WO2014063695A2 - Sensorsystem und kolben-zylinder-anordnung, insbesondere zur verwendung in einem kupplungsbetätigungssystem in einem kraftfahrzeug - Google Patents

Sensorsystem und kolben-zylinder-anordnung, insbesondere zur verwendung in einem kupplungsbetätigungssystem in einem kraftfahrzeug Download PDF

Info

Publication number
WO2014063695A2
WO2014063695A2 PCT/DE2013/200194 DE2013200194W WO2014063695A2 WO 2014063695 A2 WO2014063695 A2 WO 2014063695A2 DE 2013200194 W DE2013200194 W DE 2013200194W WO 2014063695 A2 WO2014063695 A2 WO 2014063695A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
piston
sensor
switching point
magnets
Prior art date
Application number
PCT/DE2013/200194
Other languages
English (en)
French (fr)
Other versions
WO2014063695A3 (de
Inventor
Benjamin Kaufner
Jochen KINZIG
Tim Herrmann
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112013005091.9T priority Critical patent/DE112013005091A5/de
Publication of WO2014063695A2 publication Critical patent/WO2014063695A2/de
Publication of WO2014063695A3 publication Critical patent/WO2014063695A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/28Means for indicating the position, e.g. end of stroke
    • F15B15/2815Position sensing, i.e. means for continuous measurement of position, e.g. LVDT
    • F15B15/2861Position sensing, i.e. means for continuous measurement of position, e.g. LVDT using magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D2025/081Hydraulic devices that initiate movement of pistons in slave cylinders for actuating clutches, i.e. master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof

