EP3147394A1 - Textiler schal und verfahren zur herstellung davon - Google Patents

Textiler schal und verfahren zur herstellung davon Download PDF

Info

Publication number
EP3147394A1
EP3147394A1 EP16190566.6A EP16190566A EP3147394A1 EP 3147394 A1 EP3147394 A1 EP 3147394A1 EP 16190566 A EP16190566 A EP 16190566A EP 3147394 A1 EP3147394 A1 EP 3147394A1
Authority
EP
European Patent Office
Prior art keywords
yarns
fibers
weight
shawl
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16190566.6A
Other languages
English (en)
French (fr)
Inventor
Dipali Goenka
Radhika Goenka
Subrata PALIT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Welspun India Ltd
Original Assignee
Welspun India Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welspun India Ltd filed Critical Welspun India Ltd
Publication of EP3147394A1 publication Critical patent/EP3147394A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D23/00Scarves; Head-scarves; Neckerchiefs
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/217Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/225Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based artificial, e.g. viscose
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/52Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads thermal insulating, e.g. heating or cooling
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/02Wool
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics

Definitions

  • the present disclosure relates to a textile article, such as a shawl, and a method of making same
  • a shawl is a simple clothing accessory, usually rectangular in shape and large enough to be loosely worn over the shoulders, upper body and sometimes over the head. Shawls are mostly light to medium weight fabrics made from wool, rayon, cotton fiber yarns. Shawl fabrics are loosely constructed and course count yarns. When worn, shawls can provide some level of thermal insulation and warmth in cool weather.
  • a shawl article is configured for thermoregulation.
  • the shawl article includes an elongate panel having a first end, a second end spaced from the first end along a first direction, and opposed side edges spaced apart with respect to each other along a second direction that is perpendicular to the first direction.
  • the elongate panel includes a plurality of warp yarns that extend along the first direction, and a plurality of weft yarns interwoven with the plurality of warp yarns along the second direction so to define a woven fabrics.
  • the plurality of warp yarns includes at least cotton fibers and has a yarn count of about 40 Ne to about 100 Ne.
  • the plurality of weft yarns include thermoregulation yarns, wherein the thermoregulation yarns comprise at least about 50 % by weight of the shawl.
  • the shawl article includes an elongate panel having a first end, a second end spaced from the first end along a first direction, and opposed side edges spaced apart with respect to each other along a second direction that is perpendicular to the first direction.
  • the plurality of weft yarns include phase change yarns, wherein the phase change yarns comprise at least about 50 % by weight of the shawl.
  • the shawl article includes an elongate panel having a first end, a second end spaced from the first end along a first direction, and opposed side edges spaced apart with respect to each other along a second direction that is perpendicular to the first direction.
  • the elongate panel includes a plurality of warp yarns that extend along the first direction, and a plurality of weft yarns interwoven with the plurality of warp yarns along the second direction so to define a woven fabric.
  • the plurality of warp yarns including a blend of rayon and wool fibers, the warp yarns having a yarn count of about 10 Ne to about 40 Ne.
  • the plurality of weft yarns include phase change yarns, wherein the phase change yarns comprise at least about 50 % by weight of the shawl.
  • Another embodiment of the present disclosure includes a method of manufacturing a shawl article.
  • the method includes the step of weaving a plurality of warp yarns with a plurality of warp yarns to define a woven fabric, wherein the warp and the weft yarns include a count of about 10 Ne to about 106 Ne.
  • the weft yarns include thermoregulation components, such that at least 50 % by weight of the woven fabric includes thermoregulation components.
  • the method includes forming the woven fabric into the shawl article.
  • an embodiment of the present disclosure includes a textile article 2, such as a shawl 10.
  • the shawl 10 includes a panel 12 that includes a textile material that includes thermal regulation components.
  • the shawl 10 is a sleek, soft, comfortable textile article that provides functional benefits not found in typical shawls or other similar accessories.
  • the panel 12 includes a first end 22, a second end 24 spaced from the first end 22 along a first direction 4, and opposed side edges 26 and 28 spaced apart with respect to each other along a second direction 6 that is perpendicular to the first direction 4.
