the arrangement of recesses has a fundamental influence on the load-bearing capacity of the construction. It is also recognized that it must be possible to install such devices during construction, shortly before the concrete is poured.

Diese Offenbarung betrifft nur senkrecht zur Decke und durch die Decke geführte Leitungen in unmittelbarer Stützennähe und löst die Probleme in Bezug auf Durchstanzfestigkeit. Die Problematik ist aber vielfältiger und bereitet den Baustatikern oft Probleme, weil vor Ort und zum Zeitpunkt der Abnahme und/oder Kontrolle der Armierung schwer abzuschätzen ist, wie stark die Festigkeit durch Ansammlungen von Medienleitungen und Medienleitungen großer Durchmesser, geschwächt wird und wie verfahren werden soll, wenn vermutet wird, dass die Tragfähigkeit einer Betonkonstruktion ungenügend ist. Je perfekter heute eine Installation durch den Sanitär-, den Elektro- und den Lüftungsinstallateur ausgeführt wird, desto mehr und vor allem, desto grösser werden die Anzahl und die Durchmesser der Rohre, die für die spätere Unterbringung der Medienleitungen in eine Betonkonstruktion eingebaut werden. Dem Baustatiker wird normalerweise keine Meldung gemacht, er wird vor Ort mit den Tatsachen konfrontiert und muss die Armierung in der Regel unter Zeitdruck abnehmen.This disclosure only applies to lines perpendicular to the ceiling and through the ceiling in the immediate vicinity of the supports and solves the problems with regard to punching shear strength. However, the problem is more diverse and often causes problems for structural engineers because it is difficult to estimate on site and at the time of acceptance and/or inspection of the reinforcement how much the strength is weakened by accumulations of media lines and media lines of large diameters and how to proceed , if it is suspected that the load-bearing capacity of a concrete structure is insufficient. The more perfectly an installation is carried out today by the plumbing, electrical and ventilation installers, the more and above all, the larger the number and diameter of the pipes that are installed in a concrete structure to later accommodate the media lines. The structural engineer is usually not informed; he is confronted with the facts on site and usually has to remove the reinforcement under time pressure.

Die JPH06322890A betrifft Träger, die im Bereich von Durchgangslöchern mit Verstärkungsbewehrung versehen sind.The JPH06322890A concerns beams that are provided with reinforcing reinforcement in the area of through holes.

Bei der statischen Planung, also bei der Auslegung der Armierung einer BetonKonstruktion wird dieser Tatsache bisher allenfalls bei der Dimensionierung von Trägern Beachtung geschenkt. Für Decken und Wände vertraut man auf die normalerweise mit Sicherheiten ausgelegte Armierung. Die Leitungen werden vor dem Eingießen des Betons, aber vielfach nach der Festlegung der statisch notwendigen Armierung durch die Arbeiter vor Ort eingelegt . Dem Bauingenieur der die Statik vor dem Eingießen des Betons abnehmen muss und für deren Qualität haftet, wird bisher kein Mittel zur Verfügung gestellt, mit dem er kurzfristig, mit einfachen Mitteln und vor Ort in der Konstruktion, eine statische Verstärkung einbauen könnte.In static planning, i.e. when designing the reinforcement of a concrete structure, this fact has so far only been taken into account when dimensioning beams. For ceilings and walls, reinforcement that is normally designed with safety features is relied upon. The cables are inserted before the concrete is poured, but often after the statically necessary reinforcement has been determined by the workers on site. The civil engineer, who has to approve the statics before pouring the concrete and is liable for its quality, has not yet been provided with any means with which he could install static reinforcement in the construction at short notice, using simple means and on site.

Die vorliegende Erfindung stellt sich nunmehr die Aufgabe mit einem Bauelement die Betonkonstruktionen der eingangs genannten Art derart zu verbessern, dass in der Planungsphase Mittel zur Verfügung gestellt werden, welche lokal eingesetzt die Schwächungen durch Medienleitungen reduzieren oder gar eliminieren können. Jedoch auch Mittel zur Verfügung gestellt werden, die noch zum Zeitpunkt der Abnahme der Armierung lokal eingebaut werden können, wobei diese nach dem Eingießen des Betons die Verstärkung der Betonkonstruktion gewährleistet indem sie mittels klarem und für den Bauingenieur mittels leicht erkennbarem Kräftemodell im Bereich der Medienleitungen das Schubtragverhalten derart verstärkt, dass die Statik der Betonkonstruktion den ursprünglich durch den Baustatiker mit der Berechnung der Armierung vorgenommenen Auslegung entweder vollständig oder zumindest in Annäherung entspricht.The present invention now has the task of using a component to improve the concrete structures of the type mentioned in such a way that means are made available in the planning phase which, when used locally, can reduce or even eliminate the weakening caused by media lines. However, means are also made available that can be installed locally at the time of acceptance of the reinforcement, which ensures the reinforcement of the concrete structure after the concrete has been poured in by means of a clear force model in the area of the media pipes that is easily recognizable to the civil engineer Shear-bearing behavior is reinforced in such a way that the statics of the concrete structure either completely or at least approximately correspond to the design originally made by the structural engineer when calculating the reinforcement.

Diese Aufgabe löst die Verwendung einer Vorrichtung zur Verstärkung von Betonkonstruktionen mit den Merkmalen des Patentanspruches 1. Weitere erfindungsgemäße Merkmale gehen aus den abhängigen Ansprüchen hervor und deren Vorteile sind in der nachfolgenden Beschreibung erläutert.This problem is solved by using a device for reinforcing concrete structures with the features of patent claim 1. Further features according to the invention emerge from the dependent claims and their advantages are explained in the following description.