Definitions

  • Sensorsvstem and piston-cylinder assembly in particular for use in a clutch actuation system in a motor vehicle
  • the invention relates to a sensor system comprising a switching point sensor, which is mounted opposite a magnet, wherein the, the switching point sensor passing magnet is attached to a linearly movable member and a piston-cylinder assembly, in particular for use in a clutch actuation system in a motor vehicle.
  • linear displacement sensing systems are used to detect the position of a piston of the clutch actuation system surrounded by a clutch master cylinder.
  • sensor systems in such linear arwegmesssystemen displacement sensors are used, which operate on an inductive mode of action, wherein an attached to the piston electrically conductive target immersed in a magnetic field of a coil assembly and this changes.
  • the coil arrangement and / or a drive and / or evaluation circuit are arranged on the outside of the cylinder on a rigid, planar printed circuit board.
  • Other sensors use the Hall effect, in which the position of a magnet attached to the piston is sensed by a separate switch point sensor mounted on the cylinder.
  • Such a Linearwegmesssystem is from the
  • a magnet is used, which is magnetized in the direction of movement of the piston.
  • the switching point sensor picks up the radial magnetic field during the measurement, which has a zero crossing in the middle of the magnet (FIG. 3).
  • the curve A shows a steep zero crossing, while the curve B illustrates a flat zero crossing. This zero crossing is used as a switching signal of the switching point sensor.
  • the invention is therefore based on the object to provide a sensor system which has a high switching point accuracy without additional calibration.
  • the object is achieved in that the magnet is magnetized perpendicular to the direction of movement of the movable element.
  • This has the advantage that the magnetization direction of the magnet points in the direction of the switching point sensor, which improves the steepness of the flux density of the magnet in the region of the zero crossing. By improving the slope, the signal strength of the switching point sensor in the area of the zero crossing is amplified. An additional calibration to improve the switching point accuracy can be omitted.
  • the magnet is designed as a double magnet system, wherein the two partial magnets of the double magnet system are magnetized in opposite directions to each other perpendicular to the direction of movement of the movable element.
  • the magnetization direction points directly to the switching point sensor or away from it.
  • This arrangement creates a single, very steep zero crossing, which is required for a good switching point accuracy.
  • such a double magnet system compensates angular errors of the two partial magnets, since the adjacent partial magnets pull the magnetic field of the other partial magnet towards the center. In total, significantly better switching point accuracies can be achieved with the same magnet volume of the two partial magnets.
  • the signal amplitude of the switching point sensor is significantly higher, which is particularly advantageous for the immunity to external fields.
  • a spacer consisting of a non-magnetic material is arranged between the two partial magnets of the double magnet system.
  • the spacer element serves as a connecting element between the partial magnets.
  • the spacer element is formed from a plastic.
  • the signal strength of the switching point sensor is adjustable by the width of the arranged between the magnet part spacer. This ensures that the slope and signal strength are kept high around the zero crossing.
  • the partial magnets of the double magnet system are designed as cube-shaped or cuboid block magnets or cylindrical magnets.
  • block magnets With block magnets, the volume of magnetic material required for a given signal strength of the switching point sensor can be easily adjusted. Cylindrical magnets are widely commercially available. However, the solution is not limited only to the design of block magnets and cylinder magnets in the double magnet arrangement, and other magnet forms are in principle applicable.
  • a development of the invention relates to a piston-cylinder arrangement, in particular for use in a clutch actuation system in a motor vehicle, with a piston which is arranged axially movable inside the cylinder designed as a housing, and a sensor system comprising a radially on a support element fixed magnets with a predetermined magnetization direction, which performs the movement of the piston, and a switching point sensor which is fixed to the cylinder.
  • the sensor system used without additional calibration allows a reliable slope of the flux density of the magnetic field, the magnet is magnetized perpendicular to the direction of movement of the piston.