  • the shawl 10 defines a length L that extends from end 22 to the end 24 along the first direction 4 and a width W that extends from side 26 to the side 28 along the second direction 6. As illustrated, the shawl 10 has a length L that is greater than the width W. In one example, the length L is about 20 to about 100 inches(about 50 to about 255 cm).
  • the length L is about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 inches.
  • the width W is about 20 to about 100 inches (about 50 to about 255 cm). In other words, the length W is about 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 inches.
  • the shawl 10 is not limited to the shape illustrated. In some embodiments, length L and width W is 84 inches and 28 inches, respectively.
  • the shawl 10 can include non-rectilinear shapes as needed such as circular (round), triangular (a shape with 3 even or differently sized sides), trapezoidal, or sizes having 5 or more sides.
  • the shawl 10 is formed from a textile material that includes a composition of one or more thermal regulation components.
  • the textile material may be a woven fabric that includes a plurality of warp yarns and a plurality of weft yarns interwoven with the plurality of warp yarns to define a woven structure.
  • the textile material may also include yarns formed from particular blends of cotton, silk, rayon, or wool fibers.
  • the woven fabric may be defined by a number of different woven structures.
  • Exemplary woven structures include, but are not limited to, satins (e.g. satins, 4/1 satin, 4/1 satin base pique texture, 4/1 satin & sateen reversible stripe, 4/1 satin jacquard weave, 4/1 satin base stripe, 4/1 stain swiss dot, 4/1 down jacquard, 5/1 satins, 6/1 satins, and 3/1 satins), 1x1 plain weave, basket weaves, 2x1 rib weave, 2x2 rib weave, or 3x1 rib weave, and twill weaves.
  • the panel 12 can include different woven structures along the length L and width W of the shawl 10.
  • the warp yarns can be any type of spun yarn structure.
  • the warp yarns can be ring spun yarns, open end yarns, compact spun yarns, or rotor spun yarns, or filaments.
  • the warp yarns can be Hygrocotton ® brand yarns marketed by Welspun India Limited.
  • yarns can be formed as disclosed in U.S. Patent No. 8,833,075 , entitled "Hygro Materials for Use In Making Yarns And Fabrics," (the 075 patent). The 075 patent is incorporated by reference into present disclosure.
  • Preferred warp yarns are ring spun yarns.
  • the warp yarns can be formed from any number of fiber types but are preferably blended yarns. While blended warp yarns are preferred, the warp yarns could be formed from single fiber yarns. Accordingly, the warp yarns can formed from natural fibers, synthetic fibers, or blends of natural and synthetic fibers.
  • Preferred natural fibers include cotton, silk and wool. However, other natural fibers could be used, such as flax, bamboo, hemp, and the like.
  • Synthetic fibers are those fibers that result in fabric structures with good hand, drape, and softness.
  • Preferred synthetic fibers may include rayon fibers (e.g. Tencel).
  • thermoplastic fibers could be used in blend yarns, such as polyethylene terephthalate (PET) fiber, polylactic acid (PLA) fiber, polypropylene (PP) fibers, polyamide fibers, and micro fiber staple fibers formed therefrom.
  • PET polyethylene terephthalate
  • PLA polylactic acid
  • PP polypropylene
  • micro fiber staple fibers formed therefrom.
  • the warp yarns are preferably blended yarns.
  • the warp yarns are blended yarns that include cotton fibers and silk fibers.
  • Such blended yarns can include about 50 to about 80 % by weight cotton fibers.
  • the blending yarns include about 50, 55, 60, 65, 70, 75, or 80%, by weight cotton fibers.
  • the blend yarns can also include about 20 to about 50 % by weight silk fibers.
  • the blended yarns can include about 20, 25, 30, 35, 40, 45, or 50% by weight silk fibers.
  • the warp yarns are blended yarns that include about 70 % by weight cotton fibers and about 30 % by weight silk fibers.
  • the warp yarns are blended yarns that include cotton fibers and rayon fibers.
  • such blended yarns include about 40 to about 80 % by weight rayon fibers.
  • the blended yarns include about 40, 45, 50, 55, 60, 65, 70, 75, or 80%, by weight rayon fibers.
  • the blended yarns can also include about 20 to about 60 % by weight cotton fibers.
  • the blended yarns include about 20, 25, 30, 35, 40, 45, 50, 55, or 60%, by weight cotton fibers.
  • the blended yarns include about 60 % by weight rayon fibers and about 40 % by weight cotton fibers.
  • the warp yarns are blended yarns that include wool and rayon fibers.
  • such blended yarns include about 40 to about 80 % by weight wool fibers.
  • the blending yarns can include about 40, 45, 50, 55, 60, 65, 70, 75, or 80 % by weight wool fibers.
  • the blended yarns can include about 20 to about 60 % by weight rayon fibers.
