EP3111539A2 - Machine synchrone equipee d'un capteur de position angulaire - Google Patents

Machine synchrone equipee d'un capteur de position angulaire

Info

Publication number
EP3111539A2
EP3111539A2 EP15710831.7A EP15710831A EP3111539A2 EP 3111539 A2 EP3111539 A2 EP 3111539A2 EP 15710831 A EP15710831 A EP 15710831A EP 3111539 A2 EP3111539 A2 EP 3111539A2
Authority
EP
European Patent Office
Prior art keywords
synchronous machine
sensors
magnetic induction
rotor
angular position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15710831.7A
Other languages
German (de)
English (en)
Inventor
Pierre Dumas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lohr Electromecanique SAS
Original Assignee
Lohr Electromecanique SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lohr Electromecanique SAS filed Critical Lohr Electromecanique SAS
Publication of EP3111539A2 publication Critical patent/EP3111539A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to the general technical field of angular position sensors as well as to the general technical field of synchronous machines comprising means for generating a magnetic induction and such a position sensor.
  • the present invention more particularly relates to a synchronous machine with sinusoidal electromotive force, comprising a position sensor for controlling the power supply of said machine.
  • the invention finds its application mainly in synchronous machines powered by a polyphase alternating voltage.
  • the invention will be described hereinafter more particularly, but not exclusively, with means for generating a magnetic induction constituted by way of example embodiment of permanent magnets.
  • a synchronous machine with permanent magnets consists of a wound stator and a rotor carrying the permanent magnets. Such a machine is powered and driven via a power electronics.
  • a synchronous machine with permanent magnets and sinusoidal electromotive force can be controlled with a vector control system.
  • This type of control known as such, provides high performance, namely high accuracy and high torque dynamics. These performances are necessary, especially for traction motors.
  • a control system for obtaining high performance requires a precise knowledge of the angular position of the rotor and this in real time.
  • the angular position of the rotor is generally given by a position sensor which consists in particular of a rotating part mechanically linked to the rotor.
  • a position sensor which consists in particular of a rotating part mechanically linked to the rotor.
  • Various technologies are thus known for determining the angular position of the rotor.
  • the position sensor called “resolver”, the incremental digital encoder or the absolute encoder.
  • a so-called calibration operation must be performed by a converter. During this operation, the machine is rotating and the converter measures the angle corresponding to the zero crossing of the electromotive force.
  • This calibration operation must be carried out again during a maintenance operation of the sensor change type, change of an electromagnetic part of the rotor or the stator, or change of the complete machine.
  • Such a rigging operation is often very difficult to achieve, in particular for long vehicles of the railway vehicle type, since it is necessary to lift the said vehicles to allow free orientation of the wheels during stalling.
  • the wedging operation is however very important because an angular offset between the measured angular position and the actual position of the rotor leads to a significant drop in the torque. For example, a shift of one mechanical degree leads to a torque drop of about 5% and an offset of two mechanical degrees leads to a torque drop of 20%.
  • Document EP 1 758 230 also discloses a rotary electrical machine including in particular a rotor with permanent magnets and one or more magnetic sensors for detecting leakage of magnetic flux escaping from said rotor.
  • a rotary electrical machine including in particular a rotor with permanent magnets and one or more magnetic sensors for detecting leakage of magnetic flux escaping from said rotor.
  • magnetic flux detection does not make it possible to obtain the absolute angular position of said rotor.
  • the object of the present invention is therefore to overcome the drawbacks mentioned above and to provide a new synchronous machine comprising an angular position sensor module reliably delivering magnetic induction values to determine the absolute angular positions. of the rotor.
  • Another object of the present invention is to provide a new synchronous machine in which the mounting and replacement of an angular position sensor module is extremely simple.
  • Another object of the present invention is to provide a new synchronous machine free of a complex calibration operation during the first commissioning of said machine or after a maintenance operation.
  • a synchronous machine comprising a stator and a rotor, said machine being equipped with at least one angular position sensor module of the rotor and characterized in that:
  • the stator comprises a winding intended to be supplied with polyphase alternating current by a power-supply device of the inverter type supplied with current,
  • the rotor comprising means for generating a magnetic induction is provided to move in rotation when the stator is supplied with alternating current
  • the angular position sensor module comprises at least one pair of two magnetic induction measurement sensors for detecting the variation of the axial magnetic field generated by the means for generating a magnetic induction by delivering a voltage, said sensors (6) or each pair of sensors (6) having an angular difference of 90 ° electrical,
  • the induction measurement sensors which are secured to the stator, extend at an axial end of the rotor, facing and in close proximity to the axial edges of the means for generating a magnetic induction, and
  • the angular position sensor module comprising at least one electronic unit for receiving the voltages delivered by the magnetic induction measuring sensors, to deduce the angular position of the rotor in an absolute manner and to transmit a corresponding piece of information, in real time , to the power electronics device.
  • the rotor extends around the stator.
  • the magnetic induction measurement sensors are fixed and distributed on at least one removable support so as to extend along a line whose curvature substantially matches the curvature of the succession of songs axial means for generating a magnetic induction.
  • the synchronous machine comprises at least two angular position sensor modules having a mutual angular distance.
  • the synchronous machine comprises two removable supports each provided with five sensors for measuring the magnetic induction.
  • the removable support comprises at least one electronic circuit of the electronic unit.
  • the removable medium comprises a temperature sensor for measuring the ambient temperature of said synchronous machine.
  • the magnetic induction measurement sensors are Hall effect sensors.
  • the magnetic induction measuring sensors are magnetoresistance sensors.
  • the power electronics device comprises a converter driving said synchronous machine by a modulation of pulse widths.
  • the means for generating a magnetic induction are permanent magnets.
  • the means for generating a magnetic induction consist of electric windings.
  • the synchronous machine according to the invention advantageously constitutes a wheel motor of a rail or road vehicle.
  • the synchronous machine according to the invention therefore has the advantage of providing an accurate measurement, in real time, of the angular position of the rotor and this in an absolute manner.
  • Another advantage of the synchronous machine according to the invention results from the possibility of detecting via its angular position sensor module, a possible short-circuit between two phases in the machine.
  • Another advantage of the synchronous machine according to the invention is related to the fact that it does not require any stalling operation, especially after a maintenance operation.
  • Another advantage of the synchronous machine according to the invention results from the fact that the position sensor module, thanks to the direct measurement of the field produced by the permanent magnets, to know the evolution of the magnetic field as a function of time and of thus to estimate if the machine is healthy or if it underwent an aging detrimental to the performances of the synchronous machine.
  • FIG. 1 illustrates an embodiment of a synchronous machine according to the invention incorporating an angular position sensor module on a portion of a stator
  • Figure 2 shows a detail, in section, of Figure 1;
  • FIG. 3 is an illustration of an exemplary embodiment of a removable support for the angular position sensor module in front view, intended to be inserted in a synchronous machine according to the invention
  • FIG. 4 illustrates a block diagram of the electronic means necessary for the operation of the angular position sensor module of a synchronous machine according to the invention
  • FIG. 5 illustrates, using a block diagram, an example of a vector control system of a synchronous machine with permanent magnets and sinusoidal electromotive force, according to the invention
  • FIG. 6 an example of signals measured by magnetic induction sensors with a synchronous machine according to the invention.
  • FIG. 7 an example of corrected signals obtained by means of an angular position sensor module comprising two sensors, giving values of a normalized axial field as a function of time;
  • FIG. 1 illustrates an exemplary embodiment of a synchronous machine 1 comprising an angular position sensor mounted on a stator 2 illustrated schematically in FIG. 4.
  • FIG. 1 shows an end portion 2a, for example in the form of an integral flange. mechanically of the stator 2.
  • the synchronous machine 1 also comprises a rotor 3 provided with permanent magnets 4.
  • the end portion 2a covers at least partially and without contact an axial end 3a of the rotor 3.
  • An example of an arrangement between the axial end 3a and the end portion 2a is illustrated in more detail in FIG.
  • the stator 2 comprises a not shown winding, intended to be supplied with polyphase current via a power electronics device also called converter or inverter.
  • the latter is advantageously supplied with voltage and current.
  • the rotor 3 advantageously has a substantially cylindrical shape 3b whose internal face is covered with permanent magnets 4.
  • the rotor 3 is intended to rotate around the portion of the stator 2 extending in the free space delimited internally to said rotor 3.
  • the permanent magnets 4 are for example stacked in an axial direction in axial grooves formed in the inner face of the cylinder 3b.
  • the mounting and fixing of the permanent magnets 4 on the inner face of the rotor 3 is carried out in a known manner.
