EP3005732B1 - Vorrichtung und verfahren zur raumselektiven audiowiedergabe - Google Patents

Vorrichtung und verfahren zur raumselektiven audiowiedergabe Download PDF

Info

Publication number
EP3005732B1
EP3005732B1 EP14727481.5A EP14727481A EP3005732B1 EP 3005732 B1 EP3005732 B1 EP 3005732B1 EP 14727481 A EP14727481 A EP 14727481A EP 3005732 B1 EP3005732 B1 EP 3005732B1
Authority
EP
European Patent Office
Prior art keywords
audio signal
audio
beamforming
loudspeakers
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14727481.5A
Other languages
English (en)
French (fr)
Other versions
EP3005732A1 (de
Inventor
Andreas Franck
Christoph SLADECZEK
Thomas Sporer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3005732A1 publication Critical patent/EP3005732A1/de
Application granted granted Critical
Publication of EP3005732B1 publication Critical patent/EP3005732B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • H04R2203/12Beamforming aspects for stereophonic sound reproduction with loudspeaker arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2227/00Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
    • H04R2227/001Adaptation of signal processing in PA systems in dependence of presence of noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Definitions

  • the present invention relates to a space-selective audio reproduction, e.g. of different audio signals to different listeners or listener groups located in different locations of a room.
  • the reproduction of audio signals over several speakers, typically organized as an array, is a common practice.
  • an individual modification such as, the application of a delay and a change in amplitude, generally also described with filtering
  • the shape of the sound field radiated by a loudspeaker can be purposefully influenced, such as e.g. for the purpose of deliberately sounding certain areas.
  • beamforming This technique also allows multiple audio signals to be played back simultaneously with different directional characteristics by producing individual filtered speaker signals for all signals, which are summed up loudly before playback.
  • US 2012/0020480 A1 describes an improvement in the directional characteristic of a loudspeaker array at low frequencies goes. It is proposed to copy or amplify fundamental harmonics from low frequencies into the high frequencies, making use of the psychoacoustic phenomenon that hearing higher harmonics of a signal results in an auditory illusion of hearing the missing fundamental. Accordingly, harmonics are amplified to fundamental frequencies and the fundamental frequencies are again reduced, whereby the better directional characteristic of loudspeaker arrays in higher frequency ranges is utilized. In addition, it is suggested that the masking noise could be used to obscure signal portions of the directionally transmitted audio signal at locations where this audio signal is not supposed to be audible according to the directional broadcast.
  • EP1699259 describes an audio output device having a measuring means for measuring the levels of a plurality of input audio signals; a sound level adjusting means for adjusting the levels of the input sound signals configured to adjust the gains based on the levels measured by the measuring means and outputting a plurality of adjusted sound signals of equal magnitudes; and an array speaker unit adapted to receive a plurality of tones in accordance with the plurality of matched ones Emitting sound signals respectively outputted to different directivity characteristics by the sound level adjusting means, a first sound being directed toward a first focal point and a second sound being directed toward a second focal point different from the first focus point; wherein the measuring means is configured to divide the plurality of input audio signals into a plurality of frequency bands to measure the levels, and the audio level adjusting means is adapted to adjust and output gains so as to cause the plurality of adjusted audio signals to be equal Having magnitudes for each of the frequency bands based on the measured levels of the respective frequency bands.
  • the object of the present invention is to provide such a concept.
  • the core idea of the present invention is to have realized that a better separation of a first audio signal in a first area of a PA area of a plurality of loudspeakers can be achieved by the version of the first area resulting from the space-selective reproduction of the audio signals Calculating a masking threshold depending on the version of the audio signal to be separated from the one or more other audio signals in that area and depending on a comparison of the masking threshold with the version of the one or more other, ie interfering , Audio signals, the output of the audio signals for space-selective playback is influenced to the outputs of the plurality of speakers.
  • the calculation or estimation of the audio signals in this first area can also be illustrated as a simulation of the sound propagation in this first area and thus the element for its execution as a calculator or simulator.
  • the separation of the audio signals to the first area of the PA area already enabled by the room-selective reproduction can thus be improved by evaluating the masking threshold by calculating or simulating the versions of the audio signals resulting from the room-selective reproduction.
  • the influencing of the space-selective reproduction to avoid or reduce the "violation" of the masking threshold at the first area of the public address area can be carried out in different ways, such as by frequency-selective reduction of each interfering other audio signal in frequency ranges where the respective simulated other audio signal exceeds the masking threshold.
  • Fig. 1 shows a device for space-selective audio playback according to an embodiment. It is indicated generally by the reference numeral 10.
  • the apparatus 10 comprises an input 12 for at least a first audio signal 14 1 and a second audio signal 14 2 and an output 16 for a plurality of loudspeakers 18.
  • a beamforming processor 20 of the apparatus 10 is connected between the input 12 on the one hand and the output 16 on the other hand designed to output the first and second audio signals 14 1 and 14 2 to the speakers 18 for room-selective reproduction via the output 16.
  • the loudspeakers 18 are capable of sonicating a PA area 22, such as an area surrounded or directed by the loudspeakers at their intended speaker locations, or generally an area which is sonicated by at least one of the loudspeakers 18 ,
  • the sonication area may be a fictitious space relative to the configurations of fictitious speaker positions of the speakers 18, such as a virtual one PA area without reflective surfaces, or around a real PA area, which reflection effects, such as on walls or the like, may have.
  • "Space selective" playback of the audio signals 14 1 and 14 2 on the speakers 18 shall mean that the audio signals are not simply output in the form of superimposed copies to the loudspeakers 18, but that they are as described in the introduction to the present application , are output via the loudspeakers 18 filtered by means of, for example, speaker-specific delays and / or amplitude modifications or in general filtered by a loudspeaker-individual filtering and indeed different for the audio signals 14 1 and 14 2 , so that there is at least a first area 24 of the public address area, which differs from the second audio signal 14 2 compared to the first audio signal 14 1 is less or not at all sonicated.
  • the audio signals 14 1 and 14 2 may be present at the input 12 in any form, such as analog or digital, in separate or in m / coded form or in a parameterized downmix form, uncompressed or compressed
  • any form such as analog or digital
  • Loudspeaker-individual loudspeaker signals for the loudspeakers 18 can be output via the output 16 separately, in analog or digital, compressed or uncompressed, already amplified , only pre-reinforced or unreinforced
  • the loudspeaker signals it would be possible for the loudspeaker signals to be output in compressed form in a downmix, along with spatial cues parameters, such as in MPEG surround or SAOC encoded form.
  • the beamforming processor 20 initially processes the incoming audio signals 14 1 and 14 2 completely separate from each other to produce a set of loudspeaker signals for the loudspeakers 18 to each of them so that each loudspeaker signal for the respective audio signal has a particular one for the respective loudspeaker position of the respective one Speaker individual filtering, such as delay and / or amplitude modification experienced. Only at the end, for example, the thus obtained from the individual speaker signals loudspeaker signal sets per channel or speakers are superimposed with each other. This is also illustrated once more in the following figures.
  • the term “space selectivity” should of course also be understood broad enough to allow only "angle selectivity” in the sense that the audio signal individual processing within the beamforming processor 20 results in the audio signals 14 1 and 14 2 being emitted into different solid angle ranges as viewed from the loudspeakers 18. Such angular selectivity may be to influence the far field radiation of the loudspeaker setup be interpreted. In a small distance to the speaker setup (in relation to the size of the speaker setup, ie in the geometric near field) is also a targeted modification of the radiation in a two-dimensional area conceivable.
  • beamforming processor 20 may be fixed or optimized for space selective playback.
  • the spatial selectivity of the reproduction of the beamforming processor 20 may be constant. It may be optimized in advance to the area 24 or the areas 24 and 26, ie to the effect that in the area 24 only the first audio signal 14 1 and, if provided, in the area 26 only the second audio signal 14 2 from a listener in the respective Area is audible.
  • the optimization then defines the aforementioned delays, amplitude modifications and / or filters, such as FIR filters, for the individual channels or speakers 18, and the beamforming processor 20 may be hard-wired, for example, or fixed in software or programmable Hardware implemented to accomplish the space-selective playback via the output 16 to the speakers 18.
  • the beamforming processor is also adjustable in terms of speaker-individual processing (delay, amplitude modulation or filtering) for one or more of the audio signals 14 1 , 14 2 .
  • the beamforming processor 20 can be adjusted or influenced at the output 16 with regard to its space-selective reproduction of the audio signals 14 1 , 14 2 , as will be described in more detail below.
  • this setting can also be achieved by audio-signal-specific, frequency-selective modification / influencing of individual or all audio signals which acts on all loudspeakers / channels, as will also be described below. It is the aforementioned controllability of the beamforming processor 20 that uses the components of the apparatus 10 described below to enhance the separation of the first audio signal 14 1 in the area 24 from the other audio signal 14 2 .
  • the device 10 comprises, in addition to the components described so far, a calculator 28, a masking threshold calculator 30 and an adjuster 32.
  • the calculator 28 is also connected to the input 12 and is designed to use a propagation model for the audio signals 14 1 and 14 2, respectively to calculate the version of the respective audio signal 14 1 or 14 2 resulting from the room-selective reproduction in the first area 24, ie the version 34 1 of the audio signal 14 1 reproduced at the location 24 and also the version 34 2 of the audio signal 14 reproduced at the location 24 2 .
  • the masking threshold calculator 30 receives the socket 34 1 and is designed to calculate a masking threshold 36 as a function of this, and the adjuster 32 receives the socket 34 2 of the other audio signal and optionally also the socket 34 1 of the first audio signal 14 1 and is designed to in order to influence the output of the first and second audio signals for space selective reproduction via the output 16 to the loudspeakers 18, depending on a comparison of the masking threshold 36 with the version of the second audio signal 34 2 , by the adjuster 32 controlling the beamforming processor 20 as appropriate an arrow 38 is indicated.
  • an output of the adder 32 is connected to a control input of the beamforming processor 20.
  • Calculators 28, masking threshold calculators 30, and fitters 32 may each be implemented in software, programmable hardware, or in hardware.
  • the calculator 28 may use propagation models that are also for optimization the internal, channel / speaker-individual processing of the audio signals 14 1 , 14 2 within the beamforming processor 20 could have been used.