  • the blending yarns can include about 20, 25, 30, 35, 40, 45, 50, 55, or 60 % by weight rayon fibers.
  • the blended yarns include about 60 % by weight wool fibers and about 40 % by weight wool fibers.
  • the warp yarns are formed from one fiber type.
  • such warp yarns include cotton fibers.
  • the warp yarns have a range of finer counts for the yarn types and fibers as described above.
  • the warp yarns can have count of about 40 to about 100 Ne.
  • the warp yarns have a count of about 40 Ne.
  • the warp yarns have a count of about 45 Ne.
  • the warp yarns have a count of about 50 Ne.
  • the warp yarns have a count of about 55 Ne.
  • the warp yarns have a count of about 60 Ne.
  • the warp yarns have a count of about 65 Ne.
  • the warp yarns have a count of about 70 Ne.
  • the warp yarns have a count of about 80 Ne.
  • the warp yarns have a count of about 85 Ne. In another example, the warp yarns have a count of about 90 Ne. In another example, the warp yarns have a count of about 95 Ne. In another example, the warp yarns have a count of about 100 Ne.
  • the warp yarns can be plied yarns. In one example, the natural fiber warp yarn is a 2-ply yarn. In another example, the warp yarn is a 3-ply yarn. In one example, the warp yarns have a twist multiple of about 3.6 to about 4.2. In other words, the warp yarns can have a twist multiple of about 3.6, 3.7, 3.8, 3.9, 4, 4.1, or 4.2.
  • the weft yarns can be any type of spun yarn structure that includes one or more thermal regulation components.
  • the weft yarns can be ring spun yarns, open end yarns, compact yarns, or rotor spun yarns, or filaments.
  • the weft yarns can be Hygrocotton ® brand yarns.
  • thermoregulation components can be a) thermoregulation fibers that include heat absorbing materials embedded in the fibers, or b) fibers with phase change materials (PCMs) embedded therein.
  • the thermoregulation components may be blended with natural or synthetic fibers.
  • the thermoregulation fibers are blended with cotton fibers.
  • the weft yarns include natural fibers, synthetic fiber yarns, or blends of natural and synthetic fibers, similar to those described above with respect to the warp yarns.
  • the weft yarns are formed with thermoregulation fibers that are loaded with a mix of active materials, such as thermo-reactive materials.
  • the thermos-reactive fibers may include silicon, carbon, and various vitreous glasses including oxides of aluminum, titanium, silicon, boron, calcium, sodium, and lithium. Preferred materials are titanium dioxide, quartz, aluminum and oxide within a core of a fiber.
  • the thermoregulation fibers may be formed into spun or filament yarns.
  • the thermoregulation fibers used in spun yarns having range of denier and staple lengths, such as between 0.5 denier to 3 denier and a staple length between 1 inch to 3 inches.
  • Thermoregulation spun yarns can have a count of about 35 to about 106 Ne.
  • Thermoregulation filament yarns can have a count of about 50 to about 150 denier.
  • the denier could about 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 denier.
  • the thermoregulation filament yarns are about 50/36 denier, 70/68 denier 75/72 denier, or 150/144 denier.
  • Filament yarns may include PET or Nylon filament.
  • the thermoregulation fibers and yarns may be manufactured according to U.S. Patent Pub. No. 2004/0043174 , entitled Polymeric Fiber Composition And Method, the entirety of which is incorporated by reference into this document.
  • thermoregulation fibers are Celliant fibers, available from, Hologenix, LLC.
  • thermoregulation fibers are constructed so that such yarns comprise of 55 to about 65% by weight of the overall weight of the shawl.
  • the thermoregulation fibers may comprise about 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65%, by weight of the overall weight of the shawl.
  • the active materials in the thermoregulation fibers and yarns described above are designed to absorb radiant body heat and convert the radiant body heat into infrared energy that is reflected back into the body. There are several benefits to the human body receiving such infrared energy. Infrared energy boosts the flow of blood to tissue throughout the body improving circulation while increasing oxygen levels.
  • Infrared energy can also stimulate cell performance and regeneration, while the increased circulation nourishes the cells with higher levels of oxygen-further promoting cell health.
  • Enhanced cell function means injuries heal quicker, pain subsides faster, and stamina and endurance are amplified.
  • the thermoregulation fibers also make it easier for the body to maintain an appropriate temperature.
  • the weft yarns can be formed with fibers that incorporate phase change materials (PCMs). Such fibers may be referred to as phase change material fibers or PCM fibers.
  • PCMs phase change material fibers
  • the PCMs are microencapsulated to be enclosed in a polymer shell and the microencapsulated PCMs are embedded into the fiber. This encapsulation process makes the PCM fibers quite durable.