  • the permanent magnets 4 are slidably introduced into axial grooves and held radially due to a complementarity of shapes of said grooves and said permanent magnets 4.
  • the permanent magnets 4 are locked axially in each groove by means of a retaining piece 5 made of non-magnetic material, illustrated in greater detail in FIG. 2.
  • the holding part 5 constitutes a stop 5a preventing axial movements of the permanent magnets 4 engaged in the corresponding groove.
  • the dimensions and shapes of the holding part 5 are chosen so as not to hinder access to a localized area facing at least part of the axial edge 4a of the last permanent magnet 4 engaged in each groove.
  • Other known technical maintenance solutions are also conceivable.
  • the axial end 3a of the cylinder 3b, which does not have permanent magnets 4, advantageously has a slightly flared shape in a radial direction. Such a conformation thus makes it possible to limit the space requirement resulting from the fixing of the holding part 5.
  • a holding part 5 is advantageously fixed on the cylinder 3b, at the end of each groove by means of a screw 5b thus axially blocking all rows of permanent magnets 4.
  • the synchronous machine 1 also comprises an angular position sensor module 1a of the rotor 3.
  • the angular position sensor module comprises in particular one or more pairs of sensors for measuring the magnetic induction 6. These are designed to detecting the variation of the axial magnetic field generated by the permanent magnets 4. This variation of the axial magnetic field is detected and converted into a voltage delivered by the magnetic induction measurement sensors 6.
  • the angular difference between the sensors 6 of each pair is 90 ° electrical.
  • 90 ° electrical represent 4.5 ° mechanical for a motor 20 pairs of poles.
  • the angular position sensor module also comprises at least one electronic unit designed to receive the induction voltages of the measurement sensors of the magnetic induction 6 and to deduce therefrom the angular position of the rotor 3. This determination is made absolutely .
  • the electronic unit also makes it possible to transmit in real time relative information on the angular position of the rotor 3 to the power electronics device.
  • the sensors for measuring the magnetic induction 6 are mechanically secured to the end portion 2a and extend at an axial end of the rotor 3, facing and in the immediate vicinity of the axial edges 4a of the last permanent magnets 4 engaged in the grooves. During the rotation of the rotor 3, each axial edge 4a therefore passes in front of the sensors for measuring the magnetic induction 6.
  • the magnetic measurement sensors 6 are advantageously fixed on a removable support 7.
  • the removable support 7 has for this purpose an axial support portion 7a and a support end portion 7b.
  • the support end portion 7b extends substantially transversely to the axial support portion 7a.
  • the sensors for measuring magnetic induction 6 are arranged on an external face 7c of the free end of the axial support portion 7a.
  • the removable support 7 preferably has a curvature substantially conforming to the curvature of the rotor 3.
  • the sensors for measuring the magnetic induction 6 are advantageously fixed and distributed on an external face 7c along a line whose curvature substantially matches the curvature of the succession of axial edges 4a permanent magnets 4.
  • the removable support 7 is for example introduced into a slot 8 formed in the end portion 2a.
  • the slot 8 has a curvature identical or similar to that presented by the axial support portion 7a.
  • the removable support 7, once equipped with the magnetic induction measurement sensors 6, is introduced axially into the slot 8 until the stop of the portion of the support end 7b on the outside face of the part end 2a.
  • the dimensions of the removable support 7, and in particular the axial length of the axial support portion 7a, are chosen so that the sensors for measuring the magnetic induction 6 extend at a distance e from the axial edges 4a.
  • the distance e is for example between 1.5 and 2.5 millimeters and preferably equal to 2 millimeters.
  • the synchronous machine 1 comprises, according to an exemplary embodiment, at least two sensors for measuring magnetic induction.
  • the synchronous machine 1 according to the invention, illustrated in FIG. 1, comprises two removable supports
  • FIG. 3 is a front view illustration of an exemplary embodiment of a removable support 7 comprising five magnetic induction measurement sensors 6.
  • the synchronous machine 1 thus comprises, according to an exemplary embodiment of FIG. FIG. 3, two removable supports 7 each comprising five magnetic induction measurement sensors 6.
  • the outer face 7c of the axial support portion 7a is provided with a temperature sensor 9. The latter makes it possible to use the ambient temperature of the synchronous machine 1 to adjust its control, since the induction depends on the temperature .
  • the removable support 7 comprises at least one electronic circuit of the electronic unit or part of an electronic circuit of said electronic unit.
  • the power electronics device is a converter controlling the synchronous machine 1 by a modulation of pulse widths.
  • the sensors for measuring the magnetic induction 6 are preferably Hall effect sensors.
  • the magnetic induction measurement sensors 6 consist of AMR / GMR sensors, called magnetoresistance sensors.
  • Hall effect sensors measure the DC component of the magnetic field
  • magnetoresistance sensors exhibit operation based on the variation in the electrical resistance of a material as a function of the direction of the magnetic field applied thereto. These sensors are known as such and are therefore not described further.
  • FIG. 4 is a block diagram of the electronic means necessary for the operation of the angular position sensor module 1a of the synchronous machine 1 according to the invention.
  • the latter therefore comprises the wound stator 2 and the rotor 3 comprising the permanent magnets 4.
  • the angular position sensor module thus comprises functional means, which include induction measurement sensors 6, associated with the electronic unit for acquiring a signal and for calculating the positioning angle of the rotor 3.
  • the functional means consist, for example, of two magnetic induction measurement sensors 6 mounted fixed, without contact and facing the permanent magnets 4.
  • the information from these induction measurement sensors 6 is then amplified and filtered respectively by means amplifier 10 and filtering means 1 1 before a computer 12 acquires said information.
  • This computer 12 of the electronic unit thus determines the rotor angle (angular position of the rotor) from the information from the induction measurement sensors 6 and communicates in real time the rotor angle to a vector control system 13 which controls a converter 14.
  • the communication of the rotor angle to the vector control system 13 is carried out via a field bus type protocol such as S SI, PROFIBUS or others.
  • a field bus type protocol such as S SI, PROFIBUS or others.
  • the sign of the rotor angle determined by the computer 12 defines the direction of rotation of the synchronous machine 1 according to the invention.
  • FIG. 5 illustrates, using a block diagram, the vector control system 13 of a synchronous machine 1 with permanent magnets 4 and a sinusoidal electromotive force.
  • the synchronous machine 1 comprises the converter 14 powered by a voltage.
  • the vector control system 13 makes it possible to control the converter 14 by means of PWM pulse width modulation to generate an average supply voltage on each of the phases Pi, P 2 , P 3 of the synchronous machine 1 and therefore a current determined in each of said phases Pi, P 2 , P 3 .
  • the converter 14 thus transforms a voltage delivered by a DC voltage source U into a three-phase supply voltage of the synchronous machine 1. The latter thus operates in traction mode and alternately in a three-phase voltage generator, for example when a vehicle is in operation. a braking phase.
  • the vector control system 13 comprises a control unit of the converter 14, current sensors 15, a voltage sensor 16 and the angular position sensor 1a of the synchronous machine 1.
  • the vector control system 13 receives, for example, the torque setpoint C.
  • the control unit of the converter 14 calculates the voltage vector to be applied to said converter 14 so that the synchronous machine 1 reaches the torque setpoint C.
  • the vector control system 13 in particular a synchronous machine 1 with permanent magnets 4 and sinusoidal electromotive force is known as such and will therefore not be further described herein.
  • the synchronous machine 1 according to the invention has the remarkable advantage that it comprises an angular position sensor enabling it to make a direct measurement of the magnetic field produced by the permanent magnets 4 and consequently to know the evolution of said field Magnetic as a function of time. This makes it possible to detect a deterioration of the performance of the permanent magnets 4 and consequently of the performance of the synchronous machine 1 according to the invention.
  • the angular position sensor 1a of the synchronous machine 1 makes it possible to detect a sudden increase in the induced magnetic field, resulting from a short-circuit between phases.
  • FIG. 6 illustrates an example of signals measured by magnetic induction sensors 6 arranged mutually at 90 ° electrical from each other. Such an arrangement corresponds to a mechanical angle of 4.5 ° for a machine having twenty pairs of poles. Such a module makes it possible to measure the axial field produced by the magnets.
  • the signals A and B respectively in fine and large lines, are delivered by two respective sensors 6 in the form of electric voltage V and are sinusoidal signals deformed by the presence of harmonics of rank 3 in the axial field.
  • the signals A and B are signals measured and filtered in a known manner.
  • FIG. 7 thus represents an example of the corrected signals Ai and B ls. obtained by means of an angular position sensor module having two sensors 6, giving values corresponding to a normalized axial field as a function of time.
  • FIG. 8 is a representation of the absolute angular position a, called the angle, calculated from the axial field measured in a two-pole synchronous machine 1, in accordance with the invention.
  • the determination of the angular position a is performed by the electronic unit according to the calculations specified hereinafter, considering that y corresponds to the values illustrated by the curve of the signal Bi and x corresponds to the values illustrated by the curve of the signal Ai. So :
  • the synchronous machine 1 with permanent magnets 4 and sinusoidal electromotive force advantageously constitutes a motor-wheel.
  • the synchronous machine according to the invention can also be used as a winch motor or as an elevator motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