Grundlage der Erfindung ist ein Verfahren, das dem Bauingenieur erlaubt sowohl in der Planungsphase als auch vor Ort mittels Bauelementen mit Kräftemodellen wirksame Maßnahmen zu treffen, um die konventionell bewehrte Betonkonstruktion lokal durch geeignete Mittel in der Art zu verstärken, dass die Baukonstruktion nicht durch Medienleitungen übermäßig geschwächt wird respektive, nicht unnötige Überdimensionierungen derselben zu unwirtschaftlichen Baukonstruktionen führen müssen. Zu diesem Zweck werden die in der Folge als Einbauten 20 bezeichneten Einlagen und Medienleitungen mittels Bauelementen 1,21,22,23 umgeben, welche Kräfte übertragen und klar erkennbare kraftneutrale Zonen 31 bilden. Auf jede Betonkonstruktion wirken die Schubkräfte 16,16'. Die Figuren zeigen solche Baukonstruktionen jeweils in der Horizontalen Anordnung, gelten aber für jede beliebigen Lage.The basis of the invention is a method that allows the civil engineer both in the Effective measures must be taken in the planning phase as well as on site using structural elements with force models in order to locally reinforce the conventionally reinforced concrete structure using suitable means in such a way that the building structure is not excessively weakened by media lines or that unnecessary over-dimensioning of the same does not lead to uneconomical building structures. For this purpose, the inserts and media lines, referred to below as internals 20, are surrounded by components 1, 21, 22, 23, which transmit forces and form clearly recognizable force-neutral zones 31. The shear forces 16.16' act on every concrete structure. The figures show such building structures in a horizontal arrangement, but apply to any position.

Im Folgenden werden verschiedene Kräftemodelle beschrieben. Das ZD-Kräftemodell 40 wird mittels ZD-Bauelement 21 gelöst, das SB-Kräftemodell 41 wird durch ein SB-Bauelement 22 gelöst und die /Anforderungen eines HS-Kräftemodelles 42 ermöglicht ein HS-Bauelement 23.Various force models are described below. The ZD force model 40 is solved using a ZD component 21, the SB force model 41 is solved by an SB component 22 and the requirements of a HS force model 42 enable an HS component 23.

Das ZD-Kräftemodell 40 ist in Fig. 1 dargestellt. Die kraftneutrale Zone 31 wird durch eine Zugzone 33 und eine Druckzone 32 gebildet. Die Druckkräfte werden durch den Beton 12 und weitere Teile des Bauelementes 1 wie z.B. die in Fig. 21 , 22 dargestellten Verlängerungen 8 übernommen, während zur Aufnahme der Schubkräfte 16,16' ein ZD-Bauelement 21 mit mindestens einem Zugelement 2 dient.The ZD power model 40 is in Fig. 1 shown. The force-neutral zone 31 is formed by a tension zone 33 and a pressure zone 32. The compressive forces are caused by the concrete 12 and other parts of the component 1 such as those in Fig. 21 , 22 The extensions 8 shown are taken over, while a ZD component 21 with at least one tension element 2 is used to absorb the thrust forces 16, 16 '.

Das SB-Kräftemodell 41 ist in Fig. 2 dargestellt. Die kraftneutrale Zone 31 wird durch eine M-Q-Zone 37 ermöglicht, welche die Biegemomente 34 und die Schubkräfte 36 übertragen kann. Die Biegemomente 34 und die Schubkräfte 36 werden durch ein SB-Bauelement 22 mit mindestens einem biegesteifen Element 6 übernommen.The SB force model 41 is in Fig. 2 shown. The force-neutral zone 31 is made possible by an MQ zone 37, which can transmit the bending moments 34 and the shear forces 36. The bending moments 34 and the shear forces 36 are taken over by an SB component 22 with at least one rigid element 6.

Zwei beliebige Kräftemodelle und kraftneutrale Zonen können durch die Verbindung über ein HS-Kräftemodell 42 in der Art kombiniert werden, dass eine Horizontalschubzone 35 entsteht, welche die Horizontalschubkräfte 18 aufnimmt ( Fig. 3 ) . Dieselbe Kombination kann mit einem SB-Kräftemodell 41 und dem HS-Kräftemodell 42 gemacht werden, diese ist hier aber nicht zeichnerisch dargestellt.Any two force models and force-neutral zones can be combined by connecting via an HS force model 42 in such a way that a horizontal shear zone 35 is created, which absorbs the horizontal shear forces 18 ( Fig. 3 ). The same combination can be made with an SB force model 41 and the HS force model 42, but this is not shown here.

In der Zeichnung zeigt:

Fig. 1
ZD-Kräftemodell
Fig. 2
SB-Kräftemodell
Fig. 3
Kombination von einem ZD-Kräftemodell mit einem HS-Kräftemodell
Fig. 4
ZD-Bauelement mit runden Endstücken
Fig. 5
ZD-Bauelement mit viereckigen Endstücken
Fig. 6
in der Betonkonstruktion eingebautes ZD-Bauelement
Fig. 7
verschiedene Formen der Halterungen am Bauelement
Fig. 8
ZD-Bauelement mit Hohlraum bildender Zugstange
Fig. 9
ZD-Bauelement mit Hohlraum bildender Zugstange verstärkt
Fig. 10
in der Betonkonstruktion eingebautes ZD-Bauelement mit Hohlraum bildender Zugstange verstärkt
Fig. 11
Hohlraum bildende Zugstangen verschiedener Bauart von ZD-Bauelementen
Fig. 12
Verbindung von mehreren ZD-Bauelementen
Fig. 13
ZD-Bauelement mit winklig angeordneter Zugstange und Verankerung
Fig. 14
kreuzweise und winklig angeordnete Zugstange und Verankerung von ZD-Bauelementen
Fig. 15
eine Vielzahl kreuzweise und winklig angeordnete Zugstangen und Verankerungen von ZD-Bauelementen
Fig. 16
U-förmiges SB-Bauelement mit Verankerungen
Fig. 17
verschiedene Formen von SB-Bauelementen
Fig. 18
Anordnung eines HS-Bauelementes in der Decke
Fig. 19
verschiedene Ausführungsformen verschiedener HS-Bauelemente
Fig. 20
geprüfte, einfache Ausführungsform mit definierter kraftneutraler Zone
Fig. 21
geprüfte, geschlossene Ausführungsform mit definierter kraftneutraler Zone
Fig. 22
geprüfte, offene Ausführungsform mit definierter kraftneutraler Zone
In the drawing shows:
Fig. 1
ZD force model
Fig. 2
SB force model
Fig. 3
Combination of a ZD force model with a HS force model
Fig. 4
ZD component with round end pieces
Fig. 5
ZD component with square end pieces
Fig. 6
ZD component installed in the concrete structure
Fig. 7
different forms of mounting on the component
Fig. 8
ZD component with a cavity-forming tie rod
Fig. 9
ZD component reinforced with a cavity-forming tie rod
Fig. 10
ZD component installed in the concrete structure reinforced with a tie rod forming a cavity
Fig. 11
Cavity-forming tie rods of various types of ZD components
Fig. 12
Connection of several ZD components
Fig. 13
ZD component with angled tie rod and anchoring
Fig. 14
Crosswise and angularly arranged tie rod and anchoring of ZD components
Fig. 15
a variety of crosswise and angled tie rods and anchors ZD components
Fig. 16
U-shaped SB component with anchors
Fig. 17
different forms of self-service components
Fig. 18
Arrangement of a HS component in the ceiling
Fig. 19
different embodiments of different HS components
Fig. 20
Tested, simple embodiment with defined force-neutral zone
Fig. 21
Tested, closed embodiment with defined force-neutral zone
Fig. 22
Tested, open embodiment with defined force-neutral zone

