EP3058762B1 - Verfahren zum betreiben einer anordnung aus schallwandlern nach dem prinzip der wellenfeldsynthese - Google Patents

Verfahren zum betreiben einer anordnung aus schallwandlern nach dem prinzip der wellenfeldsynthese Download PDF

Info

Publication number
EP3058762B1
EP3058762B1 EP14806713.5A EP14806713A EP3058762B1 EP 3058762 B1 EP3058762 B1 EP 3058762B1 EP 14806713 A EP14806713 A EP 14806713A EP 3058762 B1 EP3058762 B1 EP 3058762B1
Authority
EP
European Patent Office
Prior art keywords
sound
arrangement
wavefronts
signal content
virtual sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14806713.5A
Other languages
English (en)
French (fr)
Other versions
EP3058762A2 (de
Inventor
Frank Stefan Schmidt
Helmut Oellers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holoplot GmbH
Original Assignee
Holoplot GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holoplot GmbH filed Critical Holoplot GmbH
Publication of EP3058762A2 publication Critical patent/EP3058762A2/de
Application granted granted Critical
Publication of EP3058762B1 publication Critical patent/EP3058762B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2227/00Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
    • H04R2227/007Electronic adaptation of audio signals to reverberation of the listening space for PA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/13Application of wave-field synthesis in stereophonic audio systems