  • the calculator 28 calculates or estimates, for example, as will be described in more detail below, the sound events generated at the location 24 by the first audio signal 14 1 and the second audio signal 14 2 . For example, it can take account of the channel / loudspeaker-individual processing of the audio signals 14 1 , 14 2 within the beamforming processor 20 and the positions of the loudspeakers 18 and optionally further parameters, such as emission characteristics and / or orientation of the loudspeakers 18.
  • the calculator 28 calculates the sound events, for example, measured or represented in sound pressure, amplitude or the like, and possibly frequency-dependent, ie for different frequencies.
  • the calculator 28 may perform the simulation in a constant / fixed manner.
  • the consideration of the adaptation to the channel / speaker-individual processing of the processor 20 is then based on the appropriate design of the propagation model, which the calculator 28 uses to calculate the sockets 34 1 , 34 2 .
  • the propagation model can thus also take into account the parameters just mentioned.
  • the sockets 34 1 and 34 2 may in turn be output by the calculator 28 in any form, ie analog or digital, compressed or uncompressed, in the time domain or in the frequency domain or the like.
  • the Mask michmaschinesschwellenberechner 30 calculates a masking threshold depending on the version 34 1, ie the audible version of the audio signal 14 1 24 at the location As is indicated by a dotted arrow 40 which Mask michsschwellenberechner a background audio signal, in addition to the socket 34 1 (for example Noise or driving noise) for masking threshold calculation.
  • the calculation takes into account temporal and / or spectral auditory masking effects.
  • the calculated masking threshold thus indicates, depending on the frequency, how much the socket 34 1 of the audio signal 14 1 at the location 24 is able to make other audio signals inaudible to a listener at the location 24 by covering the latter.
  • the masking threshold calculator 30 may be configured to calculate the masking threshold at a frequency resolution that becomes increasingly coarse as the frequency increases, ie, as the frequency bands increase in frequency as the frequency increases, such as in a Bark frequency resolution.
  • the adjuster 32 compares the masking threshold 36 with the socket 34 2 of the second audio signal 14 2 and thus determines, for example, whether the second audio signal 14 2 is audible to a person at the location 24, ie if the second audio signal at any frequency is the masking threshold exceeds. If so, the adjuster 32 takes countermeasures and appropriately controls the beamforming processor 20. Several examples of such controls have been previously indicated. Referring to the following figures, this is illustrated once again.
  • Fig. 2 For example, in a graph plotted against the frequency f, the masking threshold 36, the bezel 34 1, and the bezel 34 2 are shown in a virtual, thickness-measuring scale.
  • a frequency range 42 in which currently the interfering audio signal 14 2 or the version 34 2 resulting at the location 24 according to the simulation exceeds the masking threshold 36, is illustrated by way of example.
  • a possible countermeasure would be that the adjuster 32 controls the beamforming processor 20 in such a way that the second audio signal 34 2 is reduced in this frequency range 42, as indicated by an arrow 44.
  • the adjuster 32 could control the beamforming processor 20 in such a way that the first audio signal 14 1 is amplified in this frequency range 42-or, if appropriate, even beyond this frequency range 42, as indicated by an arrow 46.
  • Reduction 44 and / or gain 46 are preferably made such that the amount of gain / reduction does not have abrupt jumps in time and / or frequency.
  • the extent or the form of reduction and / or amplification is smoothed, for example temporally and / or spectrally.
  • Fig. 2 explained possible measures of the adapter 32 against audibility of the version 34 2 at the location 24 in the space-selectivity sense global measures or channel / speaker-global or for all channels / speakers 18 equally acting measures. It will be shown later that the beamforming processor 20 executes, for example, the gain 46 and / or reduction 44 in advance on the respective incoming audio signal 14 1 or 14 2 and only then the channel / speaker individual processing of the equally pre-processed audio signals for the space-selective playback. Additionally or alternatively, as already indicated above, the adjuster 32 may be formed to vary the beam shaping itself depending on the aforementioned comparison with the masking threshold 36. To illustrate this, refer to Fig. 3 taken.
  • FIG. 12 shows that the beamforming processor 20 has multiple channel / speaker options or modes of individual beamforming processing of the audio signals 14 1 and 14 2 , which are indicated here by way of example at 48 1 -48 N in different modes.
  • One of these, for example the beamforming processing according to FIG. 48 1 could be, for example, an optimal spatial-selective reproduction processing, ie possibly leading in place and frequency to the best suppression of the audio signal 14 2 or 34 2 at the location 24.
  • the other modes 24 2 - 48 N may possibly lead to similarly good separations or even to equally good or even optimal according to other or differently weighted criteria.
  • all modes 48 1 - 48 N could have differences in the quality of suppression for different frequency ranges, and in this case, the adder 32 could be dependent on the comparison with the masking threshold 36 and a location of an interval 42 in which the masking threshold 36 is violated is present, change a currently selected channel / speaker-individual processing mode or change from the same to another, in Fig.
  • an arrow 50 should indicate the selection of a currently selected mode 48 1 -48 N and a double arrow 52 should change that mode currently used by the beamforming processor 20 to another depending on the aforementioned comparison with the masking threshold 36 another might be associated in the beamforming processor 20 with a speaker / channel individual fading between a loudspeaker signal received with the last and a new mode with the new mode.
  • masking threshold 30 and adjuster 32 is the device 10 of Fig. 1 thus able to improve the suppression of another audio signal 14 2 at a location 24 of the PA area of the loudspeaker setup 18 with respect to a constant, optimized beam shaping separation.
  • Various measures are possible to avoid any degradation of the audio quality of the first and / or the second audio signal at location 24 and / or location 26 by the masking threshold controlled modification.
  • the extent of gain 46 and / or reduction 44 can be limited both in terms of its absolute value, ie the strength of the gain 46 and / or magnitude of the reduction 44, but also the change of this severity in time and / or frequency. In the case of using the possibility according to Fig.
  • fading could be used to switch from one mode to the other mode.
  • a delay may be provided to make a processing delay adjustment to the processing delay caused by the series of processing in calculator 28, masking threshold calculator 30 and adjuster 32 is caused.
  • Such additional delay in the beamforming processor 20 path from processing in the path along the calculator 28, masking threshold calculator 30, and aligner 32 could also be used to facilitate the aforementioned fading transitions between different beamforming modes 48 1 -48 N.
  • Audio signals 14 1 and 14 2 can be provided. This is indicated by a dashed arrow 54 in FIG Fig. 1 indicated. The foregoing description is readily applicable to this case. Additional audio signals 54 would, for example, be treated as the audio signal 14 2 , ie as audio signals whose reproduction at location 24 should be inaudible to a listener at this location 24.
  • the above embodiment makes it possible to improve the perceived quality of a spatial-related replay by incorporating psychoacoustic effects. It exploits that an audio signal audibility of components of another, quieter signal. This effect is called masking . For example, this plays a central role in lossy audio coding.
  • masking In psychoacoustics, a distinction is made between masking in the time domain and in the frequency domain. In masking in the time domain, a loud signal, the so-called masker, masks other components that appear shortly after or within narrow limits even before this sound event. In the frequency domain masking, a component of a particular frequency masks other components of similar frequency and amplitude.
  • the threshold to which masking occurs depends on the frequency and absolute level of the marker and the distance between the frequencies of the masker and other signal.
  • the masking thresholds and thus the decision as to whether a signal component is masked are determined by psychoacoustic models. Such psychoacoustic models are used by masking threshold calculator 30.
  • FIG. 4 shows how two audio signals S 1 (t) and S 2 (t) via two beamforming filter sets 60 1 and 60 2 , a summation stage 62 and a speaker array of speakers 18 are processed so that these signals in the areas Z 1 and Z 2 , ie the audio signal S 1 (t) mainly in the area Z 1 and the audio signal S 2 (t) mainly in the area Z 2 .
  • the components 60 1 , 60 2, and 62 form a simple beamforming processor 64 that, for example, operates constantly and is optimized to perform the aforementioned separation.
  • the beamformer 60 1 beamforms the incoming audio signal S 1 (t) to produce a set of loudspeaker signals for that signal, and the same does beamformer 60 2 for the second audio signal S 2 (t). Both beamformers 60, 1.2 output their loudspeaker signal sets to the summer 62, which individually adds the same loudspeaker signals to the loudspeakers 18.
  • Fig. 5 now shows how the setup of Fig. 4 according to the embodiment of Fig. 1 can be improved.
  • the device of Fig. 5 is indicated at 10 and otherwise the reference numerals of Fig. 1 taken over to each other in their function corresponding parts to Fig. 1 display.
  • the beamforming processor 20 is of Fig. 5 opposite the starting point of Fig. 4 by way of example only by inserting a Pegelanpassers 66 in the signal path of the interfering audio signal S 2 modified here exemplarily on the input side of the beam former 60 2 , although for all channels / speakers 18 equally acting level adjustment by the level adjuster 66 would also be possible.
  • the level adjuster 66 is controlled by the adjuster 32, with reference to Figs Fig.
  • Fig. 5 also shows that it is possible to use the in Fig. 1 perform for one of the audio signals performed signal separation of other audio signals for more than one audio signal.
  • the calculator 28 simulates the respective audible version at both locations, namely locations Z1 and Z2, for both audio signals 60 S 1 and S 2 . That is why in Fig. 5 a propagation model user 1 68 shown, which applies the appropriate propagation models to the audio signal S 1 and a propagation model 68 users 2 who undertakes selbiges for the audio signal S2.
  • the masking threshold calculator 30 performs a masking threshold calculation and gives the result, ie the respective masking threshold for the location Z 1 and Z 2 , ie the masking by the signal S 1 at location Z 1 or the masking by the audio signal S 2 at location Z 2 , to the control data adaptation or the adjuster 32 further, which in each case reserves the respective disturbing listening versions, ie the audible version of the signal S 2 at location Z 1 and the audible version of the signal S 1 at location Z 2 .
  • the device is after Fig. 5 the masking thresholds of the audibility of the signal S 2 in zone Z 1 determined.
  • the signals resulting from the signals S 1 (t) and S 2 (t) in the zone Z 1 are determined, such as the magnitudes in the frequency domain.
  • a propagation model is calculated or used, which includes the transfer function of the loudspeaker array of loudspeakers 18.
  • the signals are referred to as S 1 (t, Z 1 ) and S 2 (t, Z 1 ).
  • the masking thresholds for the audibility of the signal S 2 (t, Z 1 ) are determined using the masker S 1 (t, Z 1 ).
  • Thresholds are determined in a component change values for the magnitudes of the audio signal S 1 (t) (for certain frequency ranges).
