EP3066722B1 - Elektrische verbindungsanordnung - Google Patents

Elektrische verbindungsanordnung Download PDF

Info

Publication number
EP3066722B1
EP3066722B1 EP14789794.6A EP14789794A EP3066722B1 EP 3066722 B1 EP3066722 B1 EP 3066722B1 EP 14789794 A EP14789794 A EP 14789794A EP 3066722 B1 EP3066722 B1 EP 3066722B1
Authority
EP
European Patent Office
Prior art keywords
contact plate
compression spring
contact
connection arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14789794.6A
Other languages
English (en)
French (fr)
Other versions
EP3066722A1 (de
Inventor
Joachim Hein
Nico Herzberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF CV Systems Hannover GmbH
Original Assignee
Wabco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wabco GmbH filed Critical Wabco GmbH
Publication of EP3066722A1 publication Critical patent/EP3066722A1/de
Application granted granted Critical
Publication of EP3066722B1 publication Critical patent/EP3066722B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2421Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using coil springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/55Fixed connections for rigid printed circuits or like structures characterised by the terminals
    • H01R12/57Fixed connections for rigid printed circuits or like structures characterised by the terminals surface mounting terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7076Coupling devices for connection between PCB and component, e.g. display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit
    • H01R12/716Coupling device provided on the PCB
    • H01R12/718Contact members provided on the PCB without an insulating housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/33Contact members made of resilient wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/7005Guiding, mounting, polarizing or locking means; Extractors
    • H01R12/7011Locking or fixing a connector to a PCB
    • H01R12/707Soldering or welding

