EP3111244A1 - Procédé de mesure du vieillissement d'aimants permanents d'une machine synchrone équipée d'un capteur de position angulaire - Google Patents

Procédé de mesure du vieillissement d'aimants permanents d'une machine synchrone équipée d'un capteur de position angulaire

Info

Publication number
EP3111244A1
EP3111244A1 EP15709288.3A EP15709288A EP3111244A1 EP 3111244 A1 EP3111244 A1 EP 3111244A1 EP 15709288 A EP15709288 A EP 15709288A EP 3111244 A1 EP3111244 A1 EP 3111244A1
Authority
EP
European Patent Office
Prior art keywords
magnetic induction
synchronous machine
rotor
value
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15709288.3A
Other languages
German (de)
English (en)
Inventor
Pierre Dumas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lohr Electromecanique SAS
Original Assignee
Lohr Electromecanique SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lohr Electromecanique SAS filed Critical Lohr Electromecanique SAS
Publication of EP3111244A1 publication Critical patent/EP3111244A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1215Measuring magnetisation; Particular magnetometers therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the general technical field of angular position sensors as well as to the general technical field of synchronous machines comprising permanent magnets and such a position sensor.
  • the present invention more particularly relates to a synchronous machine with sinusoidal, trapezoidal or other electromotive force, comprising a position sensor for controlling the power supply of said machine.
  • the invention finds its application mainly in synchronous machines powered by a polyphase alternating voltage.
  • the invention will be described below more particularly but not limited to means for generating a magnetic induction consisting of permanent magnets.
  • a synchronous machine with permanent magnets consists of a wound stator and a rotor carrying the permanent magnets. Such a machine is powered and driven via a power electronics.
  • a synchronous machine with permanent magnets and sinusoidal electromotive force can be controlled with a vector control system.
  • This type of control known as such, provides high performance, namely high accuracy and high torque dynamics. These performances are necessary, especially for traction motors.
  • a control system for obtaining high performance requires a precise knowledge of the angular position of the rotor and this in real time.
  • the angular position of the rotor is generally given by a position sensor which consists in particular of a rotating part mechanically linked to the rotor.
  • a position sensor which consists in particular of a rotating part mechanically linked to the rotor.
  • Various technologies are thus known for determining the angular position of the rotor.
  • the position sensor called “resolver”, the incremental digital encoder or the absolute encoder.
  • a so-called calibration operation must be performed by a converter. During this operation, the machine is rotating and the converter measures the angle corresponding to the zero crossing of the electromotive force.
  • This calibration operation must be carried out again during a maintenance operation of the sensor change type, change of an electromagnetic part of the rotor or the stator, or change of the complete machine.
  • Such a rigging operation is often very difficult to achieve, in particular for long vehicles of the railway vehicle type, since it is necessary to lift the said vehicles to allow free orientation of the wheels during stalling.
  • the wedging operation is however very important because an angular offset between the measured angular position and the actual position of the rotor leads to a significant drop in the torque. For example, a shift of one mechanical degree leads to a torque drop of about 5% and an offset of two mechanical degrees leads to a torque drop of 20%.
  • Document US 2002/175674 discloses a method and a device for detecting degradation of a permanent magnet in an engine of a hybrid or electric electric vehicle.
  • a voltage monitoring device is coupled directly to a traction motor and / or the generator motor to detect the voltage induced by the permanent magnets in the motor at a predetermined speed and out of state of charge.
  • a controller compares the detected induced voltage with a reference voltage which represents an expected induced voltage for full magnetization at the predetermined rate.
  • the controller generates an indication of the magnetization as a function of the reference voltage, the detected induced voltage and the predetermined speed.
  • the indication of the magnetization is recorded as a later reference.
  • a safety indicator generates a signal to warn the user of the vehicle when the magnetization indication is below a safety threshold.
  • the device described in US 2002/175674 relates to a rotor with permanent magnets in the central position and surrounded by a wound stator.
  • the measurement of the magnetization is done by means of a winding which is wound on the teeth of the rotor and integrated therewith.
  • the device of document US 2002/175674 does not make it possible to detect the degradation of a permanent magnet in a charging electric motor, that is to say when the machine is loaded or delivers a torque, but only in an electric motor in free rotation. This is a major drawback. Indeed, in US 2002/175674 the magnetization field from the rotor magnets is measured by measuring a current induced in the winding which is wound on the teeth of the rotor. Since this magnetization field depends on the intensity of the electric current flowing in the coil, and the same current depends on the load of the electric motor, the magnetization field of the coil therefore varies as a function of the biasing of the electric motor.
  • the object of the present invention is therefore to overcome the drawbacks mentioned above and to propose a new method for determining an aging level of a synchronous machine.
  • Another object of the present invention is to implement such a method for determining an aging level with simple, reliable, few and economical means.
  • the objects assigned to the invention are achieved by means of a method for measuring the aging of the permanent magnets of a polyphase synchronous machine comprising a stator and a rotor, said machine being equipped with at least one sensor of angular position of the rotor, the stator comprising a coil intended to be supplied with current, the rotor comprising permanent magnets being provided to move around the stator, the angular position sensor comprising at least two sensors for measuring the magnetic induction and at least one electronic unit, the induction measurement sensors, fixed, integral with the stator, extending at an axial end of the rotor facing and in the immediate vicinity of the axial edges of the permanent magnets, characterized in that 'it consists of :
  • step j3 if the value of the maximum magnetic induction is lower than the reference value by exhibiting a determined deviation from said reference value, generating an alerting information via the electronic unit, in the case otherwise resume step jl).
  • the method consists in using as a reference value the value of the maximum magnetic induction measured during the first use of the synchronous machine.
  • the method consists in using as a reference value, a theoretical or predefined value.
  • the method consists in using as a reference value, a decreasing value in function of time.
  • the method consists in using as a reference value, a value exhibiting a linear decrease.
  • the method consists in generating the alert information when the difference is greater than or equal to 20%.
  • the method is applied to a wheel motor of a vehicle.
  • the method is used on a test bench during maintenance operations of the motor-wheel.
  • the measured value VM max of the maximum magnetic induction is compared with a predetermined reference value, stored in a set of data comprising values of the maximum magnetic induction for a given intensity of the electric current supplied to the synchronous machine.
  • the data set comprising values of the maximum magnetic induction for a given intensity of the electric current supplied to the synchronous machine is stored in the electronic unit.
  • the synchronous machine in which the process according to the invention is implemented advantageously constitutes a wheel motor of a rail or road vehicle.
  • the measuring method according to the invention has the particular advantage of providing a precise measurement, in real time and at selected time intervals, of the aging of the permanent magnets of the synchronous machine.
  • the method according to the invention has the remarkable advantage that results from the use of the angular position sensor of the rotor, to know the evolution of the magnetic field as a function of time and thus to estimate whether the synchronous machine is healthy or if it has suffered an aging detrimental to its performance.
  • the method according to the invention advantageously makes it possible to measure the magnetic field when the synchronous machine is rotating, that it is running empty or in load.
  • Vacuum operation means the case where the machine synchronous operation works freewheeling
  • charging operation means the case where the synchronous machine is rotating and delivers a torque, whether braking or acceleration.
  • the method according to the invention advantageously makes it possible to measure the magnetic field when the synchronous machine is at a standstill, the measurement of the magnetic field then being carried out for the magnets located in front of the sensors. To perform a complete mapping of the magnets of the machine, it is then sufficient to rotate it so as to position in turn each of the magnets in front of the sensors.
  • the measurement of the magnetization is done by means of hall effect or magnetoresistance sensors which are mounted on a removable support, and whose maintenance is therefore very easy.
  • FIG. 1 illustrates an embodiment of a synchronous machine in which the method according to the invention is implemented, said machine incorporating an angular position sensor on a portion of a stator;
  • Figure 2 shows a detail, in section, of Figure 1;
  • FIG. 3 is an illustration of an exemplary embodiment of a removable support for the angular position sensor in front view, intended to be inserted into a synchronous machine in which the method according to the invention is implemented. ;
  • FIG. 4 illustrates a block diagram of the electronic means necessary for the operation of the angular position sensor of a synchronous machine and therefore used to implement the method according to the invention
  • FIG. 5 illustrates, using a block diagram, an example of a vector control system of a synchronous machine with permanent magnets and a sinusoidal electromotive force, in which the method according to the invention is implemented.
  • FIG. 1 illustrates an exemplary embodiment of a synchronous machine 1 comprising an angular position sensor mounted on a stator 2 schematically illustrated in Figure 4.
  • Figure 1 shows an end portion 2a, for example in the form of flange mechanically secured to the stator 2.
  • the synchronous machine 1 also comprises a rotor 3 provided with permanent magnets 4.
  • the end portion 2a covers at least partially and without contact an axial end 3a of the rotor 3.
  • An example of an arrangement between the axial end 3a and the end portion 2a is illustrated in more detail in FIG.
  • the stator 2 comprises a not shown winding, intended to be supplied with polyphase current via a power electronics device also called converter or inverter.
  • the latter is advantageously supplied with voltage and current.
  • the rotor 3 advantageously has a substantially cylindrical shape 3b whose internal face is covered with permanent magnets 4.
  • the rotor 3 is intended to rotate around the portion of the stator 2 extending in the free space delimited internally to said rotor 3.
  • the permanent magnets 4 are for example stacked in an axial direction in axial grooves formed in the inner face of the cylinder 3b.
  • the mounting and fixing of the permanent magnets 4 on the inner face of the rotor 3 is carried out in a known manner.
  • the permanent magnets 4 are slidably introduced into axial grooves and held radially due to a complementarity of shapes of said grooves and said permanent magnets 4.
  • the permanent magnets 4 are locked axially in each groove by means of a retaining piece 5 made of non-magnetic material, illustrated in greater detail in FIG. 2.
  • the holding piece 5 constitutes a stop 5a preventing axial movements of the permanent magnets 4 engaged in the corresponding groove.