  • other psychoacoustically motivated parameters can be included, such as maximum permissible changes of the signal S 1 (t) in order to limit the effects of the adjustments by the adjuster 32 to the reproduction of S 1 (t) in Z 1 .
  • the temporal course of the magnitude change is limited in order to avoid sudden, potentially disturbing changes.
  • the parameters of this timing can also be determined by psychoacoustic parameters.
  • a level adjuster may also be inserted in the signal path of the audio signal S 1 which is controlled by the adjuster 32 based on a comparison of the masking threshold for the location Z 2 with the disturbing audio signal S 1 at the location Z 2 .
  • the matcher 32 Since the adjuster 32 knows about the result of all comparisons, ie the result of the comparison of the masking threshold in Z 2 with S 1 at location Z 2 and the result of the comparison of the masking threshold in Z 1 with S 2 at location Z 1 , the matcher is in capable of making it possible for all locations or areas Z 1/2 to reduce the influence of the respectively interfering signal, ie S 2 in Z 1 and S 1 in Z 2 , to the desired signal, ie S 2 in Z 2 and S 1 in Z 1 , to calculate. It may be that the adjuster 32 has to compromise on this, since the disturbances in the individual areas require measures that mean a deterioration in the other area or in the other areas. This trade-off could be influenced by having the matcher 32 prioritize the ranges and associated desired signals so that the negative impact of higher priority signals at their respective destination is realized by other higher priority signals than lower priority signals.
  • the number of audio signals may also be higher.
  • the signal flow of the concept or algorithm is in Fig. 5
  • the acoustic Event such as the sound pressure, the magnitude, etc.
  • This propagation model is usually a function of frequency and produces a discrete set of values, each associated with a frequency.
  • the transfer function of the beamformer 60 1 to a point such as the center of the zone Z 1
  • other models such as a weighted average of the magnitude transfer function to a bitmap in Z 1 may be used.
  • the kernel characteristic of the propagation model is that it translates an input signal S i (t) to a measure describing the magnitude of the sound incidence resulting from this signal in zone Z 1 , for each of the considered frequency bands.
  • the division of the audio frequency range into frequency bands can be done differently, but useful are psychoacoustic characteristics oriented divisions, such as Constant-Q or Bark scale.
  • the output values of the psychoacoustic model may be output at a lower frequency than the audio sample rate. This can be done, for example, by sub-sampling or by moving averaging with, for example, decimation.
  • the output values of the masking threshold calculator are in the embodiment of FIG Fig. 5 still raw control data describing a desired level change in the individual frequency bands.
  • the matched control signals of the adaptor are used in the level adjuster to frequency-level level the signal S 1 (t) before filtering with the loudspeaker-specific beamforming filters in the beamformer 60 2 .
  • the level adjuster 66 thus acts as a multi-band equalizer.
  • a function similar to a multiband compressor, or more generally multiband dynamics control, is achieved in conjunction with the timing of the adaptor, but unlike normal use, these units here use a different signal to control the gain values.
  • the signal S 2 (t) can be adaptively changed in order to reduce the interference of S 2 (t) into the zone Z 1 . This is also possible to reduce crosstalk simultaneously. This possibility exists regardless of the details of Fig. 5 of course, more generally for the example of Fig. 1 ,
  • a reference signal 40 may be additionally used for extraneous noise such as general background noise level, interior noise in automotive applications, or the like. This signal 40 can be used as an additional input to the masking threshold calculation, as described above.
  • the reference signal 40 is preferably a measured or sensible estimated value for the background noise signal in the "sound zones" 24 or 26 or Z 1 in Z 2 .
  • the above exemplary embodiments thus describe a concept for space-selective reproduction with loudspeaker arrays by psychoacoustic environmental effects or the spatial reproduction of audio signals via a plurality of loudspeakers, which can be arranged, for example, as an array.
  • loudspeakers which can be arranged, for example, as an array.
  • this has been accomplished by a combination of beamforming algorithms with a psychoacoustic model that modifies the audio signals so that the audibility of the interfering signals is reduced by the psychoacoustic masking by the useful signal.
  • aspects have been described in the context of a device, it will be understood that these aspects also constitute a description of the corresponding method, so that a block or a component of a device is also to be understood as a corresponding method step or as a feature of a method step. Similarly, aspects described in connection with or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.
  • Some or all of the method steps may be performed by a hardware device (or using a hardware device). Apparatus), such as a microprocessor, a programmable computer or an electronic circuit. For some Embodiments, some or more of the most important method steps may be performed by such an apparatus.
  • embodiments of the invention may be implemented in hardware or in software.
  • the implementation may be performed using a digital storage medium, such as a floppy disk, a DVD, a Blu-ray Disc, a CD, a ROM, a PROM, an EPROM, an EEPROM or FLASH memory, a hard disk, or other magnetic disk or optical memory are stored on the electronically readable control signals that can cooperate with a programmable computer system or cooperate such that the respective method is performed. Therefore, the digital storage medium can be computer readable.
  • some embodiments according to the invention include a data carrier having electronically readable control signals capable of interacting with a programmable computer system such that one of the methods described herein is performed.
  • embodiments of the present invention may be implemented as a computer program product having a program code, wherein the program code is operable to perform one of the methods when the computer program product runs on a computer.
  • the program code can also be stored, for example, on a machine-readable carrier.
  • inventions include the computer program for performing any of the methods described herein, wherein the computer program is stored on a machine-readable medium.
  • an embodiment of the method according to the invention is thus a computer program which has a program code for performing one of the methods described herein when the computer program runs on a computer.
  • a further embodiment of the method according to the invention is thus a data carrier (or a digital storage medium or a computer-readable medium) on which the computer program is recorded for performing any of the methods described herein.
  • a further embodiment of the method according to the invention is thus a data stream or a sequence of signals, which represent the computer program for performing one of the methods described herein.
  • the data stream or the sequence of signals may be configured, for example, to be transferred via a data communication connection, for example via the Internet.
  • Another embodiment includes a processing device, such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
  • a processing device such as a computer or a programmable logic device, that is configured or adapted to perform one of the methods described herein.
  • Another embodiment includes a computer on which the computer program is installed to perform one of the methods described herein.
  • Another embodiment according to the invention comprises a device or system adapted to transmit a computer program for performing at least one of the methods described herein to a receiver.
  • the transmission can be done for example electronically or optically.
  • the receiver may be, for example, a computer, a mobile device, a storage device or a similar device.
  • the device or system may include a file server for transmitting the computer program to the recipient.
  • a programmable logic device eg, a field programmable gate array, an FPGA
  • a field programmable gate array may cooperate with a microprocessor to perform one of the methods described herein.
  • the methods are performed by any hardware device. This may be a universal hardware such as a computer processor (CPU) or hardware specific to the process, such as an ASIC.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

  • Die vorliegende Erfindung bezieht sich auf eine raumselektive Audiowiedergabe, z.B. von unterschiedlichen Audiosignalen an unterschiedliche Hörer oder Hörergruppen, welche sich in unterschiedlichen Orten eines Raums befinden.
  • Die Wiedergabe von Audiosignalen über mehrere, typischerweise als Array organisierte Lautsprecher ist ein übliches Verfahren. Durch eine Replikation des Signals und die Gewinnung der Lautsprechersignale durch eine individuelle Modifikation, wie z.B. das Auferlegen einer Verzögerung und einer Änderung der Amplitude, allgemein auch mit Filterung beschreibbar, kann die Form des mit einem Lautsprecher abgestrahlten Schallfeldes zielgerichtet beeinflusst werden, wie z.B. zum Zwecke, bestimmte Bereiche gezielt zu beschallen. Diese Techniken werden im Folgenden als Beamforming bezeichnet. Mit dieser Technik können auch mehrere Audiosignale gleichzeitig mit verschiedenen Richtcharakteristiken wiedergegeben werden, indem für alle Signale individuelle gefilterte Lautsprechersignale erzeugt werden, die vor der Wiedergabe lautsprecherweise summiert werden. Dadurch kann eine raumselektive Wiedergabe erzielt werden, in der mehrere Bereiche, sogenannte "sound zones", mit unterschiedlichen Signalen beschallt werden, wobei die gegenseitige Beeinflussung der Schallwiedergabe untereinander oder zu anderen Zonen, sogenannten "quiet zones", in denen möglichst Stille herrschen soll, minimiert wird.
  • Es existieren eine Vielzahl von Algorithmen zur Bestimmung von Beamforming-Filtern. Neben solchen, die nur Amplitudengewichte und/oder Verzögerungen anwenden, gibt es auch Verfahren auf Basis einer frequenzabhängigen Filterung. Diese basieren oftmals auf Optimierungstechniken und ermöglichen die flexible Vorgabe eines gewünschten Abstrahlverhaltens, wie z.B. eine wählbare Abstrahlrichtung oder die Unterdrückung der Abstrahlung in definierbaren Bereichen, entsprechend den oben genannten "quiet zones". Ungeachtet solcher Beamforming-Algorithmen ist die Wirksamkeit der raumselektiven Beschallung, insbesondere der Unterdrückung der hörbaren Interferenz zwischen Schallzonen, oftmals begrenzt und erlaubt keine akzeptable Qualität. Die Hauptgründe dafür sind die Limitationen der Lautsprecher-Arrays, ein gewünschtes Richtverhalten über den genutzten Frequenzbereich zu erzielen, der Einfluss des Wiedergaberaumes sowie Fehler, die aus einer begrenzten Robustheit der Beamforming-Filter gegenuber Abwelchungen der Lautsprecher, der Signalamplituden, etc. entstehen. Damit sind die Möglichkeiten für eine raumselektive Wiedergabe über physikalische und signalverarbeitungstechnische Maßnahmen begrenzt.
    Wünschenswert wäre es, ein Konzept zur raumselektiven Audiowiedergabe an der Hand zu haben, das es ermöglicht, an einem bestimmten Bereich eines Beschallungsgebietes eine sauberere Trennung eines für diesen Bereich vorgesehenen Audiosignals von einem oder mehreren anderen überlagert wiedergegebenen Audiosignalen erzielen zu können.
    US 2010/0158263 A1 lehrt eine ortsunabhängige bzw. abstrahlungsglobale Frequenzband-selektive Verstärkung/Schwächung von widerzugebenden Signalen, um eine nach Maskierungsgesichtspunkten verbesserte gegenseitige Trennung der Wiedergabe zu erzielen.