  • the PCM fiber can absorb, store and release heat for optimal thermal comfort.
  • the PCM fibers may be formed into spun or filament yarns.
  • the weft yarns may be blended yarns that include the phase change fibers and cotton fibers. Such blended yarns include about 40 to about 80 % by weight of phase change fibers.
  • the blended yarns include about 40, 45, 50, 55, 60, 65, 70, 75, or 80 %, by weight of phase change fibers.
  • the blended yarns also include about 20 to about 60 % by weight of cotton fibers.
  • the blended yarns include about 40, 45, 50, 55, or 60 %, by weight of cotton fibers.
  • the blended yarns include about 60 % by weight phase change fibers and about 40 % by weight cotton fibers.
  • Phase change fibers are Outlast fibers, available from Outlast Technologies LLC.
  • yarns including PCM fibers may have a count of about 10 to about 60 Ne. The yarn count can be about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 Ne.
  • the PCM yarns have a count of about 14 Ne. In another example, the PCM yarns have a count of about 20 Ne. In another example, the PCM yarns have a count of about 30 Ne. In another example, the weft PCM yarns have a count of about 40 Ne. In another example, the weft PCM yarns have a count of about 60 Ne.
  • phase change yarns are constructed so that the phase change yarns comprise about 55 to about 65% by weight of the overall weight of the shawl.
  • the phase change yarns comprise about 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65 %, by weight of the overall weight of the shawl.
  • Such a shawl containing the PCM yarns has the ability to continually regulate skin's microclimate. As the skin gets hot, the heat is absorbed, and as it cools, that heat is released.
  • the weft yarns have a range of counts for the yarns types and fibers used as described above.
  • the weft yarns can have count of about 10 to about 106 Ne.
  • the yarn count is about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or 110 Ne.
  • the weft yarns have a count of about 10 Ne.
  • the weft yarns have a count of about 14 Ne.
  • the weft yarns have a count of about 20 Ne.
  • the weft yarns have a count of about 24 Ne.
  • the weft yarns have a count of about 30 Ne.
  • the weft yarns have a count of about 40 Ne. In another example, the weft yarns have a count of about 50 Ne. In another example, the weft yarns have a count of about 60 Ne. In another example, the weft yarns have a count of about 70 Ne. In another example, the weft yarns have a count of about 80 Ne. In another example, the weft yarns have a count of about 90 Ne. In another example, the weft yarns have a count of about 106 Ne. In addition, the weft yarns can be plied yarns. In one example, the natural fiber weft yarn is 2-ply yarn. In another example, the weft yarns yarn is a 3-ply yarn.
  • the method 200 includes yarn formation steps 210 for warp and weft yarns.
  • Yarn formation 210 for the warp yarns can include staple yarn formation or spinning 212 and filament yarn formation 214 (where applicable).
  • Staple yarn formation 212 may utilize any number of yarn formation systems and sub-systems.
  • staple yarn formation may include bale opening, carding, optionally combing, drafting, roving, and yarn spinning (yarn spinning processes are not illustrated) to the desired count and twist level.
  • the warp yarns can be plied into 2-ply, 3-ply, or 4-ply configurations.
  • the warp yarns are wound into the desired yarn packages for the warping step 220.
  • ring spinning is the preferred spinning system.
  • the warp yarns can be formed using open end spinning systems or rotor spun spinning systems.
  • the spinning system may include methods to form the Hygrocotton ®, as disclosed in the 075 patent.
  • the 075 patent is incorporated by reference into present disclosure.
  • the filament formation forms continuous filament yarns.
  • polymer resins such as PET, PLA, and PP
  • Tm polymer melting temperature
  • the filaments may be slightly tensioned by passing over one or more godets before being wound onto desired yarn packages. Additional bulking or texturizing steps may be included to increase the bulk and impart "false twist" to the yarns.
  • the weft yarns may be formed with similar fiber types and using the same or similar yarn spinning systems used to form the warp yarns. As needed, the weft yarns may be plied in 2-ply, 3 ply, or 4-ply configurations.
  • the weft winding step 222 prepares wound packages of weft yarns. The wound packages are then staged for weft insertion during fabric formation steps discussed further below.
  • a warping step 220 follows the yarn formation step. 210.
  • the warping step 220 is where warp yarn ends are removed from their respective yarn packages, arranged in a parallel form, and wound onto a warp beam.
  • the warping 220 also includes a sizing step where a sizing agent is applied to each warp yarn to aid in fabric formation.
