EP3152372B1 - Tragkonstruktion zur anordnung von paneelen - Google Patents

Tragkonstruktion zur anordnung von paneelen Download PDF

Info

Publication number
EP3152372B1
EP3152372B1 EP15766044.0A EP15766044A EP3152372B1 EP 3152372 B1 EP3152372 B1 EP 3152372B1 EP 15766044 A EP15766044 A EP 15766044A EP 3152372 B1 EP3152372 B1 EP 3152372B1
Authority
EP
European Patent Office
Prior art keywords
post
support structure
port
transom
posts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15766044.0A
Other languages
English (en)
French (fr)
Other versions
EP3152372A1 (de
Inventor
Stefan Slawik
Roland Schübel
Manuel Sörgel
Joachim Hessemer
Andreas Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lamilux Heinrich Strunz GmbH
Original Assignee
Lamilux Heinrich Strunz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lamilux Heinrich Strunz GmbH filed Critical Lamilux Heinrich Strunz GmbH
Publication of EP3152372A1 publication Critical patent/EP3152372A1/de
Application granted granted Critical
Publication of EP3152372B1 publication Critical patent/EP3152372B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/02Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant
    • E04D3/06Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of glass or other translucent material; Fixing means therefor
    • E04D3/08Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of glass or other translucent material; Fixing means therefor with metal glazing bars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • E04B2/96Curtain walls comprising panels attached to the structure through mullions or transoms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/02Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant
    • E04D3/06Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of glass or other translucent material; Fixing means therefor
    • E04D3/08Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of glass or other translucent material; Fixing means therefor with metal glazing bars
    • E04D2003/0893Glazing bars comprising means for draining condensation water or infiltrated rainwater