  • the dimensions and shapes of the holding part 5 are chosen so as not to hinder access to a localized area facing at least part of the axial edge 4a of the last permanent magnet 4 engaged in each groove.
  • the axial end 3a of the cylinder 3b which does not have permanent magnets 4, advantageously has a slightly flared shape in a radial direction. Such a conformation thus makes it possible to limit the space requirement resulting from the fixing of the holding part 5.
  • a holding part 5 is advantageously fixed on the cylinder 3b, at the end of each groove with a screw 5b, thus axially blocking all rows of permanent magnets 4.
  • the synchronous machine 1 also comprises an angular position sensor of the rotor 3.
  • the angular position sensor comprises, in particular, sensors for measuring the magnetic induction 6. These are designed to detect the variation of the axial magnetic field generated by the permanent magnets. 4. This variation of the axial magnetic field is detected and transformed into a voltage delivered by the magnetic induction measurement sensors 6.
  • the angular position sensor also comprises at least one electronic unit designed to receive the induction voltages of the measuring sensors of the magnetic induction 6 and to deduce the angular position of the rotor 3. This determination is made absolutely.
  • the electronic unit also makes it possible to transmit in real time relative information on the angular position of the rotor 3 to the power electronics device.
  • the sensors for measuring the magnetic induction 6 are mechanically secured to the end portion 2a and extend at an axial end of the rotor 3, facing and in the immediate vicinity of the axial edges 4a of the last permanent magnets 4 engaged in the grooves. During the rotation of the rotor 3, each axial edge 4a therefore passes in front of the sensors for measuring the magnetic induction 6.
  • the magnetic measurement sensors 6 are advantageously fixed on a removable support 7.
  • the removable support 7 has for this purpose an axial support portion 7a and a support end portion 7b.
  • the support end portion 7b extends substantially transversely to the axial support portion 7a.
  • the sensors for measuring the magnetic induction 6 are arranged on an outer face 7c of the free end of the axial support portion 7a.
  • the removable support 7 preferably has a curvature substantially conforming to the curvature of the rotor 3.
  • the sensors for measuring the magnetic induction 6 are advantageously fixed and distributed on an external face 7c along a line whose curvature substantially matches the curvature of the succession of axial edges 4a permanent magnets 4.
  • the removable support 7 is for example introduced into a slot 8 formed in the end portion 2a.
  • the slot 8 has a curvature identical or similar to that presented by the axial support portion 7a.
  • the removable support 7, once equipped with measurement sensors magnetic induction 6, is introduced axially into the slot 8 until the abutment of the portion of the support end 7b on the outer face of the end portion 2a.
  • the dimensions of the removable support 7, and in particular the axial length of the axial support portion 7a, are chosen so that the sensors for measuring the magnetic induction 6 extend at a distance e from the axial edges 4a.
  • the distance e is for example between 1.5 and 2.5 millimeters and preferably equal to 2 millimeters.
  • the synchronous machine 1 comprises, according to an exemplary embodiment, at least three magnetic induction measurement sensors 6 arranged on a removable support 7.
  • the synchronous machine 1 according to the invention, illustrated in FIG. 1, comprises two removable supports 7 each of which is provided for example with at least two magnetic induction measurement sensors 6.
  • FIG. 3 is a front view illustration of an exemplary embodiment of a removable support 7 comprising five magnetic induction measurement sensors 6.
  • the synchronous machine 1 thus comprises, according to an exemplary embodiment of FIG. removable supports 7 each having five magnetic induction measuring sensors 6.
  • the outer face 7c of the axial support portion 7a is provided with a temperature sensor 9.
  • a temperature sensor 9 makes it possible to use the ambient temperature of the synchronous machine 1 to adjust its control, since the induction depends on the temperature .
  • the removable support 7 comprises at least one electronic circuit of the electronic unit or part of an electronic circuit of said electronic unit.
  • the power electronics device is a converter 14 driving the synchronous machine 1 by a modulation of pulse widths.
  • the sensors for measuring the magnetic induction 6 are preferably Hall effect sensors.
  • the sensors for measuring the magnetic induction 6 consist of AMR / GMR sensors, called magnetoresistance sensors. While Hall effect sensors measure the DC component of the magnetic field, magnetoresistance sensors exhibit operation based on the variation in the electrical resistance of a material as a function of the direction of the magnetic field applied thereto. These sensors are known as such and are therefore not described further.
  • FIG. 4 is a block diagram of the electronic means necessary for the operation of the angular position sensor 1a of the synchronous machine 1.
  • the latter thus comprises the wound stator 2 and the rotor 3 comprising the permanent magnets 4.
  • the angular position sensor thus comprises functional means, which include induction measurement sensors 6, associated with the electronic unit for acquiring a signal and for calculating the positioning angle of the rotor. 3.
  • the functional means consist, for example, of two magnetic induction measurement sensors 6 mounted fixed, without contact and facing the permanent magnets 4.
  • the information from these induction measurement sensors 6 is then amplified and filtered respectively by means 10 and filtering means 11 before a computer 12 acquires said information.
  • This computer 12 of the electronic unit thus determines the rotor angle (angular position of the rotor) from the information from the induction measurement sensors 6 and communicates in real time the rotor angle to a vector control system 13 which controls a converter 14.
  • FIG. 5 illustrates, using a block diagram, the vector control system 13 of a synchronous machine 1 with permanent magnets 4 and a sinusoidal electromotive force.
  • the synchronous machine 1 comprises the converter 14 powered by a voltage.
  • the vector control system 13 makes it possible to control the converter 14 by means of PWM pulse width modulation to generate an average supply voltage on each of the phases Pi, P 2 , P 3 of the synchronous machine 1 and therefore a current determined in each of said phases Pi, P 2 , P 3 .
  • the converter 14 thus transforms a voltage supplied by a DC voltage source U into a three-phase supply voltage of the synchronous machine 1.
  • the latter operates, for example, in traction and alternately in a three-phase voltage generator, when a vehicle is in operation. a braking phase.
  • the vector control system 13 comprises a control unit of the converter 14, current sensors 15, a voltage sensor 16 and the angular position sensor 1a of the synchronous machine 1.
  • the vector control system 13 receives for example the torque setpoint C. On the basis of the information from the current sensors 15, the angular position sensor 1a and from the setpoint C, the control unit of the converter 14 calculates the voltage vector to be applied to said converter 14 so that the synchronous machine 1 reaches the torque setpoint C.
  • the vector control system 13 in particular a synchronous machine 1 with permanent magnets 4 and sinusoidal electromotive force, is known per se and will therefore not be further described herein.
  • the synchronous machine 1 has the remarkable advantage that it comprises an angular position sensor enabling it to make a direct measurement of the magnetic field produced by the permanent magnets 4 and consequently to know the evolution of said magnetic field as a function of time . This makes it possible to detect a deterioration of the performance of the permanent magnets 4 and consequently the performance of the synchronous machine 1.
  • the angular position sensor 1a of the synchronous machine 1 makes it possible to detect a sudden increase in the induced magnetic field, resulting from a short-circuit between phases.
  • the synchronous machine 1 with permanent magnets 4 and force sinusoidal electromotive advantageously constitutes a motor-wheel.
  • the synchronous machine according to the invention can also be used as a winch motor or as an elevator motor.
  • the synchronous machine 1 thus makes it possible to implement a method of measuring an aging of permanent magnets 4 according to the invention and this using a succession of steps explained below.
  • the value of the maximum magnetic induction VM max is determined, at a standstill or during a phase of rotation in load or in no-load mode of the synchronous machine 1, via the sensors of FIG. measurement of the magnetic induction 6 connected to the electronic unit.
  • the measured value of the maximum magnetic induction VM max is compared to a reference value.
  • a third step j3) if the value of the maximum magnetic induction VM max is lower than the reference value by exhibiting a determined difference with respect to said reference value, an alerting information S is generated by means of the electronic unit, otherwise we resume step jl).
  • the method consists in using as a reference value the value of the maximum measured magnetic induction VM max (i) during the first use of the synchronous machine 1.
  • the method consists in using as a reference value, a theoretical or predefined value VT max .
  • the method consists in using as a reference value a decreasing value as a function of time VM max (i ) (t).
  • a decreasing value results in a curve that is, for example, linear.
  • the initial reference value of this decreasing curve can be either the measured value VM max (i) or the theoretical or predefined value VT max .
  • the method consists in generating the alert information when the difference is greater than or equal to 20%.
  • a smaller deviation can also be chosen, for example, without departing from the scope of the invention.
  • the calculator 12 it is possible to determine concomitantly the absolute angular position of the rotor 3 and a normal or premature aging of the permanent magnets 4 or some permanent magnets 4 according to the method described above.
  • the computer 12 can thus identify which of the permanent magnets 4 are to be replaced if it is desired to maintain the good performance of the synchronous machine 1, even when the measurements have been made during a phase of rotation of the synchronous machine 1.
  • the method according to the invention advantageously makes it possible to measure the magnetic field, that the synchronous machine 1 operates at no load or in load, for example in traction or braking when it is a motor -wheel.
  • this measurement of the magnetic field depends on the intensity of the electric current supplied to the motor, so it is necessary to map the machine to have a reference curve of the expected magnetic field according to the intensity of the electric current supplied to the motor. the synchronous machine.
  • This mapping of the synchronous machine is preferably performed at the manufacturer on a new machine. It consists in taking measurements of the magnetic field by means of the Hall effect or magnetoresistance sensors during the operation of the synchronous machine 1. These measurements are then transmitted to an electronic unit, which also receives the motor current information coming from the sensors. current. These values therefore make it possible to establish charts, or other sets of reference data, for the operation of a new synchronous machine 1.
  • This reference data is for example stored in the electronic unit of the angular position sensor la.
  • an alert information S is then sent via the electronic unit.
  • the method of the invention can be used on a synchronous machine 1 in charge, by means of an angular position sensor according to the invention embedded because integrated in the synchronous machine 1. It is of course possible to use it on a test bench during maintenance operations of the synchronous machine 1, for example when stopped or during a free rotation, without traction or braking.
  • the process according to the invention also makes it possible to measurement of the magnetic field for the permanent magnets 4 situated in front of the magnetic induction measurement sensors 6 when the synchronous machine 1 is at a standstill.