L'invention concerne une machine synchrone (1) comprenant un stator (2) et un rotor (3), ladite machine étant équipée d'au moins un capteur de position angulaire (la) du rotor (3) caractérisée en ce que le stator (2) comprend un bobinage prévu pour être alimenté en courant polyphasé par un dispositif d'électronique de puissance, le rotor (3) comprenant des aimants permanents (4) est prévu pour se mouvoir en rotation autour du stator (2), le capteur de position angulaire (la) s'étend à distance du rotor (3) et en regard de celui-ci, au niveau des aimants permanents (4), le capteur de position angulaire (la) comprend au moins deux capteurs de mesure de l'induction magnétique (6) prévus pour détecter la variation du champ magnétique axial du rotor (3) sous la forme d'une tension et le capteur de position angulaire (la) comprend au moins une unité électronique prévue pour recevoir les tensions des capteurs de mesure de l'induction magnétique (6) pour en déduire la position angulaire du rotor (3) de manière absolue et pour transmettre une information correspondante en temps réel au dispositif d'électronique de puissance.

Description

MACHINE SYNCHRONE EQUIPEE D'UN CAPTEUR DE POSITION ANGULAIRE
Domaine technique
La présente invention se rapporte au domaine technique général des capteurs de position angulaire ainsi qu'au domaine technique général des machines synchrones comportant des moyens pour générer une induction magnétique et un tel capteur de position.
La présente invention concerne plus particulièrement une machine synchrone à force électromotrice sinusoïdale, comportant un capteur de position pour commander l'alimentation électrique de ladite machine. L'invention trouve son application principalement dans des machines synchrones alimentées par une tension alternative polyphasée.
L'invention sera décrite ci-après plus particulièrement mais non limitativement avec des moyens pour générer une induction magnétique constitués à titre d'exemple de réalisation d'aimants permanents.
Une machine synchrone à aimants permanents est constituée d'un stator bobiné et d'un rotor portant les aimants permanents. Une telle machine est alimentée et pilotée par l'intermédiaire d'une électronique de puissance.
Une machine synchrone à aimants permanents et à force électromotrice sinusoïdale, peut être pilotée avec un système de commande vectorielle. Ce type de pilotage, connu en tant que tel, permet d'obtenir des performances élevées à savoir, une grande précision et une dynamique de couple élevée. Ces performances sont nécessaires, en particulier pour les moteurs de traction.
Un système de commande permettant d'obtenir des performances élevées, requiert cependant une connaissance précise de la position angulaire du rotor et cela en temps réel. La position angulaire du rotor est généralement donnée par un capteur de position lequel est constitué notamment d'une partie tournante liée mécaniquement au rotor. On connaît ainsi différentes technologies permettant de déterminer la position angulaire du rotor. On peut citer à titre d'exemple le capteur de position appelé « resolver », le codeur digital incrémental ou le codeur absolu.
Ces technologies connues présentent cependant des inconvénients. En effet ces capteurs de position connus comportent tous une partie tournante liée mécaniquement au rotor. Ceci constitue une contrainte importante lors de la conception de la machine dans laquelle il faut intégrer le capteur de position. La partie tournante du capteur de position angulaire est en général entraînée en rotation par l'intermédiaire d'un tube d'entraînement. Un tel tube d'entraînement, traverse en général le stator et présente très souvent une inertie importante pouvant conduire à un ralentissement de la mesure de la position angulaire. Le manque de précision lié à une telle mesure conduit à une altération des performances de la machine. En outre, le fait de devoir traverser la machine pour récupérer une information de position angulaire augmente substantiellement la complexité de l'ensemble. Il est alors nécessaire d'utiliser un nombre plus important de pièces mécaniques, ce qui augmente les risques de défaillances.
Par ailleurs, lors de la première mise en service d'une machine synchrone connue, une opération dite opération de calage, doit être effectuée par un convertisseur. Au cours de cette opération, la machine est en rotation et le convertisseur mesure l'angle correspondant au passage par zéro de la force électromotrice. Cette opération de calage doit être effectuée à nouveau lors d'une opération de maintenance du type changement de capteur, changement d'une pièce électromagnétique du rotor ou du stator, ou changement de la machine complète. Une telle opération de calage est souvent très difficile à réaliser en particulier pour les véhicules longs du type véhicule ferroviaire, dans la mesure où il faut soulever lesdits véhicules pour permettre une orientation libre des roues lors du calage.
L'opération de calage est cependant très importante car un décalage angulaire entre la position angulaire mesurée et la position réelle du rotor conduit à une chute importante du couple. A titre d'exemple un décalage de un degré mécanique conduit à une chute de couple d'environ 5 % et un décalage de deux degrés mécaniques conduit à une chute de couple de 20 %.
On connaît également par l'intermédiaire du document EP 1 758 230, une machine électrique tournante comportant notamment un rotor à aimants permanents et un ou plusieurs capteurs magnétiques pour détecter une fuite de flux magnétique s'échappant dudit rotor. Dans une telle machine, dans laquelle le stator s'étend autour du rotor, la détection de flux magnétique ne permet pas d'obtenir la position angulaire absolue dudit rotor.
Divulgation de l'invention
L'objet de la présente invention vise par conséquent à remédier aux inconvénients mentionnés ci-dessus et à fournir une nouvelle machine synchrone comportant un module capteur de position angulaire délivrant de façon fiable des valeurs d'induction magnétiques pour déterminer les positions angulaires absolues du rotor.
Un autre objet de la présente invention vise à fournir une nouvelle machine synchrone dans laquelle le montage et le remplacement d'un module capteur de position angulaire est extrêmement simple.
Un autre objet de la présente invention vise à fournir une nouvelle machine synchrone s 'affranchissant d'une opération complexe de calage lors de la première mise en service de ladite machine ou à l'issue d'une opération de maintenance.
Les objets assignés à l'invention sont atteints à l'aide d'une machine synchrone comprenant un stator et un rotor, ladite machine étant équipée d'au moins un module capteur de position angulaire du rotor et caractérisée en ce que :
- le stator comprend un bobinage prévu pour être alimenté en courant alternatif polyphasé par un dispositif d'électronique de puissance de type onduleur alimenté en courant,
- le rotor comprenant des moyens pour générer une induction magnétique est prévu pour se mouvoir en rotation lorsque le stator est alimenté en courant alternatif,