  • the warping step 220 results in a warp beam of warp yarns prepared for weaving.
  • the warp beam can be positioned on a mounting arm of a weaving loom so that the warp yarns can be drawn through the loom components, as further described below.
  • a weaving step 240 forms a woven fabric using a weaving loom. More specifically, in the weaving step 240, the warp yarns are drawn-in (not shown, but contemplated) through various components of a weaving loom, such as drop wires, heddle eyes attached to a respective harness, reed and reed dents, in a designated order as is known in the art. After drawing-in is complete, the weaving step 240 proceeds through a formation phase. The formation phase creates shed with the warp yarns that the weft or picks can be inserted through across the width direction of the machine to create the desired woven fabric construction. For instance, shedding motions can include cam shedding, dobby shedding, or jacquard shedding motions, each of which can cause the selective raising and lowering of warp ends to create an open shed for weft insertion.
  • weft yarns are interwoven with the warp yarns to define the woven design constructions.
  • Exemplary woven structures include, but are not limited to, satins (e.g. satins, 4/1 satin, 4/1 satin base pique texture, 4/1 satin & sateen reversible stripe, 4/1 satin jacquard weave, 4/1 satin base stripe, 4/1 stain swiss dot, 4/1 down jacquard, 5/1 satins, 6/1 satins, and 3/1 satins), 1x1 plain weave, basket weaves, 2x1 rib weave, 2x2 rib weave, or 3x1 rib weave, and twill weaves.
  • the formation phase can utilize different weft insertion techniques, includes air-jet, rapier, or projectile type weft insertion techniques.
  • the weaving step 240 can further include weaving one or more selvedge edges along a length L of the woven fabric.
  • the weaving step 240 can form woven fabrics having any number of different fabric constructions.
  • the weaving step 240 can form woven fabrics to include about 10 to about 100 warp ends/cm (EPC), preferably about 20 and about 80 EPC.
  • EPC warp ends/cm
  • the EPC is about 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100.
  • the woven fabric has about 20.4 EPC.
  • the woven fabric has about 40 EPC.
  • the woven fabric has about 68 EPC.
  • the woven fabric has about 80 EPC.
  • the woven fabric has about 100 EPC.
  • the weaving step 240 can form woven fabrics to include about 10 to about 80 picks/cm (PPC).
  • the PPC is about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 80.
  • the pick density is about 15 to about 45 PPC.
  • the woven fabric can be manufactured using multiple picks, such as 2 picks, 3 picks, or 4 or more picks inserted through the shed in a single pick insertion event. For instance, a group of weft yarns can be inserted across the shed in a single pick insertion event during weaving.
  • the woven fabric has about 19.6 PPC (with multiple pick insertion, such as 4 picks).
  • the woven fabric has about 20.4 PPC (with multiple pick insertion, such as 4 picks). In another example, the woven fabric has about 27.5 PPC (multiple pick insertion, such as 4 picks). In another example, the woven fabric has about 29 EPC (with multiple pick insertion, such as 4 picks).
  • Desizing may be accomplished with as is typical with enzymes or other type of desizing agents.
  • Bleaching may include typical bleaching agents, such as hydrogen peroxide.
  • Step 250 may include singing the fabric.
  • an optional printing step 260 applies a design on the face of the woven fabric.
  • the printing step 260 initiates with a preparation step that includes padding the woven fabric with a paste containing, e.g., sodium alginate and alkali, at a typical WPU and utilizing typical concentrations.
  • a digital printer prints a design the fabric using reactive inks or dyestuffs.
  • the printed woven fabric is steamed and washed. The steaming and washing steps remove the printing gums and any unfixed dyestuffs.
  • the fabric is assembled into the article in step 280.
  • the assembly step 280 includes cutting the woven fabric as needed. Following cutting, additional edge binding or a hem, such hemstitching can optionally be applied to finish the cut edges.
  • a packaging step 290 places the shawl in suitable packaging for shipment.
  • Tables 1-6 below illustrate exemplary fabrics used create the shawls as described herein. The examples should not be considered limiting.
  • Table 1 Example 1 Weave Satin Warp Yarns Ring Spun, 60Ne, 70 % by weight Cotton/30 % by weight silk Warp End Density 175 ends/inch (68 ends/cm) Weft Yarns Thermoregulation Yarn, 75 denier, Celliant fibers Weft Density 29 PPC, 4 pick insertion Table 2
  • Example 2 Weave Satin Warp Yarns Ring Spun, 60Ne, 70 % by weight Cotton/30 % by weight silk Warp End Density 180 ends/inch (70.8) ends/cm Weft Yarns Ring Spun, 20Ne, 60 % by weight outlast/40 % by weight cotton Weft Density 27.5 PPC, 4 pick insertion Table 3
  • Example 3 Weave Satin Warp Yarns Ring Spun, 60Ne, 70 % by weight Cotton