Definitions

  • the invention relates to a connection arrangement for the electrical connection of at least one solenoid valve with at least one conductor of a printed circuit board, wherein the at least one solenoid valve has at least one compression spring for electrically conductive connection, and the at least one compression spring mechanically biased between the at least one solenoid valve and the circuit board is arranged.
  • Contact surfaces for particularly corrosion-resistant and electrically conductive connections between electronic circuit boards and other electronic or electrical components are usually made of tin, silver or gold.
  • further contacts are known, which are based on spring elements and connection structures with a complex geometry. These spring elements and connection structures are provided with a surface finish of tin, silver or gold and then electrically connected to the circuit board.
  • the complexity of the spring elements and the connection structures used causes high production costs and often requires a larger installation space.
  • electrical contacts using a on a conductor track or a contact pad of a circuit board supporting metallic compression spring for electrical connection of an external component, such as a solenoid valve or a sensor are also known.
  • an external component such as a solenoid valve or a sensor
  • contact partners for example, a gold-plated contact spring and a gold-plated at least in the contact zone trace with copper as the base material used, which is largely insensitive to harmful corrosive climatic influences and therefore enable reliable electrical connection.
  • a barrier layer of nickel is necessary to prevent diffusion processes.
  • this barrier layer has, however, in particular in connection with the known press-fit technology, in which electrical components in metallized or provided with metallic sleeves PCB holes mechanically fixed by simply pressing and at the same time be contacted with the tracks of the circuit board, as sensitive to climatic Influences, which can lead to the formation of cracks, subterranean and local corrosion in the contact points.
  • contact spring and conductor track Even with other material pairings of contact spring and conductor track, such as silver-silver, silver-tin or silver solder can at adverse climatic influences, with vibration relative movements between the contact spring and the conductor and / or in the case of higher current loads, chemical corrosion effects and / or Reibkorrosionserscheinept occur, the consequences extend to a total failure of the affected electrical contact point.
  • a pressure sensor assembly with an electrical connection for a measuring element is known.
  • the external electrical connection of the pressure sensor assembly takes place with a plurality of spring contacts designed in the manner of a helical compression spring, which are each guided through an opening of a threading funnel, which in turn is arranged in a pressure sensor housing.
  • the spring contacts are supported between the contacts in the contact carrier and an external abutment.
  • the spring contact Within the pressure sensor housing, the spring contact is axially rigidly wound on block, while the spring contact outside of the pressure sensor housing in the axial Can deflect direction.
  • a direct electrical connection of a circuit board by means of the spring contacts is not provided.
  • DE 10 2011 075 901 A1 discloses a coil assembly and identification transmitter for an access control system.
  • US 6,174,174 B1 and US 2004/0075168 A1 disclose connection arrangements for the electrical connection of a semiconductor chip to a printed circuit board, wherein the electrical connection is effected by means of contact springs.
  • the invention has for its object to present a structurally simple design and especially resistant to fretting corrosion and against other corrosion processes connection arrangement for electrically reliable connection of a solenoid valve to a circuit board.
  • the invention is based on the knowledge that external components can be contacted with the aid of compression springs in a structurally simple manner and, moreover, electrically reliably with conductor tracks of a printed circuit board.
  • the invention therefore relates to a connection arrangement for the electrical connection of at least one solenoid valve with at least one conductor of a printed circuit board, wherein the at least one solenoid valve has at least one compression spring for electrically conductive connection, and the at least one compression spring mechanically biased between the at least one solenoid valve and the circuit board is arranged ,
  • a printed circuit board facing the contact end of the at least one compression spring to ensure a reliable electrical Connection rests against a contact plate which is electrically connected to the conductor track.
  • connection arrangement which allows a vibration-proof and corrosion-resistant connection of an external component, such as the solenoid valve, to an electronic circuit board. Since this connection arrangement makes gold plating of printed conductors unnecessary, the printed circuit board can be produced cost-effectively and is easily compatible with the use of the press-fit technology.
  • the compression spring allows axial tolerance compensation and the compensation of thermal expansion and manufacturing tolerances.
  • the last turn of the Druckendabitess the compression spring is ground flat. Furthermore, for this purpose, the last turns of the Whyendabitess the compression spring wound on block and thereby be formed axially compressive stiff.
  • corrosion is understood to mean friction corrosion processes as well as chemical and electrochemical corrosion processes.
  • Reibkorrosionsvone occur when, for example, vibration relative movements between the compression spring and the contact plate occur.
  • microscopically small metal particles are detached as a result of the movement of the contact partners and rubbed off, as a result, the effective metallic contact surface is reduced, which can cause, inter alia, an increase in the electrical contact resistance.
  • chemical corrosion concerns primarily chemical reactions of a usually metallic material with substances from its environment.
  • electro-chemical corrosion processes an electrical current flow is present in addition to a material change.
  • the number of compression springs corresponds to the number of contact plates.
  • the diameter of the spring wire used to wind the compression spring, the outer diameter of the compression spring in relation to their total length or height and the number of turns or the pitch angle of the turns are dimensioned so that the compression spring, taking into account the selected to create a sufficient contact pressure mechanical bias and all in real operation of the terminal assembly occurring mechanical loads does not buckle in the radial direction.
  • the thickness of the contact plate is at least twice as large as the thickness of the conductor track electrically conductively connected to the contact plate. This results in a high abrasion resistance of the contact plate, which makes them particularly insensitive to reibkorrosiven processes.
  • the contact plate is formed from or with a copper-tin alloy, in particular as a CuSn6 alloy.
  • a copper-tin alloy in particular as a CuSn6 alloy.
  • the CuSn6 alloy from the large group of bronzes, which is only given by way of example here, it is also possible to use other bronze alloys or other metal alloys for the contact plate.
  • the conductor tracks of the printed circuit board are preferably formed from chemically pure copper or with a copper alloy.
  • the compression spring is at least partially provided with a passivated silver coating. This results in a high electrical surface conductivity of the compression spring at the same time good corrosion resistance. Basically, the application of the passivated silver coating sufficiently in the contact end section of the compression spring, since the actual electrical contacting takes place there.
  • an upper side of the contact plate facing the contact end section of the pressure spring is provided with a passivated silver coating. This results in a low electrical contact resistance of the contact end of the compression spring to the contact plate at a high climatic corrosion resistance.
  • the outer surfaces or the outer edges of the contact plate can also be provided with a passivated silver coating in order to achieve very good corrosion protection.
  • the silver coating of the compression spring and the silver coating of the contact plate are the same thickness.
  • the respective silver coating is preferably applied by electroplating.
  • the layer thickness of the silver coating of the compression spring and the layer thickness of the silver coating of the contact plate be 2 microns to 5 microns. These layer thicknesses are quite large and thus allow a very good corrosion and abrasion resistance of the contact partners.
  • the susceptibility to corrosion of the arranged under such thin layers of copper conductor tracks is correspondingly low.
  • a chemically applied coating of gold additionally requires a barrier layer of nickel.
  • one of the at least one conductor track facing underside of the contact plate is tinned at least partially.
  • the Substrate of the contact plate may optionally be provided in regions with a suitable adhesive for securing against slipping prior to the soldering process.
  • Another development of the invention provides that the surface of the contact plate on all sides projects beyond the outer diameter of the Whyendabitess the compression spring. As a result, a reliable electrical contact with a maximum electrical contact zone is given.
  • the surface of the at least one conductor track in the region of the contact plate projects beyond it on all sides.
  • the contact plate in the region of its top has a recess for at least partially receiving the Kunststoffendab songs the at least one compression spring.