Abstract

L'invention concerne un procédé de mesure d'un vieillissement des aimants permanents (4) d'une machine synchrone (1) comprenant un stator (2) et un rotor (3), ladite machine (1) étant équipée d'au moins un capteur de position angulaire (la) du rotor (3), le rotor (3) comprenant les aimants permanents (4) étant prévu pour se mouvoir autour du stator (2), le capteur de position angulaire (la) comprenant au moins deux capteurs de mesure de l'induction magnétique (6) fixes, s 'étendant au niveau d'une extrémité axiale (3 a) du rotor (3) en regard et à proximité immédiate des chants axiaux (4a) des aimants permanents (4), caractérisé en ce qu'il consiste à : j1) déterminer, à l'arrêt ou lors d'une phase de rotation en charge ou à vide de la machine synchrone (1), la valeur de l'induction magnétique maximale par l'intermédiaire des capteurs de mesure de l'induction magnétique (6) et de l'unité électronique, j2) comparer la valeur mesurée de l'induction magnétique maximale à une valeur de référence, et j3) si la valeur de l'induction magnétique maximale est inférieure à la valeur de référence en présentant un écart déterminé par rapport à ladite valeur de référence, générer une information d'alerte S par l'intermédiaire de l'unité électronique, dans le cas contraire reprendre l'étape j1).