  • US 2012/0020480 A1 beschreibt eine Verbesserung der Richtcharakteristik eines Lautsprecherarrays bei tiefen Frequenzen geht. Es wird vorgeschlagen, Grundharmonische aus tiefen Frequenzen in die hohen Frequenzen zu kopieren bzw. dort zu verstärken, wobei von dem psychoakustischen Phänomen Gebrauch gemacht wird, dass das Hören höherer Harmonischer eines Signals zu einer hörmäßigen Illusion des Hörens der fehlenden Grundschwingungen führt. Harmonische werden demnach zu Grundschwingungen verstärkt und die Grundschwingungen wiederum werden reduziert, wodurch die bessere Richtcharakteristik von Lautsprecherarrays in höheren Frequenzbereichen ausgenutzt wird. Zusätzlich wird vorgeschlagen, dass das Maskierungsrauschen verwendet werden könne, um Signalanteile des gerichtet ausgesendeten Audiosignals an Orten zu verdecken, an denen dieses Audiosignal eigentlich gemäß der gerichteten Ausstrahlung nicht hörbar sein soll.
    EP1699259 beschreibt eine Audioausgabevorrichtung mit einem Messmittel zum Messen der Pegel einer Vielzahl von eingegebenen Tonsignalen; einem Tonpegelanpassungsmittel zum Anpassen der Pegel der eingegebenen Tonsignale, das konfiguriert ist, um die Verstärkungen anzupassen, basierend auf den Pegeln, die durch das Messmittel gemessen werden, und zur Ausgabe einer Vielzahl von angepassten Tonsignalen mit gleichen Größenordnungen; und einer Anordnungs- bzw. Array-Lautsprechereinheit, die angepasst ist, um eine Vielzahl von Tönen in Übereinstimmung mit der Vielzahl von angepassten Tonsignalen auszusenden, die von dem Tonpegelanpassungsmittel jeweils in unterschiedliche Richtcharakteristiken ausgegeben werden, wobei ein erster Ton zu einem ersten Fokuspunkt hin gerichtet wird und ein zweiter Ton zu einem zweiten Fokuspunkt hin gerichtet wird, der sich von dem ersten Fokuspunkt unterscheidet; wobei das Messmittel konfiguriert ist, um die Vielzahl der eingegebenen Tonsignale in eine Vielzahl von Frequenzbändern zu unterteilen, um die Pegel zu messen, und das Tonpegelanpassungsmittel angepasst ist, um Verstärkungen anzupassen und auszugeben, so dass bewirkt wird, dass die Vielzahl der angepassten Tonsignale gleiche Größen für jedes der Frequenzbänder aufweist, und zwar basierend auf den gemessenen Pegeln der entsprechenden Frequenzbänder.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein solches Konzept zu schaffen.
  • Die Aufgabe wird durch den Gegenstand der anhängigen unabhängigen Patentansprüche gelöst.
  • Der Kerngedanke der vorliegenden Erfindung besteht darin, erkannt zu haben, dass eine bessere Trennung eines ersten Audiosignals in einem ersten Bereich eines Beschallungsgebietes einer Mehrzahl von Lautsprechern dadurch erzielt werden kann, dass die sich durch die raumselektive Wiedergabe der Audiosignale an diesem ersten Bereich ergebende Fassung der Audiosignale berechnet wird, eine Maskierungsschwelle abhängig von der Fassung desjenigen Audiosignals berechnet wird, das von dem einen oder den mehreren anderen Audiosignalen an diesem Bereich zu trennen ist, und abhängig von einem Vergleich der Maskierungsschwelle mit der Fassung des einen oder der mehreren anderen, d.h. störenden, Audiosignale die Ausgabe der Audiosignale zur raumselektiven Wiedergabe an die Ausgänge der Mehrzahl von Lautsprechern beeinflusst wird. Die Berechnung oder Schätzung der Audiosignale in diesem erstem Bereich kann auch als Simulation der Schallausbreitung in diesen ersten Bereich veranschaulicht werden und das Element zu dessen Ausführung demzufolge Berechner oder Simulator. Die durch die raumselektive Wiedergabe bereits ermöglichte Trennung der Audiosignale an den ersten Bereich des Beschallungsgebietes kann also unter Auswertung der Maskierungsschwelle verbessert werden, indem die sich durch die raumselektive Wiedergabe ergebenden Fassungen der Audiosignale berechnet bzw. simuliert werden. Die Beeinflussung der raumselektiven Wiedergabe zur Vermeidung bzw. einer Verringerung der "Verletzung" der Maskierungsschwelle am ersten Bereich des Beschallungsgebietes kann auf unterschiedliche Weise durchgeführt werden, wie z.B. durch frequenzselektive Reduktion des jeweils störenden anderen Audiosignals in Frequenzbereichen, an denen das jeweilige simulierte andere Audiosignal die Maskierungsschwelle überschreitet. Zusätzlich ist es möglich, das eigentlich interessierende Audiosignal an entsprechenden Frequenzbereichen zu verstärken. Zusätzlich wäre es auch denkbar, eine Strahlformung des eigentlich interessierenden (ersten) Audiosignals oder beider Audiosignale, abhängig von dem Vergleich mit der Maskierungsschwelle zu variieren.
  • Voreilhafte Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche. Bevorzugte Ausführungsbeispiele der vorliegenden Anmeldung werden nachfolgend, bezugnehmend auf die Zeichnungen, näher erläutert, unter welchen
  • Fig. 1
    ein Blockschaltbild einer Vorrichtung zur raumselektiven Wiedergabe zeigt;
    Fig. 2
    eine Skizze zur Veranschaulichung möglicher Maßnahmen des Anpassers aus Fig. 1 zeigt;
    Fig. 3
    eine Skizze zur Veranschaulichung einer Maßnahme des Anpassers von Fig. 1 gemäß einem Ausführungsbeispiel veranschaulicht;
    Fig. 4
    ein Blockschaltbild einer herkömmlichen Vorrichtung zur raumselektiven Wiedergabe zeigt; und
    Fig. 5
    ein Blockschaltbild einer Implementierungsvariante des Ausführungsbeispiels von Fig. 1 mit Ausgangspunkt zeigt.
  • Fig. 1 zeigt eine Vorrichtung zur raumselektiven Audiowiedergabe gemäß einem Ausführungsbeispiel. Sie ist allgemein mit dem Bezugszeichen 10 angezeigt. Die Vorrichtung 10 umfasst einen Eingang 12 für zumindest ein erstes Audiosignal 141 und ein zweites Audiosignal 142 sowie einen Ausgang 16 für eine Mehrzahl von Lautsprechern 18. Ein Strahlformungsverarbeiter 20 der Vorrichtung 10 ist zwischen den Eingang 12 einerseits und den Ausgang 16 andererseits geschaltet und ausgebildet, um das erste und zweite Audiosignal 141 und 142 zur raumselektiven Wiedergabe über den Ausgang 16 an die Lautsprecher 18 auszugeben. Die Lautsprecher 18 sind in der Lage, ein Beschallungsgebiet 22 zu beschallen, wie z.B. ein Gebiet, das von den Lautsprechern an ihren vorgesehenen Lautsprecherorten umgeben wird, oder auf das sie gerichtet sind oder allgemein ein Gebiet, das zumindest von einem der Lautsprecher 18 beschallt wird. Bei dem Beschallungsgebiet kann es sich um einen fiktiven Raum relativ zu der Konfigurationen von fiktiven bzw. Soll-Lautsprecherpositionen der Lautsprecher 18 handeln, wie z.B. ein virtuelles Beschallungsgebiet ohne reflektierende Oberflächen, oder um ein reales Beschallungsgebiet, welches Reflexionseffekte, wie z.B. an Wänden o.dgl., aufweisen kann.
  • "Raumselektive" Wiedergabe der Audiosignale 141 und 142 an den Lautsprechern 18 soll bedeuten, dass die Audiosignale nicht einfach in Form einander identischer Kopien in überlagerter Form an die Lautsprecher 18 ausgegeben werden, sondern dass sie, wie in der Beschreibungseinleitung der vorliegenden Anmeldung beschrieben, mittels beispielsweise lautsprecherindividuellen Verzögerungen und/oder Amplitudenmodifikationen oder allgemein mittels einer Lautsprecher-individuellen Filterung gefiltert über die Lautsprecher 18 ausgegeben werden und zwar unterschiedlich für die Audiosignale 141 und 142, so dass es zumindest einen ersten Bereich 24 des Beschallungsgebietes gibt, der von dem zweiten Audiosignal 142 verglichen mit dem ersten Audiosignal 141 weniger oder überhaupt nicht beschallt wird. Es kann auch einen zweiten Bereich 26 geben, in dem es sich umgekehrt verhält, d.h. das erste Audiosignal 141 beschallt diesen Bereich 26 verglichen zu dem zweiten Audiosignal 142 aufgrund der raumselektiven Wiedergabe über die Lautsprecher 18 weniger oder überhaupt nicht. Nachher wird noch darauf hingewiesen, dass auch das Nebeneinander von mehr als zwei überlagert wiedergegebenen Audiosignalen möglich ist.
  • Unter optimalen Voraussetzungen könnte es sein, dass die Trennung des ersten Audiosignals 141 am ersten Bereich 24 von dem anderen Audiosignal 142 so weit geht, dass ein Hörer in diesem Bereich 24 das andere Audiosignal 142 nicht hört. Leider aber sind der Raumselektivität über die Wiedergabe durch die Lautsprecher 18 Grenzen gesetzt, die von real vorkommenden Reflexionen oder einfach von einer begrenzten Gesamtausdehnung der Verteilung der Positionen der Lautsprecher 18 herrühren kann. Die weiteren Elemente, die in der Vorrichtung 10 enthalten sind, sind dazu da, die "Raumselektivität" in diesem Sinne zu verbessern. Die Details hierzu werden im Folgenden noch erörtert.
