EP3123117A1 - Sensoranordnung zur wegerfassung an einem bewegten bauteil - Google Patents

Sensoranordnung zur wegerfassung an einem bewegten bauteil

Info

Publication number
EP3123117A1
EP3123117A1 EP15708771.9A EP15708771A EP3123117A1 EP 3123117 A1 EP3123117 A1 EP 3123117A1 EP 15708771 A EP15708771 A EP 15708771A EP 3123117 A1 EP3123117 A1 EP 3123117A1
Authority
EP
European Patent Office
Prior art keywords
measuring element
magnet
magnetic field
sensitive measuring
sensor arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP15708771.9A
Other languages
English (en)
French (fr)
Inventor
Eduard Maiterth
Michael Kleinknecht
Mathias Kimmerle
Joerg Siedentopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3123117A1 publication Critical patent/EP3123117A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention is based on a sensor arrangement for position detection on a moving component according to the preamble of independent patent claim 1.
  • Speed sensors and position sensors are known from the prior art, which can detect and evaluate a rotational movement or a position change by detecting a corresponding change in a magnetic field.
  • Magnetic sensors which are generally known per se and which can be designed as Hall sensors, AMR sensors, GMR sensors, TMR sensors or, in general, as xMR sensors, depending on the application and area of use, are used, for example, for controlling motors or in gearboxes. or vehicle dynamics systems can be used in motor vehicles.
  • ASICs sensitive elements or evaluation modules
  • At least two movable magnets are usually used in the case of path or angle measurement by detecting a change in the magnetic angle over the path or angle. These provide a common magnetic field with the largest possible ( ⁇ 360 °) magnetic angle change over the actuation path or operating angle and at the same time a defined magnetic field
  • the detection of the rotating or rotating magnetic field vector is essential. This rotational movement of the magnetic field vector is detected by the sensitive sensing element, which may be part of an ASIC (Application Specific Integrated Circuit). This is done, for example, in the case of a two-dimensional or three-dimensional Hall sensor by indirect angle detection via an arc tangent function of the directed magnetic flux densities.
  • DE 10 2009 055 104 A1 discloses, for example, a magnetic field sensor arrangement for detecting the position of moving components, in which spatial components of the magnetic field of a magnet system on the moving component change in their direction over the path to be detected, thereby corresponding to their position relative to a stationary sensor is detectable.
  • the sensor arrangement according to the invention for path detection on a moving component with the features of independent claim 1 has the advantage that at least one small and thus inexpensive magnet in the fixed part of the application or in the sensor housing is arranged, for example, directly in the vicinity of the sensitive measuring element.
  • the stationary magnetic circuit in the fixed part of the application may have one or more small magnets.
  • large measuring ranges, which consist of a sensitive measuring range and of a fixed clamping range with at least one stationary magnet by at least one smaller and thus cheaper magnet on the moving part of the application instead of as previously by two much longer magnets on the moving lent part will be realized.
  • the integration of the at least one useful magnet can be facilitated in an advantageous manner.
  • the at least one fixed magnet acts as a support magnet and can also be designed very small and thus cost, since it can be mounted very close to the sensitive measuring element.
  • the supporting magnet can likewise lie on the printed circuit board, for example next to or on the opposite printed circuit board side of the sensitive measuring element.
  • Embodiments of the invention can be used with all position and / or angle encoders that evaluate the change in the magnetic flux density direction, such as Hall sensors, in particular so-called 2D or 3D Hall sensors or xMR sensors, such as AMR or GMR sensors.
  • Particularly sensitive measuring elements which measure the flux density in two or three spatial directions offer numerous possibilities by combining magnetization direction of the magnets and the arrangement of the at least one support magnet to the at least one useful magnet to meet the requirements of the sensitive measuring elements, such as 3D Hall sensors with at least one flux concentrator.
  • the movable at least one useful magnet provides for the rotation of the magnetic field vector at the location of the fixed sensitive measuring element and thus for the signal change in the sensitive measuring range.
  • the fixed at least one support magnet provides for a fixed non-rotating magnetic field vector and a sufficient flux density at the location of the fixed sensitive measuring element as soon as the at least one useful magnet has moved too far away from the stationary sensitive measuring element.
  • the magnetic field generated by the fixed at least one support magnet and the non-rotating magnetic field vector can be used to generate a constant output signal in the fixed clamping region.
  • the at least one support magnet is expediently oriented in such a way that its magnetization direction at the moment when the at least one useful magnet leaves the measuring range of the sensitive measuring element retains the last-measured magnetic field direction, ie provides a constant measuring angle, which in the course of the previous measurement up to the time of leaving the measuring range of the sensitive measuring element was not previously measured by the at least one useful magnet.
  • Embodiments of the present invention provide a sensor assembly for sensing displacement on a moving component, wherein at least one spatial component of a magnetic field of a magnetic sensing assembly changes by the movement of the component over the path to be detected and thereby the position of the moving member relative to a moving member stationary sensitive measuring element is detectable.
  • at least one useful magnet which is connected to the moving component, and at least one support magnet, which is arranged stationarily in the measuring range of the sensitive measuring element, generate the magnetic field.
  • the stationary at least one support magnet generates a constant stationary first magnetic field vector at the location of the sensitive measuring element.
  • the fixed constant first magnetic field vector of the fixed at least one support magnet may have a predetermined angle with respect to a normal of the measurement surface of the sensitive measurement element at the location of the sensitive measurement element.
  • the movable at least one useful magnet when entering the measuring range of the sensitive measuring element at the location of the sensitive measuring element generate a rotating second magnetic field vector whose magnetic field superimposed on the magnetic field of the at least one support magnet.
  • a plurality of useful magnets or only one useful magnet can be connected to the moving component. When using several useful magnets, these can be made smaller than a single useful magnet in order to generate the rotating second magnetic field vector at the location of the sensitive measuring element.
  • the magnetizations of the at least one useful magnet and the at least one supporting magnet can have a predetermined angle to one another. Due to the given magnetization directions of the magnets, a predetermined angular range of the magnetic field vectors with respect to a normal of the measuring surface of the sensitive measuring element can be specified at the location of the sensitive measuring element, so that the magnetic circuit of the sensor arrangement can be easily adapted to different applications and / or installation spaces by the arbitrary magnetization angles can.
  • the sensitive measuring element can be arranged on a printed circuit board which has a first surface and a second surface.
  • the stationary at least one support magnet can be arranged, for example, on the same surface of the printed circuit board next to the sensitive measuring element or on another surface of the printed circuit board below or next to the sensitive measuring element or in a through hole of the printed circuit board.
  • the at least one support magnet is preferably arranged as close as possible to the sensitive measuring element, ie with the smallest possible distance to the sensitive measuring element.
  • the possible arrangement positions of the individual support magnets can be combined.
  • the angle of the fixed magnetic field vector with respect to the normal of the measuring surface of the sensitive measuring element can be simply predetermined in an advantageous manner at the location of the sensitive measuring element.
  • the direction of the supporting magnetic field is selected to suit the location of the supporting magnet and the magnetization of the movable at least one useful magnet.
  • the fixed support magnet can be mounted together with a ferromagnetic flux guide.
  • the sensitive measuring element can be designed as part of an evaluation module.
  • the evaluation module is preferably designed as an ASIC (application-specific integrated circuit).
  • the path to be detected may represent a translational movement or a rotational movement.