Description

PROCEDE DE MESURE DU VIEILLISSEMENT D'AIMANTS PERMANENTS D'UNE MACHINE SYNCHRONE EQUIPEE D'UN
CAPTEUR DE POSITION ANGULAIRE
Domaine technique
La présente invention se rapporte au domaine technique général des capteurs de position angulaire ainsi qu'au domaine technique général des machines synchrones comportant des aimants permanents et un tel capteur de position.
La présente invention concerne plus particulièrement une machine synchrone à force électromotrice sinusoïdale, trapézoïdale ou autre, comportant un capteur de position pour commander l'alimentation électrique de ladite machine. L'invention trouve son application principalement dans des machines synchrones alimentées par une tension alternative polyphasée.
L'invention sera décrite ci-après plus particulièrement mais non limitativement avec des moyens pour générer une induction magnétique constitués d'aimants permanents.
Une machine synchrone à aimants permanents est constituée d'un stator bobiné et d'un rotor portant les aimants permanents. Une telle machine est alimentée et pilotée par l'intermédiaire d'une électronique de puissance.
Une machine synchrone à aimants permanents et à force électromotrice sinusoïdale, peut être pilotée avec un système de commande vectorielle. Ce type de pilotage, connu en tant que tel, permet d'obtenir des performances élevées à savoir, une grande précision et une dynamique de couple élevée. Ces performances sont nécessaires, en particulier pour les moteurs de traction.
Un système de commande permettant d'obtenir des performances élevées, requiert cependant une connaissance précise de la position angulaire du rotor et cela en temps réel. La position angulaire du rotor est généralement donnée par un capteur de position lequel est constitué notamment d'une partie tournante liée mécaniquement au rotor. On connaît ainsi différentes technologies permettant de déterminer la position angulaire du rotor. On peut citer à titre d'exemple le capteur de position appelé « resolver », le codeur digital incrémental ou le codeur absolu.
Ces technologies connues présentent cependant des inconvénients. En effet ces capteurs de position connus comportent tous une partie tournante liée mécaniquement au rotor. Ceci constitue une contrainte importante lors de la conception de la machine dans laquelle il faut intégrer les capteurs de position. La partie tournante du capteur de position angulaire est en général entraînée en rotation par l'intermédiaire d'un tube d'entraînement. Un tel tube d'entraînement, traverse en général le stator et présente très souvent une inertie importante pouvant conduire à un ralentissement de la mesure de la position angulaire. Le manque de précision lié à une telle mesure conduit à une altération des performances de la machine. En outre, le fait de devoir traverser la machine pour récupérer une information de position angulaire augmente substantiellement la complexité de l'ensemble. Il est alors nécessaire d'utiliser un nombre plus important de pièces mécaniques, ce qui augmente les risques de défaillances.
Par ailleurs, lors de la première mise en service d'une machine synchrone connue, une opération dite opération de calage, doit être effectuée par un convertisseur. Au cours de cette opération, la machine est en rotation et le convertisseur mesure l'angle correspondant au passage par zéro de la force électromotrice. Cette opération de calage doit être effectuée à nouveau lors d'une opération de maintenance du type changement de capteur, changement d'une pièce électromagnétique du rotor ou du stator, ou changement de la machine complète. Une telle opération de calage est souvent très difficile à réaliser en particulier pour les véhicules longs du type véhicule ferroviaire, dans la mesure où il faut soulever lesdits véhicules pour permettre une orientation libre des roues lors du calage.
L'opération de calage est cependant très importante car un décalage angulaire entre la position angulaire mesurée et la position réelle du rotor conduit à une chute importante du couple. A titre d'exemple un décalage de un degré mécanique conduit à une chute de couple d'environ 5 % et un décalage de deux degrés mécaniques conduit à une chute de couple de 20 %.
Les machines synchrones connues présentent également des performances moindres liées au vieillissement des aimants permanents. En effet, l'induction magnétique générée par les aimants permanents diminue avec le temps. Il est donc logique de remplacer les aimants permanents périodiquement. Le remplacement des aimants permanents peut occasionner des frais importants en pièces de rechange, en main d'œuvre et/ou en immobilisation de la machine. Il arrive souvent qu'un tel remplacement ait lieu trop tôt, générant des frais inutiles ou trop tard, conduisant à utiliser une machine synchrone dont les performances sont dégradées.
Par le document US 2002/175674, on connaît un procédé et un dispositif prévus pour détecter la dégradation d'un aimant permanent dans un moteur d'un véhicule électrique hybride ou électrique. Un dispositif de surveillance de tension est couplé directement à un moteur de traction et/ou au moteur du générateur pour détecter la tension induite par les aimants permanents dans le moteur à une vitesse prédéterminée et hors d'état de charge. Un contrôleur compare la tension induite détectée avec une tension de référence qui représente une tension induite attendue pour une pleine aimantation à la vitesse prédéterminée. Le dispositif de commande génère une indication de l'aimantation en fonction de la tension de référence, de la tension induite détectée et de la vitesse prédéterminée. L'indication de l'aimantation est enregistrée en tant que référence ultérieure. En outre, un indicateur de sécurité génère un signal pour avertir l'utilisateur du véhicule lorsque l'indication d'aimantation est inférieure à un seuil de sécurité.
Le dispositif décrit dans le document US 2002/175674 concerne un rotor à aimants permanents en position centrale et entouré par un stator bobiné. Dans ce document, la mesure de l'aimantation se fait au moyen d'un bobinage qui est enroulé sur des dents du rotor et intégré à celles-ci.
Le dispositif du document US 2002/175674 ne permet pas de détecter la dégradation d'un aimant permanent dans un moteur électrique en charge, c'est-à-dire lorsque le machine est chargée ou qu'elle délivre un couple, mais uniquement dans un moteur électrique en rotation libre. Ceci constitue un inconvénient majeur. En effet, dans le document US 2002/175674 on mesure le champ d'aimantation provenant des aimants du rotor par la mesure d'un courant induit dans le bobinage qui est enroulé sur les dents du rotor. Puisque ce champ d'aimantation dépend de l'intensité du courant électrique circulant dans le bobinage, et que ce même courant dépend de la charge du moteur électrique, le champ d'aimantation du bobinage varie donc en fonction de la sollicitation du moteur électrique. Lorsque le moteur électrique est en charge, le champ d'aimantation du bobinage varie constamment selon les sollicitations du moteur électrique et la tension induite détectée ne peut ainsi être comparée à une tension de référence qui représente une tension induite attendue pour une pleine aimantation. De même, le bobinage de mesure enroulé sur les dents du rotor ne peut faire la discrimination entre le champ d'aimantation du bobinage du stator et le champ d'aimantation créé par les aimants du rotor, d'où la nécessité dans le dispositif du document US 2002/175674 d'effectuer les mesure lorsque le champ d'aimantation du bobinage du stator est nul, ce qui est équivalent à dire que le moteur électrique doit être entraîné en roue libre. Divulgation de l'invention
L'objet de la présente invention vise par conséquent à remédier aux inconvénients mentionnés ci-dessus et à proposer un nouveau procédé de détermination d'un niveau de vieillissement d'une machine synchrone.
Un autre objet de la présente invention vise à mettre en œuvre un tel procédé de détermination d'un niveau de vieillissement avec des moyens simples, fiables, peu nombreux et économiques.
Les objets assignés à l'invention sont atteints à l'aide d'un procédé de mesure d'un vieillissement des aimants permanents d'une machine synchrone polyphasée comprenant un stator et un rotor, ladite machine étant équipée d'au moins un capteur de position angulaire du rotor, le stator comprenant un bobinage prévu pour être alimenté en courant, le rotor comprenant des aimants permanents étant prévu pour se mouvoir autour du stator, le capteur de position angulaire comprenant au moins deux capteurs de mesure de l'induction magnétique et au moins une unité électronique, les capteurs de mesure de l'induction, fixes, solidaires du stator, s'étendant au niveau d'une extrémité axiale du rotor en regard et à proximité immédiate des chants axiaux des aimants permanents, caractérisé en ce qu'il consiste à :