Definitions

  • the present invention relates to a method for operating an arrangement of sound transducers according to the principle of wave field synthesis for supplying an audience area with an audio signal and a device for supplying the audience area.
  • loudspeaker systems which are tailored to the special requirements of supplying large public areas with sufficiently high acoustic energy, so-called public address systems or PA systems for short. These are implemented as loudspeaker units, typically designed as multi-path systems with high-efficiency sound converters that are adapted to the transmission range. Individual loudspeaker units or loudspeaker units combined to form a large loudspeaker, so-called line arrays, are used as designs. With them it is possible, with appropriate dimensioning, to generate the sound pressure levels required by the organizer even in the public areas far away from the loudspeaker units.
  • the "acoustic curtain" is created. From a single mono signal, by means of convolution into an impulse response, or from the corresponding calculations of sound propagation time and level from the distance between a virtual sound source and the respective sound transducer, the signals can be obtained in a model-based approach that a loudspeaker from a position immediately behind microphone arranged in a partition would be obtained from a real sound source at the position of the virtual sound source. The wave front of a real sound source is reconstructed as if through a "curtain".
  • the device of sound transducers works like a piston radiator in the bass range. Even large wavelengths of the signal can, depending on the overall size of the device consisting of sound transducers, still be aimed at the public area.
  • the alignment of the wave fronts which can be controlled in the azimuth and elevation planes, can significantly reduce the amount of interfering noise that extends beyond the event site at open air events.
  • this electronically controllable sound emission has further advantages compared to fixed systems. Due to the more targeted alignment of the wave fronts, the proportion of direct sound in the listener is significantly increased in relation to the diffusely reflected sound from the reflection surfaces. This increases the degree of clarity of the transmission and improves speech intelligibility. This is essential for a high-quality transmission, especially under unfavorable acoustic conditions at the performance location. In addition, radiation with a small opening angle also solves the problem of conventional PA systems, which often generate high sound pressure levels close to the stage area that are hazardous to health when public areas further away are to be supplied with a sufficiently high sound pressure level.
  • each individual radiator works more efficiently than an individual radiator of the same type in a conventional arrangement.
  • the advantage should be retained that in the audience areas that are far away from the arrangement of sound transducers based on the principle of wave field synthesis, approximately the same sound pressure can be generated as in the areas immediately in front of the stage.
  • the associated device of sound transducers typically comprises an arrangement of loudspeakers, typically dynamic loudspeakers, which are arranged in a flat surface.
  • loudspeakers typically dynamic loudspeakers
  • MEMS microelectromechanical systems
  • a curvature of the surface or an angled arrangement of flat partial surfaces is also conceivable; even an irregular arrangement of the sound transducers at defined spatial points could generate a defined wave front according to the principle of wave field synthesis.
  • a special case is the design of the surface as a single row of loudspeakers. The procedure described is only effective to a limited extent.
  • Different public areas can also be supplied with different signal content or with adapted level and equalization values with the same signal content from a common device comprising sound transducers. This makes it possible to generate almost the same sound pressure levels in distant audience areas as directly in front of the stage area of a major event.
  • the device for supplying an extensive public area does not emit a single wavefront that spreads over a wide emission angle extends over the entire audience area, but the area to be supplied is supplied from a large number of individual virtual sound sources, which are generated by the arrangement of sound transducers according to the principle of wave field synthesis, in a narrow radiation angle. All of these virtual sound sources have the signal content of the one virtual sound source that would otherwise have to supply the entire audience area. On the one hand, this has the advantage that the sound pressure of the individual wave fronts hardly decreases with distance given the small opening angle.
  • the level of each of these virtual sound sources can be far higher than their share in the one virtual sound source otherwise required for the wide radiation angle.
  • the signals are subtracted and added according to their phase position. Comb filter effects arise in the resulting frequency response.
  • the signals from virtual sources with the same signal content are delayed from one another in such a way that their signals arrive simultaneously at the point in the middle of the overlap area. This also minimizes the comb filter effects in this area, but the coverage area can, if necessary, be better adapted to the shape of the public area due to the greater freedom in positioning the virtual sound sources.
  • n virtual sound sources which has to supply a large audience area with a wide beam angle, as the addition of n virtual sound sources in a common point.
  • these n virtual sound sources could then be spatially distributed in such a way that they could supply the original area again with individual wave fronts emitted at a narrower angle. If the level of each individual virtual sound source would then be the nth part of the level of the original one virtual source, the conditions would not have changed in principle.
  • this area at the upper end of the transmission area only includes a few sound transducers near the center point; the area only increases with the wavelength of the signal.
  • the better adaptation of the arrangement of sound transducers ensures increasing efficiency.
  • the entire public area may also be necessary to supply the entire public area from several spatially separated virtual sound sources so that a spatial impression is created in the entire public area.
  • virtual sound sources can also be generated that emit the signal that is otherwise fed to the stereo speakers.
  • the respective signal content of the described method can also be emitted by two or more virtual sound sources at different positions.
  • Fig. 1 shows the emission of an arrangement of sound transducers based on the principle of wave field synthesis (1) in which the virtual sound source (2) would supply the entire public area (3). This would mean that the sound pressure would decrease rapidly with the distance from the arrangement of sound transducers (1), because the energy of the wave front is distributed over a surface that grows rapidly with increasing distance.
  • the problem is solved in that the signal is generated by several virtual sound sources (5), (6), (7), (8) with the same signal content instead of the individual virtual sound source (2).
  • This distribution of the same signal to several starting points is made possible according to the invention in that all virtual sound sources generate their wave fronts from such positions from which they start from the center of the respective, inevitable overlap area in the audience (9), (10) and (11) are equidistant.
  • the overlapping virtual sound sources are positioned on a common radius around the center of the overlapping area.
  • the surface of the wave fronts emanating from the virtual sound sources (5), (6), (7) and (8) increases significantly more slowly with the distance from (1) because of the small opening angle of the radiation in front of the arrangement of sound transducers (1) ), as the surface of a wave front that would emanate from the individual virtual sound source (2). Their level drops correspondingly less with distance.