  • Zuvor jedoch sei noch kurz erwähnt, dass die Audiosignale 141 und 142 am Eingang 12 in jedweder Form anliegen können, wie z.B. analog oder digital, in getrennter oder in m/skodierter Form oder in einer einen parametrisierten Downmix umfassenden Form, unkomprimiert oder komprimiert, im Zeitbereich oder im Frequenzbereich usw. Ähnlich verhält es sich mit den Lautsprechersignalen für die Lautsprecher 18 am Ausgang 16. Lautsprecherindividuelle Lautsprechersignale für die Lautsprecher 18 können über den Ausgang 16 getrennt voneinander ausgegeben werden, in analoger oder digitaler, komprimierter oder unkomprimierter, bereits verstärkter, lediglich vorverstärkter oder unverstärkter Form usw. Ähnlich wäre es möglich, dass die Lautsprechersignale in komprimierter Form in einem Downmix, zusammen mit räumlichem Hinweisreiz- (spatial cues) Parametern, ausgegeben werden, wie z.B. in MPEG-Surround- oder SAOC-kodierter Form. Der Strahlformungverarbeiter 20 verarbeitet die ankommenden Audiosignale 141 und 142 beispielsweise zunächst völlig getrennt voneinander, um zu jedem derselben einen Satz von Lautsprechersignalen für die Lautsprecher 18 so zu erzeugen, dass jedes Lautsprechersignal für das jeweilige Audiosignal eine bestimmte, für die jeweilige Lautsprecherposition des jeweiligen Lautsprechers individuelle Filterung, wie z.B. Verzögerung und/oder Amplitudenmodifikation, erfahren hat. Erst am Ende werden beispielsweise die so aus den einzelnen Lautsprechersignalen gewonnenen Lautsprechersignalsätze pro Kanal bzw. Lautsprecher miteinander überlagert. In den folgenden Figuren wird dies auch noch einmal veranschaulicht.
  • Obwohl der Bereich 24 und der optionale Bereich 26 in Fig. 1 exemplarisch kreisförmig veranschaulicht sind, d.h. als zweidimensionale Bereiche, die sowohl in einer durch die Lautsprecher 18 verlaufenden Richtung als auch in einer Richtung transversal dazu begrenzt sind, soll der Ausdruck "Raumselektivität" natürlich auch breit genug verstanden sein, um lediglich eine "Winkelselektivität" zu bezeichnen, in dem Sinne, dass die Audiosignal-individuelle Verarbeitung innerhalb des Strahlformungsverarbeiters 20 dazu führt, dass die Audiosignale 141 und 142 in unterschiedliche Raumwinkelbereiche von den Lautsprechern 18 aus gesehen abgestrahlt werden Eine solche Winkelselektivität kann als Beeinflussung der Abstrahlung im Fernfeld des Lautsprechersetups interpretiert werden. In einem geringem Abstand zum Lautsprecher-Setup (in Relation zur Größe des Lautsprecher-Setups, d.h. im geometrischen Nahfeld) ist auch eine gezielte Modifikation der Abstrahlung in einem zweidimensionalen Gebiet denkbar.
  • Wie es im Folgenden noch näher erörtert werden wird, kann der Strahlformungsverarbeiter 20 fest auf die raumselektive Wiedergabe eingestellt bzw. optimiert sein. Mit anderen Worten ausgedrückt, kann die Raumselektivität der Wiedergabe des Strahlformungsverarbeiters 20 konstant sein. Sie kann vorab auf den Bereich 24 oder die Bereiche 24 und 26 hin optimiert sein, d.h. dahingehend, dass im Bereich 24 lediglich das erste Audiosignal 141 und, falls vorgesehen, im Bereich 26 lediglich das zweite Audiosignal 142 von einem Hörer in dem jeweiligen Bereich hörbar ist. Die Optimierung definiert dann die vorerwähnten Verzögerungen, Amplitudenmodifikationen und/oder Filter, wie z.B. FIR-Filter, für die einzelnen Kanäle bzw. Lautsprecher 18 und der Strahlformungsverarbeiter 20 kann beispielsweise hart verdrahtet sein, oder aber fest in Software oder programmierbarer Hardware implementiert sein, um die raumselektive Wiedergabe über den Ausgang 16 an die Lautsprecher 18 zu bewerkstelligen. Allerdings ist es ebenso alternativ möglich, dass der Strahlformungsverarbeiter auch hinsichtlich der Lautsprecher-individuellen Verarbeitungen (Verzögerung, Amplitudenmodulation oder Filterung) für eines oder mehrere der Audiosignale 141, 142 einstellbar ist. Allgemein ausgedrückt, ist der Strahlformungsverarbeiter 20 hinsichtlich seiner raumselektiven Wiedergabe der Audiosignale 141, 142 am Ausgang 16 einstell- bzw. beeinflussbar, wie es im Folgenden noch näher beschrieben wird. Zusätzlich oder alternativ lässt sich diese Einstellung auch durch Audiosignalindividuelle, aber auf alle Lautsprecher/Kanal gleich wirkende, frequenzselektive Modifikation/Beeinflussung einzelner oder aller Audiosignale erzielen, wie es ebenfalls im Folgenden noch beschrieben wird. Es ist eben jene erwähnte Beeinfluss- bzw. Einstellbarkeit des Strahlformungsverarbeiters 20, die die im Folgenden beschriebenen Komponenten der Vorrichtung 10 verwenden, um die Trennung des ersten Audiosignals 141 in dem Bereich 24 von dem anderen Audiosignal 142 zu verbessern.
  • Die Vorrichtung 10 umfasst zusätzlich zu den bisher beschriebenen Komponenten einen Berechner 28, einen Maskierungsschwellenberechner 30 und einen Anpasser 32. Der Berechner 28 ist ebenfalls mit dem Eingang 12 verbunden und ist ausgebildet, um mittels eines Ausbreitungsmodells für die Audiosignale 141 und 142 jeweils eine sich durch die raumselektive Wiedergabe in dem ersten Bereich 24 ergebende Fassung des jeweiligen Audiosignals 141 bzw. 142 zu berechnen, d.h. die am Ort 24 wiedergegebene Fassung 341 des Audiosignals 141 und ebenso die am Ort 24 wiedergegebene Fassung 342 des Audiosignals 142. Der Maskierungsschwellenberechner 30 erhält die Fassung 341 und ist ausgebildet, um abhängig davon eine Maskierungsschwelle 36 zu berechnen, und der Anpasser 32 erhält die Fassung 342 des anderen Audiosignals und optional gegebenenfalls noch die Fassung 341 des ersten Audiosignals 141 und ist ausgebildet, um abhängig von einem Vergleich der Maskierungsschwelle 36 mit der Fassung des zweiten Audiosignals 342 die Ausgabe des ersten und zweiten Audiosignals zur raumselektiven Wiedergabe über den Ausgang 16 an die Lautsprecher 18 zu beeinflussen, indem der Anpasser 32 den Strahlformungsverarbeiter 20 geeignet steuert, wie es durch einen Pfeil 38 angedeutet ist. In anderen Worten ausgedrückt, ist ein Ausgang des Anpassers 32 mit einem Steuereingang des Strahlformungsverarbeiters 20 verbunden.
  • Berechner 28, Maskierungsschwellenberechner 30 und Anpasser 32 können jeweils in Software, programmierbarer Hardware oder in Hardware implementiert sein. Der Berechner 28 kann beispielsweise Ausbreitungsmodelle verwenden, die auch zur Optimierung der internen, Kanal/Lautsprecher-individuellen Verarbeitung der Audiosignale 141, 142 innerhalb des Strahlformungsverarbeiters 20 verwendet worden sein könnten. Der Berechner 28 berechnet oder schätzt beispielsweise, wie es im Folgenden noch näher beschrieben wird, die am Ort 24 durch das erste Audiosignal 141 und das zweite Audiosignal 142 erzeugten Schallereignisse. Er kann zur Berechnung beispielsweise die Kanal/Lautsprecher-individuelle Verarbeitung der Audiosignale 141, 142 innerhalb des Strahlformungsverarbeiters 20 und die Positionen der Lautsprecher 18 und optional weitere Parameter, wie z.B. Abstrahlcharakteristika und/oder Ausrichtung der Lautsprecher 18 berücksichtigen bzw. verwenden. Der Berechner 28 berechnet die Schallereignisse beispielsweise gemessen oder repräsentiert in Schalldruck, Amplitude oder dergleichen, und ggf. frequenzabhängig, d.h. für unterschiedliche Frequenzen. In dem Fall einer konstanten/festen Kanal/Lautsprecher-individuellen Verarbeitung des Strahlformungsverarbeiters 20 kann der Berechner 28 die Simulation auf eine konstante/feste Art und Weise durchführen. Die Berücksichtigung der bzw. die Anpassung an die Kanal/Lautsprecherindividuelle Verarbeitung des Verarbeiters 20 liegt dann in der geeigneten Auslegung des Ausbreitungsmodells begründet, das der Berechner 28 zur Berechnung der Fassungen 341, 342 verwendet. Das Ausbreitungsmodell kann also ebenfalls die soeben erwähnten Parameter berücksichtigen. Die Fassungen 341 und 342 kann der Berechner 28 wiederum in jedweder Form ausgeben, d.h. analog oder digital, komprimiert oder unkomprimiert, im Zeitbereich oder im Frequenzbereich oder dergleichen.
  • Der Maskierungsschwellenberechner 30 berechnet eine Maskierungsschwelle abhängig von der Fassung 341, d.h. der hörbaren Version des Audiosignals 141 am Ort 24. Wie es durch einen gestrichelten Pfeil 40 angedeutet ist, kann der Maskierungsschwellenberechner zusätzlich zur Fassung 341 auch ein Hintergrund-Audiosignal (beispielsweise Rauschen oder Fahrgeräusche) zur Maskierungsschwellenberechnung verwenden.
    Die Berechnung berücksichtigt zeitliche und/oder spektrale auditive Verdeckungseffekte. Die berechnete Maskierungsschwelle gibt somit abhängig von der Frequenz an, wie sehr die Fassung 341 des Audiosignals 141 am Ort 24 in der Lage ist, andere Audiosignale für einen Hörer am Ort 24 unhörbar zu machen, indem dieselbe letztere überdeckt. Der Maskierungsschwellenberechner 30 kann beispielsweise so ausgebildet sein, dass er die Maskierungsschwelle in einer Frequenzauflösung bestimmt bzw. berechnet, die mit zunehmender Frequenz immer gröber wird, d.h. bei der die Frequenzbänder mit zunehmender Frequenz immer breiter werden, wie z.B. in einer Bark-Frequenzauflösung.
