EP3083047A1 - Catalyseurs zéolithiques contenant du titane pour l'oxydation du méthane présent dans les flux de gaz d'échappement - Google Patents

Catalyseurs zéolithiques contenant du titane pour l'oxydation du méthane présent dans les flux de gaz d'échappement

Info

Publication number
EP3083047A1
EP3083047A1 EP14809023.6A EP14809023A EP3083047A1 EP 3083047 A1 EP3083047 A1 EP 3083047A1 EP 14809023 A EP14809023 A EP 14809023A EP 3083047 A1 EP3083047 A1 EP 3083047A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
zeolite material
oxidation
zeolite
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14809023.6A
Other languages
German (de)
English (en)
Inventor
Arno Tissler
Frank Klose
Roderik Althoff
Beate ARENDT
Sascha Podehl
Patrick Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Clariant International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant International Ltd filed Critical Clariant International Ltd
Publication of EP3083047A1 publication Critical patent/EP3083047A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Definitions

  • Titanium-containing zeolite catalysts for the oxidation of methane in exhaust gas streams Titanium-containing zeolite catalysts for the oxidation of methane in exhaust gas streams
  • Methane which is found in trace amounts (ie less than 2 ppm) in the atmosphere, is a greenhouse gas that is 25 times more effective than CO 2 in this regard. Its emission by non-natural processes ("anthropogenic methane") should therefore be reduced or avoided as far as possible
  • Anthropogenic methane is produced primarily in agriculture, in the extraction of natural gas, eg by leaks, and in the incomplete combustion of natural gas, eg by burners or Typical industrial applications that produce methane-containing exhaust gas streams are mobile or stationary gas engines or gas-fired power plants, such as those used to generate electricity, but also to heat greenhouses, etc.
  • the methane content in the exhaust gas streams can be effectively reduced by catalytic oxidation with oxygen become.
  • noble metal-containing oxidation catalysts for exhaust gas purification are known both in stationary and in mobile applications. Some of these noble metal-containing oxidation catalysts are also suitable for the oxidation of short-chain hydrocarbons, such as methane.
  • the use of noble metals dispersed on a carrier material is known, metal oxides or zeolites being used as carrier material.
  • a washcoat of the carrier material is produced, which is applied to a shaped body, usually ceramic or metal substrates (eg honeycomb bodies) or to bulk material.
  • the coated shaped articles thus obtained are subsequently impregnated with a noble metal solution and after an optional drying nungsitz and the final calcination of the molding, the finished catalyst is obtained.
  • DE 102008057134 A1 relates to novel metal-containing silicates, in particular redox-active and crystalline silicates, a process for the preparation of metal-containing crystalline silicates and their use as a high-temperature oxidation catalyst or Dieseloxi- dationskatalysator.
  • the process for producing metal-containing crystalline silicates is characterized in that a metal is introduced into a gallo-silicate, gallo-titanium silicate, boron silicate or boron-titanium silicate and then the gallo-silicate, gallo-titanium silicate , Boron-silicate or boron-titanium-silicate is calcined.
  • a catalytic composition and a catalyst form body containing the metal-containing crystalline silicates.
  • the zeolites are distinguished mainly by the geometry of the cavities and channels formed by the rigid network of the Si0 / Al0 tetrahedra, ie the crystalline structure, which are characteristic of each type of structure. Certain zeolites show a uniform structure structure with linear or zigzag-shaped channels, z. For example, the ZSM-5 structure with MFI topology, in others close behind the pore openings larger cavities, z. As in the Y or A zeolites, with the topologies FAU and LTA. An overview of the different structures and their topologies can be found in "Atlas of Zeolite Framework Types" (Ch.Berercher, WM Meier, OH Olson, Elsevier, 5 th revised edition, 2001).
  • Zeotypes are crystalline substances whose structure corresponds to zeolites, in contrast to zeolites some or all Si0 / Al0 tetrahedra are replaced by foreign atoms in zeotypes, these can be eg P, N or Ti.
  • the zeolite material according to the invention may be, for example, a zeolite having the structure type MFI, BEA, MOR, MEL or CHA. Preference is given to zeolite materials of the structure type MFI or BEA.
  • the zeolite material is most preferably a zeolite material of the TS-1 type, also known as titanium silicalite. Titanium silicalite is a crystalline zeotype material with tetragonal [Ti0] and [Si0] units arranged in an MFI structure and whose pore openings are ring size 10.
  • TS-1 shows a three-dimensional pore system with pores of diameters between 5.1 and 5.6 angstroms, which are the micropores of the system.
  • TS-1 is commercially available, e.g. by the manufacturer Polimeri Europa SpA.
  • a zeolite material of the structural type MEL is used, the zeolite material is particularly preferably a zeolite material of the TS-2 type.
  • TS-2 is a titanium-containing crystalline zeolite material structurally equivalent to ZSM-1 1. It has tetragonal [Ti0] and [Si0] units, which are arranged in a MEL structure and whose pore openings have the ring size 10. Due to this structure, TS-2 shows a three-dimensional pore system with pores that are 5.2 angstroms in diameter, which are the micropores of the system.
  • the titanium content in the zeolite material is preferably below 15% by weight, more preferably below 10% by weight, even more preferably below 3% by weight, particularly preferably below 2% by weight, most preferably below 1% by weight, in each case on the total weight of the titanium-containing zeolite material.