Definitions

  • the present application relates to a supporting structure for panels, in particular in the form of insulating glazings.
  • Supporting structures for panels are usually formed of posts and bars which are connected together to form a holding device for panels.
  • a holding device is used for insulating glazing and openable elements for glass roofs or glass facades.
  • Modern insulating glazings comprise at least two glass panes. Between the glass panes is a cavity, which is hermetically sealed by means of an edge seal and serves for thermal insulation. Usually, this edge seal is designed as a seal.
  • the edge seal of the glass panes is not exposed to the action of moisture (for example in the form of water droplets or condensate) for an extended period of time.
  • the moisture can penetrate on the one hand in the form of leaks (rainwater) in the mullion-transom support structure and on the other hand incurred due to humidity in the form of condensate in the mullion-transom support structure.
  • a controlled drainage should be used to remove the invading or condensed water. However, it has been found in the prior art that this controlled drainage is not sufficient to dissipate the condensate or rainwater from post-and-beam support structure.
  • document DE 200 23 944 U1 discloses an exemplary façade with a metal frame of the prior art.
  • document DE 195 19 219 discloses a support structure according to the preamble of claim 1. It is therefore the object of the present application, a support structure for Panels, especially for insulating glazing, provide that increase the lifetime of insulating glazings.
  • Such a support structure uses occurring wind currents, which can penetrate into the area between adjacent insulating glazings on the posts. Under the influence of wind, a pressure difference is created between the fluid channels on adjacent posts. Pressure equalization takes place via the Fluid channel on the latch, which connects the adjacent fluid channels to the post, whereby a flow through the fluid channel is secured to the bolt.
  • the fluid channel on the latch has a first latch connection opening at a first end of the latch and a second latch connection opening at a second end of the latch; wherein the fluid channel on the latch is in fluid communication with the fluid channel at a first post and at a second, adjacent post via the latch connection ports, and wherein the size of the first latch connection port and the second latch connection port on the latch is preferably identical.
  • a cross-sectional area of the fluid channel on the bar is identical over the entire length of the bar.
  • the "cross-sectional area" of the fluid channel on the latch is considered to be the area delimited by an upper side of the latch, the panel surfaces (or edge areas) of adjacent panels facing one another and a lower side of at least one cover strip.
  • the top of the bolt forms the surface which serves as a support surface for the panels.
  • the surface is considered, which is opposite to the top of the bolt.
  • the support structure comprises a plurality, but at least three posts and a plurality, but at least two bars, wherein the inlet openings and the outflow openings of the fluid channels are formed on the post such that a small inflow port alternates with a large inflow port, and a small outflow port alternates with a large outflow port.
  • the size of the inflow port on each second pillar is identical; and that the size of the outflow opening on each second post is identical.
  • the cross-sectional area of the fluid channels on the bars is identical.
  • the size of the inflow opening on a post is identical to the size of the outflow opening on the adjacent post.
  • the distance between adjacent panels in the region of the inflow opening and the outflow opening on a post varies in size to the size of the inflow opening and the outflow opening of the fluid channel to design a post of different sizes.
  • the size of the inflow opening or the outflow opening is adjustable over the distance between adjacent panels which limit the inflow or outflow opening in the lateral direction.
  • a corresponding flow opening is smaller with respect to the opposite flow opening on a post when the distance between two adjacent panels is reduced.
  • a filling element is arranged in the inflow opening or the outflow opening, so that the size of the corresponding opening is reduced.
  • a filling element is inserted into the inflow opening or the outflow opening.
  • the filling element is dimensioned such that it reduces the cross-sectional area of the flow opening, but does not completely close.
  • the dimensioning of the filling element is determined in particular according to how large the pressure difference between the inlet opening and the outflow opening on a post or between the fluid channels of adjacent posts is required for adequate ventilation.
  • the support structure further comprises at least one insulating element, which is arranged adjacent to the inflow opening and / or the outflow opening on a post outside the fluid channel, wherein the insulating element has a cutout which is designed such that the size of the corresponding opening is different from the size the opening is on the opposite side of the post.
  • the at least one insulating member may be used to size the size of an inflow port or outflow port.
  • the insulating element may have a corresponding cutout. This can be done in that the insulating element is completely recessed in the region of the corresponding opening or has a notch, which reduces the corresponding opening accordingly.
  • size regulation of the openings of the fluid channels can be provided by means of a member commonly used in a support structure. It is only necessary to form the corresponding cutout (s) in the at least one insulating element.
  • An insulating element with corresponding cutouts for dimensioning the flow openings can be used alternatively or in addition to the aforementioned dimensioning options.
  • the inflow opening or the outflow opening comprises at least one further opening, which is formed adjacent to the inflow opening or the outflow opening in the cover strip.
  • the at least one further opening in the cover strip can be used to increase the size of one of the inflow or outflow opening described above. However, if the above-described inflow or outflow opening is closed (eg by a lining element), the further opening can be used as the inflow or outflow opening.
  • the size of the further opening determines the size flow opening.
  • the at least one further opening is arranged in the cover strip, at a position which is arranged adjacent to the corresponding flow opening. As "contiguous" becomes a distance to the corresponding flow opening to be enlarged from 0 to 20cm, preferably 0 to 10 cm, more preferably understood from 0 to 5cm.
  • FIG. 1 shows various applications for supporting structures; namely for gable roofs ( Fig. 1a )), for pent roofs ( Fig. 1b )) and for facade cladding ( Fig. 1c )).
  • insulating glazings as panels
  • other transparent or non-transparent panels may be used for the support structure, such as plexiglass panes or glass panes having only one glass element.
  • a support structure for insulating glazing posts 12 and 14 bar has.
  • the posts 12 are arranged substantially parallel to each other and connected by at least one bar 14, which is aligned substantially perpendicular to the posts 12.
  • a panel field 16 is formed, in which an insulating glazing element 26 is arranged.
  • the posts 12 are arranged vertically and connected to the horizontally arranged bars 14.
  • saddle roof In the in FIG. 1a ) shown saddle roof are the posts 12, which are also denoted as roof rafters in roof structures, the elements that extend from the eaves 18 to the ridge 20.
  • the bars 14 are perpendicular to the posts 12 in the horizontal direction.
  • FIG. 2 shows a sectional view through a part of a known from the prior art support structure 10th
  • the designated as bearing surface 24 side of the support section 22 is referred to below as the top.
  • the resting on the support surface 24 side of the insulating glazing elements 26 is referred to below as the bottom of the Isolierverglasungslemente 26.
  • the insulating glazing elements 26 each have two glass elements 30, which are spaced apart by a glass gap 32.
  • the insulating glazing elements 26 have a sealing element 34 with a spacer function in the edge section 28.
  • the abutting surfaces 36 of two adjacent Isolierverglasungsetti 26 are spaced from each other by a gap 38.
  • In the intermediate space 38 may optionally an insulating core 40, an insulating web (not shown) or a screw (not shown) may be arranged.
  • a cover strip 42 On an upper side of the insulating glazing elements 26, which is arranged opposite to the underside of the insulating glazing elements 26, is a cover strip 42 arranged. These serve in each case for the arrangement of at least one insulating glazing element 26 on a corresponding support profile 22 and at the same time covers the intermediate space 38. As in FIG. 2 shown, the width of the cover strip 42 is wider than the gap 38 to ensure a bearing surface on the top of the insulating glazing elements 26. To attach the cover strip 42 to the support section 22, the cover strip 42 is screwed by means of screws 44 to the support section 22.
  • a sealing layer 46 is disposed between the cover strip 42 and the adjacent insulating glazing elements 26 and / or between the support profile 22 and the adjacent insulating glazing elements 26.
  • the space 38 on a post 12 forms a post-fluid channel 48, which, viewed in cross-section, is bounded by the post 12, the abutment surfaces 36 of the adjacent insulating glazing elements 26 and the cover strip 42.
  • Wind entry is possible in the post-fluid channel 48 via an inflow port 50.
  • a wind outlet takes place via an outflow opening 52, which is arranged on a side of the post-fluid channel 48 opposite the inlet opening 50.
  • Which opening the inflow opening 50 and which opening forms the outflow opening 52 of a post-fluid channel 48 is determined by the wind direction. If the wind direction changes, the outflow opening 50 can become the outflow opening 52.
  • FIG. 3 shows a schematic representation of a known from the prior art support structure 10th
  • the support structure 10 according to the invention in FIG. 4 basically has an identical post-and-beam support structure, but differs in the sizes of the inflow and outflow openings 50 and 52 used in the FIG. 3 shown support structure 10 are identical.
  • the support structure 10 has a first post fluid channel 48 (left post 12 in FIG. 4 ), whose inflow opening 50 is larger than the outflow opening 52.
  • the size of the inflow opening 50 and the outflow opening 52 is defined by its cross-sectional area A. If one designates the cross-sectional area of the inflow opening with A 1 and the cross-sectional area of the outflow opening with A 2 , a ratio of A 1 > A 2 thus results in the first post-fluid channel 48.
  • the adjacent second post fluid channel 48 (right post 12 in FIG. 4 ), which is connected to the first post fluid channel 48 through a latch fluid channel 56, also has an inflow port 50 and an outflow port 52, the cross-sectional areas A are of different sizes.
  • the cross-sectional area A 1 of the inflow opening 50 is smaller than the cross-sectional area A 2 of the outflow opening 52. Consequently, a ratio of A 1 ⁇ A 2 results in the second post-fluid channel 48.
  • the respective larger flow opening is 2 to 4 times larger than the respective other smaller flow opening in a post-fluid channel 48, more preferably 3 times larger than the respective other flow opening in a post-fluid channel 48th
  • Decisive for a reliable ventilation between a first and a a second post fluid channel 48 arranged latch fluid channel 56 is that the cross-sectional areas A of the inflow opening 50 and the outflow opening 52 within the first and second post fluid channel 48 are different in size. Furthermore, it is crucial that the cross-sectional areas A of the inlet openings 50 of adjacent (first and second) post-fluid channels 48 are of different sizes. Also, the cross sectional areas A of the outflow openings 52 of adjacent (first and second) post fluid channels 48 must be different in size.
  • the latch fluid passage 56 preferably has a cross-sectional area that is identical over the entire length of the latch fluid passage 56.
  • the latch connection openings 58 of a latch fluid channel 56, by means of which fluid communication is made to the adjacent post fluid channels 48, are identical.
  • FIG. 4 shows a support structure 10 with only two post fluid channels 48, which are connected via a latch fluid channel 56.
  • the described system is expandable to an indefinite number of post fluid channels 48 and latch fluid channels 56, respectively. It is also possible that adjacent post fluid channels 48 are not only connected via a latch fluid channel 56. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more latch fluid channels 56 are conceivable here, which are arranged substantially parallel to one another.
  • FIG. 5 shows, for example, a schematic representation of a flow principle for a support structure with three post fluid channels 48.
  • first, second and third post fluid channels 48 are referred to as first, second and third post fluid channels 48.
  • the first and second post fluid channels 48 are considered adjacent post fluid channels 48, while the second and third post fluid channels 48 are also considered adjacent post fluid channels 48.
  • the respective ones adjacent post-fluid channels 48 are interconnected by a latch fluid channel 56, respectively.
  • FIG. 5 shows the size or the cross-sectional area size A 1 of the inlet openings 50 of the three post-fluid channels 50 alternates.
  • a large inflow opening 50 with a small inflow opening 50 and a large outflow opening 52 with a small outflow opening 52 always alternate.
  • FIG. 5 shows the preferred case that each second inflow opening 50 and each second outflow opening 52 in a support structure 10 are the same size.
  • FIG. 6 12 shows cross-sectional views of an inflow port 50 or an outflow port 52 (hereinafter generally referred to as a flow port 60).
  • FIG. 6a shows a flow opening 60 with a large cross-sectional area A
  • FIG. 6b shows a flow opening 60 with a small cross-sectional area.
  • the hatched area in FIG. 6a ) indicates the cross-sectional area A corresponding to the cross-sectional area size of the space 38.
  • FIG. 6b on the other hand has a flow opening 60 with a cross-sectional area A which is smaller than the cross-sectional area size of the gap 38.
  • the size of the flow opening 60 may, for example, as in FIG. 6b ) can be reduced by a filling element 62 which is inserted into the flow opening 60.
  • the cross-sectional area size A of the flow opening 60 thus corresponds to the cross-sectional area of the interspace 38 minus the cross-sectional area of the filling element 62.
  • Another possibility for dimensioning the size of a flow opening 60 is the distance regulation of two adjacent insulating glazing elements 26, as in FIG. 7 shown.
  • the distance between two adjacent insulating glazing elements 26 is referred to below as L.
  • an insulating member 64 is disposed at a lateral end of the support structure 10.
  • Below the Dämmelements 64 extend seals 66 which are led out of the post-fluid channels 48.
  • the at least one insulating element 64 is covered by a weather sheet 68 for protection against the weather.
  • the insulating element 64 can be completely recessed in the region of a flow opening 60, so that the flow opening 60 is not reduced by the insulating element 64 (see right flow opening in FIG FIG ).
  • the cross-sectional area A of the flow opening thus corresponds to the cross-sectional area A of the intermediate space 38.
  • a notch 70 may be formed in the bottom of the Dämmelements 64 (see left flow channel in FIG. 8 ). This notch 70 serves on the one hand to receive the seal 66 and on the other hand to define the size of the cross-sectional area A of the flow opening 60. The smaller the notch 70 is formed, the smaller the size of the cross-sectional area A of the flow opening 60.
  • facing plates (not shown) can be used, which blind the support structure 10. This can be done for example via appropriately sized openings in a facing plate.
  • At least one further opening may be formed in the cover strip 42, which limits the flow opening upwards.
  • the further opening may be arranged at a distance from the flow opening 60 of 0 to 20 cm, preferably 0 to 10 cm, more preferably from 0 to 5 cm.
  • this further opening can also be used as an exclusive inflow or outflow opening.
  • the wind can penetrate or exit exclusively via an inflow opening or an outflow opening in the cover strip 42.
  • the size of the further opening determines the size of the inflow or outflow opening 50 and 52.
  • the further opening may be formed as a bore in the cover strip 42.
  • a vent mushroom (not shown) may be inserted into the bore.
  • the vent mushroom has a vent mushroom fluid passage penetrating and communicating with the post fluid channel 48.
  • a wind inlet opening is formed, via which the wind can enter into the ventilation mushroom fluid channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Description