  • Der Anpasser 32 vergleicht die Maskierungsschwelle 36 mit der Fassung 342 des zweiten Audiosignals 142 und stellt auf diese Weise beispielsweise fest, ob das zweite Audiosignal 142 für eine Person am Ort 24 hörbar ist, d.h. ob das zweite Audiosignal an irgendeiner Frequenz die Maskierungsschwelle überschreitet. Wenn ja, ergreift der Anpasser 32 Gegenmaßnahmen und steuert den Strahlformungsverarbeiter 20 geeignet an. Mehrere Beispiele für solche Steuerungen sind im Vorhergehenden bereits angedeutet worden. Bezugnehmend auf die nachfolgenden Figuren wird dies noch einmal veranschaulicht.
  • Fig. 2 zeigt beispielsweise in einem Diagramm, aufgetragen über die Frequenz f, die Maskierungsschwelle 36, die Fassung 341 und die Fassung 342 in einer virtuellen, die Hörstärke messenden Skala. Ein Frequenzbereich 42, in welchem aktuell das störende Audiosignal 142 bzw. die am Ort 24 gemäß Simulation resultierende Fassung 342 die Maskierungsschwelle 36 überschreitet, ist exemplarisch veranschaulicht. Eine mögliche Gegenmaßnahme bestünde nun darin, dass der Anpasser 32 den Strahlformungsverarbeiter 20 so ansteuert, dass in diesem Frequenzbereich 42 das zweite Audiosignal 342 reduziert wird, wie es mit einem Pfeil 44 angedeutet ist. Zusätzlich oder alternativ könnte der Anpasser 32 den Strahlformungsverarbeiter 20 so ansteuern, dass in diesem Frequenzbereich 42 - oder über diesen Frequenzbereich 42 hinaus gegebenenfalls sogar Frequenz unabhängig - das erste Audiosignal 141 verstärkt wird, wie es mit einem Pfeil 46 angedeutet ist. Reduktion 44 und/oder Verstärkung 46 werden vorzugsweise so vorgenommen, dass das Ausmaß von Verstärkung/Reduktion keine abrupten Sprünge in der Zeit und/oder Frequenz aufweist. Das Ausmaß bzw. die Ausprägung von Reduktion und/oder Verstärkung wird beispielsweise zeitlich und/oder spektral geglättet.
  • Die bisher bezugnehmend auf Fig. 2 erläuterten möglichen Maßnahmen des Anpassers 32 gegen eine Hörbarkeit der Fassung 342 am Ort 24 betrafen im Raumselektivitäts-sinne globale Maßnahmen bzw. Kanal/Lautsprecher-globale bzw. für alle Kanäle/Lautsprecher 18 gleichermaßen wirkende Maßnahmen. Später wird gezeigt werden, dass der Strahlformungsverarbeiter 20 beispielsweise die Verstärkung 46 und/oder Reduktion 44 vorab an dem jeweiligen eintreffenden Audiosignal 141 oder 142 ausführt und erst daraufhin die Kanal/Lautsprecher-individuelle Verarbeitung der gleichermaßen vorverarbeiteten Audiosignale für die raumselektive Wiedergabe. Zusätzlich oder alternativ kann, wie im Vorhergehenden bereits angedeutet, der Anpasser 32 ausgebildet sein, um abhängig von dem vorerwähnten Vergleich mit der Maskierungsschwelle 36, die Strahlformung selbst zu variieren. Um dies zu veranschaulichen, sei Bezug auf Fig. 3 genommen.
  • Fig. 3 zeigt, dass der Strahlformungsverarbeiter 20 mehrere Optionen oder Modi für die Kanal/Lautsprecher individuelle Strahlformungsverarbeitung der Audiosignale 141 und 142 aufweist, welche unterschiedlichen Modi hier exemplarisch mit 481-48N angezeigt sind. Eine von diesen - beispielsweise die Strahlformungsverarbeitung gemäß 481 - könnte beispielsweise eine nach gewissen Kriterien optimale Verarbeitung zur raumselektiven Wiedergabe sein, d.h. gegebenenfalls in Ort und Frequenz zu einer besten Unterdrückung des Audiosignals 142 bzw. 342 am Ort 24 führen. Die anderen Modi 242 - 48N können aber gegebenenfalls zu ähnlich guten Trennungen führen oder sogar zu gleich guten oder sogar optimalen nach anderen oder anders gewichteten Kriterien. Alle Modi 481 - 48N könnten beispielsweise Unterschiede hinsichtlich der Güte der Unterdrückung für unterschiedliche Frequenzbereiche aufweisen und in diesem Fall könnte beispielsweise der Anpasser 32 abhängig von dem Vergleich mit der Maskierungsschwelle 36 und einer Lage eines Intervalls 42, in welchem eine Verletzung der Maskierungsschwelle 36 vorliegt, einen aktuell ausgewählten Kanal/Lautsprecher-individuellen Verarbeitungsmodus verändern bzw. von demselben zu einem anderen wechseln, wobei in Fig. 3 ein Pfeil 50 beispielsweise die Auswahl eines aktuell ausgewählten Modus 481 - 48N anzeigen soll und ein Doppelpfeil 52 die Veränderung dieses von dem Strahlformungsverarbeiter 20 aktuell verwendeten Modus auf einen anderen abhängig von dem vorerwähnten Vergleich mit der Maskierungsschwelle 36. Der Wechsel von einem Modus zu einem anderen könnte in dem Strahlformungsverarbeiter 20 mit einem Lautsprecher/Kanal-individuellen Fading zwischen einem mit dem letzten und einem mit dem neuen Modus erhaltenen Lautsprechersignal einhergehen.
  • Durch Berechner 28, Maskierungsschwelle 30 und Anpasser 32 ist die Vorrichtung 10 von Fig. 1 also in der Lage, die Unterdrückung eines anderen Audiosignals 142 an einem Ort 24 des Beschallungsgebiets des Lautsprecher-Setups 18 gegenüber einer konstanten, hierfür optimierten Strahlformungstrennung zu verbessern. Verschiedene Maßnahmen sind möglich, um eine eventuelle Verschlechterung der Audioqualität des ersten und/oder des zweiten Audiosignals am Ort 24 und/oder Ort 26 durch die maskierungsschwellengesteuerte Modifikation zu vermeiden. Beispielsweise kann, wie im Vorhergehenden bereits erwähnt, das Ausmaß von Verstärkung 46 und/oder Reduktion 44 sowohl hinsichtlich seiner absoluten Ausprägung begrenzt werden, d.h. die Stärke der Verstärkung 46 und/oder Stärke der Reduktion 44, aber auch die Änderung dieser Ausprägung in Zeit und/oder Frequenz. In dem Fall der Verwendung der Möglichkeit gemäß Fig. 3 könnte beispielsweise ein Überblenden bzw. Fading verwendet werden, um von dem einen Modus in den anderen Modus zu wechseln. Bei dieser Gelegenheit ist es lohnenswert, darauf hinzuweisen, dass gegebenenfalls zusätzlich zu der Verarbeitungsverzögerung, die durch die Verarbeitungen zur raumselektiven Wiedergabe in dem Strahlformungsverarbeiter 20 entstehen, auch eine Verzögerung vorgesehen sein kann, um eine Verarbeitungsverzögerungsanpassung an die Verarbeitungsverzögerung vorzunehmen, die durch die Serie der Verarbeitung in Berechner 28, Maskierungsschwellenberechner 30 und Anpasser 32 hervorgerufen wird. Auf diese Weise ist es möglich, dass die Anpassungen, die der Anpasser 32 vornimmt, zeitrichtig bzw. zeitlich synchronisiert auf die Audiosignale 141 und 142, aus dem die Steuerdaten für die Anpassung gewonnen wurden, angewendet werden. Eine solche zusätzliche Verzögerung im Pfad des Strahlformungsverarbeiters 20 gegenüber der Verarbeitung in dem Pfad entlang Berechner 28, Maskierungsschwellenberechner 30 und Anpasser 32 könnte auch verwendet werden, um die vorerwähnten Fading-Übergänge bzw. Überblendungen zwischen unterschiedlichen Strahlformungsmodi 481 - 48N zu erleichtern.
  • Bevor nachfolgend noch eine konkrete Ausgestaltung einer Vorrichtung zur raumselektiven Wiedergabe beschrieben wird, um mögliche Implementierungen der Elemente zu beschreiben, die im Vorhergehenden bereits erwähnt worden sind, soll noch darauf hingewiesen werden, dass in dem Fall der Modi-Umschaltung gemäß Fig. 3 auch gegebenenfalls ein kontinuierliches Verändern der Kanal/Lautsprecher-individuellen Verarbeitung möglich ist, indem ein entsprechender Parameter durch die Modifikation 52 nicht diskontinuierlich, sondern vielleicht kontinuierlich verändert wird. Wie gesagt, steckt hinter den Kanal/Lautsprecher-individuellen Verarbeitungen 48 beispielsweise ein Satz von Verzögerungen für jeden Kanal/Lautsprecher für zumindest das Audiosignal 482 aber gegebenenfalls auch beide Audiosignale 141 und 142, und/oder entsprechende Amplitudenänderungen oder Filterkoeffizienten für FIR-Filter.
  • Schließlich wird noch darauf hingewiesen, dass mehr als nur zwei Audiosignale 141 und 142 vorgesehen sein können. Dies ist mit einem gestrichelten Pfeil 54 in Fig. 1 angedeutet. Die vorgehende Beschreibung ist ohne weiteres auf diesen Fall anwendbar. Zusätzliche Audiosignale 54 würden beispielsweise so behandelt werden, wie das Audiosignal 142, d.h. als Audiosignale, deren Wiedergabe am Ort 24 für einen Hörer an diesem Ort 24 unhörbar sein soll.
  • Noch einmal in anderen Worten ausgedrückt, ermöglicht es also obiges Ausführungsbeispiel die wahrgenommene Qualität einer raumbezogenen Wiedergabe durch die Einbeziehung psychoakustischer Effekte zu verbessern. Dabei wird ausgenutzt, dass ein Audiosignal die Hörbarkeit von Komponenten eines anderen, leiseren Signals, verhindern kann. Dieser Effekt wird als Maskierung bezeichnet. Dies spielt beispielsweise eine zentrale Rolle in der verlustbehafteten Audiokodierung. In der Psychoakustik wird zwischen Maskierung im Zeit- und im Frequenzbereich unterschieden. Bei der Maskierung im Zeitbereich maskiert ein lautes Signal, der so genannte Maskierer, andere Komponenten, die kurz nach oder in engen Grenzen auch vor diesem Schallereignis auftreten. Bei der Maskierung im Frequenzbereich werden durch eine Signalkomponente mit einer bestimmten Frequenz andere Komponenten mit einer ähnlichen Frequenz und einer geringeren Amplitude maskiert. Die Schwelle, bis zu der eine Maskierung auftritt, hängt von der Frequenz und dem absoluten Pegel des Markierers und dem Abstand zwischen den Frequenzen des Maskierers und anderen Signals. Die Maskierungsschwellen und damit die Entscheidung, ob eine Signalkomponente maskiert wird, werden über psychoakustische Modelle bestimmt. Solche psychoakustischen Modelle verwendet der Maskierungsschwellenberechner 30.