- le module capteur de position angulaire comprend au moins un couple de deux capteurs de mesure de l'induction magnétique pour détecter la variation du champ magnétique axial généré par les moyens pour générer une induction magnétique en délivrant une tension, lesdits capteurs (6) du ou de chaque couple de capteurs (6) présentant un écart angulaire de 90° électriques,
- les capteurs de mesure de l'induction, solidarisés avec le stator, s'étendent au niveau d'une extrémité axiale du rotor, en regard et à proximité immédiate des chants axiaux des moyens pour générer une induction magnétique, et
- le module capteur de position angulaire comprenant au moins une unité électronique pour recevoir les tensions délivrées par les capteurs de mesure de l'induction magnétique, pour en déduire la position angulaire du rotor de manière absolue et pour transmettre une information correspondante, en temps réel, au dispositif d'électronique de puissance.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, le rotor s'étend autour du stator.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, les capteurs de mesure de l'induction magnétique sont fixés et répartis sur au moins un support amovible de manière à s'étendre selon une ligne dont la courbure épouse sensiblement la courbure de la succession des chants axiaux des moyens pour générer une induction magnétique.
Selon un exemple de réalisation conforme à l'invention, la machine synchrone comprend au moins deux modules capteur de position angulaire présentant un écart angulaire mutuel.
Selon un exemple de réalisation conforme à l'invention, la machine synchrone comporte deux supports amovibles pourvus chacun de cinq capteurs de mesure de l'induction magnétique.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, le support amovible comporte au moins un circuit électronique de l'unité électronique.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, le support amovible comporte un capteur de température pour mesurer la température ambiante de ladite machine synchrone.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, les capteurs de mesure de l'induction magnétique sont des capteurs à effet Hall.
Selon un autre exemple de réalisation de la machine synchrone conforme à l'invention, les capteurs de mesure de l'induction magnétique sont des capteurs à magnétorésistance.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, le dispositif d'électronique de puissance comprend un convertisseur pilotant ladite machine synchrone par une modulation de largeurs d'impulsions.
Selon un exemple de réalisation de la machine synchrone conforme à l'invention, les moyens pour générer une induction magnétique sont des aimants permanents.
Selon un autre exemple de réalisation de la machine synchrone conforme à l'invention, les moyens pour générer une induction magnétique sont constitués de bobinages électriques.
La machine synchrone conforme à l'invention constitue avantageusement un moteur-roue d'un véhicule ferroviaire ou routier.
La machine synchrone conforme à l'invention présente donc l'avantage de fournir une mesure précise, en temps réel, de la position angulaire du rotor et ceci de manière absolue.
Un autre avantage de la machine synchrone conforme à l'invention résulte de la possibilité de détecter par l'intermédiaire de son module capteur de position angulaire, un éventuel court-circuit entre deux phases dans la machine. Un autre avantage de la machine synchrone conforme à l'invention est lié au fait qu'elle ne nécessite aucune opération de calage, notamment après une opération de maintenance.
Un autre avantage de la machine synchrone conforme à l'invention résulte du fait que le module capteur de position, grâce à la mesure directe du champ produit par les aimants permanents, de connaître l'évolution du champ magnétique en fonction du temps et d'estimer ainsi si la machine est saine ou si elle a subi un vieillissement préjudiciable aux performances de la machine synchrone.
D'autres caractéristiques et avantages de l'invention ressortiront également des dessins donnés à titre illustratif et non limitatif dans lesquels :
- la figure 1 illustre un exemple de réalisation d'une machine synchrone conforme à l'invention intégrant un module capteur de position angulaire sur une partie d'un stator ;
- la figure 2 représente un détail, en coupe, de la figure 1 ;
- la figure 3 est une illustration d'un exemple de réalisation d'un support amovible pour le module capteur de position angulaire en vue de face, destiné à être inséré dans une machine synchrone conforme à l'invention ;
- la figure 4 illustre un synoptique des moyens électroniques nécessaires au fonctionnement du module capteur de position angulaire d'une machine synchrone conforme à l'invention ;
- la figure 5 illustre à l'aide d'un schéma fonctionnel, un exemple de système de commande vectorielle d'une machine synchrone à aimants permanents et à force électromotrice sinusoïdale, conforme à l'invention ;
- la figure 6, un exemple de signaux mesurés par des capteurs d'induction magnétique avec une machine synchrone conforme à l'invention ;
- la figure 7, un exemple de signaux corrigés, obtenus grâce à un module capteur de position angulaire comportant deux capteurs, donnant des valeurs d'un champ axial normalisé en fonction du temps ; et
- la figure 8, la représentation de la position angulaire calculée à partir du champ axial mesuré dans une machine synchrone à deux pôles conforme à l'invention. Description détaillée des figures
La figure 1 illustre un exemple de réalisation d'une machine synchrone 1 comportant un capteur de position angulaire monté sur un stator 2 illustré schématiquement à la figure 4. La figure 1 montre une partie d'extrémité 2a, par exemple en forme de flasque solidaire mécaniquement du stator 2.
La machine synchrone 1 comprend également un rotor 3 pourvu d'aimants permanents 4.
La partie d'extrémité 2a recouvre au moins partiellement et sans contact une extrémité axiale 3a du rotor 3. Un exemple d'agencement entre l'extrémité axiale 3a et la partie d'extrémité 2a est illustré plus en détails à la figure 2.
Le stator 2 comprend un bobinage non représenté, prévu pour être alimenté en courant polyphasé par l'intermédiaire d'un dispositif d'électronique de puissance appelé également convertisseur ou onduleur. Ce dernier est avantageusement alimenté en tension et en courant.
Le rotor 3 présente avantageusement une forme sensiblement cylindrique 3b dont la face interne est recouverte d'aimants permanents 4. Le rotor 3 est destiné à tourner autour de la partie du stator 2 s 'étendant dans l'espace libre délimité intérieurement audit rotor 3.
Les aimants permanents 4 sont par exemple empilés selon une direction axiale dans des rainures axiales ménagées dans la face interne du cylindre 3b. Le montage et la fixation des aimants permanents 4 sur la face interne du rotor 3 est effectué de manière connue.
A titre d'exemple les aimants permanents 4 sont introduits par coulissements dans des rainures axiales et maintenus radialement grâce à une complémentarité de formes desdites rainures et desdits aimants permanents 4.