jl) déterminer, à l'arrêt ou lors d'une phase de rotation en charge ou à vide de la machine synchrone, la valeur de l'induction magnétique maximale par l'intermédiaire des capteurs de mesure de l'induction magnétique et de l'unité électronique,
j2) comparer la valeur mesurée de l'induction magnétique maximale à une valeur de référence, et
j3) si la valeur de l'induction magnétique maximale est inférieure à la valeur de référence en présentant un écart déterminé par rapport à ladite valeur de référence, générer une information d'alerte par l'intermédiaire de l'unité électronique, dans le cas contraire reprendre l'étape j l).
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, la valeur de l'induction magnétique maximale mesurée lors de la première utilisation de la machine synchrone.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, une valeur théorique ou prédéfinie.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, une valeur décroissante en fonction du temps.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, une valeur présentant une décroissance linéaire.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à générer l'information d'alerte lorsque l'écart est supérieur ou égal à 20%.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé est appliqué à un moteur-roue d'un véhicule.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé est utilisé sur un banc de mesures lors d'opérations de maintenance du moteur-roue.
Selon un exemple de mise en œuvre du procédé conforme à l'invention, lorsque la machine synchrone (1) est en charge, la valeur mesurée VMmax de l'induction magnétique maximale est comparée à une valeur de référence prédéterminée, stockée dans un ensemble de données comprenant des valeurs de l'induction magnétique maximale pour une intensité donnée du courant électrique fourni à la machine synchrone.
Selon un exemple de mise en œuvre du procédé conforme à l'invention, l'ensemble de données comprenant des valeurs de l'induction magnétique maximale pour une intensité donnée du courant électrique fourni à la machine synchrone est stocké dans l'unité électronique.
La machine synchrone dans laquelle est mis en œuvre le procédé conforme à l'invention, constitue avantageusement un moteur-roue d'un véhicule ferroviaire ou routier.
Le procédé de mesure conforme à l'invention présente notamment l'avantage de fournir une mesure précise, en temps réel et à intervalles de temps choisis, du vieillissement des aimants permanents de la machine synchrone.
Le procédé conforme à l'invention présente l'avantage remarquable qui résulte de l'utilisation du capteur de position angulaire du rotor, pour connaître l'évolution du champ magnétique en fonction du temps et d'estimer ainsi si la machine synchrone est saine ou si elle a subit un vieillissement préjudiciable à ses performances.
On notera également que le procédé conforme à l'invention permet avantageusement de faire la mesure du champ magnétique lorsque la machine synchrone est à rotation, qu'elle fonctionne à vide ou en charge.
Par fonctionnement à vide, on entend le cas où la machine synchrone fonctionne en roue libre, alors que par fonctionnement en charge on entend le cas où la machine synchrone est en rotation et délivre un couple, qu'il s'agisse d'un freinage ou d'une accélération.
On remarquera également que le procédé conforme à l'invention permet avantageusement de faire la mesure du champ magnétique lorsque la machine synchrone est à l'arrêt, la mesure du champ magnétique étant alors effectué pour les aimants situés en face des capteurs. Pour effecteur une cartographie complète des aimants de la machine, il suffit alors de faire tourner celle-ci de sorte de positionner tour à tour chacun des aimants en face des capteurs.
Enfin, dans l'invention, la mesure de l'aimantation se fait au moyen de capteurs à effet hall ou à magnétorésistance qui sont montés sur un support amovible, et dont la maintenance est par conséquent très facile. Brève description des figures
D'autres caractéristiques et avantages de l'invention ressortiront également des dessins donnés à titre illustratif et non limitatif dans lesquels :
- la figure 1 illustre un exemple de réalisation d'une machine synchrone dans laquelle est mis en œuvre le procédé conforme à l'invention, ladite machine intégrant un capteur de position angulaire sur une partie d'un stator ;
- la figure 2 représente un détail, en coupe, de la figure 1 ;
- la figure 3 est une illustration d'un exemple de réalisation d'un support amovible pour le capteur de position angulaire en vue de face, destiné à être inséré dans une machine synchrone dans laquelle est mis en œuvre le procédé conforme à l'invention ;
- la figure 4 illustre un synoptique des moyens électroniques nécessaires au fonctionnement du capteur de position angulaire d'une machine synchrone et par conséquent utilisés pour mettre en œuvre le procédé conforme à l'invention ; et
- la figure 5 illustre à l'aide d'un schéma fonctionnel, un exemple de système de commande vectorielle d'une machine synchrone à aimants permanents et à force électromotrice sinusoïdale, dans laquelle est mis en œuvre le procédé conforme à l'invention. Description détaillée des figures
La figure 1 illustre un exemple de réalisation d'une machine synchrone 1 comportant un capteur de position angulaire monté sur un stator 2 illustré schématiquement à la figure 4. La figure 1 montre une partie d'extrémité 2a, par exemple en forme de flasque solidaire mécaniquement du stator 2.
La machine synchrone 1 comprend également un rotor 3 pourvu d'aimants permanents 4.
La partie d'extrémité 2a recouvre au moins partiellement et sans contact une extrémité axiale 3a du rotor 3. Un exemple d'agencement entre l'extrémité axiale 3a et la partie d'extrémité 2a est illustré plus en détails à la figure 2.
Le stator 2 comprend un bobinage non représenté, prévu pour être alimenté en courant polyphasé par l'intermédiaire d'un dispositif d'électronique de puissance appelé également convertisseur ou onduleur. Ce dernier est avantageusement alimenté en tension et en courant.
Le rotor 3 présente avantageusement une forme sensiblement cylindrique 3b dont la face interne est recouverte d'aimants permanents 4. Le rotor 3 est destiné à tourner autour de la partie du stator 2 s 'étendant dans l'espace libre délimité intérieurement audit rotor 3.
Les aimants permanents 4 sont par exemple empilés selon une direction axiale dans des rainures axiales ménagées dans la face interne du cylindre 3b. Le montage et la fixation des aimants permanents 4 sur la face interne du rotor 3 est effectué de manière connue.
A titre d'exemple les aimants permanents 4 sont introduits par coulissements dans des rainures axiales et maintenus radialement grâce à une complémentarité de formes desdites rainures et desdits aimants permanents 4.
Les aimants permanents 4 sont bloqués axialement dans chaque rainure par l'intermédiaire d'une pièce de maintien 5 en matériau amagnétique, illustrée plus en détails à la figure 2.
La pièce de maintien 5 constitue une butée 5 a empêchant des mouvements axiaux des aimants permanents 4 engagés dans la rainure correspondante. Les dimensions et les formes de la pièce de maintien 5 sont choisies de manière à ne pas entraver l'accès à une zone localisée en regard d'une partie au moins du chant axial 4a du dernier l'aimant permanent 4 engagé dans chaque rainure.
L'extrémité axiale 3a du cylindre 3b, laquelle ne comporte pas d'aimants permanents 4, présente à cet effet avantageusement une forme légèrement évasée dans une direction radiale. Une telle conformation permet ainsi de limiter l'encombrement résultant de la fixation de la pièce de maintien 5. Une pièce de maintien 5 est avantageusement fixée sur le cylindre 3b, à l'extrémité de chaque rainure à l'aide d'une vis 5b, bloquant ainsi axialement toutes les rangées d'aimants permanents 4.
La machine synchrone 1 comporte également un capteur de position angulaire du rotor 3. Le capteur de position angulaire comporte notamment des capteurs de mesure de l'induction magnétique 6. Ces derniers sont prévus pour détecter la variation du champ magnétique axial généré par les aimants permanents 4. Cette variation du champ magnétique axial est détectée et transformée en tension délivrée par les capteurs de mesure de l'induction magnétique 6.
Le capteur de position angulaire la comprend également au moins une unité électronique prévue pour recevoir les tensions d'induction des capteurs de mesure de l'induction magnétique 6 et pour en déduire la position angulaire du rotor 3. Cette détermination est effectuée de manière absolue. L'unité électronique permet également de transmettre en temps réel une information relative de position angulaire du rotor 3 au dispositif d'électronique de puissance.