  • level and equalization can now be regulated separately for each sub-range.
  • the public area (3) is again supplied by the arrangement of sound transducers (3) from the four virtual sound sources (5), (6), (7) and (8).
  • the sub-areas for the supply are now selected to be of different sizes.
  • the different opening angles of the wave fronts emanating from the virtual sound sources (5) and (6) mean that these starting points can no longer be arranged on a common radius around the center of their overlap area (9).
  • the radiation can be adapted to the given conditions.
  • the available sound power can also be better used. Public areas that are far away are supplied at a very narrow angle, while the sound power is sufficient for nearby areas if it is distributed over a wide angle of radiation.
  • the signal of the virtual sound source (6) is to be delayed by the time it takes for the sound to travel (dt).
  • the speed of sound must be used in the calculation of the transit time according to the current outside temperature so that transit times in the virtual and real part of the radiation match.
  • the current temperature must therefore be measured in the audience area and the sound velocity calculated from this must be updated regularly for all calculations.
  • a measurement of the wind direction and wind speed in the spectator area can increase the accuracy of the individual wave fronts in the audience area.
  • the virtual sound sources (7) then also have to be delayed accordingly so that the wave fronts arrive at the same time in their overlapping area (10) with the virtual sound source (6). Accordingly, the transit times from (7) to each individual transducer are calculated first. Then the time difference to the virtual sound source (6) plus the transit time (dt 5) is added to each of the calculated values. In this way the curvature of the wave front is retained, it is only emitted later.
  • the smallest transit time calculated in the overall system can be subtracted from all calculated transit times in the system in order to fix the final values. This avoids any unnecessary latency in the overall system.
  • Fig. 3 represents the phase relationships of the individual signals in the plane of the arrangement of sound transducers. The geometric relationships are the same as in Fig. 1 .
  • the spherical sections of the wave fronts directed towards the public area (2) and emanating from the virtual sound sources (3), (4), (5) and (6) that are equidistant from the overlapping areas are only visible a single point in the center of the array of transducers in phase. Only there do the diaphragm deflections of the affected sound transducer add up linearly for all virtual sound sources. Due to the requirement that neighboring virtual sound sources must be equidistant from the center of the area where their wave fronts overlap in the public area, this condition is always met. Only in the center of the arrangement of sound transducers are the signals from all virtual sound sources with the same signal content in phase up to the highest frequencies of the transmission range. A corresponding reduction in this area prevents them from being overloaded. Because of the relatively small area concerned, the level loss in the upper transmission range can easily be compensated for by appropriate equalization of the overall signal.
  • Fig. 4 shows the arrangement of sound transducers based on the principle of wave field synthesis (1), behind which two virtual sound sources (2r) and (2l) are supposed to generate a spatial reproduction. It would also be possible to split the arrangement of sound transducers in order to arrange the virtual sound sources (2l) and (2r) on a broader base line.
  • the method described for a single source can then be used for each partial area. In the sketch this is only shown for the left channel of the stereo playback. Again (3) is the audience area.
  • the virtual sound sources (5), (6), (7) and (8) then reproduce the signal from the left source from their starting points on the radii around the overlap areas (9), (10) and (11).
  • the right channel is split mirror-inverted into individual virtual sound sources; this is not shown in the sketch for reasons of clarity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Anordnung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese zur Versorgung eines Publikumsbereiches mit einem Audiosignal und eine Vorrichtung zur Versorgung des Publikumsbereiches.
  • Hintergrund
  • Im Veranstaltungstechnikbereich sind Lautsprecheranlagen bekannt, die auf die speziellen Anforderungen der Versorgung auch von großen Publikumsbereichen mit ausreichend hoher akustischer Energie zugeschnitten sind, so genannte Public Address- oder kurz PA- Anlagen. Diese werden als Lautsprechereinheiten realisiert, typischer Weise ausgeführt als Mehrwegesysteme mit jeweils an den Übertragungsbereich angepassten Schallwandlern hohen Wirkungsgrades. Als Ausführungen kommen einzelne Lautsprechereinheiten oder zu einem Großlautsprecher kombinierte Lautsprechereinheiten, sogenannte Line-Arrays, zum Einsatz. Mit ihnen ist es bei entsprechender Dimensionierung möglich, die vom Veranstalter geforderten Schalldrücke auch in den weit von den Lautsprechereinheiten entfernten Publikumsbereichen zu erzeugen.
  • Weil bei einer einzelnen Lautsprechereinheit die Abstrahlung im Wesentlichen die ungerichtete Abstrahlung einer Punktschallquelle ist, nimmt der Schalldruck systembedingt mit jeder Verdoppelung der Entfernung von der Schallquelle auf die Hälfte, also um 6 dB ab. Daher geht man bei ausgedehnten Publikumsbereichen zunehmend zum Einsatz von Line Arrays über. Im Grundtonbereich erzeugen Line- Arrays Zylinderwellen. Die Oberfläche eines Zylinders wächst nur linear mit dem Radius, nicht quadratisch, wie die einer Kugel. Entsprechend langsamer, nämlich mit 3 dB pro Entfernungsverdoppelung, nimmt ihr Schalldruck mit der Entfernung ab. Erst in vierfacher Entfernung ist er jeweils auf die Hälfte abgesunken. Dazu kommt der Vorteil des Line- Arrays, dass bei den übereinander angeordneten Lautsprechereinheiten der Schall in der Elevationsebene ausgerichtet werden kann. Das vermindert den Anteil des Störschalls, der bei Open- Air- Veranstaltungen über den Publikumsbereich hinaus in das Umfeld, wie z. B. Wohngebiete, abgestrahlt wird. Der Bassbereich wird jedoch ungerichtet von getrennt aufgestellten Subwoofern abgestrahlt.
  • Am besten kann die Abstrahlung der Wellenfronten auf den Publikumsbereich begrenzt bleiben, wenn sie in der Azimut- und in der Elevationsebene ausgerichtet werden kann. Mit Hilfe des von A. J. Berkhout 1988 in [3] beschriebenen Verfahrens zur Wellenfeldsynthese wird eine noch exaktere Ausrichtung der Wellenfronten möglich.
  • Wenn dieses Verfahren, wie in [4] beschrieben, in einer zweidimensionalen Anordnung aus Schallwandlern angewendet wird, entsteht der "Akustische Vorhang". Aus einem einzigen Mono Signal können mittels Faltung in eine Impulsantwort, oder aus der entsprechenden Berechnungen von Schallaufzeit und Pegel aus der Distanz zwischen einer virtuellen Schallquelle und dem jeweiligen Schallwandler in einem modellbasierenden Ansatz die Signale gewonnen werden, die ein Lautsprecher von einem unmittelbar hinter einer Position in einer Trennwand angeordneten Mikrofon von einer realen Schallquelle an der Position der virtuellen Schallquelle erhalten würde. Wie durch einen "Vorhang" wird die Wellenfront einer realen Schallquelle rekonstruiert.
  • Solch ein "Akustischer Vorhang" nach dem modellbasierenden Ansatz ist bekannt. Kennzeichnend für dieses Verfahren ist es, dass jede virtuelle Schallquelle hinter dieser Anordnung nach Huygens Prinzip aus einer Vielzahl einzelner Schallwandler physikalisch rekonstruiert wird. Die Krümmung der Wellenfront entspricht der einer Wellenfront, die von einer realen Schallquelle an der Position der virtuellen Schallquelle ausgehen würde. Die virtuelle Schallquelle verändert deshalb ihren Ausgangspunkt nicht, wie die Phantomschallquellen bei den psychoakustisch basierten Verfahren, mit der Position des Zuhörers.