Die Figuren stellen mögliche Ausführungsbeispiele dar, welche in der nachfolgenden Beschreibung erläutert werden.The figures represent possible exemplary embodiments, which are explained in the following description.

Die Erfindung gewährleistet im Bereich der genannten Hohlräume in Querrichtung das notwendige Schubtragverhalten durch Schaffung eines klaren Kräfteflusses. So wird die entstehende Zugkomponente herrührend von den Schubkräften (z. B. Fachwerk-Modell) durch die nachfolgend beschriebenen Systeme und Vorrichtungen aufgenommen. Es wird lokal durch die Systeme ein armierter Bereich für die Kraftübertragung geschaffen. Dies geschieht je nach Kräftemodell durch Mittel wie z.B. Armierungsbügel, Rahmensysteme, Ringe, Dübel und dergleichen die nachfolgend beschrieben sind. Es resultiert ein erhöhter Schubwiderstand der Betonkonstruktion. Sie ermöglicht die notwendige Anordnung und Führung der Medienleitungen und die Aufhängung der entstehenden Zugkräfte dergestalt, dass die notwendigen Kräfteflüsse und Betondruckdiagonalen sich ausbilden können. Dies geschieht durch an die oben genannten Systeme und Vorrichtungen angeordneten Schlaufen, Bänder, Eisen etc. Ebenso ist es möglich, die Medienleitungen an Ort zu lassen und die neuen Bauelemente 1 so anzuordnen, dass sich die notwendigen Druckdiagonalen trotz der Medienleitungen frei ausbilden können.The invention ensures the necessary shear-bearing behavior in the transverse direction in the area of the cavities mentioned by creating a clear flow of forces. The resulting tensile component resulting from the shear forces (e.g. truss model) is absorbed by the systems and devices described below. The systems create a locally reinforced area for power transmission. Depending on the force model, this is done using means such as reinforcing brackets, frame systems, rings, dowels and the like, which are described below. The result is an increased shear resistance of the concrete structure. It enables the necessary arrangement and routing of the media lines and the suspension of the resulting tensile forces in such a way that the necessary force flows and concrete pressure diagonals can be formed. This is done by means of loops, bands, iron, etc. arranged on the above-mentioned systems and devices. It is also possible to leave the media lines in place and to arrange the new components 1 in such a way that the necessary pressure diagonals can be formed freely despite the media lines.

Eine der Erfindung zugrunde liegende Ausführung des Bauelementes 1, das ZD-Bauelement 21 ist in den Fig. 4 und 5 abgebildet. Wesentlichster Teil des ZD-Bauelementes 21 ist die Zugstange 2. Diese wirkt als Zugbandelement in beiden Richtungen. Die Zugstange 2 kann gerade oder in jeder denkbaren Ausführung z. B. als gebogener Stab oder Rahmen ausgebildet sein. Um das ZD-Bauelement 21 im Beton 12 sicher zu verankern, kann es mindestens am einen Ende mit einer Verankerung 3 ausgestattet werden. Diese Verankerung 3 können aus runden oder eckigen Aufstauchungen, aus konventionellen Endverankerungen wie angeschweißten Quereisen oder Abbiegungen bestehen. Sie dienen immer der Verankerung der Zugstange 2 im Beton 12 nach dem Eingießen.An embodiment of the component 1 on which the invention is based, the ZD component 21, is in the Figs. 4 and 5 pictured. The most important part of the ZD component 21 is the tie rod 2. This acts as a tension band element in both directions. The pull rod 2 can be straight or in any conceivable version, e.g. B. be designed as a curved rod or frame. In order to securely anchor the ZD component 21 in the concrete 12, it can be equipped with an anchor 3 at least at one end. These anchors 3 can consist of round or square upsets, conventional end anchors such as welded cross bars or bends. They always serve to anchor the tie rod 2 in the concrete 12 after pouring.

Fig. 6 zeigt ein eingebautes ZD-Bauelement 21. Die Druckdiagonalen 30 wirken auf die mit den Verankerungen 3, 3' verbundene Zugstange 2, so dass die Einbauten 20 in einer kraftneutralen Zone 31 untergebracht werden können. Das ZD-Bauelement 21 übernimmt die Übertragung der Kräfte, so dass auch beim Einbau vieler und/oder großer Einbauten 20 wie z. B. Medienleitungen die Betonkonstruktion 10 mit einer bereits ausgelegten und vorhandenen konventionellen Armierung 11 statisch wenig oder gar nicht geschwächt wird. Fig. 6 shows an installed ZD component 21. The pressure diagonals 30 act on the tie rod 2 connected to the anchors 3, 3 ', so that the internals 20 can be accommodated in a force-neutral zone 31. The ZD component 21 takes over the transmission of the forces, so that even when installing many and / or large internals 20 such as. B. media lines, the concrete structure 10 with an already designed and existing conventional reinforcement 11 is statically weakened little or not at all.