  • the magnet is designed as a double magnet system, wherein the two partial magnets of the double magnet system in the opposite direction to each other perpendicular to Movement direction of the movable element are magnetized.
  • the magnetization direction points directly to the switch point sensor or away.
  • This arrangement creates a single, very steep zero crossing, which is required for a good switching point accuracy.
  • such a double magnet system compensates angular errors of the two partial magnets, since the adjacent partial magnets pull the magnetic field of the other partial magnet towards the center. In total, significantly better switching point accuracies can be achieved with the same magnet volume of the two partial magnets.
  • the signal amplitude of the switching point sensor is significantly higher, which is particularly advantageous for the immunity to external fields.
  • a spacer consisting of a non-magnetic material is arranged between the two partial magnets of the double magnet system.
  • the piston is designed as a carrier element of the double magnet system.
  • Such a direct connection of the double magnet system on the piston reduces the size of the piston-cylinder assembly, as can be dispensed with additional support elements for the double magnet system.
  • the switching point sensor is designed as a Hall sensor. Since such Hall sensors are mass-produced, they form a low-cost sensor whose use in the piston-cylinder arrangement leads to a cost-effective product.
  • FIG. 1 is a schematic diagram of an electrohydraulic clutch actuation system
  • FIG. 2 shows a schematic representation of the sensor system according to the invention
  • FIG. 3 shows a course of the flux density of the magnetic field as a function of the path according to the prior art
  • FIG. 1 shows an electrohydraulic clutch actuation system 1, as used today in motor vehicles.
  • a clutch actuation system 1 has an electrohydraulic actuation system in the form of a clutch master cylinder, which has a cylinder 2 designed as a housing, in which a piston 3 is movably mounted.
  • the piston 3 is driven by an electrically commutated electric motor 4, which is controlled by a control unit 5 via an output stage 6.
  • the output stage 6 is fastened to the cylinder 2 together with the electric motor 4.
  • the radial movement of the electric motor 4 is converted via a gear 7 in the axial movement of the piston 3.
  • the piston can also be connected directly, waiving the electric motor 4, with the accelerator pedal of the driver of the motor vehicle.
  • the clutch master cylinder 2, 3 is connected to a slave cylinder 9, which actuates a clutch 10.
  • the adjustment of the position of the clutch 10 is due to the drive of the piston 3 by the electric motor 4.
  • the clutch master cylinder 2, 3 and the clutch 10 to the slave cylinder 9 are arranged spatially separated in the motor vehicle.
  • a sensor arrangement 1 1 is arranged, which comprises a Hall sensor, not shown, and an evaluation circuit. This sensor arrangement 1 1 is opposite to a permanent magnet 12, which is mounted radially outwardly on the movably mounted piston 3 inside the cylinder 2.
  • the magnet 12 is formed as a double magnet system, in which two cube-shaped, permanent magnetic partial magnets 12.1 and 12.2 are attached to a plastic spacer 12.3, wherein the spacer element 12.3 between the partial magnets 12. 1, 12. 2 is arranged ,
  • the double magnet system 12.1, 12.2, 12.3 is the Hall sensor 13, which is externally attached to the cylinder 2, opposite.
  • the double magnet system 12.1, 12.2, 12.3 is moved in the axial direction of the piston 3, which is indicated by the arrow P1, wherein the double magnet system 12.1, 12.2, 12.3 moves past the Hall sensor 13.
  • the two partial magnets 12.1 and 12.2 are magnetized in the radial direction of the piston 3 and thus perpendicular to the direction of movement of the piston 3, which is illustrated by the arrows P2 and P3. It is crucial that the two partial magnets 12.1, 12.2 are magnetized in opposite directions. The magnetization directions point directly to the Hall sensor 13 and away from it. This arrangement results in a steep zero crossing, which is required for a good switching point adjustment of the Hall sensor 13.
  • the width of the plastic spacer layer 12.3 can be adjusted in dependence on a desired signal strength of the Hall sensor 13. Thus, the optimum for the respective magnetic constellation regarding the signal length and the signal strength can be found.
  • the illustrated solution shows a double magnet arrangement, which offers enormous advantages in terms of the switching point tolerance due to the steep zero crossing and the compensation of magnetization errors, especially for the application of Hall sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