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Woven Fabrics (AREA)
EP16190566.6A 2015-09-25 2016-09-26 Textiler schal und verfahren zur herstellung davon Withdrawn EP3147394A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562232441P 2015-09-25 2015-09-25
US15/274,726 US20170086522A1 (en) 2015-09-25 2016-09-23 Shawl Textile Article And Method Of Making Same

Publications (1)

Publication Number Publication Date
EP3147394A1 true EP3147394A1 (de) 2017-03-29

Family

ID=57103815

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16190566.6A Withdrawn EP3147394A1 (de) 2015-09-25 2016-09-26 Textiler schal und verfahren zur herstellung davon

Country Status (2)

Country Link
US (1) US20170086522A1 (de)
EP (1) EP3147394A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021077609A1 (zh) * 2019-10-22 2021-04-29 江苏阳光股份有限公司 一种发热保暖羊毛面料的制备方法
EP3717684A4 (de) * 2017-11-28 2021-08-11 New York Knitworks, LLC Multieffektgewebe zur energiegewinnung und wärmeverwaltung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170167060A1 (en) * 2015-12-10 2017-06-15 Jennifer Daley Ultra-high-quality towel and yarn used to weave it
WO2017165394A1 (en) * 2016-03-21 2017-09-28 Avery Dennison Retail Information Services, Llc Simulated cork apparel tag and label
USD818245S1 (en) * 2016-11-10 2018-05-22 Constance Richardson Shawl
US10689782B2 (en) 2016-12-10 2020-06-23 Sachin JHUNJHUNWALA Textile fabric fabricated of twill weave sheeting
US10844525B2 (en) * 2019-03-20 2020-11-24 Raffi Ohanians Thermal insulating fabric
US20210047757A1 (en) * 2019-08-13 2021-02-18 Allbirds, Inc. Composite yarns
US11773515B2 (en) * 2021-02-19 2023-10-03 New York Knitworks, Llc Single, multi-effect, energy harvesting and heat managing spun yarn and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296859B2 (ja) * 1992-11-17 2002-07-02 株式会社クラレ 蓄熱保温性繊維
JP2003246931A (ja) * 2002-02-25 2003-09-05 Toyobo Co Ltd マイクロカプセル保有成形物
JP2003268679A (ja) * 2002-03-07 2003-09-25 Mitsubishi Paper Mills Ltd 蓄熱性を有する糸及びそれを用いた織物
DE202005018048U1 (de) * 2005-11-16 2006-01-26 Gözze, Wolfgang Schal aus textilem Material
CN101285238A (zh) * 2008-06-05 2008-10-15 如皋市丁堰纺织有限公司 一种智能调温粘胶纤维面料
WO2009031946A1 (en) * 2007-09-03 2009-03-12 Sca Hygiene Products Ab Multi-component fibres
JP2013147762A (ja) * 2012-01-18 2013-08-01 Nisshinbo Textile Inc 織物製品
CN103014992B (zh) * 2012-12-12 2014-03-12 江苏阳光集团有限公司 一种温度智能控制精纺面料及其生产方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2329452A (en) * 1939-05-17 1943-09-14 Bloch Godfrey Textile fabric
US2335642A (en) * 1943-01-11 1943-11-30 Chatham Mfg Company Blanket
US2792851A (en) * 1955-10-27 1957-05-21 Pepperell Mfg Company Blanket cloth and method of making the same
US4884325A (en) * 1986-10-31 1989-12-05 Manifattura Lane Gaetano Marzotto & Figli S.P.A. Process for the manufacture of a blanket product
EP1197722A3 (de) * 2000-10-10 2003-05-07 Malden Mills Industries, Inc. Heizende/wärmende Textilartikel mit einer Phasenumwandlungskomponente
US20040185728A1 (en) * 2003-03-21 2004-09-23 Optimer, Inc. Textiles with high water release rates and methods for making same
US20160312402A1 (en) * 2014-11-05 2016-10-27 Welspun India Limited Washed down fabric articles and process for making same
US9702064B2 (en) * 2015-09-25 2017-07-11 Welspun India Limited Woven fabric with bulky continuous filaments yarns and related manufacturing methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296859B2 (ja) * 1992-11-17 2002-07-02 株式会社クラレ 蓄熱保温性繊維
JP2003246931A (ja) * 2002-02-25 2003-09-05 Toyobo Co Ltd マイクロカプセル保有成形物
JP2003268679A (ja) * 2002-03-07 2003-09-25 Mitsubishi Paper Mills Ltd 蓄熱性を有する糸及びそれを用いた織物
DE202005018048U1 (de) * 2005-11-16 2006-01-26 Gözze, Wolfgang Schal aus textilem Material
WO2009031946A1 (en) * 2007-09-03 2009-03-12 Sca Hygiene Products Ab Multi-component fibres
CN101285238A (zh) * 2008-06-05 2008-10-15 如皋市丁堰纺织有限公司 一种智能调温粘胶纤维面料
JP2013147762A (ja) * 2012-01-18 2013-08-01 Nisshinbo Textile Inc 織物製品
CN103014992B (zh) * 2012-12-12 2014-03-12 江苏阳光集团有限公司 一种温度智能控制精纺面料及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Celliant Fibers, Yarns and Fabrics", 5 September 2015 (2015-09-05), XP055341666, Retrieved from the Internet <URL:www.celliant.com> [retrieved on 20170202] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3717684A4 (de) * 2017-11-28 2021-08-11 New York Knitworks, LLC Multieffektgewebe zur energiegewinnung und wärmeverwaltung
WO2021077609A1 (zh) * 2019-10-22 2021-04-29 江苏阳光股份有限公司 一种发热保暖羊毛面料的制备方法