  • Wie im Vorhergehenden bereits angekündigt, wird im Folgenden eine mögliche Implementierung für das Ausführungsbeispiel von Fig. 1 beschrieben. Die technischen Details hierzu sollen individuell auf die einzelnen Elemente von Fig. 1 übertragbar sein. Bevor jedoch diese Implementierung bezugnehmend auf Fig. 5 beschrieben wird, wird bezugnehmend auf Fig. 4 das Grund-Setup zur raumselektiven Wiedergabe beschrieben, das dann gemäß obigem Ausführungsbeispiel mit der Implementierung von Fig. 5 verbessert wird. Fig. 4 zeigt, wie zwei Audiosignale S1(t) und S2(t) über zwei Beamforming-Filtersätze 601 und 602, eine Summationsstufe 62 und ein Lautsprecherarray aus Lautsprechern 18 so verarbeitet werden, dass diese Signale in den Bereichen Z1 und Z2 wiedergegeben werden, d.h. das Audiosignal S1(t) vornehmlich in dem Bereich Z1 und das Audiosignal S2(t) vornehmlich in dem Bereich Z2. Durch die physikalischen Limitationen des Setups ist eine ideale Trennung allerdings nicht möglich, wie es bereits im Vorhergehenden beschrieben worden ist. Die Komponenten 601, 602 und 62 bilden einen einfachen Strahlformungsverarbeiter 64, der beispielsweise konstant arbeitet und optimiert ist, um vorerwähnte Trennung durchzuführen. Der Strahlformer 601 unterzieht das eingehende Audiosignal S1(t) einer Strahlformung, um einen Satz von Lautsprechersignalen für dieses Signal zu erzeugen und selbiges tut Strahlformer 602 für das zweite Audiosignal S2(t). Beide Strahlformer 601,2 geben ihre Lautsprechersignalsätze an den Summierer 62 aus, der selbige Lautsprechersignale Kanal/Lautsprecher-individuell summiert und den Lautsprechern 18 zuführt.
  • Fig. 5 zeigt nun, wie das Setup von Fig. 4 gemäß dem Ausführungsbeispiel von Fig. 1 verbessert werden kann. Die Vorrichtung von Fig. 5 ist mit 10 angezeigt und im Übrigen wurden die Bezugszeichen von Fig. 1 übernommen, um einander in ihrer Funktion entsprechende Teile zur Fig. 1 anzuzeigen. Wie zu sehen ist, ist der Strahlformungsverarbeiter 20 von Fig. 5 gegenüber dem Ausgangspunkt von Fig. 4 exemplarisch lediglich durch Einfügung eines Pegelanpassers 66 in den Signalpfad des störenden Audiosignals S2 modifiziert, hier exemplarisch eingangsseitig des Strahlformers 602, obwohl eine für alle Kanäle/Lautsprecher 18 gleich wirkende Pegelanpassung durch den Pegelanpasser 66 ebenfalls möglich wäre. Der Pegelanpasser 66 wird durch den Anpasser 32 gesteuert, um die im Vorhergehenden bezugnehmend auf Fig. 2 veranschaulichte Reduktion 44 durchzuführen. Fig. 5 zeigt zudem, dass es möglich ist, die in Fig. 1 für eines der Audiosignale durchgeführte Signaltrennung von anderen Audiosignalen auch für mehr als ein Audiosignal durchzuführen. In dem vorliegenden Fall simuliert der Berechner 28 durch entsprechende Ausbreitungsmodelle, die den Strahlformungen der Strahlformer 601 und 602 entsprechen, für beide Audiosignale 60 S1 und S2 die jeweilige hörbare Version an beiden Orten, nämlich Ort Z1 und Z2. Deshalb ist in Fig. 5 ein Ausbreitungsmodellanwender 681 gezeigt, der die entsprechenden Ausbreitungsmodelle auf das Audiosignal S1 anwendet, sowie ein Ausbreitungsmodellanwender 682, der selbiges für das Audiosignal S2 unternimmt. Für die jeweilige Version, für das das jeweilige Audiosignal in dem jeweiligen Ort vorgesehen ist, also die hörbare Version des Audiosignals S2 am Ort Z2 und die hörbare Version des Signals S1 am Ort Z1, führt der Maskierungsschwellenberechner 30 jeweils eine Maskierungsschwellenberechnung durch und gibt das Ergebnis, d.h. die jeweilige Maskierungsschwelle für den Ort Z1 und Z2, d.h. die Maskierung durch das Signal S1 am Ort Z1 bzw. die Maskierung durch das Audiosignal S2 am Ort Z2, an die Steuerdatenanpassung bzw. den Anpasser 32 weiter, der darüber hinaus die jeweils störenden Hörversionen behält, d.h. die hörbare Version des Signals S2 am Ort Z1 und die hörbare Version des Signals S1 am Ort Z2.
  • Um die Situation gegenüber Fig. 4 zu verbessern, wird bei der Vorrichtung nach Fig. 5 die Maskierungsschwellen der Hörbarkeit des Signals S2 in Zone Z1 bestimmt. Dazu werden zunächst die aus den Signalen S1(t) und S2(t) resultierenden Signale in der Zone Z1 bestimmt, wie z.B. die Magnituden im Frequenzbereich. Hierzu wird ein Ausbreitungsmodell berechnet oder verwendet, welches die Übertragungsfunktion des Lautsprecherarrays von Lautsprechern 18 beinhaltet. Die Signale werden als S1(t, Z1) und S2(t, Z1) bezeichnet. Wie beim psychoakustischen Modell werden die Maskierungsschwellen für die Hörbarkeit des Signals S2(t, Z1) unter Verwendung des Maskierers S1(t, Z1) bestimmt. Aus diesen Schwellen werden in einer Komponente Änderungswerte für die Magnituden des Audiosignals S1(t) bestimmt (für bestimmte Frequenzbereiche). Dabei können neben den Maskierungsschwellen andere psychoakustisch motivierte Parameter eingehen, wie z.B. maximal erlaubte Änderungen des Signals S1(t), um die Auswirkungen der Anpassungen durch den Anpasser 32 auf die Wiedergabe von S1(t) in Z1 zu begrenzen. Optional werden auch der zeitliche Verlauf der Magnituden-Änderung begrenzt, um sprunghafte, potentiell störende Veränderungen zu vermeiden. Auch die Parameter dieser zeitlichen Steuerung können durch psychoakustische Parameter bestimmt sein.
  • Der gleiche Algorithmus, wie er soeben beschrieben wurde, könnte simultan verwendet werden, um den Einfluss von S1(t) auf die Wiedergabe von S2(t) in der Zone Z2 zu minimieren, wie es durch die Tatsache in Fig. 5 angedeutet ist, dass auch die Simulation zur Berechnung der hörbaren Versionen am Ort Z2 durchgeführt werden sowie die Berechnung der Maskierungsschwelle an diesem Ort, obwohl eben jene Berechnungen in Fig. 5 auch weggelassen werden könnten. Dementsprechend könnte in Fig. 5 ein Pegelanpasser auch in dem Signalpfad des Audiosignals S1 eingefügt sein, der durch den Anpasser 32 aufgrund eines Vergleichs der Maskierungsschwelle für den Ort Z2 mit dem störenden Audiosignal S1 am Ort Z2 gesteuert wird. Da der Anpasser 32 über das Ergebnis aller Vergleiche weiß, d.h. das Ergebnis des Vergleichs der Maskierungsschwelle in Z2 mit S1 am Ort Z2 und das Ergebnis des Vergleichs der Maskierungsschwelle in Z1 mit S2 am Ort Z1, ist der Anpasser in der Lage, daraus für alle Orte bzw. Bereiche Z1/2 eine Verringerung der Beeinflussung des jeweils störend wirkenden Signals, d.h. S2 in Z1 und S1 in Z2, auf das wunschgemäße Signal, d.h. S2 in Z2 und S1 in Z1, zu berechnen. Es kann sein, das der Anpasser 32 hierzu Kompromisse eingehen muss, da die Störungen in den einzelnen Bereichen Maßnahmen erfordern, die in dem anderen Bereich bzw. in den anderen Bereichen eine Verschlechterung bedeuten. Dieser Kompromiss könnte dadurch beeinflusst werden, dass der Anpasser 32 ein Priorität unter den Bereichen und den zugehörigen wunschgemäßen Signalen erhält, so dass die negative Beeinflussung höher priorisierter Signale an ihrem jeweiligen Bestimmungsort durch andere Signale mit höherer Priorität verwirklicht wird als für niedriger priorisierte Signale.
  • Natürlich kann über die Anzahl von zwei Audiosignalen wie in den obigen Ausführungsbeispielen hinaus die Anzahl von Audiosignalen auch höher sein.