  • Deshalb ist sie, von Beugungseffekten aufgrund der endlichen Fläche der Vorrichtung aus Schallwandlern abgesehen, auch nur in dem Bereich hörbar, in dem sich die virtuelle Schallquelle vom Zuhörer aus gesehen innerhalb der Vorrichtung aus Schallwandlern befindet.
  • Auf dem Gebiet der Veranstaltungstechnik ist es prinzipiell möglich, diesen Umstand als deutlichen Vorteil gegenüber den oben beschriebenen PA(Public Address)-Anlagen zu nutzen. Die Abstrahlrichtung des Signals und der Öffnungswinkel der Wellenfront in Bezug auf die Vorrichtung aus Schallwandlern lassen sich mit der Position der virtuellen Schallquelle sehr einfach festlegen. So kann die Abstrahlung in der Azimut- und Elevationsebene direkt auf den Publikumsbereich ausgerichtet werden. Dazu wird eine virtuelle Schallquelle weit hinter der Anordnung aus Schallwandlern positioniert. Die Krümmung der Wellenfront entspricht dann dem Kugelausschnitt im Bereich der Anordnung aus Schallwandlern. Eine unendlich weit entfernte virtuelle Schallquelle erzeugt eine parallele Wellenfront, deren Schallpegel theoretisch nicht mit der Entfernung zum Schallwandler abnimmt.
  • Dabei arbeitet die Vorrichtung aus Schallwandlern im Bassbereich wie ein Kolbenstrahler. Selbst große Wellenlängen des Signals können, abhängig von der Gesamtgröße der Vorrichtung aus Schallwandlern, noch auf den Publikumsbereich ausgerichtet werden. So kann die in Azimut- und Elevationsebene steuerbare Ausrichtung der Wellenfronten den Störschallanteil deutlich reduzieren, der bei open Air- Veranstaltungen über das Veranstaltungsgelände hinausgeht.
  • Zudem entspringen alle Wellenfronten einem gemeinsamen Ausgangspunkt. Damit treten die deutlich wahrnehmbaren Phasenprobleme, die eine räumlich getrennte Aufstellung diverser Lautsprechereinheiten unweigerlich mit sich bringt, nicht auf. Der große Kolbenstrahler, der im Bassbereich aus den Einzelstrahlern entsteht, kann so schnell arbeiten wie jeder einzelne Lautsprecher. Die auf einer großen Lautsprechermembran sonst unvermeidlichen Partialschwingungen entstehen nicht.
  • In der praktischen Anwendung hat diese elektronisch steuerbare Abstrahlung des Schalls weitere Vorteile gegenüber fest ausgerichteten Systemen. Wegen der gezielteren Ausrichtung der Wellenfronten wird beim Zuhörer der Anteil des Direktschalles im Verhältnis zu den diffus von den Reflexionsflächen zurückgeworfenen Schallanteilen deutlich erhöht. Das erhöht das Deutlichkeitsmaß der Übertragung und verbessert die Sprachverständlichkeit. Vor allem unter ungünstigen akustischen Verhältnissen am Aufführungsort ist das unabdingbar für eine hochwertige Übertragung. Zudem löst eine Abstrahlung mit geringem Öffnungswinkel auch das Problem der konventionellen PA-Anlagen, das nahe am Bühnenbereich oft gesundheitsgefährdend hohe Schalldruckpegel erzeugt werden, wenn weiter entfernte Publikumsbereiche mit ausreichend hohem Schalldruckpegel versorgt werden sollen.
  • Trotzdem wird das Prinzip des "Akustischen Vorhanges" mit einer Anordnung aus Einzelstrahlern nach dem Prinzip der Wellenfeldsynthese bisher im PA Bereich nicht kommerziell angewendet. Die Vorteile der Abstrahlung mit geringem Öffnungswinkel gehen verloren, wenn ein ausgedehnter Publikumsbereich mit Schall versorgt werden muss.
  • Wird eine virtuelle Schallquelle so positioniert, dass die erzeugte Wellenfront einen ausgedehnten Publikumsbereich versorgt, so muss nahe der Vorrichtung aus Schallwandlern ein entsprechend hoher Schalldruck erzeugt werden, der dann mit der Entfernung stark abnimmt. Deshalb geht der Vorteil, den eine solche Vorrichtung aus Schallwandlern bei der Abstrahlung in einem kleinen Öffnungswinkel hat, verloren, dass weit entfernte Publikumsbereiche nahezu mit dem gleichen Schalldruckpegel versorgt werden können, wie der Bereich unmittelbar vor der Bühne einer Großveranstaltung.
  • Zudem wird es bei einer solch breiten Abstrahlung einer Wellenfront mit der Anordnung aus Schallwandlern sehr aufwendig, auch in den entfernten Publikumsbereichen einen ausreichenden Schalldruckpegel zu erreichen. Im Bereich großer Wellenlängen, also im Bass- und Mitteltonbereich, hat die großflächige Anordnung aus Schallwandlern den Vorteil der besseren Anpassung an den Wellenwiderstand der Luft. Herkömmliche Lautsprecher haben hier das Problem, dass in diesem Bereich die Luft einfach um die Lautsprechereinheit herum ausweicht. Der erzeugte Schalldruck verteilt sich dann in alle Richtungen, im Bereich der Zuhörer kommt nur ein Bruchteil der erzeugten Energie an. Einzelne Lautsprecherchassis müssen im Bassbereich viel kleiner bleiben als die Wellenlänge des von ihnen erzeugten Signals, weil ihre Membrane sonst instabil würde. Deshalb arbeiten sie in diesem Bereich fast ins Leere, der sich bewegenden Membran setzt sich kaum ein Lastwiderstand entgegen. Wegen dieser Fehlanpassung ist der Wirkungsgrad von einzelnen dynamischen Lautsprechern im Bassbereich sehr niedrig.
  • Mit einer ausreichend großen, zweidimensionalen Vorrichtung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese ist dieses Problem gelöst. Im Bassbereich arbeiten die einzelnen Schallwandler nahezu synchron, benachbarte Lautsprecher erzeugen zum gleichen Zeitpunkt fast identischen Schalldruck. Die Luft kann nicht mehr zur Seite ausweichen, weil der benachbarte Lautsprecher dort zum gleichen Zeitpunkt den gleichen Luftdruck erzeugt. Der Bewegung der Membran stellt sich nun die Masseträgheit einer Luftsäule, die mit wachsender Gesamtfläche immer weiter vor die Anordnung aus Schallwandlern reicht, als Arbeitswiderstand entgegen. Das verbessert den Wirkungsgrad der Abstrahlung ganz erheblich. Der Effekt ist vergleichbar mit Hornlautsprechern, bei denen die Schallführung ein Ausweichen der Luftsäule verhindert. Auch hier wird die Eigenresonanz des Schallwandlers durch die zusätzliche Luftmasse vor der Membran deutlich nach unten verschoben, der Wirkungsgrad wird deutlich gesteigert.
  • Leider verliert sich dieser Vorteil der Vorrichtung aus Schallwandlern mit steigender Frequenz. Im oberen Übertragungsbereich kommen auch schon die Durchmesser einzelner Schallwandler in den Bereich der Wellenlängen des abzustrahlenden Signals. Das Problem der Fehlanpassung verliert sich hier, auch Einzelstrahler können in diesem Bereich schon einen hohen Wirkungsgrad, der sich in ihrer Kennempfindlichkeit SPL ausdrückt, erzeugen.
  • Um mit der Anordnung aus Einzelstrahlern nach dem Prinzip der Wellenfeldsynthese bei einem breiten Abstrahlwinkel der Wellenfront auch in den weit entfernten Publikumsbereichen am oberen Ende des Übertragungsbereiches vergleichbar hohen Schalldruck zu erzeugen wie mit den üblichen Line Arrays, wären dann in der Anordnung aus Schallwandlern solche Schallwandler einzusetzen, die eine vergleichbar hohe Schallleistung erzeugen können wie ihre Pendants in den konventionellen Applikationen. Wegen der Vielzahl der benötigten Einzelstrahler ist dann der Einsatz der Anordnung aus Einzelstrahlern im PA Bereich ökonomisch nicht sinnvoll.
  • Erfindungsgemäß ist deshalb eine Lösung zu beschreiben, bei der auch am oberen Ende des Übertragungsbereiches jeder Einzelstrahler effizienter arbeitet als ein einzelner Strahler gleichen Typs in einer konventionellen Anordnung.
  • Zudem sollte der Vorteil erhalten bleiben, dass in den weit von der Anordnung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese entfernten Publikumsbereichen annähernd der gleiche Schalldruck erzeugt werden kann wie in den Bereichen unmittelbar vor der Bühne.
  • Zusammenfassung der Erfindung
  • Die vorstehenden Aufgaben sowie weitere, der Beschreibung zu entnehmende Aufgaben werden von einem Verfahren gemäß den Merkmalen des Anspruchs 1 und einer Vorrichtung gemäß den Merkmalen des Anspruchs 7 gelöst. Weitere vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben. Eine bevorzugte Ausführungsform der vorliegenden Erfindung ist in nachfolgenden Zeichnungen und in einer detaillierten Beschreibung dargestellt, soll aber die vorliegende Erfindung nicht darauf begrenzen.