  • Die vorliegende Anmeldung betrifft eine Tragkonstruktion für Paneele, insbesondere in Form von Isolierverglasungen.
  • Tragkonstruktionen für Paneele werden üblicherweise aus Pfosten und Riegeln gebildet, die miteinander verbunden sind, um eine Haltevorrichtung für Paneele zu bilden. Insbesondere wird eine derartige Haltevorrichtung für Isolierverglasungen und öffenbare Elemente für Glas-Dächer oder Glas-Fassaden genutzt.
  • Moderne Isolierverglasungen umfassen mindestens zwei Glasscheiben. Zwischen den Glasscheiben befindet sich ein Hohlraum, der mittels eines Randverbunds luftdicht verschlossen ist und der Wärmedämmung dient. Üblicherweise ist dieser Randverbund als Dichtung ausgebildet.
  • Um die Langlebigkeit der Isolierverglasung in der genannten Pfosten-Riegel-Tragkonstruktion sicherstellen zu können, ist es von Vorteil, wenn der Randverbund der Glasscheiben nicht über einen längeren Zeitraum der Einwirkung von Feuchtigkeit (z.B. in Form von Wassertropfen oder Kondensat) ausgesetzt ist. Die Feuchtigkeit kann einerseits in Form von Leckagen (Regenwasser) in die Pfosten-Riegel-Tragkonstruktion eindringen und andererseits aufgrund von Luftfeuchtigkeit in Form von Kondensat in der Pfosten-Riegel-Tragkonstruktion anfallen. Eine kontrollierte Entwässerung soll dazu genutzt werden, das eingedrungene bzw. kondensierte Wasser abzuführen. Es hat sich jedoch im Stand der Technik gezeigt, dass diese kontrollierte Entwässerung nicht ausreicht, das Kondensat bzw. das Regenwasser aus Pfosten-Riegel-Tragkonstruktion abzuführen.
  • Dokument DE 200 23 944 U1 offenbart eine beispielhafte Fassade bzw. Dach mit einem Metallrahmen aus dem Stand der Technik. Dokument DE 195 19 219 offenbart eine Tragkonstruktion gemäß dem Oberbegriff des Anspruchs 1. Es ist daher die Aufgabe der vorliegenden Anmeldung eine Tragkonstruktion für Paneele, insbesondere für Isolierverglasungen, bereitzustellen, die die Lebenszeit von Isolierverglasungen erhöhen.
  • Diese Aufgabe wird durch eine Tragkonstruktion zur Anordnung von Paneelen, insbesondere in Form von Isolierverglasungen und öffenbaren Elementen, gelöst, welche umfasst:
    • zumindest zwei Pfosten, welche im Wesentlichen parallel zueinander angeordnet sind;
    • zumindest einen Riegel, welcher im Wesentlichen senkrecht zwischen den Pfosten angeordnet ist, wobei die Pfosten und der Riegel als Auflagefläche für die Paneele ausgebildet und benachbarte Paneele durch einen Zwischenraum voneinander beabstandet sind; und
    • Deckleisten zum Abdecken des Zwischenraums, die an Seitenflächen der Paneele angeordnet sind, die den Seitenflächen, die auf der Auflagefläche angeordnet sind, entgegengesetzt sind;
    wobei der zwischen den Paneelen, den Pfosten bzw. Riegeln und den Deckleisten gebildete Zwischenraum als Fluidkanal ausgebildet ist;
    wobei die Fluidkänäle an den Pfosten in Fluidverbindung mit dem Fluidkanal an dem Riegel stehen;
    wobei der Fluidkanal an einem ersten Ende der Pfosten eine Einströmöffnung und an einem zweiten Ende der Pfosten eine Ausströmöffnung aufweist;
    wobei die Einström- und Ausströmöffnung des Fluidkanals an jedem einzelnen Pfosten unterschiedlich groß sind;
    wobei die Einströmöffnungen der Fluidkanäle an benachbarten Pfosten unterschiedlich groß sind; und
    wobei die Ausströmöffnungen der Fluidkanäle an benachbarten Pfosten unterschiedlich groß sind.
  • Eine derartige Tragkonstruktion nutzt auftretende Windströmungen, die in den Bereich zwischen benachbarten Isolierverglasungen an den Pfosten eindringen können. Unter dem Windeinfluss wird eine Druckdifferenz zwischen den Fluidkanälen an benachbarten Pfosten erzeugt. Ein Druckausgleich erfolgt über den Fluidkanal an dem Riegel, der die benachbarten Fluidkanäle an den Pfosten verbindet, wodurch eine Durchströmung des Fluidkanals an dem Riegel sichergestellt wird.
  • Aufgrund der Belüftung aller Fluidkanäle in der Tragkonstruktion kann die Langlebigkeit von Isolierverglasungen gewährleistet werden.
  • Vorzugsweise weist der Fluidkanal an dem Riegel eine erste Riegel-Verbindungsöffnung an einem ersten Ende des Riegels und eine zweite Riegel-Verbindungsöffnung an einem zweiten Ende des Riegels auf;
    wobei der Fluidkanal an dem Riegel über die Riegel-Verbindungsöffnungen in Fluidverbindung mit dem Fluidkanal an einem ersten Pfosten und an einem zweiten, benachbarten Pfosten steht, und
    wobei die Größe der ersten Riegel-Verbindungsöffnung und der zweiten Riegel-Verbindungsöffnung an dem Riegel bevorzugt identisch ist.
  • Weiterhin ist es bevorzugt, dass eine Querschnittsfläche des Fluidkanals an dem Riegel über die gesamte Länge des Riegels identisch ist.
  • Als "Querschnittsfläche" des Fluidkanals an dem Riegel wird die Fläche angesehen, die durch eine Oberseite des Riegels, den Paneelflächen (bzw. Randbereiche) benachbarter Paneele, die einander gegenüberliegen, und einer Unterseite zumindest einer Deckleiste abgegrenzt wird. Die Oberseite des Riegels bildet die Fläche, die als Auflagefläche für die Paneele dient. Als Unterseite einer Deckleiste wird die Fläche angesehen, die der Oberseite des Riegels gegenüberliegt.
  • Stellenweise können im Verlauf des Fluidkanals an dem Riegel (wie auch an den Pfosten), Schrauben den Fluidkanal durchdringen, die dazu verwendet werden, die Deckleisten mit dem Riegel zu verbinden. Diese sind jedoch bezüglich der Größe der Querschnittsfläche zu vernachlässigen. Gleiches gilt beispielsweise für Dichtungen, die in dem Fluidkanal angeordnet sind.
  • Mittels einer Querschnittsfläche des Fluidkanals, die über die gesamte Länge eines Riegels identisch ist, wird gewährleistet, dass durch die Konstruktion des Fluidkanals an dem Riegel selbst keine Druckdifferenzen entstehen. Die Druckdifferenz zwischen den Fluidkanälen benachbarter Pfosten, mit denen der Fluidkanal an dem Riegel verbunden ist, wird somit nicht beeinflusst, so dass der gewollte Druckausgleich über den Fluidkanal an dem Riegel gewährleistet ist.
  • Vorzugsweise umfasst die Tragkonstruktion mehrere, jedoch mindestens drei Pfosten und mehrere, jedoch mindestens zwei Riegel,
    wobei die Einströmöffnungen und die Ausströmöffnungen der Fluidkanäle an den Pfosten derart ausgebildet sind, dass eine kleine Einströmöffnung mit einer großen Einströmöffnung alterniert, und eine kleine Ausströmöffnung mit einer großen Ausströmöffnung alterniert.
  • Hierdurch wird gewährleistet, dass in einer Tragkonstruktion, die regelmäßig mehr als zwei Pfosten aufweist, alle Fluidkanäle an den Riegeln belüftet werden bzw. eine Druckdifferenz zwischen den Fluidkanälen aller benachbarter Pfosten bestehen, die über die Fluidkanäle an den Riegeln ausgeglichen werden.
  • Ferner ist es bevorzugt, dass die Größe der Einströmöffnung an jedem zweiten Pfosten identisch ist; und
    dass die Größe der Ausströmöffnung an jedem zweiten Pfosten identisch ist.
  • Weiter bevorzugt ist die Querschnittsfläche der Fluidkanäle an den Riegeln identisch.
  • Vorzugsweise ist die Größe der Einströmöffnung an einem Pfosten identisch mit der Größe der Ausströmöffnung an dem benachbarten Pfosten.
  • Weiter bevorzugt ist der Abstand zwischen benachbarten Paneelen im Bereich der Einströmöffnung und der Ausströmöffnung an einem Pfosten unterschiedlich groß, um die Größe der Einströmöffnung und der Ausströmöffnung des Fluidkanals an einem Pfosten unterschiedlich groß auszugestalten.