  • FIG. 1 shows a schematic sectional view of an exemplary embodiment of a sensor arrangement according to the invention for detecting travel on a moving component.
  • FIG. 2 shows a schematic perspective illustration of the individual components of the magnetic measuring arrangement for the sensor arrangement according to the invention for position detection on a moving component from FIG. 1.
  • Fig. 3 shows a side view of the magnetic measuring arrangement for the representation of different positions for the arrangement of a support magnet for the magnetic measuring arrangement.
  • FIG. 4 shows a plan view of the magnetic measuring arrangement of FIG. 3.
  • FIG. 5 shows a side view of the magnetic measuring arrangement for illustrating further positions for arranging a supporting magnet for the magnetic measuring arrangement.
  • FIG. 6 shows a plan view of the magnetic measuring arrangement of FIG. 5.
  • FIG. FIGS. 7 and 8 each show a characteristic curve of the magnetic measuring arrangement of FIG. 2.
  • the illustrated embodiment of a sensor arrangement 1 for path detection on a moving component 5 comprises a magnetic measuring arrangement 10, wherein at least one spatial component of a magnetic field of the magnetic measuring arrangement 10 by the movement of the component 5 via change the path to be detected R and thereby the position of the moving component 5 with respect to a stationary sensitive measuring element 16.1 is detectable.
  • at least one useful magnet 18, which is connected to the moving component 5, and at least one support magnet 12, which is arranged stationarily in the measuring range of the sensitive measuring element 16. generate the magnetic field.
  • the moving member 5 represents a moving piston, which is moved translationally in a cylinder 7 of a brake booster, for example by a brake pedal operation.
  • the at least one support magnet 12 and an evaluation module 16 embodied, for example, as an ASIC, are arranged stationarily on a printed circuit board 14, which is fastened to a housing 3 of the brake booster.
  • the sensitive measuring element 16. 1 is designed as part of the evaluation module 16.
  • the fixed at least one support magnet 12 generates a constant fixed first magnetic field vector at the location of the sensitive measuring element 16.1.
  • the constant stationary first magnetic field vector of the fixed at least one support magnet 12 at the location of the sensitive measuring element 16.1 has a predetermined angle with respect to a normal of the measuring surface of the sensitive measuring element 16.1.
  • the intensity or length of the magnetic field vector is dependent on the distance LI between the support magnet 12 and the sensitive measuring element 16.1.
  • the movable at least one useful magnet 18, upon entering the measuring range of the sensitive measuring element 16.1 at the location of the sensitive measuring element 16.1, generates a rotating second magnetic field vector whose magnetic field superimposes the magnetic field of the at least one supporting magnet 12.
  • the measuring range of the sensitive measuring element 16.1 is represented by a distance A in FIG.
  • the intensity or current length of the rotating magnetic field vector of the moving at least one useful magnet 18 at the location of the stationary sensitive measuring element 16.1 is dependent on the distance to the sensitive measuring element 16.1.
  • the maximum length of the rotating magnetic field vector is dependent on the air gap L2 between the at least one useful magnet 18 and the sensitive measuring element 16.1.
  • the magnetizations of the at least one useful magnet 18 and the at least one support magnet 12 have a predetermined angle to one another.
  • the stationary at least one support magnet 12 and the sensitive measuring element 16. 1 can be arranged on different surfaces 14. 1, 14. 2 of the printed circuit board 14.
  • the angle of the fixed magnetic field vector with respect to the normal of the measuring surface of the sensitive measuring element 16.1 in an advantageous manner be specified.
  • Fig. 3 and 4 various possible positions for the arrangement of the dashed supporting magnets 12 are shown.
  • the support magnet can be arranged, for example, directly above the sensitive measuring element 16.1 or at a predetermined angle with different distances to the sensitive measuring element 16.1.
  • the support magnet 12 may be arranged in an embodiment not shown on the same surface 14.1 or 14.2 of the circuit board 14 adjacent to the sensitive measuring element 16.1 or in a through hole of the circuit board 14.
  • the at least one support magnet 12 is preferably as close as possible to the sensitive measuring element 16.1, ie arranged with the smallest possible distance to the sensitive measuring element 16.1.
  • the movable at least one useful magnet 18 in the exemplary embodiment shown is magnetized from the right (N) to the left (S), i. the north pole N is arranged on the right and the south pole S is arranged on the left, wherein in the illustrated embodiment only one useful magnet 18 is used.
  • a plurality of useful magnets 18 with matched magnetization directions and positions on the moving component 5 can be used to generate the rotating second magnetic field vector at the location of the sensitive measuring element 16.1.
  • the at least one useful magnet 18 may also have a direction of magnetization in the representation from top to bottom, i. North pole N top, south pole S bottom, or bottom to top, i. South pole above, north pole N below.
  • the at least one useful magnet 18 can also have an oblique magnetization direction.
  • no magnetization direction is indicated.
  • different magnetization directions for the at least one support magnet 12 can be specified.
  • the at least one support magnet 12 may be magnetized in the same direction as the at least one useful magnet 18, that is, from right to left.
  • the at least one support magnet 12 may have an oblique magnetization direction.
  • the directions of magnetization of the at least one support magnet 12 and of the useful magnet 18 also allow the specification of the direction of the corresponding magnetic field vectors at the location of the sensitive measuring element 16.1.
  • the magnetization directions of the support magnets 12 shown in FIG. 4 are exemplary. Of course, other magnetization directions can be specified.
  • the stationary support magnet 12 can be located on the same surface 14. 1 of the printed circuit board 14 as the sensitive one Measuring element 16.1 as well as on another surface 14.2 of the circuit board 14 are arranged. Also in this embodiment, by selecting the position of the at least one support magnet 12 to the sensitive measuring element 16.1 and the magnetization direction of the at least one support magnet 12, the angle of the fixed magnetic field vector with respect to the normal of the measuring surface of the sensitive measuring element 16.1 at the location of the sensitive measuring element 16.1 be easily specified. In Fig. 5 and 6 different possible positions for the arrangement of the dashed lines drawn at least one support magnet 12 are shown. As already stated above, any magnetization directions for the at least one
  • Support magnets 12 and the at least one useful magnet 18 are predetermined, wherein the magnetization directions of the support magnets 12 and the useful magnet 18 shown in FIGS. 5 and 6 are only examples.
  • the movable at least one useful magnet 18 ensures the rotation of the magnetic field vector at the location of the fixed sensitive measuring element 16.1 and thus for the signal change in the measuring range A of the sensitive measuring element 16.1.
  • the fixed at least one support magnet 18 provides for a fixed non-rotating magnetic field vector and a sufficient flux density as soon as the at least one useful magnet 18 has moved too far away from the location of the fixed sensitive measuring element 16.1.
  • the constant magnetic field vector is used to generate a constant output signal in the fixed clamping area.
  • the at least one support magnet 12 is advantageously oriented such that its magnetization direction at the moment when the useful magnet 18 leaves the measuring range A of the sensitive measuring element 16.1 retains the last-measured magnetic field direction, ie provides a constant measuring angle, which in the course of the previous measurement up to leaving the measuring range A of the sensitive measuring element 16.1 was not previously measured.
  • the path R to be detected corresponds to a translational movement of the moving component 3.
  • embodiments of the sensor arrangement 1 according to the invention for path detection on a moving component 5 can also be used to detect a rotational movement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Die Erfindung betrifft eine Sensoranordnung (1) zur Wegerfassung an einem bewegten Bauteil (5), wobei sich mindestens eine räumliche Komponente eines magnetischen Felds einer magnetischen Messanordnung (10) durch die Bewegung des Bauteils (5) über den zu erfassenden Weg ändern und dadurch die Position des bewegten Bauteils (5) in Bezug zu einem ortsfesten sensitiven Messelement (16.1) detektierbar ist. Erfindungsgemäß erzeugen mindestens ein Nutzmagnet (18), welcher mit dem bewegten Bauteil (5) verbunden ist, und mindestens ein Stützmagnet (12), welcher ortsfest im Messbereich des sensitiven Messelements (16.1) angeordnet ist, das magnetische Feld.