  • a position assurance of the compression spring is given in relation to the contact plate.
  • the depression within the contact plate may at the same time be adapted to the shaping of the contact end section in order to provide the greatest possible contact area and to increase the current conductivity of the connection arrangement.
  • the compression spring is a cylindrical helical compression spring.
  • Such a trained compression spring can be relatively easily and inexpensively.
  • the contact plate has an at least quadrangular circumferential geometry, a circular peripheral geometry, an elliptical peripheral geometry, an oval peripheral geometry or a combination of at least two of the aforementioned peripheral geometries.
  • the peripheral geometry of the contact plate corresponds to the geometries of pads or contact surfaces commonly used on printed circuit boards.
  • connection assembly 10 has a solenoid valve 12 which is connected by means of a pressure spring 18 designed as a helical compression spring 16 electrically conductive with a contact plate 20, which in turn is electrically conductively connected to a printed circuit board 24 arranged on a conductor track 22.
  • a pressure spring 18 designed as a helical compression spring 16 electrically conductive with a contact plate 20, which in turn is electrically conductively connected to a printed circuit board 24 arranged on a conductor track 22.
  • An underside 26 of the contact plate 20 is thermally joined to the conductor track 22 by means of a soldered connection 28 for producing an electrically conductive connection and for mechanically fastening the contact plate 20 to the printed circuit board 24.
  • a solder joint 28 can also others Joining methods are used, which allow a comparatively low-resistance connection between the contact plate 20 and the conductor track 22.
  • a sensor-side end section 30 of the helical compression spring 16 directed away from the printed circuit board 24 is integrated into a housing 34 of the solenoid valve 12 in the region of a housing underside 32 in order to electrically connect the measuring elements, not shown, and an optional measuring electronics within the solenoid valve 12.
  • the helical compression spring 16 thus represents the electrical connection of the solenoid valve 12 to the circuit board 24.
  • a leading away from the valve-side end portion 30 and the printed circuit board 24 facing the contact end portion 36 of the helical compression spring 16 is located with a mechanical bias of suitable strength at an upper side 38 of the contact plate 20 for making an electrical contact.
  • the circuit board side end portion 40 of the helical compression spring 16 is ground flat.
  • the surface geometry of the top 38 of the contact plate 20 may be formed corresponding to the geometry of the front end of the contact end portion 36.
  • a longitudinal central axis 42 of the cylindrical helical compression spring 16 extends approximately perpendicular to the top 38 of the contact plate 20 and to the housing bottom 32 of the housing 34 of the solenoid valve 12th
  • the thickness 44 of the contact plate 20 is significantly greater than a thickness 46 of the conductor track 22 in order to ensure a sufficient mechanical stability and in particular a sufficient abrasion resistance of the contact plate 20.
  • an optional, for example cup-shaped recess 48 may be formed in order to achieve a positional securing of the contact end section 36 with respect to mechanical forces acting parallel to the upper side 38 of the contact plate 20.
  • the surface geometry of the bottom 50 of the pot-like recess 48 may in turn be designed so that they minimize the electrical contact resistance with the frontal shaping the Kunststoffendabitess 36 of the helical compression spring 16 corresponds, so that the surface grinding of the circuit board-side end portion 40 of the helical compression spring 16 can be omitted.
  • the upper side 38 of the contact plate 20 has such a large areal extent that it preferably protrudes on all sides beyond the contact end section 36 of the helical compression spring 16, resulting in a maximum electrical contact area.
  • both the cylindrical helical compression spring 16 and the contact plate 20 are preferably provided over the entire surface with a passivated silver coating 60, 62.
  • the base material of the contact plate 20 is preferably a bronze alloy or a copper-tin alloy, in particular a CuSn6 alloy.
  • the wire diameter d of a metallic spring wire used for producing the cylindrical helical compression spring 16 and the outer diameter D of the helical compression spring 16 itself are dimensioned in relation to a total length L and the number of turns or pitch angle ⁇ of the turns so that the helical compression spring 16 under the creation of a sufficient Contact pressure selected mechanical bias and all loads acting beyond the operation in the radial direction does not buckle.
  • the total length L corresponds to the vertical distance h between the housing bottom 32 of the solenoid valve 12 and the top 38 of the contact plate 20 in the assembled state of the connection assembly 10th
  • connection assembly 10 with only one helical compression spring 16 is a Variety of compression springs with a corresponding number of contact plates and helical compression springs necessary to electrically contact sensors and / or actuators with more than one electrical connection and / or a larger number of sensors and / or actuators with the conductor 22 and other tracks of the circuit board 24 ,
  • more than one pressure spring it is possible in this case for more than one pressure spring to be supported on a respective contact plate in order in particular to optimize the current conductivity of the connection arrangement 10.
  • soldered to the circuit board 24 contact plate 20 is to be judged in terms of manufacturing costs compared to previously known technical solutions as neutral, as this can be processed, for example, with the same SMD placement and soldering, which also for loading and soldering by means of the circuit board 24th interconnected electronic and electrical components are used.
  • the application of the passivated silver coatings 60, 62 on the contact plate 20 and at least the contact portion of the helical compression spring 16 can also be done in the course of the manufacturing process of the circuit board 24 by means of known coating methods.
  • the passivated silver coating 62 of the contact plate 20 facilitates the soldering process thereof with the trace 22. After completing the connection assembly 10, the portions of the trace 22 not covered by the solder joint 28 can still be protected with those of chemically pure copper or with a copper alloy formed tracks better protect against harmful corrosive influences.
  • a protective coating for example, a suitable protective lacquer or the like can be used.
  • Fig. 2 shows a plan view of the contact plate 20 of Fig. 1 without the helical compression spring 16 with the underlying trace 22. From the illustration, it is initially apparent that the contact plate 20 is a circular Has peripheral contour, which concentrically surrounds the cross-sectional geometry of the here indicated only with dashed radial boundary lines cylindrical helical compression spring 16 and thereby creates the largest possible contact area between the contact plate 20 and the helical compression spring 16.
  • the diameter 54 of the contact plate 20 is preferably at least slightly smaller than a width 56 of the conductor 22 of the circuit board 24 to provide a narrow, the contact plate 20 concentrically surrounding edge zone for an annular meniscus 58 of the solder joint 28 here.
  • the dimensions of the contact plate 20 and the printed conductor 22 on the printed circuit board 24 are preferably always dimensioned so that the printed conductor 22 projects on all sides at least slightly beyond the contact plate 20.
  • Fig. 3 shows a further embodiment of a contact plate 70 with an approximately square peripheral contour with four, but each slightly rounded corners and the underlying conductor 22.
  • the contact plate 70 is in turn connected by a solder connection 72 conductively connected to the conductor 22 of the circuit board 24.
  • the width 74 and the length 76 of the contact plate 70 are each the same size and in this case preferably slightly smaller than the width 56 of the conductor 22 of the circuit board 24 to provide a contact plate 70 peripheral edge zone for a meniscus 78 of a solder joint 72.
  • FIGS. 4 and 5 show a third embodiment of a contact plate 80 with a circumferential geometry which corresponds to that of an equilateral octagon, and a fourth embodiment of a contact plate 90 which has a square or square peripheral geometry without rounded corners.
  • Said contact plates 80, 90 are respectively positioned on the underlying conductor track 22 of the printed circuit board 24, but not yet soldered to the conductor track 22.
  • Two narrow edge zones 82, 92 surround the contact plates that have not yet been soldered to the conductor track 22 of the printed circuit board 24 80, 90 preferably on all sides and serve as a propagation space for the menisci of not shown here or not yet existing solder joints.
  • FIGS. 2 to 5 Shown embodiments are also contact plates with an oval, an elliptical or any combination of oval and / or elliptical peripheral geometries with at least one of the in the FIGS. 2 to 5 shown peripheral geometries possible.
  • a circumferential geometry of a contact plate may have any, for example, also multiply curved course, as long as the contact plate protrudes on all sides over the Dodgeendabschnitt its associated at least one helical compression spring 16 over and also protrudes at any side on the associated conductor track.
  • a thickness of the applied passivated silver coating applied in the edge region may be reduced compared with other surface zones of the contact plate.