  • the titanium is embedded predominantly in the form of titanium tetrahedra in the crystalline structure of the zeolite material, so that no or only slightly crystalline titanium dioxide is present. This is realized with zeolite materials of the TS-1 or TS-2 type, which preferably have a Ti content of between 0.2 to 1% by weight.
  • the noble metal-containing zeolite material comprised by the catalyst must contain at least two precious metals, but may also contain more than two precious metals.
  • the precious metal is preferably a noble metal selected from the group consisting of Pt, Pd, Rh, Ru, Cu, Ag and Au, preferably a bimetallic combination of the noble metals Pt and Pd. If the bimetallic precious metal combination of Pd and Pt is realized, the noble metals are typically present in an atomic ratio of Pd / Pt of 1:10 to 10: 1, preferably of 5: 2 to 7: 2 and more preferably of 3: 1.
  • the noble metals used in the catalyst are preferably in the pores of the zeolite material. It can therefore choose a synthesis method which leads to the precious metals being present wholly or predominantly in the micropores of the zeolite and not or only to a small extent on the outer surface of the zeolite.
  • the catalyst according to the invention can be used as a powder, as a full catalyst or as a coating catalyst, i. applied to a shaped body, present.
  • An unsupported catalyst may be formed by forming the noble metal-loaded powdery zeolite material, for example, molding an extruded molded article or a monolith.
  • Further preferred shaped bodies are, for example, spheres, rings, cylinders, perforated cylinders, trilobes or cones, with a monolith, such as, for example, a monolithic honeycomb body, being particularly preferred.
  • a monolith such as, for example, a monolithic honeycomb body, being particularly preferred.
  • the pure powdered zeolite material loaded with noble metals is formed or adjuvants such as binders or porosity formers are added.
  • the blank formed by the molding is dried and finally calcined.
  • the catalyst according to the invention can be present as a coating catalyst in which the catalyst is present as a layer on a shaped body.
  • the noble metal-containing zeolite material can preferably be processed with a preferably silicate binder to a washcoat and applied as a washcoat coating on a shaped body.
  • the mass ratio binder / catalytically noble metal-containing zeolite is in this case 0.01 to 0.5, preferably 0.02 to 0.3 and particularly preferably 0.04 to 0.25, based in each case on the solids content of binder and catalytically active composition.
  • the crude still moist coating catalyst is dried and finally calcined.
  • shaped bodies are formed, for example, from a metal sheet, from any metal or metal alloy, which have a metal foil or sintered metal foil or a metal mesh and are produced, for example, by extrusion, winding or stacking.
  • support bodies of ceramic material can be used.
  • the ceramic material is an inert, low surface material such as cordierite, mullite, alpha-alumina, silicon carbide or aluminum titanate.
  • the support body used can also consist of weaponoberflambaigem material such as gamma-alumina or Ti0 2 .
  • the oxidation of the short-chain hydrocarbons takes place with the aid of an oxidizing agent, which is preferably a gaseous oxidizing agent.
  • the gaseous oxidizing agent may in particular be molecular oxygen of the formula O 2 or O 3 , a nitrogen oxide of the formula N 2 O, NO or NO 2 , or mixtures of these gaseous oxidizing agents. If short-chain hydrocarbons are catalytically oxidized in an exhaust gas stream by the catalyst according to the invention, then the oxidizing agents are present in the untreated exhaust gas stream upstream of the catalyst.
  • FIG. 1 shows the test results obtained in the testing of the catalyst Pt / Pd TS-1 No. 1 according to the invention and the comparative catalyst Pt / Pd BEA No. 1.
  • the measurements were carried out at a water content of 0, 5, 10 and 20% by volume H 2 O, an oxygen content of 10% by volume O 2 and a methane content of 0.1% by volume in the educt. ktstrom. After the step of increasing the water content in the educt gas, a further test was carried out in each case.
  • FIG. 4 shows the test results which were obtained in the test of the comparative catalyst Pt / Pd BEA No. 1 as a function of different water contents in the educt gas.
  • the catalyst was in each case tested twice at 0% by volume of H 2 O and in each case once at 5, 10, 15 and 20% by volume of H 2 O in a feed gas stream which was otherwise 0.1% by volume. Methane and 10 vol .-% 0 2 contained. This was followed by a hydrothermal aging step and the testing of the sample at 10 vol .-% H 2 0 and 10 vol .-% 0 2 in Eduktgasstrom and otherwise unchanged conditions.
  • FIG. 8 shows the test results which were carried out during the testing of the catalyst according to the invention (Pt / Pd TS-1 No. 1) and the comparative catalysts (Pt / Pd Al 2 O 3 Nos. 1 and 2) after a second hydrothermal aging step.
  • the samples Pt / Pd BEA no. 1 and 2 showed no significant activity.
  • the measurement was carried out in each case in a reactant stream which contained 0.1% by volume of methane, 10% by volume of H 2 O and 10% by volume of O 2 .
  • Example 2 Two comparative samples were prepared by the same method of preparation as described in Example 1, except that zeolite beta was used as the starting material and was calcined with air after impregnation.
  • the approximate target loading was about 140-200 g / l each, based on the volume of the honeycomb.
  • the honeycombs coated according to this example correspond to the comparative catalysts designated Pt / Pd BEA No. 1-5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