Also Published As

Publication number Publication date
US20170086522A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
EP3147394A1 (de) Textiler schal und verfahren zur herstellung davon
CN109457362B (zh) 一种凉爽导湿排汗面料的设计方法与生产工艺
US9702064B2 (en) Woven fabric with bulky continuous filaments yarns and related manufacturing methods
CN109667023B (zh) 一种功能性起泡色织面料的设计方法及其生产工艺
EP3237661B1 (de) Schnell trocknender frotteestoff und entsprechende artikel
US9828704B2 (en) Terry article with synthetic filament yarns and method of making same
CN104302821A (zh) 具有控制纱系统的拉伸机织织物
US11702774B2 (en) Soft twist terry article
EP3147395A1 (de) Chambray-stoff, bettwäscheartikel und zugehörige herstellungsverfahren
US20180080151A1 (en) Performance fabrics and related articles
CN107313148B (zh) 一种功能性双层透孔面料的生产工艺
CN107587234B (zh) 一种棉/涤/竹/粘发热热绒布织物的生产工艺
EP3147396B1 (de) Gewebe mit bauschigen endlosgarnen und zugehörige herstellungsverfahren
US20190323152A1 (en) Ultra soft fabric and process of manufacturing same
EP3447179A1 (de) Wasserstrahlverfestigtes gewebe
EP3141643B1 (de) Polfadenartikel mit synthetischen garnen und verfahren zur herstellung davon
CN107208327B (zh) 织物罩
EP3146958A1 (de) Kissenartikel, textilmaterial und zugehörige verfahren
EP3992337B1 (de) Frotteeartikel und verfahren zur herstellung davon
JP2004183193A (ja) 織物
JP4059557B2 (ja) 染色織物の製法
JP7081962B2 (ja) シボ織物
US20170088983A1 (en) Pillow article, textile material, and related methods
JP3847144B2 (ja) ストレッチ性交織織物
JP2002054037A (ja) レーヨン交撚糸

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170929

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190402