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)

Description

  • Die Erfindung betrifft eine Verbindungsanordnung zur elektrischen Verbindung mindestens eines Magnetventils mit wenigstens einer Leiterbahn einer Leiterplatte, wobei das mindestens eine Magnetventil wenigstens eine Druckfeder zum elektrisch leitenden Anschluss aufweist, und die mindestens eine Druckfeder mechanisch vorgespannt zwischen dem mindestens einen Magnetventil sowie der Leiterplatte angeordnet ist.
  • Kontaktoberflächen für besonders korrosionsfeste sowie elektrisch zuverlässig leitende Verbindungen zwischen elektronischen Leiterplatten und anderen elektronischen oder elektrischen Komponenten sind üblicherweise aus Zinn, Silber oder Gold hergestellt. Für elektronische Anwendungen in Kraftfahrzeugen, die extremen Umgebungseinflüssen ausgesetzt sind, sind ferner Kontaktierungen bekannt, die auf Federelementen und Anschlussstrukturen mit einer komplexen Geometrie basieren. Diese Federelemente und Anschlussstrukturen werden mit einer Oberflächenvergütung aus Zinn, Silber oder Gold versehen und anschließend elektrisch leitend mit der Leiterplatte verbunden. Die Komplexität der eingesetzten Federelemente und der Anschlussstrukturen verursacht jedoch hohe Fertigungskosten und erfordert nicht selten einen größeren Einbauraum.
  • Für die Nutzung in Kraftfahrzeugen sind ferner elektrische Kontaktierungen unter Verwendung einer sich auf einer Leiterbahn oder einem Kontaktpad einer Leiterplatte abstützenden metallischen Druckfeder zur elektrischen Anbindung eines externen Bauteils, wie beispielsweise eines Magnetventils oder eines Sensors bekannt. Bei einem solchen Aufbau kommen als Kontaktpartner beispielsweise eine vergoldete Kontaktfeder und eine zumindest in der Kontaktzone vergoldete Leiterbahn mit Kupfer als Basismaterial zum Einsatz, die eine gegenüber schädlichen korrosiven klimatischen Einflüssen weitestgehend unempfindliche und daher zuverlässige elektrische Verbindung ermöglichen. Für eine rationelle Vergoldung ist jedoch eine Sperrschicht aus Nickel zur Unterbindung von Diffusionsprozessen notwendig. Genau diese Sperrschicht hat sich jedoch insbesondere in Verbindung mit der bekannten Press-Fit-Technologie, bei der elektrische Bauteile in metallisierten oder mit metallischen Hülsen versehene Leiterplattenbohrungen durch einfaches Einpressen mechanisch befestigt und zugleich mit den Leiterbahnen der Leiterplatte elektrisch kontaktiert werden, als empfindlich gegenüber klimatischen Einflüssen erwiesen, was zur Bildung von Rissen, Unterwanderungen und lokaler Korrosion in den Kontaktstellen führen kann.
  • Auch bei anderen Materialpaarungen von Kontaktfeder und Leiterbahn, wie beispielsweise Silber-Silber, Silber-Zinn oder Silber-Lötzinn können bei nachteiligen Klimaeinflüssen, bei schwingungsbedingten Relativbewegungen zwischen der Kontaktfeder und der Leiterbahn und/oder im Fall von höheren Strombelastungen, chemische Korrosionseffekte und/oder Reibkorrosionserscheinungen auftreten, deren Folgen bis hin zu einem Totalversagen der betroffenen elektrischen Kontaktstelle reichen.
  • Aus der DE 102 44 760 A1 ist eine Drucksensorbaugruppe mit einer elektrischen Verbindung für ein Messelement bekannt. Die elektrische Verbindung zwischen den Messelementen und mehreren Kontakten, die in einem die Messelemente umgebenden Kontaktträger eingebettet sind, ist mittels einer so genannten Bondverbindung durch Mikroschweißen realisiert. Der externe elektrische Anschluss der Drucksensorbaugruppe erfolgt mit mehreren, nach Art einer Schraubendruckfeder ausgeführten Federkontakten, die durch jeweils eine Öffnung eines Einfädeltrichters geführt sind, der seinerseits in einem Drucksensorgehäuse angeordnet ist. Die Federkontakte stützen sich zwischen den Kontakten im Kontaktträger und einem externen Widerlager ab. Innerhalb des Drucksensorgehäuses ist der Federkontakt axial drucksteif auf Block gewickelt, während der Federkontakt außerhalb des Drucksensorgehäuses in axialer Richtung einfedern kann. Eine direkte elektrische Anbindung einer Leiterplatte mit Hilfe der Federkontakte ist nicht vorgesehen.
  • DE 10 2011 075 901 A1 offenbart eine Spulenanordnung und Identifikationsgeber für ein Zugangskontrollsystem. Die Dokumente US 2011/0121850 A1 , US 6,174,174 B1 und US 2004/0075168 A1 offenbaren Verbindungsanordnungen zur elektrischen Verbindung eines Halbleiterchips mit einer Leiterplatte, wobei die elektrische Verbindung mittels Kontaktfedern erfolgt.
  • Der Erfindung liegt die Aufgabe zugrunde, eine konstruktiv einfach aufgebaute sowie insbesondere gegen Reibkorrosion und gegenüber anderen Korrosionsprozessen beständige Verbindungsanordnung zur elektrisch zuverlässigen Anbindung eines Magnetventils an eine Leiterplatte vorzustellen.
  • Diese Aufgabe ist durch eine Verbindungsanordnung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen definiert.
  • Die Erfindung geht dabei von der Erkenntnis aus, dass sich externe Bauteile mit Hilfe von Druckfedern auf konstruktiv einfache Art und Weise und zudem elektrisch zuverlässig mit Leiterbahnen einer Leiterplatte kontaktieren lassen.
  • Die Erfindung betrifft daher eine Verbindungsanordnung zur elektrischen Verbindung mindestens eines Magnetventils mit wenigstens einer Leiterbahn einer Leiterplatte, wobei das mindestens eine Magnetventil wenigstens eine Druckfeder zum elektrisch leitenden Anschluss aufweist, und die mindestens eine Druckfeder mechanisch vorgespannt zwischen dem mindestens einen Magnetventil sowie der Leiterplatte angeordnet ist. Zur Lösung der Aufgabe ist vorgesehen, dass ein der Leiterplatte zugewandter Kontaktendabschnitt der mindestens einen Druckfeder zur Sicherstellung einer zuverlässigen elektrischen Verbindung an einer Kontaktplatte anliegt, welche mit der Leiterbahn elektrisch leitend verbunden ist.
  • Durch den vorgeschlagenen Aufbau ist eine Verbindungsanordnung realisiert, die eine schwingungsfeste sowie korrosionsresistente Anbindung einer externen Komponente, wie das Magnetventil, an eine elektronische Leiterplatte ermöglicht. Da diese Verbindungsanordnung eine Vergoldung von Leiterbahnen entbehrlich macht, ist die Leiterplatte kostengünstig herstellbar sowie problemlos mit der Nutzung der Press-Fit-Technologie kompatibel. Darüber hinaus ermöglicht die Druckfeder einen axialen Toleranzausgleich sowie die Kompensation von Wärmedehnungen und Fertigungstoleranzen.
  • Um eine möglichst großflächige sowie gut anliegende Kontaktfläche der Druckfeder zu erreichen, kann vorgesehen sein, dass die letzte Windung des Kontaktendabschnitts der Druckfeder plan geschliffen ist. Weiterhin können zu diesem Zweck die letzten Windungen des Kontaktendabschnitts der Druckfeder auf Block gewickelt und dadurch axial drucksteif ausgebildet sein.
  • Unter dem Begriff Korrosion werden im Zusammenhang mit dieser Beschreibung sowohl Reibkorrosionsprozesse als auch chemische sowie elektrochemische Korrosionsvorgänge verstanden. Reibkorrosionsprozesse treten auf, wenn beispielsweise schwingungsbedingte Relativbewegungen zwischen der Druckfeder und der Kontaktplatte auftreten. Dabei werden mikroskopisch kleine Metallpartikel infolge der Bewegung von den Kontaktpartnern losgelöst sowie abgerieben, wodurch im Ergebnis die wirksame metallische Berührungsfläche verringert wird, was unter anderem eine Erhöhung des elektrischen Übergangswiderstandes bewirken kann. Der Begriff der chemischen Korrosion betrifft hingegen vorrangig chemische Reaktionen eines in der Regel metallischen Werkstoffs mit Stoffen aus seiner Umgebung. Bei elektro-chemischen Korrosionsprozessen ist neben einer stofflichen Veränderung ein elektrischer Stromfluss vorhanden.
  • Bevorzugt korrespondiert die Anzahl der Druckfedern mit der Anzahl der Kontaktplatten. Der Durchmesser des zum Wickeln der Druckfeder eingesetzten Federdrahtes, der Außendurchmesser der Druckfeder in Relation zu ihrer Gesamtlänge beziehungsweise Höhe sowie die Windungszahl beziehungsweise der Steigungswinkel der Windungen sind so dimensioniert, dass die Druckfeder unter Berücksichtigung der zur Schaffung eines ausreichenden Kontaktdrucks gewählten mechanischen Vorspannung sowie aller im realen Betrieb der Anschlussanordnung auftretenden mechanischen Lasten nicht in radialer Richtung ausknickt.