Um die Einbauten 20 auch während des Eingießens des Betons 12 in der kraftneutralen Zone 31, also in dem dafür vorgesehenen Hohlraum für die Führung der Einbauten 20 zu halten, wird mit der Zugstange 2 oder den Verankerungen 3, 3' eine Halterung 4 fest oder lösbar verbunden. Diese besteht z. B. aus Stäben, Bändern oder Schlaufen mit welchen der mögliche Hohlraum für die Führung der Medienleitungen gesteuert und definiert wird. In Fig. 7 ist dargestellt, welche Ausführungsformen möglich sind. Ferner ist auch daran gedacht diese Halterungen 4 als Drähte oder Bänder auszubilden, welche mindestens mit einem Ende an der Zugstange 2 oder den Verankerungen 3, 3' lösbar festgemacht sind. Auf diese Weise kann ein ZD-Bauelement 21, oder ein SB-Bauelement 22 und auch ein HS-Bauelement 23 noch im letzten Moment vor dem Eingießen des Betons 12 noch eingesetzt und die Einbauten 20 mit der am einen Ende losen Halterung 4 umfasst und so mit dem entsprechenden Bauelement 21,22 oder 23 verbunden werden. Es geht bei dieser Handlung ja darum, die Einbauten 20 auch während des Eingießens im dafür vorgesehenen Hohlraum, der kraftneutralen Zone 30 zu halten.In order to hold the internals 20 in the force-neutral zone 31, i.e. in the cavity provided for guiding the internals 20, even during the pouring of the concrete 12, a holder 4 is fixed or detachable with the tie rod 2 or the anchors 3, 3 ' tied together. This consists e.g. B. from rods, bands or loops with which the possible cavity for guiding the media lines is controlled and defined. In Fig. 7 shows which embodiments are possible. Furthermore, it is also thought to design these holders 4 as wires or bands, which have at least one end on the pull rod 2 or the Anchors 3, 3 'are releasably secured. In this way, a ZD component 21, or an SB component 22 and also a HS component 23 can be inserted at the last moment before the concrete 12 is poured in and the internals 20 can be enclosed with the holder 4 loose at one end and so on be connected to the corresponding component 21, 22 or 23. The point of this action is to keep the internals 20 in the cavity provided for this purpose, the force-neutral zone 30, even during pouring.

Andere Ausführungsformen sind in den Fig. 8 bis Fig. 11 dargestellt. Bei solchen Ausführungsformen bildet das Zugelement 2 gleichzeitig auch die Halterung 4 für die Einbauten 20. In diesen Figuren dargestellte Elemente eignen sich zum geplanten Einbau, so dass den Handwerkern vorgegeben wird, wo sie Ihre Medienleitungen verlegen dürfen und sollen. Wird ein Bauelement 21, 22 oder 23 im frühen Zeitpunkt d. h. z. B. schon in der Planung durch den Sanitärinstallateur, den Lüftungstechniker oder den Elektriker vorgesehen, kann dieser seine Leitungen in die Halterungen 4 der bereits vor Ort vorhandenen Bauelemente 21, 22 oder 23 einführen. Die Erfindung bietet so den Bauleuten eine Möglichkeit die statische Sicherheit für das Verlegen von Einbauten 20 zum frühen Zeitpunkt vorzusehen.Other embodiments are in the Fig. 8 to Fig. 11 shown. In such embodiments, the tension element 2 also forms the holder 4 for the internals 20. Elements shown in these figures are suitable for planned installation, so that the craftsmen are told where they can and should lay their media lines. If a component 21, 22 or 23 is provided at an early stage, for example in the planning by the plumber, the ventilation engineer or the electrician, he can insert his cables into the holders 4 of the components 21, 22 or 23 that are already on site. The invention thus offers the builders an opportunity to provide static safety for the laying of fixtures 20 at an early stage.

Um die Position mehrerer Bauelemente 21,22 und/oder 23 in Längsrichtung der kraftneutralen Zone 31 festzulegen, können mehrere Bauelemente 21,22 und/oder 23 durch Verbindungen 5 ( Fig. 12 ) miteinander verbunden werden. Dies ist dann notwendig, wenn die Gefahr besteht, dass durch das Eingießen des Beton 12 die Bauelemente 21, 22 und/oder 23 verschoben werden könnten und dadurch nicht genau an dem Ort wirken würden, an dem der Bauingenieur die Verstärkung wünscht.In order to determine the position of several components 21, 22 and/or 23 in the longitudinal direction of the force-neutral zone 31, several components 21, 22 and/or 23 can be connected by connections 5 ( Fig. 12 ) can be connected to each other. This is necessary if there is a risk that the structural elements 21, 22 and/or 23 could be displaced by pouring the concrete 12 and would therefore not work exactly at the location where the civil engineer wants the reinforcement.

Die Verankerung 3 muss nicht, wie oben beschrieben, eine Aufstauchung oder ein angeschweißtes Teil sein. Wie in Fig. 13 dargestellt kann die Zugstange 2 und die Verankerung 3 auch aus einem abgebogenen Winkel bestehen. Zugstange 2 und Verankerung 3 übernehmen dann die Schubkräfte 16 in den Druckdiagonalen 30 wechselseitig. Zugstange 2 und Verankerung 3 können beide die Zugkräfte die durch die Schubkräfte 16 entstehen übernehmen. Sie sind in der Regel in einem Winkel von 90° angeordnet. Wie in Fig. 13 - 15 dargestellt kann auch mit dieser Anordnung für die Einbauten 20 und speziell für Medienleitungen mit großem Durchmesser eine kraftneutrale Zone 31 geschaffen werden.The anchoring 3 does not have to be an upset or a welded part, as described above. As in Fig. 13 shown, the pull rod 2 and the anchor 3 can also consist of a bent angle. Tie rod 2 and anchor 3 then take over the thrust forces 16 in the pressure diagonals 30 alternately. Tie rod 2 and anchor 3 can both take over the tensile forces caused by the shear forces 16. They are usually arranged at an angle of 90°. As in Fig. 13 - 15 shown, a force-neutral zone 31 can also be created with this arrangement for the internals 20 and especially for media lines with large diameters.