  • Mit anderen Worten ist die Größe der Einströmöffnung bzw. der Ausströmöffnung über den Abstand zwischen benachbarten Paneelen, die die Einström- bzw. Ausströmöffnung in seitlicher Richtung begrenzen, einstellbar. Eine entsprechende Strömungsöffnung ist kleiner in Bezug auf die gegenüberliegende Strömungsöffnung an einem Pfosten, wenn der Abstand zwischen zwei benachbarten Paneelen verringert wird.
  • Eine derartige Konstruktion bietet den Vorteil, dass keine zusätzlichen Mittel benötigt werden, um die Größe der Strömungsöffnungen einzustellen. Lediglich bereits vorhandene Elemente der Tragkonstruktion werden benötigt.
  • Vorzugsweise ist ein Füllelement in der Einströmöffnung oder der Ausströmöffnung angeordnet ist, so dass die Größe der entsprechenden Öffnung verkleinert ist.
  • Mit anderen Worten wird ein Füllelement in die Einströmöffnung oder die Ausströmöffnung eingesetzt. Das Füllelement ist derart dimensioniert, dass es die Querschnittsfläche der Strömöffnung verkleinert, jedoch nicht vollständig verschließt. Die Dimensionierung des Füllelements wird insbesondere danach bestimmt, wie groß die Druckdifferenz zwischen der Einströmöffnung und der Ausströmöffnung an einem Pfosten bzw. zwischen den Fluidkanälen benachbarter Pfosten für eine ausreichende Belüftung benötigt wird.
  • Vorzugsweise umfasst die Tragkonstruktion ferner zumindest ein Dämmelement, das benachbart zu der Einströmöffnung und/oder der Ausströmöffnung an einem Pfosten außerhalb des Fluidkanals angeordnet ist, wobei das Dämmelement einen Ausschnitt aufweist, der derart ausgestaltet ist, dass die Größe der entsprechenden Öffnung verschieden zu der Größe der Öffnung an der gegenüberliegenden Seite des Pfostens ist.
  • Üblicherweise weisen Tragkonstruktionen zumindest an einer der Seiten zumindest ein Dämmelement auf, um die Tragkonstruktion nach außen hin zu dämmen. Dieses kann üblicherweise die gesamte Einström- bzw. Ausströmöffnung verschließen. Gemäß der vorliegenden Erfindung kann das zumindest eine Dämmelement jedoch genutzt werden, um die Größe einer Einströmöffnung oder Ausströmöffnung zu dimensionieren. Hierzu kann das Dämmelement einen entsprechenden Ausschnitt aufweisen. Dies kann dadurch erfolgen, dass das Dämmelement in dem Bereich der entsprechenden Öffnung vollständig ausgespart ist oder eine Ausklinkung aufweist, die die entsprechende Öffnung entsprechend verkleinert.
  • Ähnlich zu der Abstandregulierung der Paneele kann auch hier eine Größenregulierung der Öffnungen der Fluidkanäle mittels eines Elements bereitgestellt werden, das üblicherweise in einer Tragkonstruktion verwendet wird. Es ist lediglich erforderlich, den bzw. die entsprechend(en) Ausschnitt(e) in dem zumindest einen Dämmelement auszubilden.
  • Ein Dämmelement mit entsprechenden Ausschnitten zur Dimensionierung der Strömungsöffnungen kann alternativ oder zusätzlich zu den vorgenannten Dimensionierungsmöglichkeiten verwendet werden.
  • Weiter bevorzugt umfasst die Einströmöffnung oder die Ausströmöffnung zumindest eine weitere Öffnung, die angrenzend zu der Einströmöffnung oder der Ausströmöffnung in der Deckleiste ausgebildet ist.
  • Die zumindest eine weitere Öffnung in der Deckleiste kann dazu verwendet werden, die Größe einer der oben beschriebenen Einström- oder Ausströmöffnung zu vergrößern. Ist jedoch die oben beschriebene Einström- oder Ausströmöffnung verschlossen (z.B. durch ein Verkleidungselement), kann die weitere Öffnung als die Einström- bzw. Ausströmöffnung genutzt werden. Die Größe der weiteren Öffnung bestimmt die Größe Strömungsöffnung. Die zumindest eine weitere Öffnung ist in der Deckleiste angeordnet, an einer Position, die angrenzend zu der entsprechenden Strömungsöffnung angeordnet ist. Als "angrenzend" wird ein Abstand zur entsprechenden zu vergrößernden Strömungsöffnung von 0 bis 20cm, vorzugsweise 0 bis 10 cm, weiter bevorzugt von 0 bis 5cm verstanden.
  • Diese und andere Aufgaben, Merkmale und Vorteile der vorliegenden Erfindung werden aus dem Studium der folgenden detaillierten Beschreibung bevorzugter Ausführungsformen und der beiliegenden Zeichnungen deutlicher. Es ist ersichtlich, dass, obwohl Ausführungsformen separat beschrieben werden, einzelne Merkmale daraus zu zusätzlichen Ausführungsformen kombiniert werden können.
  • Figur 1
    zeigt verschiedene Anwendungen für Tragkonstruktionen;
    Figur 2
    zeigt eine Schnittansicht durch einen Teil einer aus dem Stand der Technik bekannten Tragkonstruktion;
    Figur 3
    zeigt eine schematische Zeichnung der Luftströmungen, die in aus dem Stand der Technik bekannten Tragkonstruktionen auftreten;
    Figur 4
    zeigt eine schematische Zeichnung der Luftströmungen, die in der erfindungsgemäßen Tragkonstruktion auftreten;
    Figur 5
    zeigt eine schematische Zeichnung der Luftströmungen, die in einer erfindungsgemäßen Tragkonstruktion mit drei Pfosten und zwei Riegeln auftreten;
    Figur 6a)
    zeigt eine Querschnittsansicht eines Fluidkanals einer Tragkonstruktion mit großer Strömungsöffnung;
    Figur 6b)
    zeigt eine Querschnittsansicht eines Fluidkanals einer Tragkonstruktion mit durch ein Füllelement verkleinerter Strömungsöffnung in Vergleich zu der in Figur 6a) gezeigten Strömungsöffnung;
    Figur 7
    zeigt eine Querschnittsansicht eines Fluidkanals einer Tragkonstruktion, in der der Abstand benachbarter Isolierverglasungselemente variiert; und
    Figur 8
    zeigt eine Tragkonstruktion für eine Dachfläche, in der ein Dämmelement zur Größenregulierung der Strömungsöffnungen verwendet ist.
  • Tragkonstruktionen 10 für Paneele sind bereits aus dem Stand der Technik bekannt und werden üblicherweise für Glasdächer oder Glas-Fassaden verwendet. Figur 1 zeigt verschiedene Anwendungen für Tragkonstruktionen; nämlich für Satteldächer (Fig. 1a)), für Pultdächer (Fig. 1b)) und für Fassadenverkleidungen (Fig. 1c)).
  • Obwohl sich die folgende Beschreibung auf Isolierverglasungen als Paneele bezieht, können auch andere transparente oder nicht-transparente Paneele für die Tragkonstruktion verwendet werden, wie beispielsweise Plexiglas-Scheiben oder Glasscheiben mit lediglich einem Glaselement.
  • Es ist aus dem Stand der Technik ferner bekannt, dass eine Tragkonstruktion für Isolierverglasungen Pfosten 12 und Riegel 14 aufweist. Die Pfosten 12 sind im Wesentlichen parallel zueinander angeordnet und durch zumindest einen Riegel 14 miteinander verbunden, der im Wesentlichen senkrecht zu den Pfosten 12 ausgerichtet ist. Dazwischen bildet sich jeweils ein Paneelfeld 16, in dem ein Isolierverglasungselement 26 angeordnet ist.
  • In der in Figur 1c) gezeigten Glasfassade sind die Pfosten 12 senkrecht angeordnet und mit den horizontal angeordneten Riegeln 14 verbunden.
  • In dem in Figur 1a) gezeigten Satteldach sind die Pfosten 12, die bei Dachkonstruktionen auch als Sparren bezeichenbar sind, die Elemente, die von der Traufe 18 zum First 20 verlaufen. Die Riegel 14 verlaufen senkrecht zu den Pfosten 12 in horizontaler Richtung.
  • Die Definition der Pfosten 12 und Riegel 14 bezüglich des Satteldachs gilt entsprechend auch für das Pultdach, wie in Figur 1b) gezeigt, das im Gegensatz zu dem Satteldach lediglich eine Dachfläche aufweist.
  • Als Material für Pfosten 12 und Riegel 14 sind Stahl, Alu oder Holz geeignet.
  • Figur 2 zeigt eine Schnittansicht durch einen Teil einer aus dem Stand der Technik bekannten Tragkonstruktion 10.