  • Gemäß einer Ausgestaltung der beschriebenen Verbindungsanordnung kann vorgesehen sein, dass die Dicke der Kontaktplatte mindestens doppelt so groß ist wie die Dicke der mit der Kontaktplatte elektrisch leitend verbundenen Leiterbahn. Hierdurch ergibt sich eine hohe Abriebfestigkeit der Kontaktplatte, die sie insbesondere gegenüber reibkorrosiven Prozessen unempfindlich macht.
  • Weiter kann vorgesehen sein, dass die Kontaktplatte aus oder mit einer Kupfer-Zinn-Legierung gebildet ist, insbesondere als eine CuSn6-Legierung. Hierdurch kann auf eine in der Elektrotechnik weit verbreitete und kostengünstige Metalllegierung zurückgegriffen werden, die sich zudem mittels der bekannten Fertigungs- und Fügeverfahren problemlos weiterverarbeiten lässt. Anstelle der hier lediglich exemplarisch angeführten CuSn6-Legierung aus der großen Gruppe der Bronzen, können auch andere Bronzelegierungen oder andere Metalllegierungen für die Kontaktplatte zum Einsatz kommen. Die Leiterbahnen der Leiterplatte sind demgegenüber bevorzugt aus chemisch reinem Kupfer oder mit einer Kupferlegierung gebildet.
  • Es ist vorgesehen, dass die Druckfeder zumindest bereichsweise mit einer passivierten Silberbeschichtung versehen ist. Hierdurch ergibt sich eine hohe elektrische Oberflächenleitfähigkeit der Druckfeder bei einer zugleich guten Korrosionsbeständigkeit. Grundsätzlich ist das Aufbringen der passivierten Silberbeschichtung im Kontaktendabschnitt der Druckfeder ausreichend, da an diesem die eigentliche elektrische Kontaktierung erfolgt.
  • Weiter ist vorgesehen, dass eine dem Kontaktendabschnitt der Druckfeder zugewandte Oberseite der Kontaktplatte mit einer passivierten Silberbeschichtung versehen ist. Hierdurch ergibt sich ein geringer elektrischer Übergangswiderstand von dem Kontaktendabschnitt der Druckfeder zur Kontaktplatte bei einer zugleich hohen klimatischen Korrosionsfestigkeit. Zusätzlich können auch die Außenflächen beziehungsweise die Außenkanten der Kontaktplatte mit einer passivierten Silberbeschichtung versehen sein, um auch hier einen sehr guten Korrosionsschutz zu erreichen.
  • Es ist vorgesehen, dass die Silberbeschichtung der Druckfeder und die Silberbeschichtung der Kontaktplatte gleich dick sind. Die jeweilige Silberbeschichtung wird bevorzugt galvanisch aufgetragen. Es ist vorgesehen, dass die Schichtdicke der Silberbeschichtung der Druckfeder und die Schichtdicke der Silberbeschichtung der Kontaktplatte 2 µm bis 5 µm betragen. Diese Schichtdicken sind recht groß und ermöglichen so eine sehr gute Korrosions- und Abriebbeständigkeit der Kontaktpartner. Im Vergleich dazu ist eine chemische Beschichtung der Druckfeder und/oder der Kontaktplatte mit Silber nur in Schichtdicken von 0,15 µm bis 0,45 µm möglich, und eine Passivierung von chemisch aufgetragenem Silber ist nicht üblich. Die Korrosionsanfälligkeit des unter solch dünnen Schichten angeordneten Kupfers der Leiterbahnen ist entsprechend gering. Eine chemisch aufgetragene Beschichtung aus Gold benötigt wie bereits beschrieben zusätzlich eine Sperrschicht aus Nickel.
  • Gemäß einer weiteren Ausgestaltung ist vorgesehen, dass eine der mindestens einen Leiterbahn zugewandte Unterseite der Kontaktplatte wenigstens bereichsweise verzinnt ist. Hierdurch ist eine ausgezeichnete Verlötbarkeit der Kontaktplatte mit der Leiterplatte beziehungsweise deren wenigstens einen Leiterbahn gegeben. Zur besseren Verarbeitbarkeit der Kontaktplatte in einem Lötprozess, wie beispielsweise in einem Standard-SMD-Lötvorgang, kann die Unterseite der Kontaktplatte gegebenenfalls bereichsweise mit einem geeigneten Klebemittel zur Lagesicherung gegen ein Verrutschen vor dem Lötvorgang versehen sein.
  • Eine andere Weiterbildung der Erfindung sieht vor, dass die Fläche der Kontaktplatte allseitig den Außendurchmesser des Kontaktendabschnitts der Druckfeder überragt. Hierdurch ist eine verlässliche elektrische Kontaktierung mit einer größtmöglichen elektrischen Kontaktzone gegeben.
  • Gemäß einer anderen Ausgestaltung ist vorgesehen, dass die Fläche der mindestens einen Leiterbahn im Bereich der Kontaktplatte diese allseitig überragt. Hierdurch wird um die Kontaktplatte herum eine schmale, umlaufende Randzone für einen Meniskus freigehalten, der sich üblicherweise beim Verlöten der Kontaktplatte mit einer Leiterbahn der Leiterplatte aufgrund von Kapillarkräften und der Oberflächenspannung des eingesetzten Lötmittels ausbildet.
  • Weiter kann vorgesehen sein, dass die Kontaktplatte im Bereich ihrer Oberseite eine Vertiefung zur zumindest teilweisen Aufnahme des Kontaktendabschnitts der mindestens einen Druckfeder aufweist. Hierdurch ist eine Lagesicherung der Druckfeder in Relation zur Kontaktplatte gegeben. Die Vertiefung innerhalb der Kontaktplatte kann zugleich an die Formgebung des Kontaktendabschnitts angepasst sein, um eine größtmögliche Kontaktfläche zu schaffen und die Stromleitfähigkeit der Verbindungsanordnung zu erhöhen.
  • Gemäß einer weiteren Ausgestaltung ist die Druckfeder eine zylindrische Schraubendruckfeder. Eine derart ausgebildete Druckfeder lässt sich vergleichsweise einfach und kostengünstig herstellen.
  • Schließlich kann vorgesehen sein, dass die Kontaktplatte eine mindestens viereckige Umfangsgeometrie, eine kreisförmige Umfangsgeometrie, eine elliptische Umfangsgeometrie, eine ovale Umfangsgeometrie oder eine Kombination von mindestens zwei der genannten Umfangsgeometrien aufweist. Hierdurch entspricht die Umfangsgeometrie der Kontaktplatte den auf Leiterplatten üblicherweise Verwendung findenden Geometrien von Anschlussflächen beziehungsweise Kontaktflächen.
  • Zur weiteren Erläuterung der Erfindung ist der Beschreibung die Zeichnung eines Ausführungsbeispiels beigefügt. In dieser zeigt
    • Fig. 1 eine schematische Seitenansicht einer erfindungsgemäßen Verbindungsanordnung,
    • Fig. 2 eine Draufsicht auf die Kontaktplatte von Fig. 1 mit einer darunter liegenden Leiterbahn, und die
    • Figuren 3 bis 5 eine Draufsicht auf weitere Ausführungsformen von Kontaktplatten mit der jeweils darunter angeordneten Leiterbahn.
  • In der Zeichnung weisen dieselben konstruktiven Elemente jeweils die gleiche Bezugsziffer auf.
  • Die Verbindungsanordnung 10 gemäß Fig. 1 weist ein Magnetventil 12 auf, das mittels einer als zylindrische Schraubendruckfeder 16 ausgeführten Druckfeder 18 elektrisch leitend mit einer Kontaktplatte 20 verbunden ist, welche ihrerseits mit einer auf einer Leiterplatte 24 angeordneten Leiterbahn 22 elektrisch leitend verbunden ist.
  • Eine Unterseite 26 der Kontaktplatte 20 ist zur Herstellung einer elektrisch leitfähigen Verbindung sowie zur mechanischen Befestigung der Kontaktplatte 20 an der Leiterplatte 24 mittels einer Lötverbindung 28 mit der Leiterbahn 22 thermisch gefügt. Anstelle einer Lötverbindung 28 können auch andere Fügeverfahren eingesetzt werden, die eine vergleichbar niederohmige Verbindung zwischen der Kontaktplatte 20 und der Leiterbahn 22 ermöglichen. Ein von der Leiterplatte 24 weggerichteter sensorseitiger Endabschnitt 30 der Schraubendruckfeder 16 ist zum elektrischen Anschluss der nicht dargestellten Messelemente und einer optionalen Messelektronik innerhalb des Magnetventils 12 im Bereich einer Gehäuseunterseite 32 in ein Gehäuse 34 des Magnetventils 12 integriert. Die Schraubendruckfeder 16 stellt somit den elektrischen Anschluss des Magnetventils 12 an der Leiterplatte 24 dar.
  • Ein vom Ventil-seitigen Endabschnitt 30 wegweisender und der Leiterplatte 24 zugewandter Kontaktendabschnitt 36 der Schraubendruckfeder 16 liegt mit einer mechanischen Vorspannung geeigneter Stärke an einer Oberseite 38 der Kontaktplatte 20 zur Herstellung eines elektrischen Kontaktes an. Um die wirksame elektrische Kontaktfläche zwischen dem Kontaktendabschnitt 36 und der Kontaktplatte 20 zu maximieren, ist der leiterplattenseitige Endabschnitt 40 der Schraubendruckfeder 16 stirnseitig plan geschliffen. Alternativ dazu kann die Oberflächengeometrie der Oberseite 38 der Kontaktplatte 20 korrespondierend zur Geometrie des stirnseitigen Endes des Kontaktendabschnitts 36 ausgebildet sein. Eine Längsmittelachse 42 der zylindrischen Schraubendruckfeder 16 verläuft ungefähr lotrecht zu der Oberseite 38 der Kontaktplatte 20 und zu der Gehäuseunterseite 32 des Gehäuses 34 des Magnetventils 12.