  • Die zugehörige Vorrichtung aus Schallwandlern umfasst typischerweise eine Anordnung von Lautsprechern, typischerweise dynamischen Lautsprechern, die in einer ebenen Fläche angeordnet sind. Jedoch ist auch der Einsatz anderer Wandlerprinzipien, wie elektrostatischen oder piezoelektrischen Wandlern oder auch Microelectromechanical Systems (MEMS) [1] [2] möglich. Auch eine Krümmung der Fläche oder eine abgewinkelte Anordnung von ebenen Teilflächen ist denkbar, selbst eine unregelmäßige Anordnung der Schallwandler an definierten Raumpunkten könnte nach dem Prinzip der Wellenfeldsynthese eine definierte Wellenfront erzeugen. Ein Sonderfall ist die Ausführung der Fläche als eine einzelne Lautsprecherreihe. Bei ihr ist das beschriebene Verfahren nur bedingt wirksam.
  • Verschiedene Publikumsbereiche können auch mit unterschiedlichem Signalinhalt oder auch mit angepassten Pegel- und Entzerrungswerten bei gleichem Signalinhalt von einer gemeinsamen Vorrichtung aus Schallwandlern versorgt werden. Dadurch wird es möglich, in entfernten Publikumsbereichen nahezu gleiche Schalldrücke zu erzeugen wie unmittelbar vor dem Bühnenbereich einer Großveranstaltung.
  • Erfindungsgemäß strahlt die Vorrichtung zur Versorgung eines ausgedehnten Publikumsbereiches nicht eine einzelne Wellenfront ab, die sich in breitem Abstrahlwinkel über den gesamten Publikumsbereich ausdehnt, sondern der zu versorgende Bereich wird von einer Vielzahl einzelner virtueller Schallquellen, die von der Anordnung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese erzeugt werden, in engem Abstrahlwinkel versorgt. Alle diese virtuellen Schallquellen haben den Signalinhalt der einen virtuellen Schallquelle, die sonst den gesamten Publikumsbereich versorgen müsste. Das hat einerseits den Vorteil, dass der Schalldruck der einzelnen Wellenfronten bei dem geringen Öffnungswinkel kaum mit der Entfernung abnimmt. Zweitens kann wegen der inkohärenten Addition der Einzelsignale in der Ebene der Anordnung aus Lautsprechern der Pegel jeder einzelnen dieser virtuellen Schallquellen weit höher sein, als es ihrem Anteil an der sonst für den breiten Abstrahlwinkel notwendigen einen virtuellen Schallquelle entspricht. Bei einer Vielzahl virtueller Schallquellen mit gleichem Signalinhalt ist es nicht zu vermeiden, dass sich die Versorgungsgebiete der einzelnen Bereiche überlappen. Soweit dann die Ausgangspunkte der betreffenden Wellenfronten unterschiedlichen Abstand zum Zuhörer haben, subtrahieren und addieren sich die Signale entsprechend ihrer Phasenlage zueinander. Es entstehen Kammfiltereffekte im resultierenden Frequenzgang. Dieses Problem wird erfindungsgemäß dadurch gelöst, dass die einzelnen virtuellen Schallquellen mit gleichem Signalinhalt an solchen Positionen erzeugt werden, die gleich weit von einem Punkt in der Mitte des Überlappungsbereiches entfernt sind.
  • Gemäß der erfindungsgemäßen Lösung werden die Signale virtueller Quellen mit gleichem Signalinhalt so gegeneinander verzögert, dass ihre Signale gleichzeitig an dem Punkt in der Mitte des Überlappungsbereiches eintreffen. Auch dadurch werden die Kammfiltereffekte in diesem Bereich minimiert, das Versorgungsgebiet kann aber durch die größere Freiheit bei der Positionierung der virtuellen Schallquellen gegebenenfalls besser an die Form des Publikumsbereiches angepasst werden.
  • Mit den in engerem Winkel abgestrahlten Wellenfronten kann gegenüber einer Versorgung des gesamten Publikumsbereiches mit einer einzelnen virtuellen Quelle die Forderung, dass die weit von der Vorrichtung aus Schallwandlern entfernten Publikumsbereiche nahezu mit dem gleichen Schalldruckpegel versorgt werden können, wie der Bereich unmittelbar davor, dadurch erfüllt werden, dass die Pegel der einzelnen Wellenfronten getrennt regelbar sind.
  • Mit der erfindungsgemäßen Anordnung aus Schallwandlern und Betrieb derer nach dem Prinzip der Wellenfeldsynthese ist es möglich, die zu versorgenden Bereiche sowohl in der Azimut Ebene als auch in der Elevationsebene voneinander zu trennen. So können für nahe der Bühne gelegene Publikumsbereiche abwärts ausgerichtete Wellenfronten erzeugt werden, deren Pegel abgesenkt wird, während die darüber liegenden Wellenfronten für die hinteren Publikumsbereiche mit höherem Pegel abgestrahlt werden. Auch eine getrennte Entzerrung des Frequenzganges, beispielsweise um den Höhenabfall durch die Luftschalldämmung für die weiter entfernten Publikumsbereiche auszugleichen, wird mit der erfindungsgemäßen Lösung möglich.
  • Die weitere Aufgabenstellung, dass mit einer gegebenen Vorrichtung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese jeder einzelne Schallwandler auch im oberen Frequenzbereich des Wiedergabespektrums effizienter arbeitet als bei der Reproduktion einer einzigen, breit abgestrahlten Wellenfront, wird mit der erfindungsgemäßen Lösung realisiert. Dazu wird der nachfolgend beschriebene Effekt angewendet.
  • Man kann sich die eine virtuelle Schallquelle, die einen großen Publikumsbereich in weitem Abstrahlwinkel versorgen muss, auch als Addition von n virtuellen Schallquellen in einem gemeinsamen Punkt vorstellen. Prinzipiell ließen sich diese n virtuellen Schallquellen dann räumlich auch so verteilen, dass sie mit einzelnen, in einem engeren Winkel abgestrahlten Wellenfronten wieder den ursprünglichen Bereich versorgen könnten. Soweit der Pegel jeder einzelnen virtuellen Schallquelle dann der n-te Teil des Pegels der ursprünglichen einen virtuellen Quelle wäre, hätte sich an den Verhältnissen prinzipiell nichts geändert.
  • Diese erfindungsgemäße Lösung kann aber nun von dem physikalischen Effekt profitieren, das sich die Pegel von mehreren virtuellen Schallquellen mit gleichem Signalinhalt in den einzelnen Schallwandlern nur dann linear addieren, wenn sie gleiche Phasenlage haben. Solange alle n Ausgangspunkte der virtuellen Schallquellen an der gleichen geometrischen Position sind, addieren sich all ihre Signalanteile in jedem Punkt der Anordnung aus Schallwandlern linear als kohärente Signalanteile.
  • Wenn die gleichen Einzelsignale aber von unterschiedlichen Raumpositionen ausgehen, so liegen sie mit unterschiedlichen Laufzeiten an jedem Schallwandler an. Deshalb addieren und subtrahieren sich ihre Anteile. Im Unterschied zur Addition phasengleicher Signale ergibt sich für die Addition zweier nicht phasenkorrelierter Signalanteile nicht mehr eine Verdoppelung des Signalpegels, sondern nur eine Vektoraddition auf den Wert von Wurzel aus 2 = 1,414, das entspricht nur +3 dB Pegelanhebung. Noch deutlicher wird dieser Unterschied zur linearen Addition bei einer großen Zahl virtueller Quellen mit gleichem Signalinhalt an unterschiedlichen Positionen. So ergibt zum Beispiel der Addition von 256 kohärenten Signalquellen einen Pegelanstieg um +48 dB, die Addition von 256 inkohärenten Quellen aber nur einen Pegelanstieg von +24 dB. Um die Differenz zwischen beiden Werten, in diesem Fall also um +24 dB, kann nun erfindungsgemäß der anteilige Pegel der räumlich verteilten virtuellen Schallquellen mit dem Signalinhalt der einen ursprünglichen virtuellen Schallquelle angehoben werden, ohne dass die einzelnen Schallwandler überlastet werden.
  • Somit wird es möglich, auch mit Schallwandlern geringer Leistung und Kennempfindlichkeit in einer Anordnung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese ausreichend hohe Schallpegel in einem ausgedehnten Zuschauerbereich zu realisieren. Nur im Zentrum der Anordnung aus Schallwandlern bleiben bei dem Verfahren die Signale der verteilten virtuellen Schallquellen in Phase, weil nur dann die Forderung erfüllt werden kann, dass die Wellenfronten im Überlappungsbereich mit gleicher Phasenlage eintreffen.
  • Jedoch umfasst dieser Bereich am oberen Ende des Überragungsbereiches nur wenige Schallwandler nahe des Mittelpunktes, die Fläche wird erst mit der Wellenlänge des Signals größer. Hier sorgt aber die bessere Anpassung der Anordnung aus Schallwandlern für steigenden Wirkungsgrad.