  • Ein rechteckiges Tragprofil 22, das ein Pfosten 12 oder ein Riegel 14 sein kann, weist eine Auflagefläche 24 für Isolierverglasungselemente 26 auf. Die als Auflagefläche 24 bezeichnete Seite des Tragprofils 22 wird im Folgenden als Oberseite bezeichnet. Die auf der Auflagefläche 24 aufliegende Seite der Isolierverglasungselemente 26 wird im Folgenden als Unterseite der Isolierverglasungslemente 26 bezeichnet.
  • Auf der Auflagefläche 24 liegt jeweils ein Randabschnitt 28 zweier benachbarter Isolierverglasungselemente 26 auf. Im vorliegenden Fall weisen die Isolierverglasungselemente 26 jeweils zwei Glaselemente 30 auf, die durch einen Glaszwischenraum 32 voneinander beabstandet sind. Um die Glaselemente 30 eines Isolierverglasungselements 26 voneinander getrennt zu halten bzw. den Glaszwischenraum 32 abzudichten, weisen die Isolierverglasungselemente 26 ein Dichtungselement 34 mit Abstandshalter-Funktion im Randabschnitt 28 auf.
  • Die Seitenflächen (Randverbund) der benachbarten Isolierverglasungselemente 26, die einander gegenüberliegen, werden im Folgenden als Stoßflächen 36 bezeichnet. Die Stoßflächen 36 zweier benachbarter Isolierverglasungselemente 26 sind durch einen Zwischenraum 38 voneinander beabstandet. In dem Zwischenraum 38 kann optional ein Dämmkern 40, ein Isoliersteg (nicht gezeigt) oder ein Schraubkanal (nicht gezeigt) angeordnet sein.
  • Auf einer Oberseite der Isolierverglasungselemente 26, die entgegengesetzt zu der Unterseite der Isolierverglasungselemente 26 angeordnet ist, ist eine Deckleiste 42 angeordnet. Diese dienen jeweils zur Anordnung zumindest eines Isolierverglasungselementes 26 an einem entsprechenden Tragprofil 22 und deckt gleichzeitig den Zwischenraum 38 ab. Wie in Figur 2 gezeigt, ist die Breite der Deckleiste 42 breiter als der Zwischenraum 38, um eine Auflagefläche auf der Oberseite der Isolierverglasungselemente 26 zu gewährleisten. Um die Deckleiste 42 an dem Tragprofil 22 zu befestigen, wird die Deckleiste 42 mit Hilfe von Schrauben 44 an dem Tragprofil 22 festgeschraubt. Vorzugsweise wird zwischen der Deckleiste 42 und den benachbarten Isolierverglasungselementen 26 und/oder zwischen dem Tragprofil 22 und den benachbarten Isolierverglasungselementen 26 eine Dichtungsschicht 46 angeordnet.
  • Der Zwischenraum 38 an einem Pfosten 12 bildet einen Pfosten-Fluidkanal 48, der, im Querschnitt betrachtet, durch den Pfosten 12, die Stoßflächen 36 der benachbarten Isolierverglasungselemente 26 und die Deckleiste 42 begrenzt ist.
  • Ein Windeintritt ist in den Pfosten-Fluidkanal 48 über eine Einströmöffnung 50 möglich. Ein Windaustritt erfolgt über eine Ausströmöffnung 52, die an einer der Einströmöffnung 50 entgegengesetzten Seite des Pfosten-Fluidkanals 48 angeordnet ist. Welche Öffnung die Einströmöffnung 50 und welche Öffnung die Ausströmöffnung 52 eines Pfosten-Fluidkanals 48 bildet, wird durch die Windrichtung bestimmt. Ändert sich die Windrichtung kann aus der Einströmöffnung 50 die Ausströmöffnung 52 werden.
  • Figur 3 zeigt eine schematische Darstellung einer aus dem Stand der Technik bekannte Tragkonstruktion 10.
  • Wie in Figur 3 gezeigt, ergibt sich bei dieser aus dem Stand der Technik bekannten Tragkonstruktion 10 lediglich, dass ein Luftstrom 54 (in Form von Pfeilen dargestellt) die Pfosten-Fluidkanäle 48 durchströmt, so dass nur die Pfosten-Fluidkanäle 48 belüftet werden. Es dringt kein Luftstrom in einen Riegel-Fluidkanal 56 ein, der mit den Pfosten-Fluidkanälen 48 an benachbarten Pfosten 12 in Fluidverbindung steht.
  • Die erfindungsgemäße Tragkonstruktion 10 in Figur 4 weist grundsätzlich eine identische Pfosten-Riegel-Tragkonstruktion auf, unterscheidet sich jedoch in den Größen der Einström- und den Ausströmöffnungen 50 und 52, die in der in Figur 3 gezeigten Tragkonstruktion 10 identisch sind.
  • Die Tragkonstruktion 10 weist einen ersten Pfosten-Fluidkanal 48 (linker Pfosten 12 in Figur 4) auf, dessen Einströmöffnung 50 größer ist als die Ausströmöffnung 52. Die Größe der Einströmöffnung 50 und der Ausströmöffnung 52 wird durch deren Querschnittsfläche A definiert. Bezeichnet man die Querschnittsfläche der Einströmöffnung mit A1 und die Querschnittsfläche der Ausströmöffnung mit A2 ergibt sich somit in dem ersten Pfosten-Fluidkanal 48 ein Verhältnis von A1 > A2.
  • Der benachbarte zweite Pfosten-Fluidkanal 48 (rechter Pfosten 12 in Figur 4), der mit dem ersten Pfosten-Fluidkanal 48 durch einen Riegel-Fluidkanal 56 verbunden ist, weist ebenfalls eine Einströmöffnung 50 und eine Ausströmöffnung 52 auf, deren Querschnittsflächen A unterschiedlich groß sind. Im Gegensatz zu dem ersten Pfosten-Fluidkanal 48 ist hier jedoch die Querschnittsfläche A1 der Einströmöffnung 50 kleiner als die Querschnittsfläche A2 des Ausströmöffnung 52. Folglich ergibt sich in dem zweiten Pfosten-Fluidkanal 48 ein Verhältnis von A1 < A2.
  • Vorzugsweise ist die jeweils größere Strömungsöffnung 2 bis 4 Mal größer als die jeweils andere kleinere Strömungsöffnung in einem Pfosten-Fluidkanal 48, weiter bevorzugt 3 Mal größer als die jeweils andere Strömungsöffnung in einem Pfosten-Fluidkanal 48.
  • Die sich durch die asymmetrischen Querschnittsflächen A der Strömungsöffnungen 50 und 52 in den Pfosten-Fluidkanälen 48 bzw. zwischen den benachbarten Pfosten-Fluidkanälen 48 ergebenden Druckdifferenzen gewährleisten nun, dass sich der Luftstrom 54 auch in den Riegel-Fluidkanal 56 erstreckt, so dass auch der Riegel-Fluidkanal 56 belüftet werden kann.
  • Entscheidend für eine zuverlässige Belüftung eines zwischen einem ersten und einem zweiten Pfosten-Fluidkanal 48 angeordneten Riegel-Fluidkanals 56 ist, dass die Querschnittsflächen A der Einströmöffnung 50 und der Ausströmöffnung 52 innerhalb des ersten bzw. zweiten Pfosten-Fluidkanals 48 unterschiedlich groß sind. Weiterhin ist es entscheidend, dass die Querschnittsflächen A der Einströmöffnungen 50 benachbarter (erster und zweiter) Pfosten-Fluidkanäle 48 unterschiedlich groß sind. Ebenfalls müssen die Querschnittsflächen A der Ausströmöffnungen 52 benachbarter (erster und zweiter) Pfosten-Fluidkanäle 48 unterschiedlich groß sein.
  • Um die Druckdifferenz zwischen den benachbarten Pfosten-Fluidkanälen 48 nicht zu beeinflussen, weist der Riegel-Fluidkanal 56 vorzugsweise eine Querschnittsfläche auf, die über die gesamte Länge des Riegel-Fluidkanals 56 identisch ist. Insbesondere ist es bevorzugt, dass die Riegel-Verbindungsöffnungen 58 eines Riegel-Fluidkanals 56, mittels der eine Fluidverbindung zu den angrenzenden Pfosten-Fluidkanälen 48 hergestellt ist, identisch sind.
  • Figur 4 zeigt eine Tragkonstruktion 10 mit lediglich zwei Pfosten-Fluidkanälen 48, die über einen Riegel-Fluidkanal 56 verbunden sind. Das beschriebene System ist jedoch auf eine unbestimmte Anzahl von Pfosten-Fluidkanälen 48 bzw. Riegel-Fluidkanäle 56 erweiterbar. Ebenfalls ist es möglich, dass benachbarte Pfosten-Fluidkanäle 48 nicht nur über einen Riegel-Fluidkanal 56 verbunden sind. 2, 3, 4, 5, 6, 7, 8, 9, 10 oder mehr Riegel-Fluidkanäle 56 sind hier denkbar, die im Wesentlichen parallel zueinander angeordnet sind.
  • Figur 5 zeigt beispielsweise eine schematische Darstellung eines Strömungsprinzips für eine Tragkonstruktion mit drei Pfosten-Fluidkanälen 48.