Les capteurs de mesure de l'induction magnétique 6 sont solidaires mécaniquement de la partie d'extrémité 2a et s'étendent au niveau d'une extrémité axiale du rotor 3, en regard et à proximité immédiate des chants axiaux 4a des derniers aimants permanents 4 engagés dans les rainures. Lors de la rotation du rotor 3, chaque chant axial 4a passe donc devant les capteurs de mesure de l'induction magnétique 6.
Les capteurs de mesure magnétique 6 sont avantageusement fixés sur un support amovible 7.
Le support amovible 7 présente à cet effet une partie de support axiale 7a et une partie d'extrémité de support 7b. La partie d'extrémité de support 7b s'étend sensiblement transversalement à la partie de support axiale 7a. Les capteurs de mesure de l'induction magnétique 6 sont disposés sur une face externe 7c de l'extrémité libre de la partie de support axiale 7a.
Le support amovible 7 présente de préférence une courbure épousant sensiblement la courbure du rotor 3. Les capteurs de mesure de l'induction magnétique 6 sont avantageusement fixés et répartis sur une la face externe 7c, selon une ligne dont la courbure épouse sensiblement la courbure de la succession des chants axiaux 4a des aimants permanents 4.
Le support amovible 7 est par exemple introduit dans une fente 8 ménagée dans la partie d'extrémité 2a. Bien entendu la fente 8 présente une courbure identique ou similaire à celle que présente la partie de support axiale 7a.
Le support amovible 7, une fois équipée des capteurs de mesure d'induction magnétique 6, est introduit axialement dans la fente 8 jusqu'à l'arrivée en butée de la partie de l'extrémité de support 7b sur la face extérieure de la partie d'extrémité 2a. Les dimensions du support amovible 7, et en particulier la longueur axiale de la partie de support axiale 7a, sont choisies de manière à ce que les capteurs de mesure de l'induction magnétique 6 s'étendent à une distance e des chants axiaux 4a. La distance e est comprise par exemple entre 1,5 et 2,5 millimètres et de préférence égale à 2 millimètres.
Tous types de moyens de fixation, non représentés, peuvent également être utilisés pour solidariser l'extrémité de support 7b avec la partie d'extrémité 2a.
La machine synchrone 1 comporte, selon un exemple de réalisation, au moins trois capteurs de mesure d'induction magnétique 6 disposés sur un support amovible 7.
Selon un autre exemple de réalisation, la machine synchrone 1 conforme à l'invention, illustrée à la figure 1, comporte deux supports amovibles 7 dont chacun est pourvu par exemple d'au moins deux capteurs de mesure d'induction magnétique 6.
La figure 3 est une illustration vue de face d'un exemple de réalisation d'un support amovible 7 comportant cinq capteurs de mesure d'induction magnétique 6. La machine synchrone 1 comporte ainsi, selon un exemple de réalisation de la figure 3, deux supports amovibles 7 comportant chacun cinq capteurs de mesure d'induction magnétique 6.
Avantageusement, la face externe 7c de la partie de support axiale 7a est pourvue d'un capteur de température 9. Ce dernier permet d'utiliser la température ambiante de la machine synchrone 1 pour ajuster son pilotage, car l'induction dépend de la température.
Selon un exemple de réalisation préférentiel, le support amovible 7 comporte au moins un circuit électronique de l'unité électronique ou une partie d'un circuit électronique de ladite unité électronique.
A titre d'exemple, le dispositif d'électronique de puissance est un convertisseur 14 pilotant la machine synchrone 1 par une modulation de largeurs d'impulsions.
Les capteurs de mesure de l'induction magnétique 6 sont de préférence des capteurs à effet Hall.
Selon un autre exemple de la réalisation de la machine synchrone 1, les capteurs de mesure de l'induction magnétique 6 sont constitués de capteurs AMR/GMR, dits capteurs à magnétorésistance. Tandis que les capteurs à effet Hall permettent de mesurer la composante continue du champ magnétique, les capteurs à magnétorésistance présentent un fonctionnement se basant sur la variation de la résistance électrique d'un matériau en fonction de la direction du champ magnétique qui lui est appliqué. Ces capteurs sont connus en tant que tels et ne sont par conséquent pas décrits davantage.
En utilisant des capteurs à effet Hall ou des capteurs à magnétorésistance, l'opération de calage du capteur de position angulaire la n'est plus nécessaire. En effet, ces capteurs mesurent la répartition spatiale du champ magnétique généré par les aimants permanents 4 et ce même lorsque la machine synchrone 1 est à l'arrêt. Ceci permet de s'affranchir de toute opération de calage à la mise en service de la machine synchrone 1 ou à la suite d'une opération de maintenance de ladite machine synchrone 1. Il en résulte donc un avantage remarquable pour la machine synchrone 1.
La figure 4 est une illustration synoptique des moyens électroniques nécessaire au fonctionnement du capteur de position angulaire la de la machine synchrone 1. Cette dernière comporte donc le stator 2 bobiné et le rotor 3 comportant les aimants permanents 4.
Le capteur de position angulaire la comporte donc des moyens fonctionnels, lesquels comprennent des capteurs de mesure de l'induction 6, associés à l'unité électronique pour l'acquisition d'un signal et pour le calcul de l'angle de positionnement du rotor 3.
Les moyens fonctionnels sont par exemple constitués de deux capteurs mesure d'induction magnétique 6 montés fixes, sans contact et en regard des aimants permanents 4. Les informations issues de ces capteurs de mesure d'induction 6 sont ensuite amplifiées et filtrées respectivement par des moyens d'amplification 10 et des moyens de filtration 11 avant qu'un calculateur 12 n'acquiert lesdites informations. Ce calculateur 12 de l'unité électronique détermine donc l'angle rotorique (position angulaire du rotor) à partir des informations issues des capteurs de mesure d'induction 6 et communique en temps réel l'angle rotorique à un système de commande vectorielle 13 lequel commande un convertisseur 14.
La communication de l'angle rotorique au système de commande vectorielle 13 est effectuée par l'intermédiaire d'un protocole de type BUS de terrain du genre SSI, PROFIBUS ou autres. En outre, le signe de l'angle rotorique déterminé par le calculateur 12, définit le sens de rotation de la machine synchrone 1. La figure 5 illustre à l'aide d'un schéma fonctionnel, le système de commande vectorielle 13 d'une machine synchrone 1 à aimants permanents 4 et à force électromotrice sinusoïdale. Dans cet exemple de commande vectorielle, la machine synchrone 1 comprend le convertisseur 14 alimenté par une tension électrique.
Le système de commande vectorielle 13 permet de commander le convertisseur 14 par l'intermédiaire d'une modulation de largeurs d'impulsions MLI pour générer une tension d'alimentation moyenne sur chacune des phases Pi, P2, P3 de la machine synchrone 1 et par conséquent un courant déterminé dans chacune desdites phases Pi, P2, P3. Le convertisseur 14 transforme donc une tension livrée par une source de tension U continue en une tension triphasée d'alimentation de la machine synchrone 1. Cette dernière fonctionne par exemple en traction et en alternance en générateur de tension triphasé, lorsqu'un véhicule est dans une phase de freinage.
Le système de commande vectorielle 13 comprend une unité de commande du convertisseur 14, des capteurs de courant 15, un capteur de tension 16 et le capteur de position angulaire la de la machine synchrone 1.
Le système de commande vectorielle 13 reçoit par exemple la consigne de couple C. A partir des informations issues des capteurs de courant 15, du capteur de position angulaire la et à partir de la consigne C, l'unité de commande du convertisseur 14 calcule le vecteur de tension à appliquer au dit convertisseur 14 pour que la machine synchrone 1 atteigne la consigne de couple C.
Le système de commande vectorielle 13, en particulier d'une machine synchrone 1 à aimants permanents 4 et à force électromotrice sinusoïdale, est connu en tant que tel et ne sera donc pas décrit davantage dans la présente.
La machine synchrone 1 présente l'avantage remarquable qu'elle comprend un capteur de position angulaire la permettant d'effectuer une mesure directe du champ magnétique produit par les aimants permanents 4 et par conséquent de connaître l'évolution dudit champ magnétique en fonction du temps. Ceci permet de détecter une détérioration des performances des aimants permanents 4 et par conséquent des performances de la machine synchrone 1.
Par ailleurs, le capteur de position angulaire la de la machine synchrone 1 permet de détecter une augmentation brutale du champ magnétique induit, résultant d'un court-circuit entre phases.
La machine synchrone 1 à aimants permanents 4 et à force électromotrice sinusoïdale, constitue avantageusement un moteur-roue.
La machine synchrone conforme à l'invention peut également être utilisée comme moteur de treuils ou comme moteur d'ascenseurs.