Die Erfindung betrifft ein Sensorsystem, umfassend einen Schaltpunktsensor, welcher einem Magneten gegenüberliegend gelagert ist, wobei der den Schaltpunktsensor passierende Magnet an einem linear beweglichen Element mechanisch befestigt ist. Bei einem Sensorsystem, welches eine hohe Signalsteilheit im Schaltpunkt aufweist, ist der Magnet senkrecht zur Bewegungsrichtung des beweglichen Elementes magnetisiert.

Description

Sensorsvstem und Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einem Kupplungsbetätigungssystem in einem Kraftfahrzeug
Die Erfindung betrifft ein Sensorsystem, umfassend einen Schaltpunktsensor, welcher einem Magneten gegenüberliegend gelagert ist, wobei der, den Schaltpunktsensor passierende Magnet an einem linear beweglichen Element befestigt ist sowie eine Kolben-Zylinder- Anordnung, insbesondere zur Verwendung in einem Kupplungsbetätigungssystem in einem Kraftfahrzeug.
In Kupplungsbetätigungssystemen in Kraftfahrzeugen werden Linearwegmesssysteme eingesetzt, um die Position eines, von einem Kupplungsgeberzylinder umgebenen Kolbens des Kupplungsbetätigungssystems zu erfassen. Als Sensorsysteme werden in solchen Line- arwegmesssystemen Wegsensoren eingesetzt, die nach einem induktiven Wirkprinzip arbeiten, wobei ein am Kolben befestigtes elektrisch leitfähiges Target in ein Magnetfeld einer Spulenanordnung eintaucht und dieses verändert. Die Spulenanordnung und/oder eine Ansteuer- und/oder Auswerteschaltung sind außen an dem Zylinder auf einer starren, ebenen Leiterplatte angeordnet. Andere Sensoren nutzen den Hall-Effekt, bei welchem die Position eines am Kolben befestigten Magneten durch einen separaten Schaltpunktsensor, der am Zylinder montiert ist, abgetastet wird. Ein solches Linearwegmesssystem ist aus der
DE 10 201 1 014 574 A1 bekannt. Dabei wird ein Magnet verwendet, der in Bewegungsrichtung des Kolbens magnetisiert ist. Der Schaltpunktsensor greift bei der Messung das radiale Magnetfeld ab, das in der Mitte des Magneten einen Nulldurchgang aufweist (Figur 3). Die Kurve A zeigt einen steilen Nulldurchgang, während die Kurve B einen flachen Nulldurchgang verdeutlicht. Dieser Nulldurchgang wird als Schaltsignal des Schaltpunktsensors verwendet.
Bei Sensorsystemen, bei welchen der Magnet in axialer Richtung des Kolbens, d.h. in dessen Bewegungsrichtung, magnetisiert ist, besteht eine hohe Empfindlichkeit bezüglich Magnetisierungswinkelfehlern bzw. einer Magnetverkippung. Dies äußert sich dadurch, dass der Nulldurchgang und damit der Schaltpunkt des Hall-Sensors verschoben werden, wie es in Figur 4 dargestellt ist. Die Kurve D zeigt einen Verlauf der magnetischen Flussdichte ohne Winkelfehler des Magneten, während die Kurve C einen, durch Winkelfehler beeinflussten Verlauf der magnetischen Flussdichte darstellt. Dadurch entsteht eine Schaltpunktungenauigkeit, welche eine aufwendige Kalibrierung des Sensorsystems erforderlich macht.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Sensorsystem anzugeben, welches ohne zusätzliche Kalibrierung eine hohe Schaltpunktgenauigkeit aufweist.
Erfindungsgemäß ist die Aufgabe dadurch gelöst, dass der Magnet senkrecht zur Bewegungsrichtung des beweglichen Elementes magnetisiert ist. Dies hat den Vorteil, dass die Magnetisierungsrichtung des Magneten in Richtung des Schaltpunktsensors weist, wodurch die Steilheit der Flussdichte des Magneten im Bereich des Nulldurchgangs verbessert wird. Durch die Verbesserung der Steilheit wird die Signalstärke des Schaltpunktsensors im Bereich des Nulldurchganges verstärkt. Eine zusätzliche Kalibrierung zur Verbesserung der Schaltpunktgenauigkeit kann unterbleiben.
Vorteilhafterweise ist der Magnet als Doppelmagnetsystem ausgebildet, wobei die beiden Teilmagnete des Doppelmagnetsystems in gegenläufiger Richtung zueinander senkrecht zur Bewegungsrichtung des beweglichen Elementes magnetisiert sind. Die Magnetisierungsrichtung zeigt dabei direkt auf den Schaltpunktsensor bzw. von diesem weg. Durch diese Anordnung entsteht ein einziger, sehr steiler Nulldurchgang, der für eine gute Schaltpunktgenauigkeit erforderlich ist. Außerdem gleicht ein solches Doppelmagnetsystem Winkelfehler der beiden Teilmagneten aus, da die benachbarten Teilmagneten das Magnetfeld des jeweils anderen Teilmagneten zur Mitte hin ziehen. In der Summe sind dabei bei gleichem Magnetvolumen der beiden Teilmagnete deutlich bessere Schaltpunktgenauigkeiten erreichbar. Darüber hinaus ist die Signalamplitude des Schaltpunktsensors deutlich höher, was insbesondere für die Immunität gegen äußere Felder von Vorteil ist.