Gerade im modernen Bau der den Anforderungen der Gebäude Organisation (Facility-Management) genügen muss werden oft sehr viele einbauten 20, vor allem auch Medienleitungen mit großen Durchmessern eingebaut. Sollte dies nicht schon zum Zeitpunkt der statischen Auslegung der Betonkonstruktion bekannt gewesen sein, kann es zu großen Problemen führen. Es ist deshalb denkbar, dass eine Vielzahl von kreuzweise angeordneten Kombinationen von winklig abgebogenen Elementen aus Zugstangen 2 und Verankerungen 3 eingesetzt werden. Auf diese Weise wird wie in Fig. 15 gezeigt eine Vielzahl kraftneutraler Zonen 31 für die Unterbringung von Einbauten 20 geschaffen, wobei die Betonkonstruktion 10 möglichst nicht geschwächt wird.Especially in modern buildings that have to meet the requirements of building organization (facility management), a lot of built-in 20, especially media lines with large diameters, are often installed. If this was not already known at the time of the structural design of the concrete structure, it can lead to major problems. It is therefore conceivable that a large number of cross-arranged combinations of angled bent elements made of tie rods 2 and anchors 3 are used. In this way, as in Fig. 15 shown, a large number of force-neutral zones 31 are created for the accommodation of internals 20, whereby the concrete structure 10 is not weakened as much as possible.

In gewissen Fällen kann es sich lohnen oder ist es erforderlich, speziell geformte SB-Bauelemente 22 einzusetzen. Fig. 16 zeigt solche biegesteife Elemente 6, welche den Vorteil haben, dass sie eine noch größere genau vorgegebene kraftneutrale Zone 31 für Einbauten 20 schaffen. Die Einbauten 20 lassen sich mit solchen biegesteifen Elementen 6 zielsicher bündeln. Ein biegesteifes Element 6 besteht z.B. aus einem Rahmen 7, welcher die Schubkräfte 16 in Form von Biegemomenten und Querkräften übernimmt und dadurch ein SB-Bauelement 22 gemäß Fig. 2 darstellt. In Fig. 17 sind ein paar Variationen solcher SB-Bauelemente 22 in Form von Rahmen 7 dargestellt. Auch solche Rahmen 7 können mittels Verbindungen 5 miteinander verbunden werden.In certain cases it may be worthwhile or necessary to use specially shaped SB components 22. Fig. 16 shows such rigid elements 6, which have the advantage that they create an even larger, precisely specified, force-neutral zone 31 for internals 20. The internals 20 can be bundled accurately with such rigid elements 6. A rigid element 6 consists, for example, of a frame 7, which takes over the shear forces 16 in the form of bending moments and transverse forces and thereby an SB component 22 according to Fig. 2 represents. In Fig. 17 a few variations of such SB components 22 are shown in the form of frame 7. Such frames 7 can also be connected to one another using connections 5.

Grundsätzlich sollen Varianten vorgestellt werden, die dem Baustatiker ermöglichen, auch im letzten Moment vor dem Eingießen des Betons 12 noch Vorkehrungen zu treffen, dass die Betonkonstruktion 10 keine Schwachstellen aufweist und den Anforderungen entspricht. Es sei nicht das Ziel, dass man die konventionelle Armierung weniger stabil auslege. Das Ziel ist es vielmehr durch ungeplante Einbauten verursachte Schwächungen reduzieren oder sogar eliminieren zu können.Basically, variants should be presented that enable the structural engineer to take precautions even at the last moment before pouring the concrete 12 so that the concrete structure 10 does not have any weak points and meets the requirements. The goal is not to make conventional reinforcement less stable. The goal is rather to be able to reduce or even eliminate weakening caused by unplanned installations.

Um die oben und in den Fig. 1 bis 19 grundsätzlich erklärten Tatsachen in der praktischen Anwendung zu beobachten wurden Bauelemente 1 in der Form wie sie in Fig. 20 bis Fig. 22 gezeigt werden praktischen Tests unterzogen. Es zeigt sich, dass das ZD-Kräftemodell mit den in den Fig. 20 - 22 gezeigten Formen die besten Ergebnisse erzielen. Im technischen Sinne sind diese Formen lediglich Weiterentwicklungen der in Figuren 4, 5 , 8 und 9 dargestellten ZD-Bauelementen 21. Das Kräftemodell 40 ist in Fig. 1 dargestellt. Die kraftneutrale Zone 31 wird durch eine Zugzone 33 und eine Druckzone 32 ( Fig. 1 ) gebildet. Die Druckkräfte werden durch den Beton 12 und die Verankerungen übernommen, während zur Aufnahme der Zugkräfte der Zugzone 33, 33' ein ZD-Bauelement 21' - 21‴ ( Fig. 20 - 22 ) mit mindestens einem Zugelement 2, 2' dient.To the above and in the Fig. 1 to 19 fundamentally explained facts were observed in practical application. Components 1 were in the form as they are in Fig. 20 to Fig. 22 shown are subjected to practical tests. It turns out that the ZD force model with the in the Fig. 20 - 22 the shapes shown achieve the best results. In a technical sense, these forms are merely further developments of the in Figures 4, 5 , 8 and 9 ZD components 21 shown. The force model 40 is in Fig. 1 shown. The force-neutral zone 31 is formed by a tension zone 33 and a pressure zone 32 ( Fig. 1 ) educated. The compressive forces are taken over by the concrete 12 and the anchors, while a ZD component 21' - 21‴ ( Fig. 20 - 22 ) with at least one tension element 2, 2 'serves.