Description

Beschreibung
Titel
Sensoranordnung zur Wegerfassung an einem bewegten Bauteil Die Erfindung geht aus von einer Sensoranordnung zur Wegerfassung an einem bewegten Bauteil nach der Gattung des unabhängigen Patentanspruchs 1.
Aus dem Stand der Technik sind Drehzahlsensoren und Positionssensoren bekannt, welche eine Drehbewegung oder eine Positionsänderung durch Erfassung einer entsprechenden Veränderung eines magnetischen Feldes erkennen und auswerten können. Hierbei werden in der Regel an sich bekannte Magnetsensoren eingesetzt, welche je nach Anwendung und Einsatzbereich als Hallsensoren, AMR-Sensoren, GMR-Sensoren, TMR-Sensoren oder allgemein als xMR- Sensoren ausgeführt sein können und beispielsweise zur Steuerung von Motoren oder in Getriebe- oder Fahrdynamiksystemen bei Kraftfahrzeugen eingesetzt werden können. Bei der Magnetkreisauslegung solcher Sensoranordnungen zur magnetischen Weg- und Wnkelmessung mittels Erfassung einer Magnetwinkeländerung über den Weg bzw. Winkel müssen Anforderungen der sensitiven Elemente bzw. Auswertebausteine (ASICs) bezüglich Einhaltung eines definier- ten Flussdichtebereichs erfüllt werden. Um große Wege (> 20 mm) mit hoher
Präzision messen zu können, werden bei Weg- oder Wnkelmessung mittels Erfassung einer Magnetwinkeländerung über Weg bzw. Winkel in der Regel mindestens zwei bewegliche Magnete eingesetzt. Diese stellen ein gemeinsames Magnetfeld mit möglichst großer (<360°) Magnetwinkeländerung über den Betä- tigungsweg bzw. Betätigungswinkel und gleichzeitig eine definierte magnetische
Flussdichte zur Verfügung. Das bedeutet, dass zwei relativ große Magnete auf dem beweglichen Teile einer Applikation integriert werden müssen, was aus Bauraumgründen nicht immer oder nur mit komplexen und damit teuren Konstruktionen und starken und damit ebenfalls teuren Magneten möglich ist. Für das eingesetzte sensitive Messelement ist die Erfassung des rotierenden bzw. drehenden Magnetfeldvektors wesentlich. Diese Rotations- bzw. Drehbewegung des Magnetfeldvektors wird durch das sensitive Messelement erfasst, welches Teil eines ASICs (Anwendungsspezifischer integrierter Schaltkreis) sein kann. Dies erfolgt beispielsweise bei einem zweidimensionalen oder dreidimensionalen Hallsensor durch eine indirekte Winkelerfassung über eine Arcus- Tangens-Funktion der gerichteten magnetischen Flussdichten.
Die DE 10 2009 055 104 A1 offenbart beispielsweise eine Magnetfeldsensoran- Ordnung zur Wegerfassung an bewegten Bauteilen, bei der räumliche Komponenten des magnetischen Felds eines Magnetsystems am bewegten Bauteil sich in ihrer Richtung über dem zu erfassenden Weg ändern und dadurch deren Position gegenüber einem ortsfesten Sensor entsprechend detektierbar ist. An dem linear und in einem weiteren Freiheitsgrad beweglichen Bauteil befindet sich mindestens ein Magnet als Bestandteil des Magnetsystems oder ein sonstiges magnetisches Bauteil, dessen äußerem Umfang in einem vorgegebenen Abstand gegenüberliegend mindestens ein ortsfester magnetfeldrichtungsempfindlicher Sensor zugeordnet ist, wobei die Vorzugsrichtung des Magnetfelds des Magneten in einem vorgegebenen Winkel zum Weg zwischen null und 90° des beweg- ten Bauteils ausgerichtet ist.
Offenbarung der Erfindung
Die erfindungsgemäße Sensoranordnung zur Wegerfassung an einem bewegten Bauteil mit den Merkmalen des unabhängigen Patentanspruchs 1 hat demgegenüber den Vorteil, dass mindestens ein kleiner und damit kostengünstiger Magnet im feststehenden Teil der Applikation oder im Sensorgehäuse angeordnet wird, beispielsweise direkt in der Nähe des sensitiven Messelements. Der ortsfeste Magnetkreis im feststehenden Teil der Applikation kann einen oder mehrere kleine Magnete aufweisen. Weiter können große Messbereiche, die aus einem sensitiven Messbereich und aus einem feststehenden Klemmbereich mit mindestens einem ortsfesten Magneten bestehen, durch mindestens einen kleineren und damit kostengünstigeren Magneten auf dem beweglichen Teil der Applikation statt wie bisher durch zwei wesentlich längere Magnete auf dem beweg- liehen Teil realisiert werden. Da kleinere Magnete auf dem beweglichen Teil zu integrieren sind, die weniger Bauraum als die herkömmlichen Magnete benötigten, kann die Integration des mindestens einen Nutzmagneten in vorteilhafter Weise erleichtert werden. Der mindestens eine feststehende Magnet wirkt als Stützmagnet und kann ebenfalls sehr klein und damit kostengünstig ausgelegt werden, da er sehr nah am sensitiven Messelement angebracht werden kann. Bei einem leiterplattenmontierten sensitiven Messelement kann der Stützmagnet ebenfalls auf der Leiterplatte, beispielsweise neben dem oder auf der gegenüberliegenden Leiterplattenseite des sensitiven Messelementes liegen. Ausführungsformen der Erfindung sind bei allen Weg- und/oder Winkelgebern einsetzbar, welche die Änderung der Magnetflussdichterichtung auswerten, wie beispielsweise Hallsensoren, insbesondere so genannte 2D oder 3D Hallsensoren oder auch xMR Sensoren, wie z.B. AMR oder GMR Sensoren. Insbesondere sensitive Messelemente, welche die Flussdichte in zwei oder drei Raumrichtungen messen, bieten zahlreiche Möglichkeiten durch Kombination von Magnetisierungsrichtung der Magnete und die Anordnung des mindestens einen Stützmagneten zu dem mindestens einen Nutzmagneten, die Anforderungen der sensitiven Messelemente zu erfüllen, wie beispielsweise 3D-Hall Sensoren mit mindestens einem Fluxkonzentrator.