  • Die Dicke 44 der Kontaktplatte 20 ist deutlich größer als eine Dicke 46 der Leiterbahn 22, um eine hinreichende mechanische Stabilität und insbesondere eine ausreichende Abriebfestigkeit der Kontaktplatte 20 zu gewährleisten.
  • In die Kontaktplatte 20 kann eine optionale, zum Beispiel topfartige Vertiefung 48 ausgebildet sein, um eine Lagesicherung des Kontaktendabschnitts 36 gegenüber parallel zur Oberseite 38 der Kontaktplatte 20 angreifenden mechanischen Kräften zu erreichen. Die Oberflächengeometrie des Bodens 50 der topfartigen Vertiefung 48 kann wiederum so gestaltet sein, dass sie zur Minimierung des elektrischen Übergangswiderstands mit der stirnseitigen Formgebung des Kontaktendabschnitts 36 der Schraubendruckfeder 16 korrespondiert, so dass das Planschleifen des leiterplattenseitigen Endabschnitts 40 der Schraubendruckfeder 16 entfallen kann. Die Oberseite 38 der Kontaktplatte 20 verfügt über eine derart große Flächenerstreckung, dass sie bevorzugt allseitig über den Kontaktendabschnitt 36 der Schraubendruckfeder 16 übersteht, wodurch sich eine maximale elektrische Kontaktfläche ergibt.
  • Zur Erhöhung der Widerstandsfähigkeit der erfindungsgemäßen Verbindungsanordnung 10 gegenüber nachteiligen klimatischen Einflüssen sind sowohl die zylindrische Schraubendruckfeder 16 als auch die Kontaktplatte 20 bevorzugt vollflächig mit einer passivierten Silberbeschichtung 60, 62 versehen. Bei dem Basismaterial der Kontaktplatte 20 handelt es sich bevorzugt um eine Bronzelegierung beziehungsweise um eine Kupfer-Zinn-Legierung, insbesondere um eine CuSn6-Legierung. In Verbindung mit der auf die Leiterbahn 22 aufgelöteten Kontaktplatte 20 ergibt sich eine herausragende Beständigkeit der Verbindungsanordnung 10 sowohl gegenüber chemischen Korrosionsvorgängen als auch gegenüber Reibkorrosionsprozessen.
  • Der Drahtdurchmesser d eines zur Herstellung der zylindrischen Schraubendruckfeder 16 verwendeten metallischen Federdrahtes sowie der Außendurchmesser D der Schraubendruckfeder 16 selber sind in Relation zu einer Gesamtlänge L und der Windungszahl beziehungsweise des Steigungswinkels α der Windungen so dimensioniert, dass die Schraubendruckfeder 16 unter der zur Schaffung eines ausreichenden Kontaktdrucks gewählten mechanischen Vorspannung sowie aller im Betrieb darüber hinaus einwirkenden Lasten in radialer Richtung nicht ausknickt. Im gezeigten, axial vorgespannten Zustand der Schraubendruckfeder 16 entspricht die Gesamtlänge L dem vertikalen Abstand h zwischen der Gehäuseunterseite 32 des Magnetventils 12 und der Oberseite 38 der Kontaktplatte 20 im montierten Zustand der Verbindungsanordnung 10.
  • Abweichend von dem exemplarisch gezeigten Ausführungsbeispiel der Verbindungsanordnung 10 mit lediglich einer Schraubendruckfeder 16 ist eine Vielzahl von Druckfedern mit einer korrespondierenden Anzahl von Kontaktplatten und Schraubendruckfedern notwendig, um Sensoren und/oder Aktuatoren mit mehr als einem elektrischen Anschluss und/oder eine größere Anzahl von Sensoren und/oder Aktuatoren elektrisch mit der Leiterbahn 22 und weiteren Leiterbahnen der Leiterplatte 24 zu kontaktieren. Grundsätzlich ist es hierbei möglich, dass sich mehr als eine Druckfeder auf jeweils einer Kontaktplatte abstützt, um insbesondere die Stromleitfähigkeit der Verbindungsanordnung 10 zu optimieren.
  • Die auf die Leiterplatte 24 aufgelötete Kontaktplatte 20 ist hinsichtlich des Fertigungsaufwandes im Vergleich zu bisher bekannten technischen Lösungen als neutral zu beurteilen, da sich diese beispielsweise mit denselben SMD-Bestückungs- und Lötautomaten verarbeiten lässt, die auch zum Bestücken und Verlöten der mittels der Leiterplatte 24 miteinander verschalteten elektronischen und elektrischen Bauteile zum Einsatz kommen.
  • Das Aufbringen der passivierten Silberbeschichtungen 60, 62 auf die Kontaktplatte 20 und auf zumindest den Kontaktabschnitt der Schraubendruckfeder 16 kann gleichfalls im Zuge des Fertigungsprozesses der Leiterplatte 24 mittels bekannter Beschichtungsverfahren erfolgen. Darüber hinaus erleichtert die passivierte Silberbeschichtung 62 der Kontaktplatte 20 den Verlötprozess derselben mit der Leiterbahn 22. Nach dem Fertigstellen der Verbindungsanordnung 10 können die nicht von der Lötverbindung 28 bedeckten Bereiche der Leiterbahn 22 noch mit einem Schutzmittel versehen werden, um auch die mit chemisch reinem Kupfer oder mit einer Kupferlegierung gebildeten Leiterbahnen vor schädlichen korrosiven Einflüssen besser zu schützen. Als Schutzüberzug kann beispielsweise ein geeigneter Schutzlack oder dergleichen zum Einsatz kommen.
  • Fig. 2 zeigt eine Draufsicht auf die Kontaktplatte 20 der Fig. 1 ohne die Schraubendruckfeder 16 mit der darunter liegenden Leiterbahn 22. Aus der Darstellung ist zunächst ersichtlich, dass die Kontaktplatte 20 eine kreisförmige Umfangskontur aufweist, welche die Querschnittsgeometrie der hier lediglich mit gestrichelten radialen Begrenzungslinien angedeuteten zylindrischen Schraubendruckfeder 16 konzentrisch umschließt und hierdurch eine größtmögliche Kontaktfläche zwischen der Kontaktplatte 20 und der Schraubendruckfeder 16 schafft.
  • Der Durchmesser 54 der Kontaktplatte 20 ist bevorzugt zumindest geringfügig kleiner als eine Breite 56 der Leiterbahn 22 der Leiterplatte 24, um eine schmale, die Kontaktplatte 20 konzentrisch umgebende Randzone für einen hier kreisringförmigen Meniskus 58 der Lötverbindung 28 zu schaffen. Im Ergebnis sind die Abmessungen der Kontaktplatte 20 und der Leiterbahn 22 auf der Leiterplatte 24 bevorzugt stets so bemessen, dass die Leiterbahn 22 allseitig zumindest geringfügig über die Kontaktplatte 20 übersteht.
  • Fig. 3 zeigt eine weitere Ausführungsvariante einer Kontaktplatte 70 mit einer in etwa quadratischen Umfangskontur mit vier, jedoch jeweils leicht abgerundeten Ecken sowie der darunter angeordneten Leiterbahn 22. Die Kontaktplatte 70 ist wiederum durch eine Lötverbindung 72 leitend mit der Leiterbahn 22 der Leiterplatte 24 verbunden. Die Breite 74 sowie die Länge 76 der Kontaktplatte 70 sind jeweils gleich groß und hierbei vorzugsweise geringfügig kleiner als die Breite 56 der Leiterbahn 22 der Leiterplatte 24, um eine die Kontaktplatte 70 umlaufende Randzone für einen Meniskus 78 einer Lötverbindung 72 bereitzustellen.
  • Die Figuren 4 und 5 zeigen eine dritte Ausführungsform einer Kontaktplatte 80 mit einer Umfangsgeometrie, welche der eines gleichseitigen Achtecks entspricht, und eine vierte Ausführungsform einer Kontaktplatte 90, die über eine viereckige beziehungsweise quadratische Umfangsgeometrie ohne abgerundete Ecken verfügt. Die genannten Kontaktplatten 80, 90 sind jeweils auf der darunter verlaufenden Leiterbahn 22 der Leiterplatte 24 positioniert, jedoch noch nicht mit der Leiterbahn 22 verlötet. Zwei schmale Randzonen 82, 92 umgeben die noch nicht mit der Leiterbahn 22 der Leiterplatte 24 verlöteten Kontaktplatten 80, 90 bevorzugt allseitig und dienen als Ausbreitungsraum für die Menisken der hier nicht dargestellten beziehungsweise noch nicht vorhandenen Lötverbindungen. Hinsichtlich der Breite und der Länge der beiden Kontaktplatten 80, 90 gelten in Relation zur Breite 56 der Leiterbahn 22 dieselben Aussagen wie bei den bereits weiter oben beschriebenen Kontaktplatten 20, 70 gemäß den Figuren 2 und 3, so dass an dieser Stelle auf die Erläuterungen zu den Figuren 2 und 3 verwiesen wird.
  • Über die in den Figuren 2 bis 5 gezeigten Ausführungsformen hinaus sind Kontaktplatten mit einer ovalen, einer elliptischen oder einer beliebigen Kombination von ovalen und/oder elliptischen Umfangsgeometrien mit mindestens einer der in den Figuren 2 bis 5 gezeigten Umfangsgeometrien möglich. Prinzipiell kann eine Umfangsgeometrie einer Kontaktplatte jeden beliebigen, beispielsweise auch mehrfach gekrümmten Verlauf aufweisen, solange die Kontaktplatte bevorzugt allseitig über den Kontaktendabschnitt der ihr zugeordneten mindestens einen Schraubendruckfeder 16 hinüber ragt und zudem an keiner Seite über die ihr zugeordnete Leiterbahn übersteht.
  • Bei Umfangsgeometrien der Kontaktplatten mit Kanten, die einen sehr kleinen Krümmungsradius aufweisen, kann sich jedoch im Kantenbereich eine im Vergleich zu anderen Oberflächenzonen der Kontaktplatte verminderte Dicke der aufgebrachten passivierten Silberbeschichtung einstellen.