Les aimants permanents 4 sont bloqués axialement dans chaque rainure par l'intermédiaire d'une pièce de maintien 5 en matériau amagnétique, illustrée plus en détails à la figure 2.
Selon un exemple de réalisation, non limitatif, la pièce de maintien
5 constitue une butée 5 a empêchant des mouvements axiaux des aimants permanents 4 engagés dans la rainure correspondante. Les dimensions et les formes de la pièce de maintien 5 sont choisies de manière à ne pas entraver l'accès à une zone localisée en regard d'une partie au moins du chant axial 4a du dernier l'aimant permanent 4 engagé dans chaque rainure. D'autres solutions techniques de maintien connues sont également envisageables. L'extrémité axiale 3a du cylindre 3b, laquelle ne comporte pas d'aimants permanents 4, présente à cet effet avantageusement une forme légèrement évasée dans une direction radiale. Une telle conformation permet ainsi de limiter l'encombrement résultant de la fixation de la pièce de maintien 5. Une pièce de maintien 5 est avantageusement fixée sur le cylindre 3b, à l'extrémité de chaque rainure à l'aide d'une vis 5b, bloquant ainsi axialement toutes les rangées d'aimants permanents 4.
La machine synchrone 1 conformément à l'invention comporte également un module capteur de position angulaire la du rotor 3. Le module capteur de position angulaire comporte notamment un ou plusieurs couples de capteurs de mesure de l'induction magnétique 6. Ces derniers sont prévus pour détecter la variation du champ magnétique axial généré par les aimants permanents 4. Cette variation du champ magnétique axial est détectée et transformée en tension délivrée par les capteurs de mesure de l'induction magnétique 6.
L'écart angulaire entre les capteurs 6 de chaque couple est de 90° électriques. A titre d'exemple, 90° électriques représentent 4.5° mécaniques pour un moteur de 20 paires de pôles.
Le module capteur de position angulaire la comprend également au moins une unité électronique prévue pour recevoir les tensions d'induction des capteurs de mesure de l'induction magnétique 6 et pour en déduire la position angulaire du rotor 3. Cette détermination est effectuée de manière absolue.
L'unité électronique permet également de transmettre en temps réel une information relative de position angulaire du rotor 3 au dispositif d'électronique de puissance.
Les capteurs de mesure de l'induction magnétique 6 sont solidaires mécaniquement de la partie d'extrémité 2a et s'étendent au niveau d'une extrémité axiale du rotor 3, en regard et à proximité immédiate des chants axiaux 4a des derniers aimants permanents 4 engagés dans les rainures. Lors de la rotation du rotor 3, chaque chant axial 4a passe donc devant les capteurs de mesure de l'induction magnétique 6.
Les capteurs de mesure magnétique 6 sont avantageusement fixés sur un support amovible 7.
Le support amovible 7 présente à cet effet une partie de support axiale 7a et une partie d'extrémité de support 7b. La partie d'extrémité de support 7b s'étend sensiblement transversalement à la partie de support axiale 7a. Les capteurs de mesure de l'induction magnétique 6 sont disposés sur une face externe 7 c de l'extrémité libre de la partie de support axiale 7a.
Le support amovible 7 présente de préférence une courbure épousant sensiblement la courbure du rotor 3. Les capteurs de mesure de l'induction magnétique 6 sont avantageusement fixés et répartis sur une la face externe 7c, selon une ligne dont la courbure épouse sensiblement la courbure de la succession des chants axiaux 4a des aimants permanents 4.
Le support amovible 7 est par exemple introduit dans une fente 8 ménagée dans la partie d'extrémité 2a. Bien entendu la fente 8 présente une courbure identique ou similaire à celle que présente la partie de support axiale 7a.
Le support amovible 7, une fois équipé des capteurs de mesure d'induction magnétique 6, est introduit axialement dans la fente 8 jusqu'à l'arrivée en butée de la partie de l'extrémité de support 7b sur la face extérieure de la partie d'extrémité 2a. Les dimensions du support amovible 7, et en particulier la longueur axiale de la partie de support axiale 7a, sont choisies de manière à ce que les capteurs de mesure de l'induction magnétique 6 s'étendent à une distance e des chants axiaux 4a. La distance e est comprise par exemple entre 1,5 et 2,5 millimètres et de préférence égale à 2 millimètres.
Tous types de moyens de fixation, non représentés, peuvent également être utilisés pour solidariser l'extrémité de support 7b avec la partie d'extrémité 2a.
La machine synchrone 1 conforme à l'invention comporte, selon un exemple de réalisation, au moins deux capteurs de mesure d'induction magnétique
6 disposés sur un support amovible 7, et positionnés à 90° électriques l'un de l'autre.
Selon un autre exemple de réalisation, la machine synchrone 1 conforme à l'invention, illustrée à la figure 1, comporte deux supports amovibles
7 dont chacun est pourvu par exemple d'au moins deux capteurs de mesure d'induction magnétique 6.
La figure 3 est une illustration vue de face d'un exemple de réalisation d'un support amovible 7 comportant cinq capteurs de mesure d'induction magnétique 6. La machine synchrone 1 conforme à l'invention comporte ainsi, selon un exemple de réalisation de la figure 3, deux supports amovibles 7 comportant chacun cinq capteurs de mesure d'induction magnétique 6. Avantageusement, la face externe 7c de la partie de support axiale 7a est pourvue d'un capteur de température 9. Ce dernier permet d'utiliser la température ambiante de la machine synchrone 1 pour ajuster son pilotage, car l'induction dépend de la température.
Selon un exemple de réalisation préférentiel, le support amovible 7 comporte au moins un circuit électronique de l'unité électronique ou une partie d'un circuit électronique de ladite unité électronique.
A titre d'exemple, le dispositif d'électronique de puissance est un convertisseur pilotant la machine synchrone 1 par une modulation de largeurs d'impulsions.
Les capteurs de mesure de l'induction magnétique 6 sont de préférence des capteurs à effet Hall.
Selon un autre exemple de la réalisation de la machine synchrone 1 conforme à l'invention, les capteurs de mesure de l'induction magnétique 6 sont constitués de capteurs AMR/GMR, dits capteurs à magnétorésistance.
Tandis que les capteurs à effet Hall permettent de mesurer la composante continue du champ magnétique, les capteurs à magnétorésistance présentent un fonctionnement se basant sur la variation de la résistance électrique d'un matériau en fonction de la direction du champ magnétique qui lui est appliqué. Ces capteurs sont connus en tant que tels et ne sont par conséquent pas décrits davantage.