Der bewegliche mindestens eine Nutzmagnet sorgt für die Drehung des Magnetfeldvektors am Ort des feststehenden sensitiven Messelements und somit für die Signaländerung im sensitiven Messbereich. Der feststehende mindestens eine Stützmagnet sorgt für einen feststehenden sich nicht drehenden Magnetfeldvektor und eine ausreichender Flussdichte am Ort des feststehenden sensitiven Messelements sobald der mindestens eine Nutzmagnet sich zu weit vom feststehenden sensitiven Messelement entfernt hat. Das von dem feststehenden mindestens einen Stützmagneten erzeugte Magnetfeld und der nicht drehende Magnetfeldvektor können zur Erzeugung eines konstanten Ausgangsignals im feststehenden Klemmbereich genutzt werden. Der mindestens eine Stützmagnet ist sinnvollerweise so ausgerichtet, dass dessen Magnetisierungsrichtung in dem Moment, wenn der mindestens eine Nutzmagnet den Messbereich des sensitiven Messelements verlässt, die zuletzt gemessene Magnetfeldrichtung beibehält, also einen konstanten Messwinkel bereitstellt, welcher im Verlauf der vorherigen Messung bis hin zum Verlassen des Messbereichs des sensitiven Messelements durch den mindestens einen Nutzmagneten nicht vorher gemessen wurde. Ausführungsformen der vorliegenden Erfindung stellen eine Sensoranordnung zur Wegerfassung an einem bewegten Bauteil zur Verfügung, wobei sich mindestens eine räumliche Komponente eines magnetischen Felds einer magnetischen Messanordnung durch die Bewegung des Bauteils über den zu erfassenden Weg ändern und dadurch die Position des bewegten Bauteils in Bezug zu einem ortsfesten sensitiven Messelement detektierbar ist. Erfindungsgemäß erzeugen mindestens ein Nutzmagnet, welcher mit dem bewegten Bauteil verbunden ist, und mindestens ein Stützmagnet, welcher ortsfest im Messbereich des sensitiven Messelements angeordnet ist, das magnetische Feld.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen und Weiterbildungen sind vorteilhafte Verbesserungen der im unabhängigen Patentanspruch 1 angegebenen Sensoranordnung zur Wegerfassung an einem bewegten Bauteil möglich.
Besonders vorteilhaft ist, dass der feststehende mindestens eine Stützmagnet einen konstanten feststehenden ersten Magnetfeldvektor am Ort des sensitiven Messelements erzeugt. Der konstante feststehende erste Magnetfeldvektor des feststehenden mindestens einen Stützmagneten kann am Ort des sensitiven Messelements einen vorgegebenen Winkel in Bezug auf eine Normale der Messfläche des sensitiven Messelements aufweisen.
In vorteilhafter Ausgestaltung der erfindungsgemäßen Sensoranordnung kann der bewegliche mindestens eine Nutzmagnet beim Eintreten in den Messbereich des sensitiven Messelements am Ort des sensitiven Messelements einen drehenden zweiten Magnetfeldvektor erzeugen, dessen Magnetfeld das Magnetfeld des mindestens einen Stützmagneten überlagert. Zur Erzeugung des drehenden zweiten Magnetfeldvektors am Ort des sensitiven Messelements können mehrere Nutzmagnete oder nur ein Nutzmagnet mit dem bewegten Bauteil verbunden werden. Bei der Verwendung von mehreren Nutzmagneten können diese kleiner als ein einzelner Nutzmagnet ausgeführt werden, um den drehenden zweiten Magnetfeldvektors am Ort des sensitiven Messelements zu erzeugen. Durch eine angepasste Verteilung der kleineren Nutzmagnete kann der vorhandene Bauraum auf dem bewegten Bauteils optimal genutzt und der gewünschte zweite Magnetfeldvektor erzeugt werden.
In weiterer vorteilhafter Ausgestaltung der erfindungsgemäßen Sensoranordnung können die Magnetsierungen des mindestens einen Nutzmagneten und des mindestens einen Stützmagneten einen vorgegebenen Winkel zueinander aufweisen. Durch die vorgegebenen Magnetisierungsrichtungen der Magnete kann am Ort des sensitiven Messelements ein vorgegebener Winkelbereich der Magnetfeldvektoren in Bezug auf eine Normale der Messfläche des sensitiven Messelements vorgegeben werden, so dass der Magnetkreis der Sensoranordnung durch die beliebigen Magnetisierungswinkel einfach an verschiedene Einsatzfälle und/oder Einbauräume angepasst werden kann.
In weiterer vorteilhafter Ausgestaltung der erfindungsgemäßen Sensoranordnung kann das sensitive Messelement auf einer Leiterplatte angeordnet werden, welche eine erste Oberfläche und eine zweite Oberfläche aufweist. So kann der feststehende mindestens eine Stützmagnet beispielsweise auf der gleichen Oberfläche der Leiterplatte neben dem sensitiven Messelement oder auf einer anderen Oberfläche der Leiterplatte unter oder neben dem sensitiven Messelement oder in einem Durchgangsloch der Leiterplatte angeordnet werden. Um den mindestens einen Stützmagneten möglichst klein ausführen zu können, wird der mindestens eine Stützmagnet vorzugsweise möglichst nahe am sensitiven Messelement, d.h. mit einem möglichst kleinen Abstand zum sensitiven Messelement angeordnet. Bei der Verwendung von mehreren Stützmagneten können die möglichen Anordnungspositionen der einzelnen Stützmagnete kombiniert werden. Durch die Auswahl der Lage des mindestens einen Stützmagneten zum sensitiven Messelement kann am Ort des sensitiven Messelements der Winkel des feststehenden Magnetfeldvektors in Bezug auf die Normale der Messfläche des sensitiven Messelements in vorteilhafter Weise einfach vorgegeben werden. Die Richtung des Stützmagnetfelds wird passend zum Ort des Stützmagneten und der Magnetisierung des beweglichen mindestens einen Nutzmagneten ausgewählt. Zudem kann der feststehende Stützmagnet zusammen mit einem fer- romagnetischen Flussleitstück montiert werden. In weiterer vorteilhafter Ausgestaltung der erfindungsgemäßen Sensoranordnung kann das sensitive Messelement als Teil eines Auswertebausteins ausgeführt werden. Der Auswertebaustein ist vorzugsweise als ASIC (Anwendungsspezifischer integrierter Schaltkreis) ausgeführt.