  • Es kann auch notwendig sein, den gesamten Publikumsbereich aus mehreren räumlich getrennten virtuellen Schallquellen zu versorgen, damit im gesamten Publikumsbereich ein räumlicher Eindruck entsteht. So können zum Beispiel hinter der als akustischer Vorhang wirkenden Vorrichtung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese auch virtuelle Schallquellen erzeugt werden, die das Signal abstrahlen, das sonst den Stereolautsprechern zugeführt wird. Um die Vorzüge des beschriebenen Verfahrens zu nutzen, kann auch deren jeweiliger Signalinhalt nach dem beschriebenen Verfahren von jeweils zwei oder mehr virtuellen Schallquellen an unterschiedliche Positionen abgestrahlt werden.
  • Detaillierte Beschreibung eines Ausführungsbeispiels
  • Das Verfahren ist in Fig. 1 bis 4 dargestellt. Es soll anhand dieser Zeichnungen erläutert werden.
  • Fig. 1 zeigt die Abstrahlung einer Anordnung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese (1) in der die virtuelle Schallquelle (2) den gesamten Publikumsbereich (3) versorgen würde. Das hätte zur Folge, dass der Schalldruck mit der Entfernung von der Anordnung aus Schallwandlern (1) schnell sinken würde, weil sich die Energie der Wellenfront auf eine mit dem Abstand schnell wachsende Oberfläche verteilt.
  • Das Problem wird dadurch gelöst, dass das Signal statt von der einzelnen virtuellen Schallquelle (2) von mehreren virtuellen Schallquellen (5), (6), (7), (8) mit gleichem Signalinhalt erzeugt wird.
  • Diese Aufteilung des selben Signals auf mehrere Ausgangspunkte wird erfindungsgemäß dadurch möglich, dass alle virtuellen Schallquellen von solchen Positionen aus ihre Wellenfronten erzeugen, von denen aus sie von der Mitte des jeweiligen, unvermeidlichen Überlappungsbereiches im Publikum (9), (10) und (11) gleich weit entfernt sind. Die sich überlappenden virtuellen Schallquellen sind dazu auf einem gemeinsamen Radius um das Zentrum des Überlappungsbereiches positioniert. Bei einer anderen Anordnung mehrerer virtueller Schallquellen mit gleichem Signalinhalt wären deutlich hörbare Kammfiltereffekte im Überlappungsbereich durch die Überlagerung gleicher Signale mit unterschiedlichen Laufzeiten die unvermeidliche Folge.
  • Die Oberfläche der Wellenfronten, die von den virtuellen Schallquellen (5), (6), (7) und (8) ausgehen, steigt wegen des geringen Öffnungswinkels der Abstrahlung vor der Anordnung aus Schallwandlern (1) deutlich langsamer mit der Entfernung von (1), als die Oberfläche einer Wellenfront, die von der einzelnen virtuellen Schallquelle (2) ausgehen würde. Entsprechend geringer sinkt ihr Pegel mit der Entfernung. Zudem kann nun Pegel und Entzerrung für jeden Teilbereich getrennt geregelt werden.
  • In Fig.2 wird der Publikumsbereich (3) wieder von den der Anordnung aus Schallwandlern (3) von den vier virtuellen Schallquellen (5), (6), (7)und (8) versorgt. In der Darstellung sind aber nun die Teilbereiche für die Versorgung unterschiedlich groß gewählt. Die unterschiedlichen Öffnungswinkel der von den virtuellen Schallquellen (5) und (6) ausgehenden Wellenfronten führen nun dazu, dass sich diese Ausgangspunkte nicht mehr auf einem gemeinsamen Radius um das Zentrum ihres Überlappungsbereiches (9) anordnen lassen.
  • In der Praxis wird die Anforderung nach unterschiedlichen Öffnungswinkeln aber bestehen. Einerseits kann die Abstrahlung damit den gegebenen Verhältnissen angepasst werden. Zum anderen lässt sich dadurch aber auch die zur Verfügung stehende Schallleistung besser nutzen. Weit entfernte Publikumsbereiche werden in sehr engem Winkel versorgt, während für die nahe gelegenen Bereiche die Schallleistung auch ausreicht, wenn sie in einem breiten Abstrahlwinkel verteilt wird.
  • Damit auch dann die Wellenfronten benachbarter virtueller Schallquellen in ihrem Überlappungsbereich gleichzeitig eintreffen, müssen die Signale zeitlich gegeneinander verschoben werden.
  • In dem Beispiel ist das Signal der virtuellen Schallquelle (6) um die Zeit zu verzögern, die der Schall für den Weg (dt) benötigt. Dabei muss die Schallgeschwindigkeit entsprechend der aktuellen Außentemperatur in der Berechnung der Laufzeit verwendet werden, damit Laufzeiten im virtuellen und realen Teil der Abstrahlung übereinstimmen. Die aktuelle Temperatur ist deshalb im Zuschauerbereich zu messen und die daraus berechnete Schallgeschwindigkeit ist für alle Berechnungen regelmäßig zu aktualisieren. Eine Messung der Windrichtung und Windgeschwindigkeit im Zuschauerbereich kann die Treffsicherheit der einzelnen Wellenfronten in den Zuschauerbereichen erhöhen.
  • Entsprechend müssen dann auch die virtuellen Schallquellen (7) verzögert werden, damit die Wellenfronten in ihrem Überlappungsbereich (10) zur virtuellen Schallquelle (6) zur gleichen Zeit eintreffen. Entsprechend werden zuerst die Laufzeiten von (7) zu jedem einzelnen Schallwandler berechnet. Dann wird zu jedem der berechneten Werte die Zeitdifferenz zur virtuellen Schallquelle (6) plus Laufzeit (dt 5) addiert. So bleibt die Krümmung der Wellenfront erhalten, sie wird nur entsprechend später abgestrahlt.
  • Nachdem alle Laufzeiten von allen virtuellen Lautsprechern zu allen virtuellen Schallquellen entsprechend dieser Prozedur berechnet sind, kann die kleinste im Gesamtsystem berechnete Laufzeit von allen berechneten Laufzeiten im System subtrahiert werden, um so die endgültigen Werte festzuschreiben. Damit wird jede unnötige Latenz des Gesamtsystems vermieden.
  • Fig.3 stellt die Phasenbeziehungen der Einzelsignale in der Ebene der Anordnung aus Schallwandlern dar. Die geometrischen Verhältnisse sind die gleichen wie in Fig. 1.
  • In der Ebene der Anordnung aus Schallwandlern (1) sind die auf den Publikumsbereich (2) ausgerichteten, von den zum Überlappungsbereichen gleich weit entfernten virtuellen Schallquellen (3),(4),(5) und (6) ausgehenden Kugelausschnitte der Wellenfronten nur an einem einzigen Punkt im Zentrum der Anordnung aus Schallwandlern in Phase. Nur dort addieren sich die Membranauslenkungen des betroffenen Schallwandlers für alle virtuellen Schallquellen linear. Durch die Anforderung, dass benachbarte virtuelle Schallquellen gleich weit von der Mitte des Bereiches der Überlappung ihrer Wellenfronten im Publikumsbereich entfernt sein müssen, wird diese Bedingung immer erfüllt. Nur im Zentrum der Anordnung aus Schallwandlern sind die Signale aller virtuellen Schallquellen mit gleichem Signalinhalt deshalb bis zu den höchsten Frequenzen des Übertragungsbereiches in Phase. Eine entsprechende Absenkung in diesem Bereich verhindert ihre Überlastung. Wegen der relativ kleinen betroffenen Fläche lässt sich der Pegelverlust im oberen Übertragungsbereich durch entsprechende Entzerrung des Gesamtsignals leicht ausgleichen.
  • Es wäre auch denkbar, in diesem Bereich spezielle Schallwandler für den Bassbereich anzuordnen oder die Anordnung aus Schallwandlern als Rahmen um eine mittig angeordnete Bildwiedergabe aufzubauen.
  • Fig.4 stellt die Anordnung aus Schallwandlern nach dem Prinzip der Wellenfeldsynthese (1) dar, hinter der zwei virtuellen Schallquellen (2r) und (2l) eine räumliche Wiedergabe erzeugen sollen. Es wäre auch möglich, die Anordnung aus Schallwandlern zu teilen, um die virtuellen Schallquellen (2l) und (2r) auf einer breiteren Basislinie anzuordnen.
  • Unabhängig davon, ob eine solche geteilte Aufstellung gewählt wird, kann das für eine einzelne Quelle beschriebene Verfahren dann für jede Teilfläche angewandt werden. In der Skizze ist das nur für den linken Kanal der Stereowiedergabe eingezeichnet. Wieder ist (3) der Publikumsbereich. Die virtuellen Schallquellen (5), (6), (7) und (8) geben dann von ihren Ausgangspunkten auf den Radien um die Überlappungsbereiche (9), (10) und (11) das Signal der linken Quelle wieder. Der rechte Kanal wird spiegelbildlich in einzelne virtuelle Schallquellen aufgeteilt, aus Gründen der Übersichtlichkeit ist das in der Skizze nicht dargestellt.
  • Die Merkmale der hierin beschriebenen verschiedenen Ausführungsformen können auch miteinander kombiniert werden.
  • Literaturliste
    1. [1] John J. Neumann, Jr. and Kaigham J. Gabriel, CMOS-MEMS Membrane for Audio-Frequency Acoustic Acuation, Electrical and Computer Engineering Dept., Carnegie Mellon University, 2001 , pp. 236-239,
    2. [2] US Pat. 6936524
    3. [3] Berkhout, A.J. (1988): A holographic approach to acoustic control'. Journal of the Audio Engineering Society, Vol.36, No.12, December 1988, pp.977-995.
    4. [4] DE 10 2005 001 395 A1