Claims (11)

  1. Verbindungsanordnung (10) zur elektrischen Verbindung eines Magnetventils (12) mit wenigstens einer Leiterbahn (22) einer Leiterplatte (24), wobei das Magnetventil (12) wenigstens eine Druckfeder (18) zum elektrisch leitenden Anschluss aufweist, und die mindestens eine Druckfeder (18) mechanisch vorgespannt zwischen dem Magnetventil (12) sowie der Leiterplatte (24) angeordnet ist, wobei ein der Leiterplatte (24) zugewandter Kontaktendabschnitt (36) der mindestens einen Druckfeder (18) zur Sicherstellung einer zuverlässigen elektrischen Verbindung an einer Kontaktplatte (20, 70, 80, 90) anliegt, die mit der Leiterbahn (22) elektrisch leitend verbunden ist, wobei die Druckfeder (18) zumindest an ihren kontaktseitigen Enden mit einer passivierten Silberbeschichtung (60) versehen ist, wobei eine dem Kontaktendabschnitt (36) der Druckfeder (18) zugewandte Oberseite (38) der Kontaktplatte (20, 70, 80, 90) mit einer passivierten Silberbeschichtung (62) versehen ist, wobei die Silberbeschichtung (60) der Druckfeder (18) und die Silberbeschichtung (62) der Kontaktplatte (20, 70, 80, 90) gleich dick ist, wobei die Schichtdicke der Silberbeschichtung (60) der Druckfeder (18) und die Schichtdicke der Silberbeschichtung (62) der Kontaktplatte (20, 70, 80, 90) 2 µm bis 5 µm beträgt.
  2. Verbindungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Dicke (44) der Kontaktplatte (20, 70, 80, 90) mindestens doppelt so groß ist wie die Dicke (46) der mit der Kontaktplatte (20, 70, 80, 90) elektrisch leitend verbundenen Leiterbahn (22).
  3. Verbindungsanordnung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Kontaktplatte (20, 70, 80, 90) mit einer Kupfer-Zinn-Legierung gebildet ist.
  4. Verbindungsanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Kontaktplatte (20, 70, 80, 90) aus einer CuSn6-Legierung gebildet ist.
  5. Verbindungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine der mindestens einen Leiterbahn (22) zugewandte Unterseite (26) der Kontaktplatte (20, 70, 80, 90) zumindest bereichsweise verzinnt ist.
  6. Verbindungsanordnung nach Anspruch 5, dadurch gekennzeichnet, dass zumindest die Unterseite (26) der Kontaktplatte (20, 70, 80, 90) zumindest bereichsweise mit der mindestens einen Leiterbahn (22) der Leiterplatte (24) verlötet ist.
  7. Verbindungsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Fläche der Kontaktplatte (20, 70, 80, 90) allseitig den Kontaktendabschnitt (36) der Druckfeder (18) überragt.
  8. Verbindungsanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Fläche der mindestens einen Leiterbahn (22) der Leiterplatte (24) im Bereich der Kontaktplatte (20, 70, 80, 90) diese allseitig überragt.
  9. Verbindungsanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Kontaktplatte (20, 70, 80, 90) im Bereich ihrer Oberseite (38) eine Vertiefung (48) zur zumindest teilweisen Aufnahme des Kontaktendabschnitts (36) der mindestens einen Druckfeder (18) aufweist.
  10. Verbindungsanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Druckfeder (18) eine zylindrische Schraubendruckfeder (16) ist.
  11. Verbindungsanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Kontaktplatte (20, 70, 80, 90) eine mindestens viereckige Umfangsgeometrie, eine kreisförmige Umfangsgeometrie, eine elliptisehe Umfangsgeometrie, eine ovale Umfangsgeometrie oder eine Kombination von mindestens zwei der genannten Umfangsgeometrien aufweist.
EP14789794.6A 2013-11-09 2014-10-22 Elektrische verbindungsanordnung Active EP3066722B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310018851 DE102013018851A1 (de) 2013-11-09 2013-11-09 Elektrische Verbindungsanordnung
PCT/EP2014/002849 WO2015067347A1 (de) 2013-11-09 2014-10-22 Elektrische verbindungsanordnung

Publications (2)

Publication Number Publication Date
EP3066722A1 EP3066722A1 (de) 2016-09-14
EP3066722B1 true EP3066722B1 (de) 2019-07-03

Family

ID=51799072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789794.6A Active EP3066722B1 (de) 2013-11-09 2014-10-22 Elektrische verbindungsanordnung

Country Status (6)