In weiterer vorteilhafter Ausgestaltung der erfindungsgemäßen Sensoranordnung kann der zu erfassenden Weg eine Translationsbewegung oder eine Drehbewegung repräsentieren. Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. In den Zeichnungen bezeichnen gleiche Bezugszeichen Komponenten bzw. Elemente, die gleiche bzw. analoge Funktionen ausführen. Kurze Beschreibung der Zeichnungen
Fig. 1 zeigt eine schematische Schnittdarstellung eines Ausführungsbeispiels einer erfindungsgemäßen Sensoranordnung zur Wegerfassung an einem bewegten Bauteil.
Fig. 2 zeigt eine schematische perspektivische Darstellung der einzelnen Komponenten der magnetischen Messanordnung für die erfindungsgemäße Sensoranordnung zur Wegerfassung an einem bewegten Bauteil aus Fig. 1.
Fig. 3 zeigt eine Seitenansicht der magnetischen Messanordnung zur Darstellung von verschiedenen Positionen zur Anordnung eines Stützmagneten für die magnetische Messanordnung.
Fig. 4 zeigt eine Draufsicht der magnetischen Messanordnung aus Fig. 3.
Fig. 5 zeigt eine Seitenansicht der magnetischen Messanordnung zur Darstellung von weiteren Positionen zur Anordnung eines Stützmagneten für die magnetische Messanordnung.
Fig. 6 zeigt eine Draufsicht der magnetischen Messanordnung aus Fig. 5. Fig. 7 und 8 zeigen jeweils eine charakteristische Kennlinie der magnetischen Messanordnung aus Fig. 2.
Ausführungsformen der Erfindung
Wie aus Fig. 1 und 2 ersichtlich ist, umfasst das dargestellte Ausführungsbeispiel einer erfindungsgemäßen Sensoranordnung 1 zur Wegerfassung an einem bewegten Bauteil 5 eine magnetische Messanordnung 10, wobei sich mindestens eine räumliche Komponente eines magnetischen Felds der magnetischen Messanordnung 10 durch die Bewegung des Bauteils 5 über den zu erfassenden Weg R ändern und dadurch die Position des bewegten Bauteils 5 in Bezug zu einem ortsfesten sensitiven Messelement 16.1 detektierbar ist. Erfindungsgemäß erzeugen mindestens ein Nutzmagnet 18, welcher mit dem bewegten Bauteil 5 verbunden ist, und mindestens ein Stützmagnet 12, welcher ortsfest im Messbereich des sensitiven Messelements 16.1 angeordnet ist, das magnetische Feld.
Im dargestellten Ausführungsbeispiel repräsentiert das bewegte Bauteil 5 einen bewegten Kolben, welcher beispielsweise durch eine Bremspedalbetätigung translatorisch in einem Zylinder 7 eines Bremskraftverstärkers bewegt wird. Wie aus Fig. 1 weiter ersichtlich ist, sind der mindestens eine Stützmagnet 12 und ein beispielsweise als ASIC ausgeführter Auswertebaustein 16 ortsfest auf einer Leiterplatte 14 angeordnet, welche an einem Gehäuse 3 des Bremskraftverstärkers befestigt ist. Wie aus Fig. 2 weiter ersichtlich ist, ist das sensitive Messelement 16.1 als Teil des Auswertebausteins 16 ausgeführt.
Der feststehende mindestens eine Stützmagnet 12 erzeugt einen konstanten feststehenden ersten Magnetfeldvektor am Ort des sensitiven Messelements 16.1. Zudem weist der konstante feststehende erste Magnetfeldvektor des feststehenden mindestens einen Stützmagneten 12 am Ort des sensitiven Messelement 16.1 einen vorgegebenen Winkel in Bezug auf eine Normale der Messfläche des sensitiven Messelements 16.1 auf. Die Intensität bzw. Länge des Magnetfeldvektors ist vom Abstand LI zwischen dem Stützmagneten 12 und dem sensitiven Messelement 16.1 abhängig. Wie aus Fig. 2 weiter ersichtlich ist, erzeugt der bewegliche mindestens eine Nutzmagnet 18 beim Eintreten in den Messbereich des sensitiven Messelements 16.1 am Ort des sensitiven Messelements 16.1 einen drehenden zweiten Magnetfeldvektor, dessen Magnetfeld das Magnetfeld des mindestens einen Stützmagneten 12 überlagert. Der Messbereich des sensitiven Messelements 16.1 ist in Fig. 2 durch einen Abstand A repräsentiert. Die Intensität bzw. aktuelle Länge des drehenden Magnetfeldvektors des bewegten mindestens einen Nutzmagneten 18 am Ort des feststehenden sensitiven Messelements 16.1 ist vom Abstand zum sensitiven Messelement 16.1 abhängig. Die maximale Länge des drehenden Magnetfeldvektors ist vom Luftspalt L2 zwischen dem mindestens einen Nutzmagneten 18 und dem sensitiven Messelement 16.1 abhängig.
Zur Anpassung an verschiedene Einsatzfälle und/oder Einbauräume weisen die Magnetsierungen des mindestens einen Nutzmagneten 18 und des mindestens einen Stützmagneten 12 einen vorgegebenen Winkel zueinander auf.