In einer Ausgestaltung ist zwischen den beiden Teilmagneten des Doppelmagnetsystems ein, aus einem nicht-magnetischen Material bestehendes Abstandselement angeordnet. Durch diese nicht-magnetische Abstandsschicht wird ein magnetischer Kurzschluss und somit eine Schwächung des Magnetfeldes unterbunden. Gleichzeitig dient das Abstandselement als Verbindungselement zwischen den Teilmagneten. ln einer Variante ist das Abstandselement aus einem Kunststoff gebildet. Mittels eines Kunststoffs lässt sich ein solches Doppelmagnetsystem sehr kostengünstig herstellen und trotzdem die gewünschten magnetischen Eigenschaften realisieren.
In einer anderen Ausbildung ist die Signalstärke des Schaltpunktsensors durch die Breite des zwischen den Teilmagneten angeordneten Abstandselementes einstellbar. Dadurch wird sichergestellt, dass die Steilheit und die Signalstärke im Bereich des Nulldurchgangs hoch gehalten werden.
Vorteilhafterweise sind die Teilmagnete des Doppelmagnetsystems als würfelförmige oder quaderförmige Blockmagnete oder zylinderförmige Magneten ausgebildet. Bei Blockmagneten lässt sich das Magnetvolumen, welches für eine vorgegebene Signalstärke des Schaltpunktsensors benötigt wird, einfach einstellen. Zylindermagnete sind vielfältig kommerziell erwerbbar. Die Lösung ist aber nicht bloß auf die Gestaltung von Blockmagneten und Zylindermagneten in der Doppelmagnetanordnung begrenzt, auch andere Magnetformen sind prinzipiell einsetzbar.
Eine Weiterbildung der Erfindung betrifft eine Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einem Kupplungsbetätigungssystem in einem Kraftfahrzeug, mit einem Kolben, welcher axial beweglich im Inneren des als Gehäuse ausgebildeten Zylinders angeordnet ist, und einem Sensorsystem, umfassend einen, radial an einem Trägerelement befestigten Magneten mit einer vorgegebenen Magnetisierungsrichtung, welcher die Bewegung des Kolbens ausführt, und einen Schaltpunktsensor, der an dem Zylinder befestigt ist. Bei einer Kolben-Zylinder-Anordnung, bei welcher das verwendete Sensorsystem ohne zusätzliche Kalibrierung eine zuverlässige Steilheit der Flussdichte des Magnetfeldes ermöglicht, ist der Magnet senkrecht zur Bewegungsrichtung des Kolbens magnetisiert. Dies hat den Vorteil, dass die Magnetisierungsrichtung des Magneten in Richtung des Schaltpunktsensors weist, wodurch die Steilheit der Flussdichte des Magneten im Bereich des Nulldurchgangs verbessert wird. Durch die Verbesserung der Steilheit wird die Signalstärke des Schaltpunktsensors im Bereich des Nulldurchganges verstärkt. Eine zusätzliche Kalibrierung zur Verbesserung der Schaltpunktgenauigkeit kann unterbleiben.
Vorteilhafterweise ist der Magnet als Doppelmagnetsystem ausgebildet ist, wobei die beiden Teilmagnete des Doppelmagnetsystems in gegenläufiger Richtung zueinander senkrecht zur Bewegungsrichtung des beweglichen Elementes magnetisiert sind. Die Magnetisierungsrichtung zeigt dabei direkt auf den Schaltpunktsensor oder von diesem weg. Durch diese Anordnung entsteht ein einziger, sehr steiler Nulldurchgang, der für eine gute Schaltpunktgenauigkeit erforderlich ist. Außerdem gleicht ein solches Doppelmagnetsystem Winkelfehler der beiden Teilmagneten aus, da die benachbarten Teilmagneten das Magnetfeld des jeweils anderen Teilmagneten zur Mitte hin ziehen. In der Summe sind dabei bei gleichem Magnetvolumen der beiden Teilmagnete deutlich bessere Schaltpunktgenauigkeiten erreichbar. Darüber hinaus ist die Signalamplitude des Schaltpunktsensors deutlich höher, was insbesondere für die Immunität gegen äußere Felder von Vorteil ist.
In einer Variante ist zwischen den beiden Teilmagneten des Doppelmagnetsystems ein, aus einem nicht-magnetischen Material bestehendes Abstandselement angeordnet. Durch diese nicht-magnetische Abstandsschicht wird ein magnetischer Kurzschluss und somit eine Schwächung des Magnetfeldes unterbunden.
Vorteilhafterweise ist der Kolben als Trägerelement des Doppelmagnetsystems ausgebildet. Eine solche direkte Anbindung des Doppelmagnetsystems auf dem Kolben verkleinert die Baugröße der Kolben-Zylinder-Anordnung, da auf zusätzliche Trägerelemente für das Doppelmagnetsystem verzichtet werden kann.