  • Die in Figur 5 gezeigten Pfosten-Fluidkanäle 48 werden im Folgenden, von links nach rechts betrachtet, als erster, zweiter und dritter Pfosten-Fluidkanal 48 bezeichnet. Der erste und zweite Pfosten-Fluidkanal 48 gelten als benachbarte Pfosten-Fluidkanäle 48, während der zweite und dritte Pfosten-Fluidkanal 48 ebenfalls als benachbarte Pfosten-Fluidkanäle 48 gelten. Die jeweiligen benachbarten Pfosten-Fluidkanäle 48 sind jeweils durch einen Riegel-Fluidkanal 56 miteinander verbunden.
  • Weiterhin ist aus Figur 5 zu entnehmen, dass die Größe bzw. die Querschnittsflächengröße A1 der Einströmöffnungen 50 der drei Pfosten-Fluidkanäle 50 alterniert. Gleiches gilt für die Ausströmöffnungen 52. Es wechseln sich immer eine große Einströmöffnung 50 mit einer kleinen Einströmöffnung 50, sowie eine große Ausströmöffnung 52 mit einer kleinen Ausströmöffnung 52 ab. Figur 5 zeigt den bevorzugten Fall, dass jede zweite Einströmöffnung 50 und jede zweite Ausströmöffnung 52 in einer Tragkonstruktion 10 gleich groß sind.
  • Durch eine derartige Konstruktion ergibt sich in dem ersten und dem dritten Pfosten-Fluidkanal 48 in einem Bereich zwischen der jeweiligen Einströmöffnung 50 und der Verbindungsposition mit dem entsprechenden Riegel-Fluidkanal 56 ein Druck P1, da in beiden Pfosten-Fluidkanälen 48 die Einströmöffnung 50 größer als die Ausströmöffnung 52 ist. In dem zweiten Pfosten-Fluidkanal 48 herrscht in dem Bereich zwischen der Einströmöffnung 50 und der Verbindungsposition mit dem Riegel-Fluidkanal 56 ein Druck P2, der konstruktionsbedingt geringer ist als der Druck P1. Der zwischen den jeweils benachbarten Pfosten-Fluidkanälen 48 erfolgende Druckausgleich, erfolgt über die Riegel-Fluidkanäle 56, so dass jeweils ein Luftstrom 54 von dem ersten und dem dritten Pfosten-Fluidkanal 48 über die Riegel-Fluidkanäle 56 zu dem zweiten Pfosten-Fluidkanal 48 erfolgt.
  • Figur 6 zeigt Querschnittsansichten einer Einströmöffnung 50 oder einer Ausströmöffnung 52 (im Folgenden allgemein als Strömungsöffnung 60 bezeichnet).
  • Figur 6a) zeigt eine Strömungsöffnung 60 mit einer großen Querschnittsfläche A und Figur 6b) zeigt eine Strömungsöffnung 60 mit einer kleinen Querschnittsfläche. Der schraffierte Bereich in Figur 6a) kennzeichnet die Querschnittsfläche A, die der Querschnittsflächengröße des Zwischenraums 38 entspricht. Figur 6b) hingegen weist eine Strömungsöffnung 60 mit einer Querschnittsfläche A auf, die kleiner als die Querschnittsflächengröße des Zwischenraums 38 ist.
  • Die Größe der Strömungsöffnung 60 kann beispielsweise, wie in Figur 6b) gezeigt, durch ein Füllelement 62 reduziert werden, das in die Strömungsöffnung 60 eingesetzt wird. Die Querschnittsflächengröße A der Strömungsöffnung 60 entspricht folglich der Querschnittsfläche des Zwischenraums 38 abzüglich der Querschnittsfläche des Füllelements 62.
  • Eine weitere Möglichkeit zur Dimensionierung der Größe einer Strömungsöffnung 60 ist die Abstandregulierung zweier benachbarter Isolierverglasungselemente 26, wie in Figur 7 gezeigt.
  • Der Abstand zweier benachbarter Isolierverglasungselemente 26 wird im Folgenden als L bezeichnet.
  • In der linken Abbildung in Figur 7 ist der Abstand der Stoßflächen 36 zweier benachbarter Isolierverglasungselemente 26, die in seitlicher Richtung die Strömungsöffnung 60 begrenzen, in einem Abstand L1 beabstandet. Durch ein Zusammenschieben der Stoßflächen 36 der benachbarten Isolierverglasungselemente 26, verringert sich der Abstand zwischen den Stoßflächen 36 zu einem Abstand L2, wie in der rechten Abbildung in Figur 7 gezeigt. Die Querschnittsflächengröße A der Strömungsöffnung 60 ist somit gegenüber der linken Abbildung in Figur 7 verkleinert.
  • Weiterhin ist es möglich die Größe der Strömungsöffnungen 60 mittels zumindest einem Dämmelement 64 zu definieren, wie in Figur 8 gezeigt.
  • Tragkonstruktionen 10 werden, insbesondere in Dachkonstruktionen, üblicherweise mittels Dämmelementen am Dachanschluss isoliert. Wie in Figur 8 gezeigt, wird ein Dämmelement 64 an einem seitlichen Ende der Tragkonstruktion 10 angeordnet. Unterhalb des Dämmelements 64 verlaufen Dichtungen 66, die aus den Pfosten-Fluidkanälen 48 herausgeführt sind. Das zumindest eine Dämmelement 64 ist zum Schutz gegen Witterungseinflüsse mittels einem Wetterblech 68 abgedeckt.
  • Um die Querschnittsfläche A der Strömungsöffnungen 60 zu definieren, kann das Dämmelement 64 in dem Bereich einer Strömungsöffnung 60 vollständig ausgespart werden, so dass die Strömungsöffnung 60 nicht durch das Dämmelement 64 verkleinert wird (siehe rechte Strömungsöffnung in Figur (8). Die Querschnittsfläche A der Strömungsöffnung entspricht somit der Querschnittsfläche A des Zwischenraums 38.
  • Zur Verkleinerung der Querschnittsfläche A der Strömungsöffnung 60 kann eine Ausklinkung 70 in der Unterseite des Dämmelements 64 ausgebildet sein (siehe linken Strömungskanal in Figur 8). Diese Ausklinkung 70 dient einerseits dazu, die Dichtung 66 aufzunehmen und andererseits, um die Größe der Querschnittsfläche A der Strömungsöffnung 60 zu definieren. Je kleiner die Ausklinkung 70 ausgebildet ist, desto kleiner ist die Größe der Querschnittsfläche A der Strömungsöffnung 60.
  • Weiterhin können zur Dimensionierung der Strömungsöffnungen 60 Verblendungsbleche (nicht gezeigt) genutzt werden, die die Tragkonstruktion 10 verblenden. Dies kann beispielsweise über entsprechend dimensionierte Öffnungen in einem Verblendungsblech erfolgen.
  • Um eine Strömungsöffnung 60 zu vergrößern, kann zumindest eine weitere Öffnung (nicht gezeigt) in der Deckleiste 42 ausgebildet sein, die die Strömungsöffnung nach oben hin begrenzt. Die weitere Öffnung kann in einem Abstand zur Strömungöffnung 60 von 0 bis 20cm, vorzugsweise 0 bis 10 cm, weiter bevorzugt von 0 bis 5cm angeordnet sein.
  • Diese weitere Öffnung kann jedoch auch als ausschließliche Einström- bzw. Ausströmöffnung genutzt werden. Hierbei kann der Wind ausschließlich über eine Einströmöffnung bzw. eine Ausströmöffnung in der Deckleiste 42 eindringen bzw. austreten. Die Größe der weiteren Öffnung bestimmt dabei die Größe der Einström- bzw. Ausströmöffnung 50 und 52.
  • Die weitere Öffnung kann als Bohrung in der Deckleiste 42 ausgebildet sein. Um zu verhindern, dass Regenwasser über die weitere Öffnung in den Pfosten-Fluidkanal 48 eindringt, kann ein Lüftungspilz (nicht gezeigt) in die Bohrung eingesetzt werden. Der Lüftungspilz weist einen Lüftungspilz-Fluidkanal auf, der diesen durchdringt und mit dem Pfosten-Fluidkanal 48 in Verbindung steht. An einer Pilzkopfunterseite ist eine Windeintrittsöffnung ausgebildet, über die der Wind in den Lüftungspilz-Fluidkanal eintreten kann.
  • Bezugszeichenliste
  • 10
    Tragkonstruktion
    12
    Pfosten
    14
    Riegel
    16
    Paneelfeld
    18
    Traufe
    20
    First
    22
    Tragprofil
    24
    Auflagefläche
    26
    Isolierverglasungselement
    28
    Randabschnitt
    30
    Glaselement
    32
    Glaszwischenraum
    34
    Dichtungselement
    36
    Stoßfläche
    38
    Zwischenraum
    40
    Dämmkern
    42
    Deckleiste
    44
    Schraube
    46
    Dichtungsschicht
    48
    Pfosten-Fluidkanal
    50
    Einströmöffnung
    52
    Ausströmöffnung
    54
    Luftstrom
    56
    Riegel-Fluidkanal
    58
    Riegel-Verbindungsöffnung
    60
    Strömungsöffnung
    62
    Füllelement
    64
    Dämmelement
    66
    Dichtung
    68
    Wetterblech
    70
    Ausklinkung
    A
    Querschnittsfläche
    L
    Abstand zweier benachbarter Isolierverglasungselemente