Wie aus Fig. 3 und 4 ersichtlich ist, kann der feststehende mindestens eine Stützmagnet 12 und das sensitive Messelement 16.1 auf verschiedenen Oberflächen 14.1, 14.2 der Leiterplatte 14 angeordnet werden. Durch die Auswahl der Lage des mindestens einen Stützmagneten 12 zum sensitiven Messelement 16.1 und durch die Magnetisierungsrichtung des mindestens einen Stützmagneten 12 kann am Ort des sensitiven Messelements 16.1 der Winkel des feststehenden Magnetfeldvektors in Bezug auf die Normale der Messfläche des sensitiven Messelements 16.1 in vorteilhafter Weise einfach vorgegeben werden. In Fig. 3 und 4 sind verschiedene mögliche Positionen für die Anordnung des gestrichelt gezeichneten Stützmagneten 12 dargestellt. So kann der Stützmagnet beispielsweise direkt über dem sensitiven Messelement 16.1 oder unter einem vorgegebenen Winkel mit verschiedenen Abständen zum sensitiven Messelement 16.1 angeordnet werden. Alternativ kann der Stützmagnet 12 bei einer nicht dargestellten Ausführungsform auf der gleichen Oberfläche 14.1 oder 14.2 der Leiterplatte 14 neben dem sensitiven Messelement 16.1 oder in einem Durchgangsloch der Leiterplatte 14 angeordnet werden. Um den mindestens einen Stützmagneten 12 möglichst klein ausführen zu können, wird der mindestens eine Stützmagnet 12 vorzugsweise möglichst nahe am sensitiven Messelement 16.1, d.h. mit einem möglichst kleinen Abstand zum sensitiven Messelement 16.1 angeordnet.
Wie aus Fig. 3 weiter ersichtlich ist, ist der bewegliche mindestens eine Nutzmagnet 18 im dargestellten Ausführungsbeispiel von rechts (N) nach links (S) magnetisiert, d.h. der Nordpol N ist rechts angeordnet und der Südpol S ist links angeordnet, wobei im dargestellten Ausführungsbeispiel nur ein Nutzmagnet 18 verwendet wird. Alternativ können mehrere Nutzmagnete 18 mit aufeinander abgestimmten Magnetisierungsrichtungen und Positionen am bewegten Bauteil 5 verwendet werden, um den drehenden zweiten Magnetfeldvektor am Ort des sensitiven Messelements 16.1 zu erzeugen. So kann der mindestens eine Nutzmagnet 18 beispielsweise auch eine Magnetisierungsrichtung in der Darstellung von oben nach unten, d.h. Nordpol N oben, Südpol S unten, oder von unten nach oben, d.h. Südpol oben, Nordpol N unten, aufweisen. Zudem kann der mindestens eine Nutzmagnet 18 auch eine schräge Magnetisierungsrichtung aufweisen. Für den mindestens einen Stützmagneten 12 ist keine Magnetisierungsrichtung angegeben. In Abhängigkeit von der Position des mindestens einen Stützmagneten 12 und der Magnetisierung des beweglichen mindestens einen Nutzmagneten 18 können verschiedene Magnetisierungsrichtungen für den mindestens einen Stützmagnet 12 vorgegeben werden. So kann der mindestens eine Stützmagnet 12 beispielsweise in die gleiche Richtung wie der mindestens eine Nutzmagnet 18, also von rechts nach links magnetisiert sein. Alternativ ist auch eine Magnetisierungsrichtung von oben nach unten, d.h. Nordpol N oben, Südpol S unten, oder von unten nach oben, d.h. Südpol oben, Nordpol N unten, für den mindestens einen Stützmagneten 12 vorstellbar. Zudem kann der mindestens eine Stützmagnet 12 eine schräge Magnetisierungsrichtung aufweisen. Die Magnetisierungsrichtungen des mindestens einen Stützmagneten 12 und des Nutzmagneten 18 ermöglichen ebenfalls die Vorgabe der Richtung der korrespondierenden Magnetfeldvektoren am Ort des sensitiven Messelements 16.1. Die in Fig. 4 dargestellten Magnetisierungsrichtungen der Stützmagnete 12 sind beispielhaft. Selbstverständlich können auch andere Magnetisierungsrichtungen vorgegeben werden.
Wie aus Fig. 5 und 6 ersichtlich ist, kann der feststehende Stützmagnet 12 so- wohl auf der gleichen Oberfläche 14.1 der Leiterplatte 14 wie das sensitive Messelement 16.1 als auch auf einer anderen Oberflächen 14.2 der Leiterplatte 14. angeordnet werden. Auch bei dieser Ausführungsform kann durch die Auswahl der Lage des mindestens einen Stützmagneten 12 zum sensitiven Messelement 16.1 und durch die Magnetisierungsrichtung des mindestens einen Stützmagneten 12 der Winkel des feststehenden Magnetfeldvektors in Bezug auf die Normale der Messfläche des sensitiven Messelements 16.1 am Ort des sensitiven Messelements 16.1 einfach vorgegeben werden. In Fig. 5 und 6 sind verschiedene mögliche Positionen für die Anordnung des gestrichelt gezeichneten mindestens einen Stützmagneten 12 dargestellt. Wie oben bereits ausgeführt wurde, können beliebige Magnetisierungsrichtungen für den mindestens einen
Stützmagneten 12 bzw. den mindestens einen Nutzmagneten 18 vorgegeben werden, wobei die in Fig. 5 und 6 dargestellten Magnetisierungsrichtungen der Stützmagnete 12 und des Nutzmagneten 18 nur beispielhaft sind.
Wie aus den charakteristischen Kennlinien der Fig. 7 und 8 ersichtlich ist, sorgt der bewegliche mindestens eine Nutzmagnet 18 für die Drehung des Magnetfeldvektors am Ort des feststehenden sensitiven Messelements 16.1 und somit für die Signaländerung im Messbereich A des sensitiven Messelements 16.1. Der feststehende mindestens eine Stützmagnet 18 sorgt für einen feststehenden sich nicht drehenden Magnetfeldvektor und eine ausreichende Flussdichte sobald der mindestens eine Nutzmagnet 18 sich zu weit vom Ort des feststehenden sensitiven Messelements 16.1 entfernt hat. Der konstante Magnetfeldvektor wird zur Erzeugung eines konstanten Ausgangsignals im feststehenden Klemmbereich genutzt. Der mindestens eine Stützmagnet 12 ist in vorteilhafter Weise so ausgerichtet, dass dessen Magnetisierungsrichtung in dem Moment, wenn der Nutzmagnet 18 den Messbereich A des sensitiven Messelement 16.1 verlässt, die zuletzt gemessene Magnetfeldrichtung beibehält, also einen konstanten Messwinkel bereitstellt, der im Verlauf der vorherigen Messung bis hin zum Verlassen des Messbereichs A des sensitiven Messelement 16.1 nicht vorher gemessen wurde.
Bei den dargestellten Ausführungsformen entspricht der zu erfassenden Weg R einer Translationsbewegung des bewegten Bauteils 3. Alternativ können Ausführungsformen der erfindungsgemäßen Sensoranordnung 1 zur Wegerfassung an einem bewegten Bauteil 5 auch zur Erfassung einer Drehbewegung eingesetzt werden.