In einer Ausgestaltung ist der Schaltpunktsensor als Hall-Sensor ausgebildet. Da solche Hall- Sensoren in Massenproduktion gefertigt werden, bilden sie einen preisgünstigen Sensor, dessen Einsatz in der Kolben-Zylinder-Anordnung zu einem kostengünstigen Produkt führt.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1 : Prinzipdarstellung eines elektrohydraulischen Kupplungsbetätigungssystems,
Figur 2: Prinzipdarstellung des erfindungsgemäßen Sensorsystems, Figur 3 Beispiel für einen Verlauf der Flussdichte des Magnetfeldes in Abhängigkeit vom Weg nach dem Stand der Technik,
Figur 4 Beispiel für den Einfluss eines Magnetwinkelfehlers auf den Schaltpunkt
nach dem Stand der Technik
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
In Figur 1 ist ein elektrohydraulisches Kupplungsbetatigungssystem 1 dargestellt, wie es heute in Kraftfahrzeugen zum Einsatz kommt. Ein solches Kupplungsbetatigungssystem 1 weist ein elektrohydraulisches Betätigungssystem in Form eines Kupplungsgeberzylinders auf, welcher einen als Gehäuse ausgebildeten Zylinder 2 aufweist, in dem ein Kolben 3 beweglich gelagert ist. Der Kolben 3 wird von einem elektrisch kommutierten Elektromotor 4 angetrieben, der von einem Steuergerät 5 über eine Endstufe 6 angesteuert wird. Die Endstufe 6 ist gemeinsam mit dem Elektromotor 4 an dem Zylinder 2 befestigt. Die radiale Bewegung des Elektromotors 4 wird über ein Getriebe 7 in die axiale Bewegung des Kolbens 3 umgesetzt. Es sei darauf verwiesen, dass nicht nur elektrohydraulische Kupplungssysteme bekannt sind, sondern der Kolben auch direkt, unter Verzicht auf den Elektromotor 4, mit dem Fahrpedal des Fahrers des Kraftfahrzeuges verbunden werden kann.
Über eine Hydraulikleitung 8 ist der Kupplungsgeberzylinder 2, 3 mit einem Nehmerzylinder 9 verbunden, welcher eine Kupplung 10 betätigt. Die Verstellung der Position der Kupplung 10 erfolgt aufgrund des Antriebes des Kolbens 3 durch den Elektromotor 4. Der Kupplungsgeberzylinder 2, 3 und die Kupplung 10 mit dem Nehmerzylinder 9 sind dabei räumlich getrennt im Kraftfahrzeug angeordnet. Außen an dem als Gehäuse dienenden Zylinder 2 ist eine Sensoranordnung 1 1 angeordnet, welche einen nicht weiter dargestellten Hall-Sensor und eine Auswerteschaltung umfasst. Diese Sensoranordnung 1 1 liegt einem Permanentmagneten 12 gegenüber, der innerhalb des Zylinders 2 radial außen am beweglich gelagerten Kolben 3 befestigt ist.
Wie in Figur 2 dargestellt, ist der Magnet 12 als Doppelmagnetsystem ausgebildet, bei welchem zwei würfelförmige, permanentmagnetische Teilmagnete 12.1 und 12.2 an einem aus Kunststoff bestehenden Abstandselement 12.3 befestigt sind, wobei das Abstandselement 12.3 zwischen den Teilmagneten 12. 1 , 12. 2 angeordnet ist. Dem Doppelmagnetsystem 12.1 , 12.2, 12.3 liegt der Hall-Sensor 13, welcher außen am Zylinder 2 befestigt ist, gegenüber. Das Doppelmagnetsystem 12.1 , 12.2, 12.3 wird in axialer Richtung des Kolbens 3 bewegt, was durch den Pfeil P1 angedeutet ist, wobei das Doppelmagnetsystem 12.1 , 12.2, 12.3 sich an dem Hall-Sensor 13 vorbei bewegt. Die beiden Teilmagnete 12.1 und 12.2 sind in radialer Richtung des Kolbens 3 und somit senkrecht zur Bewegungsrichtung des Kolbens 3 magnetisiert, was durch die Pfeile P2 und P3 verdeutlicht ist. Entscheidend ist, dass die beiden Teilmagnete 12.1 , 12.2 in entgegen gesetzten Richtungen magnetisiert sind. Die Magnetisierungsrichtungen zeigen direkt auf den Hall-Sensor 13 bzw. von diesem weg. Durch diese Anordnung entsteht ein steiler Nulldurchgang, was für eine gute Schaltpunkteinstellung des Hall-Sensors 13 erforderlich ist.
Die Breite der aus Kunststoff bestehenden Abstandsschicht 12.3 kann in Abhängigkeit von einer gewünschten Signalstärke des Hall-Sensors 13 eingestellt werden. Somit kann das Optimum für die jeweilige Magnetkonstellation betreffend die Signallänge und die Signalstärke gefunden werden.
Die erläuterte Lösung zeigt eine Doppelmagnetanordnung, die speziell für die Anwendung von Hall-Sensoren enorme Vorteile hinsichtlich der Schaltpunkttoleranz aufgrund des steilen Nulldurchgangs und des Ausgleichs von Magnetisierungsfehlern bietet.
Bezuqszeichenliste Kupplungsbetätigungssystem
Zylinder
Kolben
Elektromotor
Steuergerät
Endstufe
Getriebe
Hydraulikleitung
Nehmerzylinder
Kupplung
Sensoranordnung
Magnet
Teilmagnet
Teilmagnet
Abstandselement
Hall-Sensor