En utilisant des capteurs à effet Hall ou des capteurs à magnétorésistance, l'opération de calage du capteur de position angulaire la n'est plus nécessaire. En effet, ces capteurs mesurent la répartition spatiale du champ magnétique généré par les aimants permanents 4 et ce même lorsque la machine synchrone 1 est à l'arrêt. Ceci permet de s'affranchir de toute opération de calage à la mise en service de la machine synchrone 1 ou à la suite d'une opération de maintenance de ladite machine synchrone 1. Il en résulte donc un avantage remarquable pour la machine synchrone 1 conforme à l'invention.
La figure 4 est une illustration synoptique des moyens électroniques nécessaire au fonctionnement du module capteur de position angulaire la de la machine synchrone 1 conforme à l'invention. Cette dernière comporte donc le stator 2 bobiné et le rotor 3 comportant les aimants permanents 4. Le module capteur de position angulaire la comporte donc des moyens fonctionnels, lesquels comprennent des capteurs de mesure de l'induction 6, associés à l'unité électronique pour l'acquisition d'un signal et pour le calcul de l'angle de positionnement du rotor 3.
Les moyens fonctionnels sont par exemple constitués de deux capteurs mesure d'induction magnétique 6 montés fixes, sans contact et en regard des aimants permanents 4. Les informations issues de ces capteurs de mesure d'induction 6 sont ensuite amplifiées et filtrées respectivement par des moyens d'amplification 10 et des moyens de filtration 1 1 avant qu'un calculateur 12 n'acquiert lesdites informations. Ce calculateur 12 de l'unité électronique détermine donc l'angle rotorique (position angulaire du rotor) à partir des informations issues des capteurs de mesure d'induction 6 et communique en temps réel l'angle rotorique à un système de commande vectorielle 13 lequel commande un convertisseur 14.
La communication de l'angle rotorique au système de commande vectorielle 13 est effectuée par l'intermédiaire d'un protocole de type BUS de terrain du genre S SI, PROFIBUS ou autres. En outre, le signe de l'angle rotorique déterminé par le calculateur 12, définit le sens de rotation de la machine synchrone 1 conforme à l'invention.
La figure 5 illustre à l'aide d'un schéma fonctionnel, le système de commande vectorielle 13 d'une machine synchrone 1 à aimants permanents 4 et à force électromotrice sinusoïdale. Dans cet exemple de commande vectorielle, la machine synchrone 1 comprend le convertisseur 14 alimenté par une tension électrique.
Le système de commande vectorielle 13 permet de commander le convertisseur 14 par l'intermédiaire d'une modulation de largeurs d'impulsions MLI pour générer une tension d'alimentation moyenne sur chacune des phases Pi, P2, P3 de la machine synchrone 1 et par conséquent un courant déterminé dans chacune desdites phases Pi, P2, P3. Le convertisseur 14 transforme donc une tension livrée par une source de tension U continue en une tension triphasée d'alimentation de la machine synchrone 1. Cette dernière fonctionne donc en traction et en alternance en générateur de tension triphasé par exemple lorsqu'un véhicule est dans une phase de freinage.
Le système de commande vectorielle 13 comprend une unité de commande du convertisseur 14, des capteurs de courant 15, un capteur de tension 16 et le capteur de position angulaire la de la machine synchrone 1. Le système de commande vectorielle 13 reçoit par exemple la consigne de couple C. A partir des informations issues des capteurs de courant 15, du module capteur de position angulaire l a et à partir de la consigne C, l'unité de commande du convertisseur 14 calcule le vecteur de tension à appliquer au dit convertisseur 14 pour que la machine synchrone 1 atteigne la consigne de couple C.
Le système de commande vectorielle 13, en particulier d'une machine synchrone 1 à aimants permanents 4 et à force électromotrice sinusoïdale est connu en tant que tel et ne sera donc pas décrit davantage dans la présente.
La machine synchrone 1 conforme à l'invention présente l'avantage remarquable qu'elle comprend un capteur de position angulaire l a permettant d'effectuer une mesure directe du champ magnétique produit par les aimants permanents 4 et par conséquent de connaître l'évolution dudit champ magnétique en fonction du temps. Ceci permet de détecter une détérioration des performances des aimants permanents 4 et par conséquent des performances de la machine synchrone 1 conforme à l'invention.
Par ailleurs, le capteur de position angulaire l a de la machine synchrone 1 conforme à l'invention permet de détecter une augmentation brutale du champ magnétique induit, résultant d'un court-circuit entre phases.
La figure 6 illustre un exemple de signaux mesurés par des capteurs d'induction magnétique 6 disposés mutuellement à 90° électrique l'un de l'autre. Une telle disposition correspond à un angle mécanique de 4,5° pour une machine comportant vingt paires de pôles. Un tel module permet de mesurer le champ axial produit par les aimants. Les signaux A et B, respectivement en traits fins et gros, sont délivrés par deux capteurs 6 respectifs sous forme de tension électrique V et sont des signaux sinusoïdaux déformés par la présence d'harmoniques de rang 3 dans le champ axial. Les signaux A et B sont des signaux mesurés et filtrés de façon connue.
Afin de corriger les non linéarités du signal, il est possible d'utiliser un dispositif de filtrage adaptatif, connu en tant que tel, ou d'utiliser un dispositif de correction basé sur l'utilisation de plusieurs modules capteur de position angulaire la, présentant un écart angulaire quelconque entre modules.
A la suite de cette correction, les valeurs mesurées, filtrées et corrigées présentent des formes sinusoïdales Ai et Bi à partir desquelles il est possible de déterminer la position angulaire du rotor 3. La figure 7 représente ainsi un exemple des signaux corrigés Ai et Bl s obtenus grâce à un module capteur de position angulaire la comportant deux capteurs 6, donnant des valeurs correspondant à un champ axial normalisé en fonction du temps. A titre d'exemple, la figure 8 est une représentation de la position angulaire absolue a, appelée angle, calculée à partir du champ axial mesuré dans une machine synchrone 1, à deux pôles, conforme à l'invention.
La détermination de la position angulaire a est effectuée par l'unité électronique selon les calculs précisés ci-après, en considérant que y correspond aux valeurs illustrées par la courbe du signal Bi et x correspond aux valeurs illustrées par la courbe du signal Ai . Ainsi :
six>0ety>0;a = atan(y/x)
six = 0ety>0;a = π/2
six<0ety>0;a = n + atan(y/x)
six<0ety<0;a = n + atan(y/x)
six = 0ety<0;a = 3π/2
six>0ety<0;a = atan(y/x) + 2π
La machine synchrone 1 à aimants permanents 4 et à force électromotrice sinusoïdale, conforme à l'invention, constitue avantageusement un moteur-roue.
La machine synchrone conforme à l'invention peut également être utilisée comme moteur de treuils ou comme moteur d'ascenseurs.
Il est évident que la présente description ne se limite pas aux exemples explicitement décrits, mais comprend également d'autres modes de réalisation et/ou de mise en œuvre. Ainsi, une caractéristique technique décrite peut être remplacée par une caractéristique technique équivalente, sans sortir du cadre de la présente invention.