Claims

Ansprüche
1. Sensoranordnung zur Wegerfassung an einem bewegten Bauteil (5), wobei sich mindestens eine räumliche Komponente eines magnetischen Felds einer magnetischen Messanordnung (10) durch die Bewegung des Bauteils (5) über den zu erfassenden Weg (R) ändern und dadurch die Position des bewegten Bauteils (5) in Bezug zu einem ortsfesten sensitiven Messelement (16.1) detektierbar ist, dadurch gekennzeichnet, dass mindestens ein Nutzmagnet (18), welcher mit dem bewegten Bauteil (5) verbunden ist, und mindestens ein Stützmagnet (12), welcher ortsfest im Messbereich des sensitiven Messelements (16.1) angeordnet ist, das magnetische Feld erzeugen.
2. Sensoranordnung nach Anspruch 1, dadurch gekennzeichnet, dass der feststehende mindestens eine Stützmagnet (12) einen konstanten feststehenden ersten Magnetfeldvektor am Ort des sensitiven Messelements (16.1) erzeugt.
3. Sensoranordnung nach Anspruch 2, dadurch gekennzeichnet, dass der konstante feststehende erste Magnetfeldvektor des feststehenden mindestens einen Stützmagneten (12) am Ort des sensitiven Messelement (16.1) einen vorgegebenen Winkel in Bezug auf eine Normale der Messfläche des sensitiven Messelements (16.1) aufweist.
4. Sensoranordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der bewegliche mindestens eine Nutzmagnet (18) beim Eintreten in den Messbereich des sensitiven Messelements am Ort des sensitiven Messelements (16.1) einen drehenden zweiten Magnetfeldvektor erzeugt, dessen Magnetfeld das Magnetfeld des mindestens einen Stützmagneten (12) überlagert. Sensoranordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Magnetsierungen des mindestens einen Nutzmagneten (18) und des mindestens einen Stützmagneten (12) einen vorgegebenen Winkel zueinander aufweisen.
Sensoranordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das sensitive Messelement (16.1) auf einer Leiterplatte (14) angeordnet ist, welche eine erste Oberfläche (14.1) und eine zweite Oberfläche (14.2) aufweist.
Sensoranordnung nach Anspruch 6, dadurch gekennzeichnet, dass der feststehende mindestens eine Stützmagnet (12) auf der gleichen Oberfläche (14.1) der Leiterplatte (14) neben dem sensitiven Messelement (16.1) oder auf einer anderen Oberfläche (14.2) der Leiterplatte (14) unter oder neben dem sensitiven Messelement (16.1) oder in einem Durchgangsloch der Leiterplatte (14) angeordnet ist.
Sensoranordnung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der feststehende mindestens eine Stützmagnet (12) zusammen mit einem ferromagnetischen Flussleitstück montiert ist.
Sensoranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das sensitive Messelement (16.1) als Teil eines Auswertebausteins (16) ausgeführt ist.
Sensoranordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der zu erfassenden Weg (R) eine Translationsbewegung oder eine Drehbewegung repräsentiert.
EP15708771.9A 2014-03-26 2015-02-25 Sensoranordnung zur wegerfassung an einem bewegten bauteil Ceased EP3123117A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014205566.0A DE102014205566A1 (de) 2014-03-26 2014-03-26 Sensoranordnung zur Wegerfassung an einem bewegten Bauteil
PCT/EP2015/053902 WO2015144377A1 (de) 2014-03-26 2015-02-25 Sensoranordnung zur wegerfassung an einem bewegten bauteil

Publications (1)

Publication Number Publication Date
EP3123117A1 true EP3123117A1 (de) 2017-02-01

Family

ID=52633246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15708771.9A Ceased EP3123117A1 (de) 2014-03-26 2015-02-25 Sensoranordnung zur wegerfassung an einem bewegten bauteil

Country Status (6)