Claims (11)

  1. Tragkonstruktion (10) zur Anordnung von Paneelen (26), insbesondere in Form von Isolierverglasungen und öffenbaren Elementen, umfassend:
    - zumindest zwei Pfosten (12), welche im Wesentlichen parallel zueinander angeordnet sind;
    - zumindest einen Riegel (14), welcher im Wesentlichen senkrecht zwischen den Pfosten (12) angeordnet ist, wobei die Pfosten (12) und der Riegel (14) als Auflagefläche (24) für die Paneele (26) ausgebildet und benachbarte Paneele (26) durch einen Zwischenraum (38) voneinander beabstandet sind; und
    - Deckleisten (42) zum Abdecken des Zwischenraums (38), die an Seitenflächen der Paneele (26) angeordnet sind, die den Seitenflächen, die auf der Auflagefläche (24) angeordnet sind, entgegengesetzt sind;
    wobei der zwischen den Paneelen (26), den Pfosten (12) bzw. Riegeln (14) und den Deckleisten (42) gebildete Zwischenraum (38) als Fluidkanal ausgebildet ist;
    wobei die Fluidkänäle (48) an den Pfosten (12) in Fluidverbindung mit dem Fluidkanal (56) an dem Riegel (14) stehen;
    dadurch gekennzeichnet, dass der Fluidkanal (48) an einem ersten Ende der Pfosten (12) eine Einströmöffnung (50) und an einem zweiten Ende der Pfosten (12) eine Ausströmöffnung (52) aufweist; dass die Einström- und Ausströmöffnung (50, 52) des Fluidkanals (48) an jedem einzelnen Pfosten (12) unterschiedlich groß sind; dass die Einströmöffnungen (50) der Fluidkanäle (48) an benachbarten Pfosten (12) unterschiedlich groß sind; und dass die Ausströmöffnungen (52) der Fluidkanäle (48) an benachbarten Pfosten (12) unterschiedlich groß sind.
  2. Tragkonstruktion (10) nach Anspruch 1, wobei der Fluidkanal (56) an dem Riegel (14) eine erste Riegel-Verbindungsöffnung (58) an einem ersten Ende des Riegels (14) und eine zweite Riegel-Verbindungsöffnung (58) an einem zweiten Endes des Riegels (14) aufweist,
    wobei der Fluidkanal (56) an dem Riegel (14) über die Riegel-Verbindungsöffnungen (58) in Fluidverbindung mit dem Fluidkanal (48) an einem ersten Pfosten (12) und an einem zweiten, benachbarten Pfosten (12) steht, und
    wobei die Größe der ersten Riegel-Verbindungsöffnung (58) und der zweiten Riegel-Verbindungsöffnung (58) an dem Riegel (14) identisch ist.
  3. Tragkonstruktion (10) nach Anspruch 1 oder 2, wobei eine Querschnittsfläche des Fluidkanals (56) an dem Riegel (14) über die gesamte Länge des Riegels (14) identisch ist.
  4. Tragkonstruktion (10) nach einem der vorangehenden Ansprüche, wobei die Tragkonstruktion (10) mindestens drei Pfosten (12) und mindestens zwei Riegel (14) umfasst,
    wobei die Einströmöffnungen (50) und die Ausströmöffnungen (52) der Fluidkanäle (48) an den Pfosten (12) derart ausgebildet sind, dass eine kleine Einströmöffnung (50) mit einer großen Einströmöffnung (50) alterniert, und eine kleine Ausströmöffnung (52) mit einer großen Ausströmöffnung (52) alterniert.
  5. Tragkonstruktion (10) nach Anspruch 4, wobei die Größe der Einströmöffnung (50) an jedem zweiten Pfosten (12) identisch ist; und
    wobei die Größe der Ausströmöffnung (52) an jedem zweiten Pfosten (12) identisch ist.
  6. Tragkonstruktion (10) nach Anspruch 4 oder 5, wobei die Größe der Einströmöffnung (50) an einem Pfosten (12) identisch mit der Größe der Ausströmöffnung (52) an dem benachbarten Pfosten (12) ist.
  7. Tragkonstruktion (10) nach einem der Ansprüche 4 bis 6, wobei die Querschnittsfläche der Fluidkanäle (56) an den Riegeln (14) identisch ist.
  8. Tragkonstruktion (10) nach einem der vorangehenden Ansprüche, wobei ein Abstand (L) zwischen benachbarten Paneelen (26) im Bereich der Einströmöffnung (50) und der Ausströmöffnung (52) an einem Pfosten (12) unterschiedlich groß ist, so dass die Größe der Einströmöffnung (50) und der Ausströmöffnung (52) des Fluidkanals (48) an einem Pfosten (12) unterschiedlich groß sind.
  9. Tragkonstruktion (10) nach einem der vorangehenden Ansprüche, wobei ein Füllelement (62) in der Einströmöffnung (50) oder der Ausströmöffnung (52) angeordnet ist, so dass die Größe der entsprechenden Öffnung verkleinert ist.
  10. Tragkonstruktion (10) nach einem der vorangehenden Ansprüche, ferner umfassend zumindest ein Dämmelement (64), das benachbart zu der Einströmöffnung (50) und/oder der Ausströmöffnung (52) an einem Pfostens (12) außerhalb des Fluidkanals (48) angeordnet ist, wobei das Dämmelement (64) einen Ausschnitt aufweist, der derart ausgestaltet ist, dass die Größe der entsprechenden Öffnung verschieden zu der Größe der entsprechenden Öffnung an der gegenüberliegenden Seite des Pfostens (12) ist.
  11. Tragkonstruktion (10) nach einem der vorangehenden Ansprüche, wobei die Einströmöffnung (50) oder die Ausströmöffnung (52) zumindest eine weitere Öffnung umfasst, die angrenzend zu der Einströmöffnung (50) oder der Ausströmöffnung (52) in der Deckleiste (42) ausgebildet ist.
EP15766044.0A 2014-09-02 2015-09-01 Tragkonstruktion zur anordnung von paneelen Active EP3152372B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014013026.6A DE102014013026A1 (de) 2014-09-02 2014-09-02 Tragkonstruktion zur Anordnung von Paneelen
PCT/EP2015/001762 WO2016034280A1 (de) 2014-09-02 2015-09-01 Tragkonstruktion zur anordnung von paneelen