Die in Fig. 20 - 22 dargestellten ZD-Bauelemente 21' - 21 ‴ gewährleisten im Bereich der Einbauten 20 das notwendige Schubtragverhalten durch Schaffung eines klaren Kräfteflusses mit der kraftneutralen Zone 31. So wird die entstehende Zugkomponente herrührend von den Schubkräften (z. B. Fachwerk-Modell) durch die ZD-Bauelemente 21' - 21‴ aufgenommen und lokal verstärkter Bereich für die Kraftübertragung geschaffen. Dies geschieht durch Mittel wie Armierungsbügel und dergleichen. Es resultiert ein klar quantifizierbarer, erhöhter Schubwiderstand der Betonkonstruktion. Sie ermöglicht die notwendige Anordnung und Führung der Einbauten 20 (Medienleitungen) und die Anbindung der entstehenden Zugkräfte dergestalt, dass die notwendigen Kräfteflüsse und Betondruckdiagonalen sich ausbilden können. Es ist möglich, die Medienleitungen an Ort zu lassen und die ZD-Bauelemente 21 wie sie in Fig. 20 - 22 dargestellt sind so anzuordnen, dass sich die notwendigen Kräfteflüsse trotz der Einbauten 20 (Medienleitungen) frei ausbilden können. Damit werden durch Einbauten 20 verursachte lokale Schwächungen der Betonkonstruktion 11 lokal kompensiert und in der gesamten Betonkonstruktion 11 integriert.In the Fig. 20 - 22 The ZD components 21' - 21' shown ensure the necessary shear-bearing behavior in the area of the internals 20 by creating a clear flow of forces with the force-neutral zone 31. The resulting tensile component comes from the shear forces (e.g. truss model) through the ZD -Components 21' - 21‴ added and locally reinforced area created for power transmission. This is done through means such as reinforcement brackets and the like. The result is a clearly quantifiable, increased shear resistance of the concrete structure. It enables the necessary arrangement and guidance of the internals 20 (media lines) and the connection of the resulting tensile forces in such a way that the necessary force flows and concrete pressure diagonals can be formed. It is possible to leave the media lines in place and the ZD components 21 as shown in Fig. 20 - 22 shown are to be arranged in such a way that the necessary force flows can develop freely despite the internals 20 (media lines). This means that local weakenings of the concrete structure 11 caused by internals 20 are locally compensated for and integrated into the entire concrete structure 11.

Wesentlichster Teil der ZD-Bauelemente 21' - 21‴ ist die Zugstange 2, 2'. Diese wirkt als Zugbandelement in beiden Richtungen. Um die ZD-Bauelemente 21' - 21‴ im Beton sicher zu verankern, wird es an den Enden mit Verankerungen 3 ausgestattet Die Verankerungen 3 bestehen z. B. aus angeschweißten Quereisen, geschraubten Ansätzen, Aufstauchungen oder Abbiegungen. Sie dienen der Verankerung der Zugstange 2, 2' im Beton nach dem Eingießen. Dazu können die in den Fig. 21 und Fig. 22 dargestellten Verlängerungen 8 zusätzliche Funktionen übernehmen, wie z. B. das Verhindern von Rissen und die Vermeidung von größeren Deformationen etc. in enger Nachbarschaft der Bauelemente 21' - 21‴. Sie dienen auch einer "sanften" Übergabe der Kräfte von den ZD-Bauelementen 21' - 21‴ an den Beton.The most important part of the ZD components 21' - 21' is the tie rod 2, 2'. This acts as a tension band element in both directions. In order to securely anchor the ZD components 21' - 21" in the concrete, it is equipped with anchors 3 at the ends. The anchors 3 consist, for example, of: B. from welded crossbars, screwed approaches, upsets or bends. They serve to anchor the tie rod 2, 2' in the concrete after pouring. They can do this in the Fig. 21 and Fig. 22 The extensions shown take on 8 additional functions, such as: B. preventing cracks and avoiding major deformations etc. in close proximity to the components 21' - 21'. They also serve a “gentle” transfer of forces from the ZD components 21' - 21‴ to the concrete.

Die ZD-Bauelemente 21' - 21‴ übernehmen die Übertragung der Kräfte lokal und können an beliebigen Stellen, auch mehrfach eingesetzt werden. Beim Einbau vieler und großer Einbauten 20 wird die Betonkonstruktion 10 mit einer bereits ausgelegten und vorhandenen konventionellen Armierung 11 statisch wenig oder gar nicht geschwächt. Die durch Einbauten 20 verursachten lokalen Schwächungen werden durch den Einsatz von erfindungsgemäßen ZD-Bauelementen 21'-21‴ kompensiert.The ZD components 21' - 21‴ transfer the forces locally and can be used anywhere, even multiple times. When installing many and large fixtures 20, the concrete structure 10 is weakened statically little or not at all with an already designed and existing conventional reinforcement 11. The local weakenings caused by internals 20 are compensated for by using ZD components 21′-21‴ according to the invention.

Grundsätzlich sollen auch die in den Fig 20 - 22 vorgestellten Varianten der ZD-Bauelemente 21' - 21‴ dem Baustatiker ermöglichen, noch im letzten Moment z. B. anlässlich einer letzten durch den Statiker vorgenommenen Kontrolle vor dem Eingiessen des Betons Vorkehrungen zu treffen, so dass die ganze Betonkonstruktion 10 keine Schwachstellen aufweist und den Anforderungen entspricht. Es ist nicht das Ziel und die Aufgabe der Erfindung, dass man die konventionelle Armierung weniger stabil auslegen muss! Das Ziel ist es vielmehr Schwächungen die von Einbauten 1 herrühren durch entsprechende Maßnahmen zu korrigieren. Dass dies mit den in Fig. 20 - 22 dargestellten ZD-Bauelementen 21' - 21‴ erreicht wird haben intensive Tests bewiesen.In principle, they should also be in the Figs 20 - 22 presented variants of the ZD components 21' - 21‴ enable the structural engineer to e.g. at the last moment. B. on the occasion of a final check carried out by the structural engineer before pouring the concrete, precautions must be taken so that the entire concrete structure 10 has no weak points and meets the requirements. It is not the aim and task of the invention that the conventional reinforcement has to be designed to be less stable! The aim is rather to correct weakenings that arise from internals 1 through appropriate measures. That this is with the in Fig. 20 - 22 Intensive tests have proven that this is achieved with the ZD components 21' - 21' shown.