Country Link
US (1) US9927260B2 (de)
EP (1) EP3123117A1 (de)
JP (1) JP6534682B2 (de)
CN (1) CN106164621B (de)
DE (1) DE102014205566A1 (de)
WO (1) WO2015144377A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837598B (zh) * 2016-03-28 2018-07-24 大连理工大学 并噻吩并吡咯醌式化合物、制备方法及包含该材料的半导体设备
US11647678B2 (en) 2016-08-23 2023-05-09 Analog Devices International Unlimited Company Compact integrated device packages
US10697800B2 (en) * 2016-11-04 2020-06-30 Analog Devices Global Multi-dimensional measurement using magnetic sensors and related systems, methods, and integrated circuits
DE102017222676A1 (de) * 2016-12-29 2018-07-05 Robert Bosch Gmbh Wegsensor
DE102019200183A1 (de) * 2018-01-15 2019-07-18 Continental Teves Ag & Co. Ohg Verfahren zur Wegerfassung, Wegerfassungsanordnung und Bremssystem
EP3795076B1 (de) 2018-01-31 2023-07-19 Analog Devices, Inc. Elektronische vorrichtungen
AT521356B1 (de) * 2018-07-18 2020-01-15 Avl List Gmbh Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634282A1 (de) * 1996-08-24 1998-02-26 Bosch Gmbh Robert Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110255U (de) * 1974-02-18 1975-09-09
WO1995017680A1 (de) * 1993-12-22 1995-06-29 Itt Automotive Europe Gmbh Vorrichtung zur erfassung von dreh- oder winkelbewegungen
JP3855801B2 (ja) * 2001-03-27 2006-12-13 株式会社デンソー 回転検出装置
JP3655897B2 (ja) * 2002-08-07 2005-06-02 三菱電機株式会社 磁気検出装置
JP3848670B1 (ja) * 2005-07-20 2006-11-22 株式会社トーメンエレクトロニクス 回転角度検出装置
US20070229058A1 (en) * 2006-03-31 2007-10-04 Wolf Ronald J Displacement sensor
DE502007005695D1 (de) * 2006-08-01 2010-12-30 Continental Teves Ag & Co Ohg Sensoranordnung zur präzisen erfassung von relativbewegungen zwischen einem encoder und einem sensor
DE102007038395A1 (de) * 2007-08-14 2009-02-19 Robert Bosch Gmbh Wegsensor
DE102009043178A1 (de) * 2009-09-26 2011-03-31 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Vorrichtung zur Erfassung der Drehzahl und/oder der Drehrichtung eines Drehantriebs eines Kraftfahrzeugs
DE102009055104A1 (de) 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Magnetfeldsensoranordnung zur Wegerfassung an beweglichen Bauteilen
JP5295163B2 (ja) * 2010-04-01 2013-09-18 三菱電機株式会社 磁界検出装置およびそれを調整する方法
JP2012247298A (ja) * 2011-05-27 2012-12-13 Panasonic Corp 位置検出装置
JP5843387B2 (ja) * 2011-10-07 2016-01-13 ボッシュ株式会社 位置検出センサ、これを備えたクラッチアクチュエータ、およびこれを備えたクラッチ装置
JP2013096723A (ja) * 2011-10-28 2013-05-20 Denso Corp 位置検出装置
DE102012203225A1 (de) * 2012-03-01 2013-09-05 Tyco Electronics Amp Gmbh Verfahren zum berührungslosen messen einer relativen position mittels eines 3d-hallsensors mit messsignalspeicher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19634282A1 (de) * 1996-08-24 1998-02-26 Bosch Gmbh Robert Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015144377A1 *

Also Published As

Publication number Publication date
DE102014205566A1 (de) 2015-10-01
WO2015144377A1 (de) 2015-10-01
JP2017508982A (ja) 2017-03-30
CN106164621A (zh) 2016-11-23
US20170108354A1 (en) 2017-04-20
JP6534682B2 (ja) 2019-06-26
US9927260B2 (en) 2018-03-27
CN106164621B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
EP3123117A1 (de) Sensoranordnung zur wegerfassung an einem bewegten bauteil
DE102009055104A1 (de) Magnetfeldsensoranordnung zur Wegerfassung an beweglichen Bauteilen
DE102012220139A1 (de) Magnetische Messanordnung und korrespondierende Sensoranordnung zur Bewegungserfassung eines bewegten Bauteils
DE102017128266A1 (de) Verfahren und Vorrichtung zum Erfassen der Verschiebeposition eines Fahrzeugsitzes
EP2888559B1 (de) Sensoranordnung zur erfassung von drehwinkeln an einem drehbewegten bauteil
WO2005021296A1 (de) Kugelgelenk mit schwenkwinkelsensor
DE10228744A1 (de) Raddrehzahlerfassungssystem
DE102011115302A1 (de) Verfahren zum berührungslosen Messen einer relativen Position mittels eines Hallsensors
WO2003097388A1 (de) Gummilager mit einfederungssensor
DE102010032061A1 (de) Vorrichtung zur Messung eines Drehwinkels und/oder eines Drehmoments
DE102005046822A1 (de) Messvorrichtung zur Messung der Absolutposition mindestens zweier relativ zueinander verschiebbarer oder drehbarer Körper zueinander
WO2009121193A1 (de) Magnetische linearsensoranordnung
DE102004057909A1 (de) Linearer Positionssensor
DE112018003012T5 (de) Positionssensor
WO2008141860A1 (de) Vorrichtung zur berührungslosen erfassung von linear- oder rotationsbewegungen
DE102014226610A1 (de) Schaltvorrichtung eines Fahrzeuggetriebes
DE19612422C2 (de) Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
WO2014063695A2 (de) Sensorsystem und kolben-zylinder-anordnung, insbesondere zur verwendung in einem kupplungsbetätigungssystem in einem kraftfahrzeug
EP1131605B1 (de) Messvorrichtung zur berührunglosen erfassung eines drehwinkels
DE19724388A1 (de) Wegsensor
WO2016150616A1 (de) Sensoranordnung zur drehzahlerfassung eines rotierenden bauteils
WO2019001629A1 (de) Verfahren und vorrichtung zur justierung einer position eines magneten zu einem gmr-sensor
EP3948171B1 (de) Sensoreinheit und hydraulik- oder pneumatiksystem unter verwendung der sensoreinheit sowie verwendung der sensoreinheit
DE102005040168A1 (de) Sensoranordnung
DE102013205071B4 (de) Schaltvorrichtung für ein Zahnräderwechselgetriebe eines Kraftfahrzeugs und Linearwälzlager mit einer Schaltvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20161026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190607

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20201227