Claims (8)

  1. Verfahren zum Betreiben einer Anordnung aus Schallwandlern (1) nach dem Prinzip der Wellenfeldsynthese zur Versorgung eines Publikumsbereiches (3) mit einem gleichen Audiosignalinhalt, wobei die Anordnung aus Schallwandlern (1) so betrieben wird, dass sie Wellenfronten auf den Publikumsbereich (3) ausstrahlt, die denen entsprechen, die in einem Modell von mindestens zwei virtuellen Schallquellen (5, 6, 7, 8) erzeugt werden, die vom Publikumsbereich (3) aus betrachtet hinter der Anordnung aus Schallwandlern (1) angeordnet sind, und deren jeweilige, dem gleichen Audiosignalinhalt entsprechenden Wellenfronten jeweils nur auf einen Teil des Publikumsbereichs (3) ausgerichtet sind, wobei sich die entsprechenden Wellenfronten des Audiosignalinhalts und Öffnungswinkel der Wellenfronten in Bezug auf die Anordnung der Schallwandler (3) aus Positionen der mindestens zwei virtuellen Schallquellen (5, 6, 7, 8) ergeben, dadurch gekennzeichnet, dass ein Signalpegel am oberen Ende des zu übertragenden Frequenzbereiches Zentrum der Anordnung aus Schallwandlern (1) abgesenkt wird, um mit dem verbleibenden Frequenzbereich wegen der inkohärenten Addition der entsprechenden Wellenfronten eine höhere Effizienz der Schallerzeugung zu bewirken, wobei zur Versorgung eines Publikumsbereiches (3) mit einem gleichen Audiosignalinhalt
    - die virtuellen Schallquellen (5, 6, 7, 8) mit gleichem Signalinhalt an unterschiedlichen Positionen angeordnet werden, und
    - die virtuellen Schallquellen (5, 6, 7, 8) mit gleichem Signalinhalt von einem Punkt in der Mitte des Teiles im Pubilkumsbereich (3), in dem sich eine Überlappung ihrer Wellenfronten im Model nicht vermeiden lässt, gleich weit entfernt sind, oder der Signalinhalt der virtuellen Schallquellen (5, 6, 7, 8) soweit gegeneinander verzögert wird, dass ihre Wellenfronten in diesem Punkt zur gleichen Zeit eintreffen, und
    - wobei die höhere Effizienz der Schallerzeugung durch eine Pegelanhebung der räumlich verteilten virtuellen Schallquellen (5, 6, 7, 8) bewirkt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei Ansteuerung der Schallwandler (1) eine kürzeste Laufzeit, die sich aus der Berechnung von Laufzeiten zwischen allen virtuellen Schallquellen (5, 6, 7, 8) und allen einzelnen Schallwandlern (1) ergibt, von allen berechneten Laufzeiten subtrahiert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Pegel der virtuellen Schallquellen (5, 6, 7, 8), die einzelne Publikumsbereiche (3) mit dem gleichen Signalinhalt versorgen, getrennt geregelt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Pegel der virtuellen Schallquellen (5, 6, 7, 8), die einzelne Publikumsbereiche (3) mit dem gleichen Signalinhalt versorgen, getrennt entzerrt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zu den Wellenfronten einzelner virtueller Schallquellen (5, 6, 7, 8), die den Signalinhalt einer primären virtuellen Schallquelle von diskreten Positionen aus reproduzierer weiterer individueller Signalinhalt, der auf den von dieser primären virtuellen Schallquelle versorgten Publikumsbereich (3) beschränkt bleibt, zugemischt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Temperatur und/oder Windrichtung und -Geschwindigkeit im Publikumsbereich (3) gemessen wird, um durch eine entsprechende Anpassung von Parametern im Model für die Erzeugung der Wellenfronten einer Zerstreuung oder Ablenkung der Wellenfronten entgegenzuwirken.
  7. Vorrichtung mit einer Anordnung aus Schallwandlern (1) zur Versorgung eines Publikumsbereiches (3) mit einem gleichen Audiosignalinhalt nach dem Prinzip der Wellenfeldsynthese, wobei die Vorrichtung so konfiguriert ist, dass von der Anordnung aus Schallwandlern (1) ausgestrahlte Wellenfronten auf den Publikumsbereich (3) denen entsprechen, die in einem Modell von mindestens zwei virtuellen Schallquellen (5, 6, 7, 8) erzeugt werden, die vom Publikumsbereich (3) aus betrachtet hinter der Anordnung aus Schallwandlern (1) angeordnet sind, und deren jeweilige, dem gleichen Audiosignalinhalt entsprechenden Wellenfronten jeweils nur auf einen Teil des Publikumsbereichs (3) ausgerichtet sind, wobei die entsprechenden Wellenfronten des Audiosignalinhalts und Öffnungswinkel der Wellenfronten in Bezug auf die Anordnung der Schallwandler (3) sich aus derr Positionen der mindestens zwei virtuellen Schallquellen (5, 6, 7, 8) ergeben, dadurch gekennzeichnet, dass die Vorrichtung weiterhin so konfiguriert ist, dass ein Signalpegel am oberen Ende des zu übertragenden Frequenzbereiches im Zentrum der Anordnung aus Schallwandlern (1) abgesenkt wird, um mit dem verbleibenden Frequenzbereich wegen der inkohärenten Addition der entsprechenden Wellenfronten eine höhere Effizienz der Schallerzeugung zu bewirken, wobei zur Versorgung eines Publikumsbereiches (3) mit einem gleichen Audiosignalinhalt
    - die virtuellen Schallquellen (5, 6, 7, 8) mit gleichem Signalinhalt an unterschiedlichen Positionen angeordnet werden, und
    - die virtuellen Schallquellen (5, 6, 7, 8) mit gleichem Signalinhalt von einem Punkt in der Mitte des Teiles im Pubilkumsbereich (3), in dem sich eine Überlappung ihrer Wellenfronten im Model nicht vermeiden lässt, gleich weit entfernt sind, oder der Signalinhalt der virtuellen Schallquellen (5, 6, 7, 8) soweit gegeneinander verzögert wird, dass ihre Wellenfronten in diesem Punkt zur gleichen Zeit eintreffen, und
    - wobei die höhere Effizienz der Schallerzeugung durch eine Pegelanhebung der räumlich verteilten virtuellen Schallquellen (5, 6, 7, 8) bewirkt wird.
  8. Vorrichtung nach Anspruch 7, wobei das Zentrum der Anordnung aus Schallwandlern (5, 6, 7, 8) mit speziell auf die Wiedergabe des Bassbereiches ausgelegten Schallwandlern (5, 6, 7, 8) bestückt oder frei gelassen ist, und/oder wobei die Anordnung aus Schallwandlern (5, 6, 7, 8) als ein Rahmen um eine zugeordnete Bildwiedergabe angeordnet ist und/oder die Bildwiedergabe umgibt.
EP14806713.5A 2013-08-10 2014-09-11 Verfahren zum betreiben einer anordnung aus schallwandlern nach dem prinzip der wellenfeldsynthese Active EP3058762B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013013378.5A DE102013013378A1 (de) 2013-08-10 2013-08-10 Aufteilung virtueller Schallquellen
PCT/IB2014/001814 WO2015022579A2 (de) 2013-08-10 2014-09-11 Verfahren zum betreiben einer anordnung aus schallwandlern nach dem prinzip der wellenfeldsynthese