La présente invention concerne un procédé d'oxydation d'hydrocarbures à chaîne courte, en particulier de méthane, utilisant un catalyseur qui comprend un matériau zéolithique contenant du titane et au moins deux métaux nobles. La présente invention concerne en outre l'utilisation de ce catalyseur pour l'oxydation d'hydrocarbures à chaîne courte, en particulier du méthane présent dans les flux de gaz d'échappement.
EP14809023.6A 2013-12-20 2014-12-08 Catalyseurs zéolithiques contenant du titane pour l'oxydation du méthane présent dans les flux de gaz d'échappement Ceased EP3083047A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013021750.4A DE102013021750A1 (de) 2013-12-20 2013-12-20 Titanhaltige Zeolithkatalysatoren zur Oxidation von Methan in Abgasströmen
PCT/EP2014/076934 WO2015091076A1 (fr) 2013-12-20 2014-12-08 Catalyseurs zéolithiques contenant du titane pour l'oxydation du méthane présent dans les flux de gaz d'échappement

Publications (1)

Publication Number Publication Date
EP3083047A1 true EP3083047A1 (fr) 2016-10-26

Family

ID=52014114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14809023.6A Ceased EP3083047A1 (fr) 2013-12-20 2014-12-08 Catalyseurs zéolithiques contenant du titane pour l'oxydation du méthane présent dans les flux de gaz d'échappement

Country Status (6)

Country Link
US (1) US20160310895A1 (fr)
EP (1) EP3083047A1 (fr)
CN (1) CN105828938B (fr)
AU (1) AU2014365306B2 (fr)
DE (1) DE102013021750A1 (fr)
WO (1) WO2015091076A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018629A1 (de) 2012-09-21 2014-03-27 Clariant International Ltd. Verfahren zur Reinigung von Abgas und zur Regenerierung eines Oxidationskatalysators
EP3409358A1 (fr) 2017-06-01 2018-12-05 Paul Scherrer Institut Procédé de préparation d'un catalyseur pour l'oxydation du méthane, le catalyseur étant un catalyst métallique résistant au frittage supporté sur une zéolite contenant du métal alcalin
CN107262147B (zh) * 2017-06-14 2019-09-27 昆明理工大学 一种耐硫性催化燃烧催化剂及制备方法
JP6683656B2 (ja) * 2017-06-27 2020-04-22 トヨタ自動車株式会社 クラスター担持触媒及びその製造方法
KR101800676B1 (ko) * 2017-08-31 2017-12-20 한국기계연구원 메탄산화촉매 및 촉매를 이용한 메탄 산화 방법
DE102018128152A1 (de) * 2018-11-12 2020-05-14 Man Energy Solutions Se Verfahren zur Nachbehandlung des Abgases einer Brennkraftmaschine und Brennkraftmaschine
CN111841625A (zh) * 2020-08-20 2020-10-30 江苏博霖环保科技有限公司 一种纤维复合分子筛膜处理VOCs催化剂的制备方法
TW202330102A (zh) * 2021-12-20 2023-08-01 英商強生麥特公司 用於處理天然氣引擎產生之廢氣的催化性材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457268A (en) 1990-05-14 1995-10-10 The University Of Akron Selective oxidation catalysts for halogenated organics
US5131224A (en) * 1990-07-23 1992-07-21 General Motors Corporation Method for reducing methane exhaust emissions from natural gas fueled engines
WO1999046040A1 (fr) * 1998-03-09 1999-09-16 Osaka Gas Company Limited Catalyseur pour l'extraction d'hydrocarbures de gaz d'echappement et procede de clarification de gaz d'echappement
US7276464B2 (en) * 2004-06-17 2007-10-02 Lyondell Chemical Technology, L.P. Titanium zeolite catalysts
US7837977B2 (en) * 2005-09-13 2010-11-23 Chevron U.S.A. Inc. Preparation of titanosilicate zeolite TS-1
US8222173B2 (en) 2005-09-28 2012-07-17 Nippon Oil Corporation Catalyst and method of manufacturing the same
DE102008057134A1 (de) 2008-11-13 2010-05-27 Süd-Chemie AG Metallhaltige kristalline Silikate
CN101648143B (zh) * 2009-09-17 2011-12-21 河北工业大学 过渡金属元素改性Pd/TS-1催化剂及其制备方法和应用
DE102009053919A1 (de) * 2009-11-18 2011-05-26 Süd-Chemie AG Verfahren zur Herstellung eines Palladium/Platin-Katalysators
BR112014011528A2 (pt) * 2011-11-17 2017-05-16 Johnson Matthey Plc método e sistema para tratar gás de escape
DE102012003032A1 (de) 2012-02-17 2013-08-22 Clariant Produkte (Deutschland) Gmbh Platin/Palladium-Zeolith-Katalysator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2015091076A1 *