Claims (9)

  1. Use of a
    device for reinforcing concrete structures, which bridges weakened zones caused by embedded elements (20) by means of inserted structural elements and which transmits the forces, wherein in addition to the conventional design of the reinforcement (11) originally calculated by the structural engineer and before the concrete is cast, the embedded elements (20) are surrounded by at least one structural element (1),
    the structural element (1) comprises at least one anchoring (3) and at least one tension element (2) in the form of a straight tension rod, a curved rod or a frame, which is connected to an anchoring (3) at both ends,
    wherein a force model is formed by the structural element (1), which strengthens the local shear behavior of the statics in the area of the embedded elements (20), and thus improves the concrete structure weakened by the embedded elements (20) by transferring the forces,
    and reduces or eliminates the static weaknesses of the concrete structure caused by the embedded elements (20), the tensile element (2) taking over shear, compressive, transverse, tensile forces and/or bending moments,
    wherein force-neutral zones (31) are formed by the force model for the embedded elements (20),
    the structural element (1) surrounds these force-neutral zones (31) in a plane on two opposite sides at least partially and completely on a third side connecting the two sides, and the embedded elements (20) are accomodated and held in the force-neutral zones (31),
    wherein by inserting the structural element (1), the weaknesses are bridged, which are caused by the embedded elements (20), which were not taken into account in the static design of the conventional reinforcement of the concrete structures.
  2. Use of a device according to claim 1,
    characterised in that
    the structural element (1) consists of a ZD structural element (21), which forms at least one ZD force model (40) onsisting of at least one pressure zone (32) and at least one tension zone (33).
  3. Use of a device according to claim 1,
    characterised in that
    the structural element (1) consists of an HS structural element (23), which forms at least one HS force model (42) consisting of at least one horizontal shear zone (35).
  4. Use of a device according to claim 2 and 3,
    characterised in that
    at least one force model is formed by the structural element (1) consisting of at least one ZD force model (40) and of at least one HS force model (42).
  5. Use of a device according to any one of claims 1 to 4,
    characterised in that
    the anchoring (3) consists of conventional end anchors such as welded crossbars or screwed lugs or round or angular bumps or bends.
  6. Use of a device according to one of claims 1 to 5,
    characterised in that
    at least two structural elements (1) are connected to one another by at least one connection (5, 5').
  7. Use of a device according to claim 6,
    characterised in that
    the connection between at least two components (1) is arranged along the force-neutral zone (31).
  8. Use of a device according to claim 6,
    characterised in that
    connections (5, 5') between at least two components (1) are arranged transversely to the force-neutral zone (31).
  9. Use of a device according to claim 6,
    characterised in that
    connections (5, 5') between at least two components (1) are arranged along the force neutral zone (31) and transversely to the force-neutral zone (31).
EP16205449.8A 2009-09-08 2010-09-03 Use of a reinforcing element for installations in concrete structures Active EP3181772B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2009/053923 WO2011030178A1 (en) 2009-09-08 2009-09-08 Reinforcing element for recessed parts in concrete structures
PCT/IB2010/053985 WO2011030270A1 (en) 2009-09-08 2010-09-03 Reinforcing element for recessed parts in concrete structures
EP10766337.9A EP2475827B1 (en) 2009-09-08 2010-09-03 Reinforcing element for recessed parts in concrete structures

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10766337.9A Division EP2475827B1 (en) 2009-09-08 2010-09-03 Reinforcing element for recessed parts in concrete structures
EP10766337.9A Division-Into EP2475827B1 (en) 2009-09-08 2010-09-03 Reinforcing element for recessed parts in concrete structures

Publications (2)

Publication Number Publication Date
EP3181772A1 EP3181772A1 (en) 2017-06-21
EP3181772B1 true EP3181772B1 (en) 2023-10-18

Family

ID=41647193

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16205449.8A Active EP3181772B1 (en) 2009-09-08 2010-09-03 Use of a reinforcing element for installations in concrete structures
EP10766337.9A Active EP2475827B1 (en) 2009-09-08 2010-09-03 Reinforcing element for recessed parts in concrete structures

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10766337.9A Active EP2475827B1 (en) 2009-09-08 2010-09-03 Reinforcing element for recessed parts in concrete structures

Country Status (4)