Claims

REVENDICATIONS
1. Machine synchrone (1) comprenant un stator (2) et un rotor (3), ladite machine (1) étant équipée d'au moins un module capteur de position angulaire (la) du rotor (3) et caractérisée en ce que :
le stator (2) comprend un bobinage prévu pour être alimenté en courant alternatif polyphasé par un dispositif d'électronique de puissance de type onduleur,
le rotor (3) comprenant des moyens pour générer une induction magnétique est prévu pour se mouvoir en rotation lorsque le stator (2) est alimenté,
le module capteur de position angulaire (la) comprend au moins un couple de deux capteurs de mesure de l'induction magnétique (6) pour détecter la variation du champ magnétique axial généré par les moyens pour générer une induction magnétique en délivrant une tension, lesdits capteurs (6) du ou de chaque module (la) présentant un écart angulaire de 90° électriques, les capteurs de mesure de l'induction (6), solidarisés avec le stator (2), s'étendent au niveau d'une extrémité axiale (3a) du rotor (3), en regard et à proximité immédiate des chants axiaux (4a) des moyens pour générer une induction magnétique, et
le module capteur de position angulaire (la) comprenant au moins une unité électronique pour recevoir les tensions délivrées par les capteurs de mesure de l'induction magnétique (6), pour en déduire la position angulaire du rotor (3) de manière absolue et pour transmettre une information correspondante, en temps réel, au dispositif d'électronique de puissance.
2. Machine synchrone (1) selon la revendication 1 , caractérisée en ce que le rotor (3) s'étend autour du stator (2).
3. Machine synchrone (1) selon la revendication 1 ou 2, caractérisée en ce que les capteurs de mesure de l'induction magnétique (6) sont fixés et répartis sur au moins un support amovible (7) de manière à s'étendre selon une ligne dont la courbure épouse sensiblement la courbure de la succession des chants axiaux (4a) des moyens pour générer une induction magnétique.
4. Machine synchrone selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend au moins deux modules capteur de position angulaire (la) présentant un écart angulaire mutuel.
5. Machine synchrone (1) selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle comporte deux supports amovibles (7) pourvus chacun de cinq capteurs de mesure de l'induction magnétique (6).
6. Machine synchrone (1) selon la revendication 3 ou 4, caractérisée en ce que le support amovible (7) comporte au moins un circuit électronique de l'unité électronique.
7. Machine synchrone (1) selon l'une quelconque des revendications 3 à 5, caractérisée en ce que le support amovible (7) comporte un capteur de température (9).
8. Machine synchrone (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que les capteurs de mesure de l'induction magnétique (6) sont des capteurs à effet Hall.
9. Machine synchrone (1) selon l'une quelconque des revendications 1 à 6, caractérisée en ce que les capteurs de mesure de l'induction magnétique (6) sont des capteurs à magnétorésistance.
10. Machine synchrone (1) selon l'une quelconque des revendications précédentes, caractérisée en ce que le dispositif d'électronique de puissance comprend un convertisseur (14) pilotant ladite machine synchrone (1) par une modulation de largeurs d'impulsions.
11. Machine synchrone (1) selon l'une quelconque des revendications 1 à 9, caractérisée en ce que les moyens pour générer une induction magnétique sont des aimants permanents (4).
12. Machine synchrone (1) selon l'une quelconque des revendications 1 à 9, caractérisée en ce que les moyens pour générer une induction magnétique sont constitués de bobinages électriques.
13. Machine synchrone (1) selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle constitue un moteur-roue d'un véhicule.
EP15710831.7A 2014-02-24 2015-02-24 Machine synchrone equipee d'un capteur de position angulaire Withdrawn EP3111539A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451446A FR3018014B1 (fr) 2014-02-24 2014-02-24 Machine synchrone equipee d'un capteur de position angulaire
PCT/FR2015/050443 WO2015124882A2 (fr) 2014-02-24 2015-02-24 Machine synchrone equipee d'un capteur de position angulaire

Publications (1)

Publication Number Publication Date
EP3111539A2 true EP3111539A2 (fr) 2017-01-04

Family

ID=51014415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15710831.7A Withdrawn EP3111539A2 (fr) 2014-02-24 2015-02-24 Machine synchrone equipee d'un capteur de position angulaire

Country Status (8)