La machine synchrone 1 permet donc de mettre en œuvre un procédé de mesure d'un vieillissement d'aimants permanents 4 conforme à l'invention et ce à l'aide d'une succession d'étapes explicitées ci-après.
Selon une première étape jl), on détermine, à l'arrêt ou lors d'une phase de rotation en charge ou à vide de la machine synchrone 1, la valeur de l'induction magnétique maximale VMmax par l'intermédiaire des capteurs de mesure de l'induction magnétique 6 reliés à l'unité électronique.
On notera que lors d'une phase de rotation à vide, le courant électrique généré dans la machine synchrone 1 est nul.
Selon une seconde étape j2), on compare la valeur mesurée de l'induction magnétique maximale VMmax à une valeur de référence.
Selon une troisième étape j3) si la valeur de l'induction magnétique maximale VMmax est inférieure à la valeur de référence en présentant un écart déterminé par rapport à ladite valeur de référence, on génère une information d'alerte S par l'intermédiaire de l'unité électronique, dans le cas contraire on reprend l'étape j l).
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, la valeur de l'induction magnétique maximale mesurée VMmax(i) lors de la première utilisation de la machine synchrone 1.
Selon un autre exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, une valeur théorique ou prédéfinie VTmax.
Selon un autre exemple de mise en œuvre conforme à l'invention, le procédé consiste à utiliser comme valeur de référence, une valeur décroissante en fonction du temps VMmax(i)(t). Une telle décroissance se traduit par une courbe qui est par exemple linéaire. A ce titre, la valeur de référence initiale de cette courbe décroissante, peut être soit la valeur mesurée VMmax(i), soit la valeur théorique ou prédéfinie VTmax.
Selon un exemple de mise en œuvre conforme à l'invention, le procédé consiste à générer l'information d'alerte lorsque l'écart est supérieur ou égal à 20%. Un écart plus faible peut également être choisi, à titre d'exemple, sans sortir du cadre de l'invention.
Grâce au calculateur 12, il est possible de déterminer concomitamment la position angulaire absolue du rotor 3 et un vieillissement normal ou prématuré des aimants permanents 4 ou de certains aimants permanents 4 conformément au procédé décrit ci-dessus. Le calculateur 12 peut ainsi identifier lesquels des aimants permanents 4 sont à remplacer si l'on veut conserver les bonnes performances de la machine synchrone 1, même lorsque les mesures ont été effectuées lors d'une phase de rotation de la machine synchrone 1.
Comme évoqué précédemment, le procédé conforme à l'invention permet avantageusement de faire la mesure du champ magnétique, que la machine synchrone 1 fonctionne à vide ou en charge, par exemple en traction ou en freinage lorsqu'il s'agit d'un moteur-roue. En charge, cette mesure du champ magnétique dépend de l'intensité du courant électrique fourni au moteur, aussi est-il nécessaire de cartographier la machine pour avoir une courbe de référence du champ magnétique attendu en fonction de l'intensité du courant électrique fourni à la machine synchrone.
Cette cartographie de la machine synchrone est préférentiellement effectuée chez le constructeur sur une machine neuve. Elle consiste à effectuer des mesures du champ magnétique au moyen des capteurs à effet hall ou à magnétorésistance pendant le fonctionnement de la machine synchrone 1. Ces mesures sont alors transmises à une unité électronique, qui reçoit également les informations de courant moteur provenant de capteurs de courant. Ces valeurs permettent par conséquent d'établir des abaques, ou d'autres ensembles de données de références, pour le fonctionnement d'une machine synchrone 1 neuve.
Ces données de références sont par exemple stockées dans l'unité électronique du capteur de position angulaire la.
Ainsi, pour une intensité donnée du courant électrique fourni à la machine synchrone 1 correspond une valeur de référence du champ magnétique. Lorsque les mesures du champ magnétique pour un courant moteur donné ne correspondent pas à la valeur de référence attendue du champ magnétique, une information d'alerte S est alors envoyée par l'intermédiaire de l'unité électronique.
Le procédé de l'invention peut être utilisé sur une machine synchrone 1 en charge, au moyen d'un capteur de position angulaire la selon l'invention embarqué car intégré à la machine synchrone 1. Il est bien entendu possible de l'utiliser sur un banc de mesures lors d'opérations de maintenance de la machine synchrone 1, par exemple à l'arrêt ou lors d'une rotation libre, sans traction ni freinage.
Le procédé conforme à l'invention permet également de faire la mesure du champ magnétique pour les aimants permanents 4 situés en face des capteurs de mesure de l'induction magnétique 6 lorsque la machine synchrone 1 est à l'arrêt.
Il est évident que la présente description ne se limite pas aux exemples explicitement décrits, mais comprend également d'autres modes de réalisation et/ou de mise en œuvre. Ainsi, une caractéristique technique décrite ou une étape décrite, peut être remplacée par une caractéristique technique équivalente ou une étape équivalente, sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de mesure d'un vieillissement des aimants permanents (4) d'une machine synchrone (1) polyphasée comprenant un stator (2) et un rotor (3), ladite machine (1) étant équipée d'au moins un capteur de position angulaire (la) du rotor (3), le stator (2) comprenant un bobinage prévu pour être alimenté en courant, le rotor (3) comprenant les aimants permanents étant prévu pour se mouvoir autour du stator (2), le capteur de position angulaire (la) comprenant au moins deux capteurs de mesure de l'induction magnétique (6) et au moins une unité électronique, les capteurs de mesure de l'induction magnétique (6), fixes, solidaires du stator (2) s'étendant au niveau d'une extrémité axiale (3a) du rotor (3) en regard et à proximité immédiate des chants axiaux (4a) des aimants permanents (4), caractérisé en ce qu'il consiste à :
jl) déterminer, à l'arrêt ou lors d'une phase de rotation en charge ou à vide de la machine synchrone (1), la valeur de l'induction magnétique maximale VMmax par l'intermédiaire de capteurs de mesure de l'induction magnétique (6) reliés à l'unité électronique,
j2) comparer la valeur mesurée VMmax de l'induction magnétique maximale à une valeur de référence, et
j3) si la valeur de l'induction magnétique maximale VMmax est inférieure à la valeur de référence en présentant un écart déterminé par rapport à ladite valeur de référence, générer une information d'alerte S par l'intermédiaire de l'unité électronique, dans le cas contraire reprendre l'étape j l).
2. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à utiliser comme valeur de référence, la valeur de l'induction magnétique maximale mesurée VMmax(i) lors de la première utilisation de la machine synchrone.
3. Procédé selon la revendication 1, caractérisé en ce qu'il consiste à utiliser comme valeur de référence, une valeur théorique ou prédéfinie VTmax.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste à utiliser comme valeur de référence, une valeur décroissante en fonction du temps.
5. Procédé selon la revendication 4, caractérisé en ce qu'il consiste à utiliser comme valeur de référence, une valeur présentant une décroissance linéaire.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il consiste à générer l'information d'alerte S lorsque l'écart est supérieur ou égal à 20%.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est mis en œuvre sur un moteur-roue d'un véhicule.
8. Procédé selon la revendication 7, caractérisé en ce qu'il est mis en œuvre sur un banc de mesures lors d'opérations de maintenance du moteur-roue.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que, lorsque la machine synchrone (1) est en charge, la valeur mesurée VMmax de l'induction magnétique maximale est comparée à une valeur de référence prédéterminée, stockée dans un ensemble de données comprenant des valeurs de l'induction magnétique maximale pour une intensité donnée du courant électrique fourni à la machine synchrone (1).
10. Procédé selon la revendication 9, caractérisé en ce que l'ensemble de données comprenant des valeurs de l'induction magnétique maximale pour une intensité donnée du courant électrique fourni à la machine synchrone (1) est stocké dans l'unité électronique.
EP15709288.3A 2014-02-24 2015-02-20 Procédé de mesure du vieillissement d'aimants permanents d'une machine synchrone équipée d'un capteur de position angulaire Withdrawn EP3111244A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451452A FR3017961B1 (fr) 2014-02-24 2014-02-24 Procede de mesure du viellissement d'aimants permanents d'une machine synchrone equipee d'un capteur de position angulaire
PCT/FR2015/050414 WO2015124876A1 (fr) 2014-02-24 2015-02-20 Procédé de mesure du vieillissement d'aimants permanents d'une machine synchrone équipée d'un capteur de position angulaire