Country Link
US (1) US20120240496A1 (en)
EP (2) EP3181772B1 (en)
CA (1) CA2773779A1 (en)
WO (2) WO2011030178A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971736B1 (en) * 2009-04-03 2010-07-21 이재호 Shear reinforcement with dual anchorage function each up and down
GB2504720B (en) * 2012-08-07 2014-07-16 Laing O Rourke Plc Joints between precast concrete elements
US20150027076A1 (en) * 2013-07-29 2015-01-29 Benjamin Joseph Pimentel Sleeve Device For Increasing Shear Capacity
JP6433135B2 (en) * 2014-03-19 2018-12-05 株式会社栗本鐵工所 Lining unit and lining structure of river structure
DE202015000739U1 (en) 2015-02-02 2016-05-04 Ancotech Ag reinforcement arrangement
US9598891B2 (en) 2015-03-23 2017-03-21 Jk Worldwide Enterprises Inc. Thermal break for use in construction
US9863137B2 (en) * 2015-03-23 2018-01-09 Jk Worldwide Enterprises Inc. Thermal break for use in construction
US10787809B2 (en) * 2015-03-23 2020-09-29 Jk Worldwide Enterprises Inc. Thermal break for use in construction
JP6727854B2 (en) * 2016-03-02 2020-07-22 前田建設工業株式会社 Shear reinforcement structure of reinforced concrete structure
DE102016124736A1 (en) * 2016-12-19 2018-06-21 Schöck Bauteile GmbH Component for thermal insulation
JP6855660B2 (en) * 2017-10-13 2021-04-07 大谷製鉄株式会社 Shear reinforcement rebar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321404A (en) * 1992-05-26 1993-12-07 Kawatetsu Techno Wire Kk Reinforcement for beam through hole
JPH06322890A (en) * 1993-05-17 1994-11-22 Tooatsu:Kk Reinforcing metal fitting for through-hole of reinforced concrete beam
JPH0762793A (en) * 1993-08-31 1995-03-07 Ohbayashi Corp Through hole reinforcing metallic material for concrete structure
JPH07207837A (en) * 1993-11-30 1995-08-08 Ota Kizai Kk Metal for reinforcing upper and lower parts of through hole for reinforced concrete perforated beam
JPH08302902A (en) * 1995-05-12 1996-11-19 Ohbayashi Corp Sleeve reinforcing structure
DE20201525U1 (en) * 2002-02-01 2003-06-18 Rehau Ag & Co Reinforcing block for concrete floors for holding a concrete core tempering module comprises a block frame and a transverse support having on its end a holding element for suspending or holding the concrete core tempering module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906729C1 (en) * 1989-03-03 1990-10-25 D.F. Liedelt "Velta" Produktions- Und Vertriebs-Gesellschaft Mbh, 2000 Norderstedt, De
JPH0586686A (en) 1991-09-27 1993-04-06 Fumiaki Amamiya Reinforcing method of through-hole in beam, etc., and reinforcing material thereof
DE29903737U1 (en) * 1999-03-02 1999-08-12 Schoeck Bauteile Gmbh Shear reinforcement component
DE19937414A1 (en) * 1999-08-07 2001-03-15 Heinz Pape Construction component for producing recesses in support area of flat ceilings of reinforced- and stressed concrete involves stresses taken up and dissipated by round tube with all-round torus at each end
DE20022421U1 (en) * 1999-09-10 2001-10-04 Co Baustahl Gmbh & Co Kg Structural steel construction, concrete slab element and concrete ceiling or concrete floor with integrated heating or cooling function
DE29919879U1 (en) * 1999-11-11 2000-02-03 Kahneisen Ges Mbh Deutsche Anchor for shear reinforcement
DE10001595A1 (en) * 2000-01-17 2001-07-19 Deha Ankersysteme Reinforcement for a reinforced concrete ceiling has a lower reinforcement layer with dowel bars to carry upright dowels for mounting in an automatic concrete casting operation without spacers
AT414000B (en) 2000-11-17 2006-08-15 Wavin Bv SUPPORTING BAR, HEATING BZW. COOLING REGISTER AND SIZE COMPONENT OF HARDENABLE MATERIAL
JP3924231B2 (en) 2002-10-07 2007-06-06 高周波熱錬株式会社 Reinforced structure of reinforced concrete members
DE102004005916A1 (en) * 2004-02-06 2005-09-01 Tue, Nguyen Viet, Prof. Dr.-Ing.habil. Mounting part e.g. for concrete for increasing load under pressure, has special fitting for concrete to be applied with tubular pipe arranged between load introduction surfaces

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321404A (en) * 1992-05-26 1993-12-07 Kawatetsu Techno Wire Kk Reinforcement for beam through hole
JPH06322890A (en) * 1993-05-17 1994-11-22 Tooatsu:Kk Reinforcing metal fitting for through-hole of reinforced concrete beam
JPH0762793A (en) * 1993-08-31 1995-03-07 Ohbayashi Corp Through hole reinforcing metallic material for concrete structure
JPH07207837A (en) * 1993-11-30 1995-08-08 Ota Kizai Kk Metal for reinforcing upper and lower parts of through hole for reinforced concrete perforated beam
JPH08302902A (en) * 1995-05-12 1996-11-19 Ohbayashi Corp Sleeve reinforcing structure
DE20201525U1 (en) * 2002-02-01 2003-06-18 Rehau Ag & Co Reinforcing block for concrete floors for holding a concrete core tempering module comprises a block frame and a transverse support having on its end a holding element for suspending or holding the concrete core tempering module

Also Published As

Publication number Publication date
WO2011030270A1 (en) 2011-03-17
WO2011030178A1 (en) 2011-03-17
EP2475827A1 (en) 2012-07-18
CA2773779A1 (en) 2011-03-17
EP2475827B1 (en) 2017-11-29
US20120240496A1 (en) 2012-09-27
EP3181772A1 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
EP3181772B1 (en) Use of a reinforcing element for installations in concrete structures
DE102010027661B4 (en) Shuttering apparatus and method for providing a recess during casting of a building component
EP2963205B1 (en) Device for formwork
EP2486196A2 (en) Method and device for subsequently attaching a protruding outer part to an existing load-bearing building part
DE19918153C2 (en) installation component
EP0658660A1 (en) Heat insulation structural member
EP1669505B1 (en) Steel-concrete composite joist with fire-resistant support for ceiling elements
EP1619005B1 (en) Manufacturing process for a prefabricated slab or wall with reinforcing steel bars and support rail adapted to such process
DE202009004804U1 (en) formwork system
DE19705698B4 (en) Prefabricated, between a load-bearing building ceiling and a balcony platform in the course of concreting the building ceiling and the balcony platform einzubetonierendes insulating element
DE10259961B4 (en) Prefabricated component, in particular ceiling or wall component made of a cured material
EP3228773A1 (en) Reinforcing element
DE102004057452A1 (en) Heating module with a piping configuration for use in a building element, in particular, a ceiling or wall element comprises one or more holding rails for the piping configuration
DE19739446A1 (en) Cross direction support for length joint between reinforced concrete slabs
DE202009018562U1 (en) rail support
EP1972734A1 (en) Retaining body for an insulating board
EP3611310B1 (en) Support corbel
DE202006019905U1 (en) Composite structural component for use as e.g. concrete column, has concrete body, and inner reinforcement that is placed in concrete body, where reinforcement is designed by prefabricated profiles of predetermined length and contour
AT15573U1 (en) mounting rod
DE102015002861A1 (en) Ceiling system in dry construction with a sandwich construction
DE19611200A1 (en) Reinforcement arrangement for aerated concrete components
EP4299861A1 (en) Assembly and method for post-reinforcing a component with at least one discontinuity area
DE3017840A1 (en) PRE-FABRIC REINFORCED CONCRETE PANEL ELEMENT
DE19714211C2 (en) Double-skin hollow body floor ceiling and support for a double-skin hollow body floor ceiling
EP4253693A1 (en) Spacer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2475827

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190318

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20230607

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2475827

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010017068

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010017068

Country of ref document: DE

Representative=s name: PATENTANWAELTE JECK, FLECK & PARTNER MBB, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240218