Publications (2)

Publication Number Publication Date
EP3058762A2 EP3058762A2 (de) 2016-08-24
EP3058762B1 true EP3058762B1 (de) 2020-11-04

Family

ID=52007228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14806713.5A Active EP3058762B1 (de) 2013-08-10 2014-09-11 Verfahren zum betreiben einer anordnung aus schallwandlern nach dem prinzip der wellenfeldsynthese

Country Status (4)

Country Link
US (1) US9843864B2 (de)
EP (1) EP3058762B1 (de)
DE (2) DE102013013378A1 (de)
WO (1) WO2015022579A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013015160A1 (de) 2013-09-11 2015-03-12 Advanced Acoustic Sf Gmbh Integriertes System aus einer modular aufgebauten, zweidimensionalen WFS Schallwandler Anordnung und einer LED Bildwiedergabe
DE102019106427B4 (de) * 2019-03-13 2022-04-28 Bundesrepublik Deutschland, vertreten durch den Bundesminister für Wirtschaft und Energie, dieser vertreten durch den Präsidenten der Bundesanstalt für Materialforschung und –prüfung (BAM) Wandler und Wandleranordnung für Ultraschall-Prüfkopfsysteme, Ultraschall-Prüfkopfsystem und Prüfverfahren
DE102019208631A1 (de) 2019-06-13 2020-12-17 Holoplot Gmbh Vorrichtung und Verfahren zur Beschallung eines räumlichen Bereichs
CN111929365B (zh) * 2020-08-07 2023-08-22 广东汕头超声电子股份有限公司 一种超声成像检测显示方法
DE102021207302A1 (de) 2021-07-09 2023-01-12 Holoplot Gmbh Verfahren und Vorrichtung zur Beschallung mindestens eines Publikumsbereiches
DE102022129642A1 (de) 2022-11-09 2024-05-16 Holoplot Gmbh Verfahren zur richtungsabhängigen Korrektur des Frequenzganges von Schallwellenfronten

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847376B1 (fr) * 2002-11-19 2005-02-04 France Telecom Procede de traitement de donnees sonores et dispositif d'acquisition sonore mettant en oeuvre ce procede
JP4127156B2 (ja) * 2003-08-08 2008-07-30 ヤマハ株式会社 オーディオ再生装置、ラインアレイスピーカユニットおよびオーディオ再生方法
US6936524B2 (en) 2003-11-05 2005-08-30 Akustica, Inc. Ultrathin form factor MEMS microphones and microspeakers
DE102004002532A1 (de) 2004-01-17 2005-09-22 Helmut Oellers Frontalmatrix-Wellenfeldsynthese (FMWFS)
EP1749420A4 (de) * 2004-05-25 2008-10-15 Huonlabs Pty Ltd Audioapparat und verfahren
JP4625671B2 (ja) * 2004-10-12 2011-02-02 ソニー株式会社 オーディオ信号の再生方法およびその再生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015022579A2 (de) 2015-02-19
DE112014003700A5 (de) 2016-06-23
EP3058762A2 (de) 2016-08-24
US20160205474A1 (en) 2016-07-14
US9843864B2 (en) 2017-12-12
WO2015022579A3 (de) 2015-05-07
DE102013013378A1 (de) 2015-02-12

Similar Documents

Publication Publication Date Title
EP3058762B1 (de) Verfahren zum betreiben einer anordnung aus schallwandlern nach dem prinzip der wellenfeldsynthese
DE2910117C2 (de) Lautsprecherkombination zur Wiedergabe eines zwei- oder mehrkanalig übertragenen Schallereignisses
EP3005732B1 (de) Vorrichtung und verfahren zur raumselektiven audiowiedergabe
WO2015004526A2 (de) Variable vorrichtung zum ausrichten von schallwellenfronten
EP3061271B1 (de) Wellenfeldsynthese-system
EP2754151B1 (de) Vorrichtung, verfahren und elektroakustisches system zur nachhallzeitverlängerung
EP3183891A1 (de) Fir-filter-koeffizienten-berechnung für beamforming-filter
DE10355146A1 (de) Vorrichtung und Verfahren zum Erzeugen eines Tieftonkanals
DE102005001395B4 (de) Verfahren und Vorrichtung zur Transformation des frühen Schallfeldes
WO2023280982A1 (de) Verfahren und vorrichtung zur beschallung mindestens eines publikumsbereiches
DE202014009095U1 (de) Lautsprecherbox mit veränderlicher Richtwirkung für die mittleren- und hohen Frequenzen
WO2020249675A1 (de) Vorrichtung und verfahren zur beschallung eines räumlichen bereichs
WO2019211487A1 (de) Mikrofonarray
DE19639159C2 (de) Lautsprecherbox
WO2015022578A1 (de) Zweidimensionale anordnung von schallwandlern für eventbeschallungen
DE3904943C2 (de)
DE945768C (de) Aus mehreren in einer Reihe in eine gemeinsame lattenartige Schallwand eingebauten Lautsprechern bestehende Lautsprecher-Gruppenanordnung
DE102022129642A1 (de) Verfahren zur richtungsabhängigen Korrektur des Frequenzganges von Schallwellenfronten
DE102018108852B3 (de) Verfahren zur Beeinflussung einer auditiven Richtungswahrnehmung eines Hörers
DE102020203659A1 (de) Schallwandler-Anordnung und Verfahren zum Betrieb einer Schallwandler-Anordnung
DE102024000725A1 (de) Virtuelle akustische Reflektoren
EP4140151A1 (de) Virtuelle lautsprecher für akustisch intransparente bildschirme
DE3132250A1 (de) "lautsprecherbox"
DE102013102356A1 (de) Verfahren zum Bestimmen einer Konfiguration für eine Lautsprecheranordnung zum Beschallen eines Raums und Computerprogrammprodukt
EP2571290B1 (de) Lokale Schallfeldsynthese durch einen virtuellen Streukörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, FRANK STEFAN

Inventor name: OELLERS, HELMUT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HOLOPLOT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190411

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200403

RIN1 Information on inventor provided before grant (corrected)

Inventor name: OELLERS, HELMUT

Inventor name: SCHMIDT, FRANK STEFAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1332393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014976

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014976

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210911

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210911

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1332393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 10

Ref country code: GB

Payment date: 20230921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 10

Ref country code: DE

Payment date: 20230824

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 10

Ref country code: CH

Payment date: 20231001

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104