Publications (1)

Publication Number Publication Date
EP3111244A1 true EP3111244A1 (fr) 2017-01-04

Family

ID=50976818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15709288.3A Withdrawn EP3111244A1 (fr) 2014-02-24 2015-02-20 Procédé de mesure du vieillissement d'aimants permanents d'une machine synchrone équipée d'un capteur de position angulaire

Country Status (8)

Country Link
US (1) US10261130B2 (fr)
EP (1) EP3111244A1 (fr)
KR (1) KR20160125438A (fr)
CN (1) CN106258002B (fr)
AU (1) AU2015220658B2 (fr)
CA (1) CA2938746A1 (fr)
FR (1) FR3017961B1 (fr)
WO (1) WO2015124876A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167735A (zh) * 2017-07-21 2017-09-15 奇瑞汽车股份有限公司 电机零位标定系统和方法
CN107728093A (zh) * 2017-10-11 2018-02-23 中国科学院地质与地球物理研究所 一种用于磁通门磁芯性能检测装置和方法
FR3087597B1 (fr) * 2018-10-23 2021-02-26 Safran Electronics & Defense Machine electrique avec concentration de flux magnetique
CN113424433A (zh) * 2018-12-13 2021-09-21 梅维尔Edt共同股份公司 校准电动机器的方法
CN109655691B (zh) * 2018-12-25 2021-01-22 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 板级电路中功率器件退化监测方法、装置和系统
KR102494391B1 (ko) * 2021-04-28 2023-02-01 현대로템 주식회사 모터 위치센서 고장 진단 및 보상 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH664051A5 (de) 1983-02-24 1988-01-29 Elin Union Ag Einrichtung zur erfassung von windungsschluessen im laeufer einer kollektormaschine.
DE4128419A1 (de) 1991-08-28 1993-03-04 Bosch Gmbh Robert Elektromotor mit einer vorrichtung zur drehzahl- und/oder drehrichtungserfassung
US5252915A (en) 1992-01-23 1993-10-12 Ontario Hydro Method and apparatus for detecting stator faults in rotary dynamoelectric machines
DE59913902D1 (de) 1998-03-21 2006-11-23 Ebm Papst St Georgen Gmbh & Co Elektronisch kommutierter Motor
US6573745B2 (en) * 2001-05-04 2003-06-03 Ford Global Technologies, Inc. Permanent magnet degradation monitoring for hybrid and electric vehicles
JP3799362B1 (ja) 2005-08-25 2006-07-19 山洋電気株式会社 磁気センサ付き回転電機
DE102008059005A1 (de) 2008-11-25 2010-05-27 Schaeffler Kg Verstellvorrichtung zur Verstellung einer relativen Drehwinkellage zweier Wellen und Verfahren zum Betrieb eines Aktuators, insbesondere einer solchen Verstellvorrichtung
US8610452B2 (en) * 2010-04-23 2013-12-17 Korea University Research And Business Foundation Apparatus and method for diagnosing permanent magnet demagnetization of permanent magnet synchronous motor, and apparatus for driving permanent magnet synchronous motor
JP5194083B2 (ja) * 2010-09-22 2013-05-08 山洋電気株式会社 電気機器の永久磁石の劣化判定方法及び装置
US8866428B2 (en) * 2011-06-02 2014-10-21 GM Global Technology Operations LLC Method and apparatus for thermally monitoring a permanent magnet electric motor
US20130033215A1 (en) 2011-08-01 2013-02-07 Illinois Institute Of Technology Apparatus and method for permanent magnet electric machine condition monitoring
GB2483177B (en) * 2011-10-19 2013-10-02 Protean Electric Ltd An electric motor or generator
DE102011056252A1 (de) 2011-12-09 2013-06-13 E-Motiontech GmbH Bestimmung von Zustandsgrößen eines permanentmagneterregten Synchronmotors
FR2987439B1 (fr) 2012-02-28 2014-11-21 Vishay S A Dispositif capteur de position rotatif et appareil comprenant un tel dispositif
CA2885498C (fr) * 2012-10-04 2017-03-28 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Mesure de longueur utile de cable metallique
CN105144554B (zh) * 2013-01-02 2018-01-09 特灵国际有限公司 永磁电动机降级诊断系统
US10352683B2 (en) * 2014-04-02 2019-07-16 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada Device for analysis of synthetic rope or cable, and method of use

Also Published As

Publication number Publication date
US10261130B2 (en) 2019-04-16
FR3017961B1 (fr) 2017-11-03
WO2015124876A1 (fr) 2015-08-27
CN106258002A (zh) 2016-12-28
CA2938746A1 (fr) 2015-08-27
AU2015220658B2 (en) 2019-01-24
CN106258002B (zh) 2019-03-29
US20170067964A1 (en) 2017-03-09
FR3017961A1 (fr) 2015-08-28
KR20160125438A (ko) 2016-10-31
AU2015220658A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2015124876A1 (fr) Procédé de mesure du vieillissement d'aimants permanents d'une machine synchrone équipée d'un capteur de position angulaire
WO2015124882A2 (fr) Machine synchrone equipee d'un capteur de position angulaire
EP3111243A1 (fr) Procédé de détection d'un court-circuit dans une machine synchrone équipée d'un capteur de position angulaire
FR2978833A1 (fr) Procede de calibration automatique d'un capteur d'arbre a cames pour vehicule automobile
FR3056360B1 (fr) Moto-reducteur, systeme d'essuyage et procede de commande associes
WO2018091302A1 (fr) Moto-reducteur, systeme d'essuyage et procede de commande associes
EP2794337A1 (fr) Onduleur de pilotage avec détecteur d'ondulation anormale de couple
WO2017045747A1 (fr) Procede de calibration automatique d'un capteur d'arbres a cames pour moteur de vehicule automobile
FR2985035A1 (fr) Procede d'adaptation d'un seuil de detection d'un capteur d'arbre a cames pour un vehicule automobile
EP1194999B1 (fr) Methode de calage d'un moteur electrique de type polyphase a fonctionnement pas a pas
FR3032523A1 (fr) Procede de detection d'une inclinaison par rapport au sol d'une roue
FR2985112A1 (fr) Onduleur de pilotage avec detecteur d'erreur de couple
EP2894070B1 (fr) Procédé de surveillance d'un organe de blocage, et actionneur électromécanique
WO2014049130A1 (fr) Dispositif de mesure de déplacement d'un véhicule roulant
EP2511665B1 (fr) Dispositif de détection de la position axiale d'un arbre tournant et application à une pompe turbo-moléculaire
WO2021023746A1 (fr) Système d'acquisition et de contrôle pour véhicule à moteur électrique
FR3008489A1 (fr) Procede pour determiner la temperature actuelle d'un capteur et capteur pour la mise en oeuvre du procede
EP2756593B1 (fr) Procede et dispositif de commande d'un groupe motopropulseur
EP3242111B1 (fr) Procede de correction d'une mesure d angle d'un rotor dans une machine electrique
EP4166911A1 (fr) Procede et dispositif de correction de mesures effectuees par un capteur d'un champ magnetique d'un aimant dispose sur un arbre d'un moteur pour le controle du moteur
FR2795885A1 (fr) Methode de calage d'un moteur electrique de type polyphase a fonctionnement pas a pas, ceci par rapport a une position de reference correspondant a une butee mecanique
FR3090847A1 (fr) Système de surveillance du sens de rotation d’une machine électrique tournante pour empêcher un recul inopiné d’un véhicule
EP1525657A1 (fr) Procede de commande de fonctionnement synchronise d au moins deux moteurs electriques polyphases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160808

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUMAS, PIERRE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190903