Publications (2)

Publication Number Publication Date
EP3152372A1 EP3152372A1 (de) 2017-04-12
EP3152372B1 true EP3152372B1 (de) 2017-12-13

Family

ID=54147124

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15766044.0A Active EP3152372B1 (de) 2014-09-02 2015-09-01 Tragkonstruktion zur anordnung von paneelen

Country Status (4)

Country Link
EP (1) EP3152372B1 (de)
DE (1) DE102014013026A1 (de)
DK (1) DK3152372T3 (de)
WO (1) WO2016034280A1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH671998A5 (de) * 1986-04-25 1989-10-13 Daetwyler Ag
DE8901978U1 (de) * 1989-02-20 1989-06-29 Proksch, Kurt, 7206 Emmingen-Liptingen Bausatz zum Erstellen einer Rahmenkonstruktion, insbesondere für den Glas- oder Fassadenbau
DE19519219C2 (de) * 1995-05-24 1999-02-18 Schneider Fensterfabrik Gmbh & Holz-Aluminium-Pfosten-Riegelkonstruktion
DE19906323C1 (de) * 1999-02-16 2000-10-05 Hoogovens Aluminium Profiltech Vorrichtung zur Entlüftung eines Glasfalzraumes
DE20023944U1 (de) * 2000-12-29 2007-12-27 SCHÜCO International KG Fassade und/oder Dach und Dichtungsleiste
DE10200449B4 (de) * 2002-01-09 2006-03-09 Eduard Hueck Gmbh & Co Kg Pfosten-/Riegel-Konstruktion, insbesondere für Fassaden, Dächer und dergleichen
DE202013100612U1 (de) * 2013-02-11 2013-02-26 SCHÜCO International KG Tragkonstruktion zur Halterung eines Flächenelementes

Also Published As

Publication number Publication date
DK3152372T3 (en) 2018-02-05
DE102014013026A1 (de) 2016-03-03
WO2016034280A1 (de) 2016-03-10
EP3152372A1 (de) 2017-04-12

Similar Documents

Publication Publication Date Title
DE3419538C2 (de)
DE202016101593U1 (de) Vorrichtung gegen das Eindringen von Flüssigkeiten
DE3808715C2 (de)
DE102008030944A1 (de) Tragendes Bau-Konstruktionselement
DE19519219C2 (de) Holz-Aluminium-Pfosten-Riegelkonstruktion
DE102013217600A1 (de) Glasfassade
DE202009013657U1 (de) Kunststoffprofil
EP3152372B1 (de) Tragkonstruktion zur anordnung von paneelen
EP3211147B1 (de) Pfosten-riegel-konstruktion
EP0730068B1 (de) Dachflächenfenster
EP1020576B1 (de) Fassade oder Lichtdach mit einem Rahmenwerk aus Pfosten- und Sprossenprofilen
EP2514905B1 (de) Fensterrahmen für ein Verbundfenster oder eine Verbundfenstertür
EP3530860B1 (de) Isolierglaselement für eine glasfassade und glasfassade
DE19613044A1 (de) Pfosten-Sprossen-Konstruktion
DE202009013708U1 (de) Fassade
AT506900B1 (de) Fassadenplattentragkonstruktion
EP3085873A2 (de) Effektpaneel
DE102022206444B4 (de) Blendrahmen für eine Tür mit Extrusionsrahmen und Schwelle, Tür mit einem derartigen Blendrahmen und Verfahren zur Herstellung dieser Tür
DE102013107175A1 (de) Klemmelement und Verschlusselement mit einem Klemmelement
DE10008369A1 (de) Holz-Metall-Rahmenkonstruktion mit Feuchteentlastung
EP2735689B1 (de) Entwässerungseinrichtung für einen Verbindungsbereich eines Pfostenprofils und eines Riegelprofils sowie Pfosten-Riegel-Profilanordnung mit einer Entwässerungseinrichtung
EP3045603B1 (de) Pfosten-riegel-konstruktion
EP2639396B1 (de) Dichtungsformteil, sowie Rahmenanordnung
EP2378020B1 (de) Pfosten-Riegel-Fassade
DE3219760C2 (de) Wetterfeste Verkleidung für Außenflächen von Neu- oder Altbauten mit großflächigen Flachbauteilen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20170913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SLAWIK, STEFAN

Inventor name: HESSEMER, JOACHIM

Inventor name: RUDOLPH, ANDREAS

Inventor name: SCHUEBEL, ROLAND

Inventor name: SOERGEL, MANUEL

DAV Request for validation of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 954508

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002591

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180130

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002591

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230915

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230921

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240924

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240924

Year of fee payment: 10