Country Link
US (1) US9634416B2 (de)
EP (1) EP3066722B1 (de)
JP (1) JP6554097B2 (de)
CN (1) CN105706308B (de)
DE (1) DE102013018851A1 (de)
WO (1) WO2015067347A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098542B (zh) * 2015-07-03 2017-11-17 华为技术有限公司 射频同轴连接器及板对板射频同轴连接器组合
KR101793717B1 (ko) * 2015-08-07 2017-11-03 조인셋 주식회사 전기접속단자
DE102016211594A1 (de) * 2016-06-28 2017-12-28 Voith Patent Gmbh Elektrokontakt-Kupplung
DE102016213853A1 (de) * 2016-07-28 2018-02-15 Schaeffler Technologies AG & Co. KG Optimiertes vibrationsrobustes Design eines Kontaktpads auf PCB und Führungselement zum Führen und Kontaktieren eines Kontaktfederelements
CN107884031A (zh) * 2016-09-30 2018-04-06 佛山市顺德区美的电热电器制造有限公司 用于烹饪器具的防溢检测装置和烹饪器具
DE102016224666B4 (de) * 2016-12-12 2019-04-11 Conti Temic Microelectronic Gmbh Verfahren zur Herstellung einer Fügeverbindung sowie eine Fügeverbindung
WO2018137227A1 (zh) * 2017-01-25 2018-08-02 深圳市汇顶科技股份有限公司 按压测试装置、系统及方法
DE102018100025B4 (de) * 2018-01-02 2022-07-28 Saf-Holland Gmbh Vorrichtung zum Überführen einer Leitung zwischen einem eingefahrenen Zustand und einem ausgefahrenen Zustand sowie entsprechendes System, entsprechende Verwendung und entsprechendes Verfahren
DE102018104886B3 (de) 2018-03-05 2019-07-04 Schaeffler Technologies AG & Co. KG Elektromechanischer Fahrwerksaktuator
DE102018123995A1 (de) * 2018-09-28 2020-04-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kontaktiereinrichtung zum elektrischen Kontaktieren einer Leiterplatte mit einem Spulenkörper für ein Magnetventil für eine Bremseinrichtung für ein Fahrzeug, Magnetventil mit einer Kontaktiereinrichtung und Verfahren zum Herstellen einer Kontaktiereinrichtung
DE102018123994B4 (de) * 2018-09-28 2022-05-25 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kontaktiervorrichtung zum federbaren Kontaktieren einer Platine mit einem Kontaktelement für eine Magnetspule oder einen Sensor für ein Fahrzeugsystem, Fahrzeugsystem mit einer Kontaktiervorrichtung und Verfahren zum Herstellen einer Kontaktiervorrichtung
DE102020105298A1 (de) 2020-02-28 2021-09-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Leiterplatte mit einer Kontaktstelle
EP4025029A1 (de) * 2021-01-05 2022-07-06 MEAS France Sensorvorrichtung und erdungsverbindung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211160U (de) * 1975-07-14 1977-01-26
JPH0537274Y2 (de) * 1987-02-17 1993-09-21
JP2925986B2 (ja) * 1995-09-08 1999-07-28 古河電気工業株式会社 接点部と端子部とからなる固定接点用材料又は電気接点部品
JPH09298018A (ja) * 1996-03-04 1997-11-18 Matsushita Electric Ind Co Ltd プリント基板装着用電子部品
CH693478A5 (fr) * 1996-05-10 2003-08-15 E Tec Ag Socle de connexion de deux composants électriques.
JPH11204222A (ja) * 1998-01-16 1999-07-30 Sony Corp Ic用ソケット
TW408352B (en) 1998-01-16 2000-10-11 Sony Corp IC socket and method for manufacturing IC
JP2002236035A (ja) * 2001-02-08 2002-08-23 Calsonic Kansei Corp 指示計器
JP2002270320A (ja) * 2001-03-12 2002-09-20 Advanex Inc 半導体パッケージ用ソケット
WO2003007435A1 (fr) * 2001-07-13 2003-01-23 Nhk Spring Co., Ltd. Contacteur
DE10244760A1 (de) 2002-02-26 2003-10-09 Continental Teves Ag & Co Ohg Drucksensorbaugruppe
US6551112B1 (en) * 2002-03-18 2003-04-22 High Connection Density, Inc. Test and burn-in connector
JP2004140195A (ja) 2002-10-17 2004-05-13 Nec Electronics Corp 半導体装置及びその製造方法
US6866519B2 (en) * 2003-07-10 2005-03-15 Wei-Fang Fan Adaptable resilient pin assembly for BGA based IC encapsulation
DE102004041207A1 (de) * 2004-08-25 2006-03-30 Siemens Ag Vorrichtung zur Verbindung von Leiterplatten
JP2007035400A (ja) * 2005-07-26 2007-02-08 Yamaichi Electronics Co Ltd 半導体デバイス用ソケット
US7491069B1 (en) * 2008-01-07 2009-02-17 Centipede Systems, Inc. Self-cleaning socket for microelectronic devices
US8610447B2 (en) * 2008-07-18 2013-12-17 Isc Co., Ltd. Spring structure and test socket using thereof
DE102010010331A1 (de) * 2010-03-04 2011-09-08 Phoenix Contact Gmbh & Co. Kg Elektrische Kontaktanordnung
DE102011075901A1 (de) 2011-05-16 2012-11-22 Continental Automotive Gmbh Spulenanordnung und Identifikationsgeber für ein Zugangskontrollsystem
DE102013104237B4 (de) * 2013-04-26 2019-12-19 Semikron Elektronik Gmbh & Co. Kg Schaltungsanordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9634416B2 (en) 2017-04-25
US20160276770A1 (en) 2016-09-22
JP2016535921A (ja) 2016-11-17
JP6554097B2 (ja) 2019-07-31
CN105706308B (zh) 2020-07-24
CN105706308A (zh) 2016-06-22
EP3066722A1 (de) 2016-09-14
WO2015067347A1 (de) 2015-05-14
DE102013018851A1 (de) 2015-05-13

Similar Documents

Publication Publication Date Title
EP3066722B1 (de) Elektrische verbindungsanordnung
EP3262667B1 (de) Elektrischer anschlusskontakt fuer ein keramisches bauelement, keramisches bauelement, bauelementanordnung und verfahren zur deren herstellung
DE102011013449B4 (de) Baugruppe mit einem Träger, einem SMD-Bauteil und einem Stanzgitterteil
DE102004050588B4 (de) Anordnung mit einem Leistungshalbleiterbauelement und mit einer Kontakteinrichtung
DE102014117410B4 (de) Elektrisches Kontaktelement, Einpressstift, Buchse und Leadframe
WO2014019906A1 (de) Einpresskontaktierung
DE102009000427A1 (de) Verfahren zur Herstellung eines Sensormoduls
EP3292593B1 (de) Elektrische verbindungsanordnung
DE102014208226A1 (de) Kontaktelement für elektrische Verbindung, Kupferband zur Herstellung einer Vielzahl von Kontaktelementen
DE102006062313A1 (de) Elektrische Steckerleiste
EP2200125B1 (de) Geschirmter Steckverbinder
WO2009095110A2 (de) Sensor mit gehäuse, sensormodul und einlegeteil
EP2312288B1 (de) Temperatursensor mit Multilayer-Leiterplatine
WO2008110402A1 (de) Kupfer-inlay für leiterplatten
DE102005007643A1 (de) Verfahren und Anordnung zum Kontaktieren von Halbleiterchips auf einem metallischen Substrat
WO2021170351A1 (de) Leiterplatte mit einer kontaktstelle
DE10329267A1 (de) Schaltungsanordnung mit Wärmeleitkörper
WO2018220036A1 (de) Elektronische komponente und verfahren zur herstellung einer elektronischen komponente
DE102011086707A1 (de) Schaltungsanordnung für elektronische und/oder elektrische Bauteile
DE10130618B4 (de) Verfahren zum Bestücken eines Trägers mit einem Bauteil und Vorrichtung zum Verbinden derselben
DE102016209488A1 (de) Elektronikmodul mit Klemmverbindung für Getriebesteuergerät
DE102006015222B4 (de) QFN-Gehäuse mit optimierter Anschlussflächengeometrie
DE19849930C1 (de) Elektrische Verbindungsanordnung
DE10157113A1 (de) Elektronische Baugruppe
WO2006086963A1 (de) Halbleiterbauteil mit oberflächenmontierbarem gehäuse und verfahren zur herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160609

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180529

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01R 13/33 20060101ALI20190307BHEP

Ipc: H01R 13/24 20060101ALI20190307BHEP

Ipc: H01F 7/06 20060101ALI20190307BHEP

Ipc: F16K 31/00 20060101ALI20190307BHEP

Ipc: H01R 12/70 20110101ALI20190307BHEP

Ipc: H05K 7/10 20060101ALI20190307BHEP

Ipc: G01L 19/00 20060101ALI20190307BHEP

Ipc: H01R 12/57 20110101AFI20190307BHEP

INTG Intention to grant announced

Effective date: 20190326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1152101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012132

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190703

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191003

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191104

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191103

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012132

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1152101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014012132

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014012132

Country of ref document: DE

Owner name: ZF CV SYSTEMS HANNOVER GMBH, DE

Free format text: FORMER OWNER: WABCO GMBH, 30453 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014012132

Country of ref document: DE

Owner name: ZF CV SYSTEMS EUROPE BV, BE

Free format text: FORMER OWNER: ZF CV SYSTEMS HANNOVER GMBH, 30453 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230912

Year of fee payment: 10

Ref country code: FR

Payment date: 20230911

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 10