Also Published As

Publication number Publication date
CN105828938B (zh) 2019-04-23
WO2015091076A1 (fr) 2015-06-25
AU2014365306A1 (en) 2016-06-09
AU2014365306B2 (en) 2017-06-01
US20160310895A1 (en) 2016-10-27
DE102013021750A1 (de) 2015-06-25
CN105828938A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015091076A1 (fr) Catalyseurs zéolithiques contenant du titane pour l'oxydation du méthane présent dans les flux de gaz d'échappement
DE69320195T3 (de) Synthese von zeolithfilmen, die an substraten gebunden sind, strukturen sowie ihre verwendungen
EP2473276B1 (fr) Procédé de production d'un catalyseur zéolithe à action de réduction sélective catalytique et catalyseur zéolithe à action de réduction sélective catalytique - scr -
WO2007107371A2 (fr) Catalyseur d'oxydation
EP2654928B1 (fr) Procédé de transformation de composés azotés
DE102017109168A1 (de) Sta-20, ein neuer molekularsieb-gerüsttyp, verfahren zur herstellung und verwendung
DE102017122001A1 (de) Ruthenium, geträgert auf trägern, die eine rutilphase aufweisen, als stabile katalysatoren für nh3-slip-anwendungen
EP2043783B1 (fr) Procédé de fabrication de zéolithes dopés au métal et leur utilisation lors de la conversion catalytique d'oxydes d'azote
DE102007057305A1 (de) Beschichtungszusammensetzung für Dieseloxidationskatalysatoren
DE102017115378A1 (de) Oxidationskatalysator für einen stöchiometrischen Erdgasmotor
DE102017108514A1 (de) STA-19, ein neues Mitglied der GME-Familie von Molekularsieb-Zeotypen, Verfahren zur Herstellung und Verwendung
WO2011073123A2 (fr) Zéolite contenant du fer, procédé de préparation de zéolites contenant du fer et procédé de réduction catalytique d'oxydes d'azote
DE102017108510A1 (de) STA-18, ein neues Mitglied der SFW-Familie von Molekularsieb-Zeotypen, Verfahren zur Herstellung und Verwendung
DE102017120809A1 (de) JMZ-5 und JMZ-6, Zeolithe mit einer Kristallstruktur vom Typ SZR, und Verfahren zu deren Herstellung und Verwendung
EP2361154A1 (fr) Silicates cristallins à teneur en métal
WO2007137736A1 (fr) catalyseur de nanométal supporté et son procédé de fabrication
WO2009138204A2 (fr) Procédé de préparation d'un précurseur de catalyseur de platine
EP2897712A2 (fr) Procédé d'épuration de gaz d'échappement et de régénération d'un catalyseur d'oxydation
WO2012156503A1 (fr) Catalyseur d'oxydation à basse température possédant des propriétés hydrophobes particulièrement prononcées pour l'oxydation de polluants organiques
DE202008018318U1 (de) Kupfer-Cha-Zeolith-Katalysatoren
EP3601164A1 (fr) Matériau composite
DE102010056428B4 (de) Geträgerte Übergangsmetallkatalysatoren
RU2781191C2 (ru) Композиционный материал
EP3974059A1 (fr) Procédé de fabrication d'un catalyseur destiné à l'oxydation de l'ammoniaque
DE102009053944A1 (de) Verfahren zur Herstellung eines Palladiumkatalysators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PODEHL, SASCHA

Inventor name: ARENDT, BEATE

Inventor name: TISSLER, ARNO

Inventor name: ALTHOFF, RODERIK

Inventor name: KLOSE, FRANK

Inventor name: MUELLER, PATRICK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190208