Country Link
US (1) US10312774B2 (fr)
EP (1) EP3111539A2 (fr)
KR (1) KR20160124854A (fr)
CN (1) CN106063097B (fr)
AU (1) AU2015220585B2 (fr)
CA (1) CA2938750A1 (fr)
FR (1) FR3018014B1 (fr)
WO (1) WO2015124882A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734912B2 (en) * 2016-08-24 2020-08-04 Beckhoff Automation Gmbh Stator device for a linear motor, linear drive system, and method for operating a stator device
NL2019303B1 (en) * 2017-07-20 2019-02-12 E Traction Europe Bv In-wheel electric motor provided with a control system
DE102018205580A1 (de) * 2018-04-12 2019-10-17 Robert Bosch Gmbh Antriebseinheit für ein Verstellsystem eines Kraftfahrzeugs sowie Verfahren zum Betreiben einer Antriebseinheit
DE102018211089A1 (de) * 2018-07-05 2020-01-09 Volkswagen Aktiengesellschaft Sensorvorrichtung, Elektromaschinensystem und Kraftfahrzeug
WO2020075203A1 (fr) * 2018-10-09 2020-04-16 Mavel Edt S.R.L. Appareil et procédé d'assemblage d'un capteur de position magnétique sur le rotor d'une machine électrique
DE102018128178A1 (de) * 2018-11-12 2020-05-14 Schaeffler Technologies AG & Co. KG Elektrische Maschine mit integriertem Temperatursensor und Rotorzustandserfassungssensor
KR102232818B1 (ko) * 2018-12-27 2021-03-26 알에스오토메이션주식회사 센싱 유니트가 구비된 드라이브 장치
CN110987032B (zh) 2019-12-23 2021-08-03 峰岹科技(深圳)股份有限公司 磁编码器、绝对电角度检测方法、系统及可读存储介质
CN114089231A (zh) * 2021-11-02 2022-02-25 湖南大学 一种磁传感器模组、印制永磁同步电机及其应用方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345586A (en) * 1940-08-03 1944-04-04 Packard Motor Car Co Hydraulic fluid
US3548223A (en) * 1969-03-07 1970-12-15 Siemens Ag Brushless direct-current motor with galvanomagnetic control members
US3663877A (en) * 1970-04-02 1972-05-16 Ampex Brushless dc motor including tachometer commutation circuit
DE2900541B2 (de) * 1979-01-08 1981-07-16 Siemens AG, 1000 Berlin und 8000 München Steuersignalgeber für die Kommutierungseinrichtung eines elektronisch kommutierten Gleichstrommotors
US4311933A (en) * 1979-08-27 1982-01-19 North American Philips Corporation Brushless direct current motor
US4283664A (en) * 1979-12-21 1981-08-11 Siemens Aktiengesellschaft Control signal generator for the commutating device of a brushless electronics motor
CH664051A5 (de) 1983-02-24 1988-01-29 Elin Union Ag Einrichtung zur erfassung von windungsschluessen im laeufer einer kollektormaschine.
US4882511A (en) * 1984-06-01 1989-11-21 Papst-Motoren Gmbh & Co. Kg Brushless three-phase D.C. motor
JPH0755037B2 (ja) * 1988-05-13 1995-06-07 株式会社日立製作所 永久磁石式同期電動機
ES2077723T5 (es) * 1990-07-06 2000-03-01 Hitachi Ltd Motor sin escobillas que incorpora un circuito integrado que tiene un circuito periferico monochip.
DE4128419A1 (de) 1991-08-28 1993-03-04 Bosch Gmbh Robert Elektromotor mit einer vorrichtung zur drehzahl- und/oder drehrichtungserfassung
DE4137559A1 (de) * 1991-11-15 1993-05-19 Heidelberger Druckmasch Ag Einrichtung zur erfassung mindestens einer zustandsgroesse eines buerstenlosen gleichstrommotors
US5252915A (en) 1992-01-23 1993-10-12 Ontario Hydro Method and apparatus for detecting stator faults in rotary dynamoelectric machines
US5568048A (en) * 1994-12-14 1996-10-22 General Motors Corporation Three sensor rotational position and displacement detection apparatus with common mode noise rejection
ATE342605T1 (de) * 1998-03-21 2006-11-15 Ebm Papst St Georgen Gmbh & Co Elektronisch kommutierter motor
US6522130B1 (en) * 1998-07-20 2003-02-18 Uqm Technologies, Inc. Accurate rotor position sensor and method using magnet and sensors mounted adjacent to the magnet and motor
US6166655A (en) * 1998-10-14 2000-12-26 Chen; Hung-Chou Device and method for identifying magnetic induction coordinate
GB2345586A (en) * 1999-01-11 2000-07-12 Elliott Ind Ltd An electric motor, a wheel and drive apparatus for an electric vehicle
US6497035B1 (en) * 1999-12-06 2002-12-24 Hr Textron, Inc. Hall position sensor
US6573745B2 (en) 2001-05-04 2003-06-03 Ford Global Technologies, Inc. Permanent magnet degradation monitoring for hybrid and electric vehicles
JP4552353B2 (ja) * 2001-05-11 2010-09-29 ソニー株式会社 サーボ・アクチュエータ並びにその位置検出装置
DE10124436A1 (de) * 2001-05-18 2002-11-28 Bosch Gmbh Robert Bürstenloser Gleichstromantrieb
US20040021437A1 (en) * 2002-07-31 2004-02-05 Maslov Boris A. Adaptive electric motors and generators providing improved performance and efficiency
JP2004064850A (ja) * 2002-07-26 2004-02-26 Denso Corp ブラシレスモータ
KR101038332B1 (ko) * 2003-07-04 2011-05-31 페어차일드코리아반도체 주식회사 3상 비엘디시 모터 시스템, 모터의 구동 회로 및 구동방법
JPWO2006070826A1 (ja) * 2004-12-28 2008-08-07 旭化成エレクトロニクス株式会社 磁気方式回転角センサ、および、角度情報処理装置
JP3799362B1 (ja) * 2005-08-25 2006-07-19 山洋電気株式会社 磁気センサ付き回転電機
US7170242B1 (en) * 2005-11-16 2007-01-30 Sunonwealth Electric Machine Industry Co., Ltd. Pulse-width-modulation motor drive circuit
EP1955430B1 (fr) * 2005-12-01 2012-05-23 ebm-papst St. Georgen GmbH & Co. KG Moteur électrique
JP5041401B2 (ja) * 2006-12-18 2012-10-03 古河電気工業株式会社 回転センサ
CN101611528B (zh) * 2007-03-16 2012-06-13 三菱电机株式会社 无刷电动机装置
KR101659931B1 (ko) * 2007-06-27 2016-09-26 브룩스 오토메이션 인코퍼레이티드 다차원 위치 센서
DE102008059005A1 (de) * 2008-11-25 2010-05-27 Schaeffler Kg Verstellvorrichtung zur Verstellung einer relativen Drehwinkellage zweier Wellen und Verfahren zum Betrieb eines Aktuators, insbesondere einer solchen Verstellvorrichtung
GB2462948B (en) * 2009-10-15 2011-08-31 Protean Holdings Corp Method and system for measuring a characteristic of an electric motor
DE102010001166A1 (de) * 2010-01-25 2011-07-28 Robert Bosch GmbH, 70469 Drehzahlsensor für einen Elektromotor und Verfahren zur Drehzahlmessung
JP5194083B2 (ja) 2010-09-22 2013-05-08 山洋電気株式会社 電気機器の永久磁石の劣化判定方法及び装置
FR2977093B1 (fr) * 2011-06-21 2016-09-02 Faurecia Bloc Avant Moteur electrique comprenant au moins un capteur de flux magnetique
US20130033215A1 (en) 2011-08-01 2013-02-07 Illinois Institute Of Technology Apparatus and method for permanent magnet electric machine condition monitoring
GB2483177B (en) 2011-10-19 2013-10-02 Protean Electric Ltd An electric motor or generator
DE102011056252A1 (de) 2011-12-09 2013-06-13 E-Motiontech GmbH Bestimmung von Zustandsgrößen eines permanentmagneterregten Synchronmotors
FR2987439B1 (fr) 2012-02-28 2014-11-21 Vishay S A Dispositif capteur de position rotatif et appareil comprenant un tel dispositif

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015124882A2 *

Also Published As

Publication number Publication date
AU2015220585B2 (en) 2018-12-06
US20170063204A1 (en) 2017-03-02
US10312774B2 (en) 2019-06-04
WO2015124882A3 (fr) 2016-05-26
FR3018014B1 (fr) 2016-03-25
AU2015220585A1 (en) 2016-09-15
WO2015124882A2 (fr) 2015-08-27
CN106063097A (zh) 2016-10-26
CN106063097B (zh) 2019-10-11
FR3018014A1 (fr) 2015-08-28
CA2938750A1 (fr) 2015-08-27
KR20160124854A (ko) 2016-10-28

Similar Documents

Publication Publication Date Title
EP3111539A2 (fr) Machine synchrone equipee d&#39;un capteur de position angulaire
WO2015124855A1 (fr) Procédé de détection d&#39;un court-circuit dans une machine synchrone équipée d&#39;un capteur de position angulaire
EP3111244A1 (fr) Procédé de mesure du vieillissement d&#39;aimants permanents d&#39;une machine synchrone équipée d&#39;un capteur de position angulaire
FR2821668A1 (fr) Capteur de position, notamment destine a la detection de la torsion d&#39;une colonne de direction
FR2861921A1 (fr) Systeme d&#39;entrainement de moteur
EP3542450A1 (fr) Moto-reducteur, systeme d&#39;essuyage et procede de commande associes
EP1194999B1 (fr) Methode de calage d&#39;un moteur electrique de type polyphase a fonctionnement pas a pas
EP2511665B1 (fr) Dispositif de détection de la position axiale d&#39;un arbre tournant et application à une pompe turbo-moléculaire
FR3028942A1 (fr) Capteur inductif de mesure de la position d&#39;un arbre d&#39;un vehicule
EP2787632B1 (fr) Procédé et dispositif de pilotage d&#39;une machine électrique tournante double triphasée et machine électrique tournante correspondante
EP4379324A1 (fr) Procédé de réglage d&#39;un dispositif de mesure comprenant au moins un capteur de position
FR2843248A1 (fr) Procede de commande de fonctionnement synchronise d&#39;au moins deux moteurs electriques polyphases
FR3033457B1 (fr) Machine electrique tournante munie de moyens de suivi ameliores de la position angulaire du rotor
WO2019197775A1 (fr) Procede de commande d&#39;un moteur polyphase
EP2416490B1 (fr) Chaîne de traction pour un véhicule de transport, notamment ferroviaire, et procédé de commande d&#39;une telle chaîne
EP3242111A1 (fr) Procede de correction d&#39;une mesure d angle d&#39;un rotor dans une machine electrique
FR2916270A1 (fr) Capteur pouvant detecter la presence d&#39;une piece magnetique et machine electrique comprenant un tel capteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160808

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUMAS, PIERRE

17Q First examination report despatched

Effective date: 20190613

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200103