Claims

Patentansprüche
Sensorsystem, umfassend einen Schaltpunktsensor, weicher einem Magneten (12) gegenüberliegend gelagert ist, wobei der den Schaltpunktsensor passierende Magnet (12) an einem linear beweglichen Element (3) mechanisch befestigt ist, dadurch gekennzeichnet, dass der Magnet (12) senkrecht zur Bewegungsrichtung des beweglichen E- lementes (3) magnetisiert ist.
Sensorsystem nach Anspruch 1 , dadurch gekennzeichnet, dass der Magnet (12) als Doppelmagnetsystem (12.1 , 12.2, 12. 3) ausgebildet ist, wobei die beiden Teilmagnete (12.1 , 12.2) des Doppelmagnetsystems (12.1 , 12.2, 12.3) in gegenläufiger Richtung zueinander senkrecht zur Bewegungsrichtung des beweglichen Elementes (3) magnetisiert sind.
Sensorsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen den beiden Teilmagneten (12.1 , 12.2) des Doppelmagnetsystems (12.1 , 12.2, 12.3) ein, aus einem nicht-magnetischen Material bestehendes Abstandselement (12.3) angeordnet ist.
Sensorsystem nach Anspruch 3, dadurch gekennzeichnet, dass das Abstandselement (12.2) aus einem Kunststoff gebildet ist.
Sensorsystem nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Signalstärke des Schaltpunktsensors (13) durch die Breite des zwischen den Teilmagneten (12.1 , 12.2) angeordneten Abstandselementes (12.3) einstellbar ist.
Sensorsystem nach mindestens einem der vorhergehenden Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Teilmagnete (12.1 , 12.2) des Doppelmagnetsystems (12.1 , 12.2, 12.3) als würfelförmige oder quaderförmige Blockmagnete oder zylinderförmige Magnete ausgebildet sind.
7. Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einem Kupplungsbetäti- gungssystem in einem Kraftfahrzeug, mit einem Kolben (3), welcher axial beweglich im Inneren des als Gehäuse ausgebildeten Zylinders (2) angeordnet ist, und einem Sensorsystem (1 1 , 12), umfassend einen, radial an einem Trägerelement (3) befestigten Magneten (12) mit einer vorgegebenen Magnetisierungsrichtung, welcher die Bewegung des Kolbens (3) ausführt, und einen Schaltpunktsensor (13), der an dem Zylinder (2) befestigt ist, dadurch gekennzeichnet, dass der Magnet (12) senkrecht zur Bewegungsrichtung des Kolbens (3) magnetisiert ist.
8. Kolben-Zylinder-Anordnung nach Anspruch 7, dadurch gekennzeichnet, dass der Magnet (12) als Doppelmagnetsystem (12.1 , 12.2, 12.3) ausgebildet ist, wobei die beiden Teilmagnete (12.1 , 12.2) des Doppelmagnetsystems (12.1 , 12.2, 12.3) in gegenläufiger Richtung zueinander senkrecht zur Bewegungsrichtung des Kolbens (3) magnetisiert sind.
9. Kolben-Zylinder-Anordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass zwischen den beiden Teilmagneten (12.1 , 12.2) des Doppelmagnetsystems (12.1 , 12.2, 12. 3) ein, aus einem nicht-magnetischen Material bestehendes Abstandselement (12.3) angeordnet ist.
10. Kolben-Zylinder-Anordnung nach wenigstens einem der Ansprüche 7, 8 oder 9, dadurch gekennzeichnet, dass der Kolben (3) als Trägerelement des Magneten (12) ausgebildet ist.
PCT/DE2013/200194 2012-10-22 2013-09-27 Sensorsystem und kolben-zylinder-anordnung, insbesondere zur verwendung in einem kupplungsbetätigungssystem in einem kraftfahrzeug WO2014063695A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112013005091.9T DE112013005091A5 (de) 2012-10-22 2013-09-27 Sensorsystem und Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einemKupplungsbetätigungssystem in einem Kraftfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012219173.9 2012-10-22
DE102012219173.9A DE102012219173A1 (de) 2012-10-22 2012-10-22 Sensorsystem und Kolben-Zylinder-Anordnung, insbesondere zur Verwendung in einem Kupplungsbetätigungssystem in einem Kraftfahrzeug

Publications (2)

Publication Number Publication Date
WO2014063695A2 true WO2014063695A2 (de) 2014-05-01
WO2014063695A3 WO2014063695A3 (de) 2014-06-19

Family

ID=49619775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/200194 WO2014063695A2 (de) 2012-10-22 2013-09-27 Sensorsystem und kolben-zylinder-anordnung, insbesondere zur verwendung in einem kupplungsbetätigungssystem in einem kraftfahrzeug

Country Status (2)

Country Link
DE (2) DE102012219173A1 (de)
WO (1) WO2014063695A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213829A1 (de) * 2014-07-16 2016-01-21 Schaeffler Technologies AG & Co. KG Sensorsystem und Kolben-Zylinder-Anordnung
DE102014217248A1 (de) * 2014-08-29 2016-03-03 Schaeffler Technologies AG & Co. KG Sensorsystem und Kolben-Zylinder-Anordnung
DE102018101572B3 (de) 2018-01-24 2019-04-04 Schaeffler Technologies AG & Co. KG Kupplungsausrücker mit relativ zum Kolben bewegbaren Magneten zur Positionserfassung des Kolbens
DE102019110851A1 (de) 2019-04-26 2020-10-29 Schaeffler Technologies AG & Co. KG Messsystem
CN117404348B (zh) * 2023-12-15 2024-03-12 深圳三思纵横科技股份有限公司 一种试验机降低功耗方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014574A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Linearwegmesssystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1303818C2 (de) * 1966-09-22 1973-08-02 Siemens Ag Analoger hysteresefreier weggeber mit hallgenerator
DE2945895C2 (de) * 1979-11-14 1986-06-05 Festo-Maschinenfabrik Gottlieb Stoll, 7300 Esslingen Magnetischer Stellungsgeber für hydrauliche oder pneumatische Arbeitszylinder
DE3613200A1 (de) * 1986-04-18 1987-10-22 Vdo Schindling Positionssensor
JP2570654B2 (ja) * 1987-12-08 1997-01-08 日本精工株式会社 変位検出装置
FR2651543B1 (fr) * 1989-09-05 1991-12-06 Roudaut Philippe Ensemble piston-cylindre muni de moyens de determination et de validation de la position du piston.
JP2006518043A (ja) * 2003-02-14 2006-08-03 ビーイーアイ センサーズ アンド システムズ カンパニー インコーポレイテッド 線形ホール効果センサを用いる位置センサ
JP4400500B2 (ja) * 2005-04-06 2010-01-20 コニカミノルタオプト株式会社 位置検出器および位置決め装置
GB2458496B (en) * 2008-03-20 2012-07-11 Ford Global Tech Llc A method and apparatus for leak testing a hydraulic clutch actuation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011014574A1 (de) 2010-04-08 2011-12-15 Schaeffler Technologies Gmbh & Co. Kg Linearwegmesssystem

Also Published As

Publication number Publication date
DE102012219173A1 (de) 2014-04-24
DE112013005091A5 (de) 2015-08-20
WO2014063695A3 (de) 2014-06-19

Similar Documents

Publication Publication Date Title
EP2956339B1 (de) Bremsvorrichtung mit einem wegsensor für integrierte kraftfahrzeugbremssysteme
EP1489385B1 (de) Vorrichtung zur Sensierung der axialen Stellung eines ersten Bauteils, das relativ zu einem zweiten Bauteil bewegbar ist
EP1797399B1 (de) Magnetischer absolutpositionssensor mit variierender länge der einzelnen kodierungssegmente
WO2014063695A2 (de) Sensorsystem und kolben-zylinder-anordnung, insbesondere zur verwendung in einem kupplungsbetätigungssystem in einem kraftfahrzeug
EP1859230B1 (de) Verfahren und vorrichtung zur berührungslosen drehwinkelerfassung eines drehbaren elements
DE102014211146A1 (de) Kolben-Zylinder-Anordnung, insbesondere für ein Ausrücksystem in einem Kraftfahrzeug
DE102016218095A1 (de) Elektrohydraulisches Kraftfahrzeugsteuergerät
WO2014048427A1 (de) Ausrücksystem für eine kupplung eines kraftfahrzeuges
WO2015144377A1 (de) Sensoranordnung zur wegerfassung an einem bewegten bauteil
WO2021190689A1 (de) Induktiver linearwegsensor
DE102012218605A1 (de) Induktiver Schaltpunktsensor, insbesondere für eine Kolben-Zylinder-Anordnung einer Kupplungsbetätigungsvorrichtung
WO2017162232A1 (de) Verfahren zum justierten befestigen einer magnetsensorvorrichtung an einem aktuator und aktuator mit einem elektromotor und einer magnetsensorvorrichtung
EP3645980B1 (de) Verfahren und vorrichtung zur justierung einer position eines magneten zu einem gmr-sensor
DE102014217248A1 (de) Sensorsystem und Kolben-Zylinder-Anordnung
DE10160904B4 (de) Sensorsystem zur Erfassung der Position von beweglichen Hydraulikelementen
DE10329044B4 (de) Einrichtung zur Ermittlung der aktuellen Stellung eines Antriebsgliedes entlang des Hubwegs oder Drehwinkels, insbesondere bei einem druckmittelbetriebenen Linear- bzw. Drehantrieb
DE102009008756A1 (de) Ventileinheit
WO2020228887A1 (de) Lenkmomentensensoranordnung
DE102019124973A1 (de) Sensoranordnung zur Erfassung eines Lenkmomentes sowie einer absoluten Winkelposition und Sensorvorrichtung mit dieser Sensoranordnung
DE102013220755A1 (de) Sensoranordnung zur Erfassung einer Pedalbewegung in einem Fahrzeug
DE10328753A1 (de) Vorrichtung zum Messen des Lenkstangenweges einer Kraftfahrzeuglenkung
WO2016008481A1 (de) Sensorsystem und kolben-zylinder-anordnung
EP2656364B1 (de) Schaltvorrichtung mit schaltzustandserkennung
EP3884506B1 (de) Permanentmagnetischer geber für eine sensorvorrichtung, sensorvorrichtung und bedienvorrichtung zur bedienung eines fahrzeugs
DE102020117448A1 (de) Sensoranordnung zur Positionserfassung sowie Kupplungssystem mit der Sensoranordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13792579

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120130050919

Country of ref document: DE

Ref document number: 112013005091

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13792579

Country of ref document: EP

Kind code of ref document: A2