  • Der Signalfluss des Konzeptes bzw. Algorithmus ist in Fig. 5 also derart dargestellt, dass aus den Signalen S1(t) und S2(t) mittels eines akustischen Ausbreitungsmodells das akustische Ereignis, wie z.B. der Schalldruck, die Magnitude usw., in der Zone Z1 ermittelt wird. Dieses Ausbreitungsmodell ist üblicherweise eine Funktion der Frequenz und erzeugt eine diskrete Menge von Werten, welche jeweils einer Frequenz zugeordnet werden. Im einfachsten Fall wird die Übertragungsfunktion des Strahlformers 601 zu einem Punkt, wie z.B. dem Zentrum der Zone Z1, als Ausbreitungsmodell verwendet. Es können jedoch auch andere Modelle, wie z.B. ein gewichteter Durchschnitt der Magnitudenübertragungsfunktion zu einem Punktraster in Z1 verwendet werden. Die Kerneigenschaft des Ausbreitungsmodells ist es, dass es ein Eingangssignal Si(t) in ein Maß übersetzt, das die Stärke des aus diesem Signal herrührenden Schalleinfalls in Zone Z1 beschreibt, und zwar für jedes der betrachteten Frequenzbänder. Die Aufteilung des Audiofrequenzbereiches in Frequenzbänder kann unterschiedlich erfolgen, sinnvoll sind jedoch an psychoakustischen Eigenschaften orientierte Aufteilungen, wie z.B. Constant-Q oder Bark-Skala. Die Ausgangswerte des psychoakustischen Modells können beispielsweise mit einer geringeren Frequenz als der Audio-Abtastrate ausgegeben werden. Dies kann z.B. durch eine Unterabtastung oder über eine gleitende Mittelwertbildung mit beispielsweise Dezimation erfolgen. Die Ausgangswerte des Maskierungsschwellenberechners sind bei dem Ausführungsbeispiel von Fig. 5 noch rohe Steuerdaten, welche eine gewünschte Pegelveränderung in den einzelnen Frequenzbändern beschreiben. Auch diese Daten sind über einen Raster von Frequenzbändern definiert und liegen üblicherweise in einer geringeren als der Audio-Abtastrate vor. Die rohen Steuerdaten werden in dem Anpasser nachbearbeitet. In diesem Modul können optional Ober- und Untergrenzen für die Pegeländerung einzelner Frequenzbereiche vorgegeben sein. Zum Anderen kann der zeitliche Verlauf der Änderungen angepasst sein, wie z.B. durch Verzögerung und Glättung der Pegeländerungen.
  • Die angepassten Kontrollsignale des Anpassers werden in dem Pegelanpasser verwendet, um das Signal S1(t) vor der Filterung mit den Lautsprecher spezifischen Strahlformungsfiltern in dem Strahlformer 602 frequenzbandweise im Pegel anzupassen. Der Pegelanpasser 66 wirkt also als ein Multiband-Equalizer. In Verbindung mit der zeitlichen Dynamik des Anpassers wird eine Funktion, ähnlich einem Multiband-Kompressor, oder allgemeiner eine Multiband-Dynamikbeeinflussung erzielt, wobei jedoch im Gegensatz zur normalen Verwendung diese Einheiten hier ein anderes Signal zur Steuerung der Verstärkungswerte verwendet.
  • Wie in Fig. 5 gezeigt, kann in gleicher Weise auch das Signal S2(t) adaptiv verändert werden, um die Interferenz von S2(t) in die Zone Z1 zu reduzieren. Damit ist es auch möglich, das Übersprechen simultan zu verringern. Diese Möglichkeit existiert unabhängig von den Einzelheiten der Fig. 5 natürlich allgemeiner auch für das Beispiel von Fig. 1.
  • Optional zu obigen Ausführungsbeispielen kommt hinzu, dass ein Referenzsignal 40 für Nebengeräusche, wie z.B. allgemeiner Hintergrund-Lärmpegel, Innenraumgeräusche in Automotive-Anwendungen oder dergleichen, zusätzlich verwendet werden kann. Dieses Signal 40 kann als zusätzlicher Eingang für die Maskierungsschwellenberechnung verwendet werden, wie es im Vorhergehenden beschrieben wurde. Das Referenzsignal 40 ist dabei vorzugsweise ein Mess- oder sinnvoller Schätzwert für das Nebengeräuschsignal in den "sound zones" 24 bzw. 26 oder Z1 in Z2.
  • Ferner ist es möglich, in einer (oder mehreren) Zonen anstelle der ungestörten Wiedergabe eines Signals nur die Reduktion des Übersprechens aus den anderen Quellen zu erzielen.
  • Obige Ausführungsbeispiele beschrieben also ein Konzept für raumselektive Wiedergabe mit Lautsprecherarrays durch psychoakustische Umgebungseffekte bzw. die räumliche Wiedergabe von Audiosignalen über eine Mehrzahl von Lautsprechern, die beispielsweise als Array angeordnet sein können. Insbesondere wurde beschrieben, wie verschiedene Audiosignale in verschiedene räumliche Bereiche abgestrahlt werden können, so dass die gegenseitige Beeinflussung minimiert bzw. deutlich reduziert wird. Bei einigen Ausführungsbeispielen wurde dies durch eine Kombination von Strahlformungsalgorithmen mit einem psychoakustischen Modell bewirkt, welches die Audiosignale so abwandelt, dass die Hörbarkeit der Störsignale durch die psychoakustische Maskierung durch das Nutzsignal reduziert wird.
  • Obwohl manche Aspekte im Zusammenhang mit einer Vorrichtung beschrieben wurden, versteht es sich, dass diese Aspekte auch eine Beschreibung des entsprechenden Verfahrens darstellen, sodass ein Block oder ein Bauelement einer Vorrichtung auch als ein entsprechender Verfahrensschritt oder als ein Merkmal eines Verfahrensschrittes zu verstehen ist. Analog dazu stellen Aspekte, die im Zusammenhang mit einem oder als ein Verfahrensschritt beschrieben wurden, auch eine Beschreibung eines entsprechenden Blocks oder Details oder Merkmals einer entsprechenden Vorrichtung dar. Einige oder alle der Verfahrensschritte können durch einen Hardware-Apparat (oder unter Verwendung eines Hardware-Apparats), wie zum Beispiel einen Mikroprozessor, einen programmierbaren Computer oder eine elektronische Schaltung ausgeführt werden. Bei einigen Ausführungsbeispielen können einige oder mehrere der wichtigsten Verfahrensschritte durch einen solchen Apparat ausgeführt werden.
  • Je nach bestimmten Implementierungsanforderungen können Ausführungsbeispiele der Erfindung in Hardware oder in Software implementiert sein. Die Implementierung kann unter Verwendung eines digitalen Speichermediums, beispielsweise einer Floppy-Disk, einer DVD, einer Blu-ray Disc, einer CD, eines ROM, eines PROM, eines EPROM, eines EEPROM oder eines FLASH-Speichers, einer Festplatte oder eines anderen magnetischen oder optischen Speichers durchgeführt werden, auf dem elektronisch lesbare Steuersignale gespeichert sind, die mit einem programmierbaren Computersystem derart zusammenwirken können oder zusammenwirken, dass das jeweilige Verfahren durchgeführt wird. Deshalb kann das digitale Speichermedium computerlesbar sein.
  • Manche Ausführungsbeispiele gemäß der Erfindung umfassen also einen Datenträger, der elektronisch lesbare Steuersignale aufweist, die in der Lage sind, mit einem programmierbaren Computersystem derart zusammenzuwirken, dass eines der hierin beschriebenen Verfahren durchgeführt wird.
  • Allgemein können Ausführungsbeispiele der vorliegenden Erfindung als Computerprogrammprodukt mit einem Programmcode implementiert sein, wobei der Programmcode dahin gehend wirksam ist, eines der Verfahren durchzuführen, wenn das Computerprogrammprodukt auf einem Computer abläuft.
  • Der Programmcode kann beispielsweise auch auf einem maschinenlesbaren Träger gespeichert sein.
  • Andere Ausführungsbeispiele umfassen das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren, wobei das Computerprogramm auf einem maschinenlesbaren Träger gespeichert ist.
  • Mit anderen Worten ist ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens somit ein Computerprogramm, das einen Programmcode zum Durchführen eines der hierin beschriebenen Verfahren aufweist, wenn das Computerprogramm auf einem Computer abläuft.
  • Ein weiteres Ausführungsbeispiel der erfindungsgemäßen Verfahren ist somit ein Datenträger (oder ein digitales Speichermedium oder ein computerlesbares Medium), auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren aufgezeichnet ist.
  • Ein weiteres Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist somit ein Datenstrom oder eine Sequenz von Signalen, der bzw. die das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren darstellt bzw. darstellen. Der Datenstrom oder die Sequenz von Signalen kann bzw. können beispielsweise dahin gehend konfiguriert sein, über eine Datenkommunikationsverbindung, beispielsweise über das Internet, transferiert zu werden.
  • Ein weiteres Ausführungsbeispiel umfasst eine Verarbeitungseinrichtung, beispielsweise einen Computer oder ein programmierbares Logikbauelement, die dahin gehend konfiguriert oder angepasst ist, eines der hierin beschriebenen Verfahren durchzuführen.
  • Ein weiteres Ausführungsbeispiel umfasst einen Computer, auf dem das Computerprogramm zum Durchführen eines der hierin beschriebenen Verfahren installiert ist.
  • Ein weiteres Ausführungsbeispiel gemäß der Erfindung umfasst eine Vorrichtung oder ein System, die bzw. das ausgelegt ist, um ein Computerprogramm zur Durchführung zumindest eines der hierin beschriebenen Verfahren zu einem Empfänger zu übertragen. Die Übertragung kann beispielsweise elektronisch oder optisch erfolgen. Der Empfänger kann beispielsweise ein Computer, ein Mobilgerät, ein Speichergerät oder eine ähnliche Vorrichtung sein. Die Vorrichtung oder das System kann beispielsweise einen Datei-Server zur Übertragung des Computerprogramms zu dem Empfänger umfassen.
  • Bei manchen Ausführungsbeispielen kann ein programmierbares Logikbauelement (beispielsweise ein feldprogrammierbares Gatterarray, ein FPGA) dazu verwendet werden, manche oder alle Funktionalitäten der hierin beschriebenen Verfahren durchzuführen. Bei manchen Ausführungsbeispielen kann ein feldprogrammierbares Gatterarray mit einem Mikroprozessor zusammenwirken, um eines der hierin beschriebenen Verfahren durchzuführen. Allgemein werden die Verfahren bei einigen Ausführungsbeispielen seitens einer beliebigen Hardwarevorrichtung durchgeführt. Diese kann eine universell einsetzbare Hardware wie ein Computerprozessor (CPU) sein oder für das Verfahren spezifische Hardware, wie beispielsweise ein ASIC.
  • Die oben beschriebenen Ausführungsbeispiele stellen lediglich eine Veranschaulichung der Prinzipien der vorliegenden Erfindung dar. Es versteht sich, dass Modifikationen und Variationen der hierin beschriebenen Anordnungen und Einzelheiten anderen Fachleuten einleuchten werden. Deshalb ist beabsichtigt, dass die Erfindung lediglich durch den Schutzumfang der nachstehenden Patentansprüche und nicht durch die spezifischen Einzelheiten, die anhand der Beschreibung und der Erläuterung der Ausführungsbeispiele hierin präsentiert wurden, beschränkt sei.

Claims (14)

  1. Vorrichtung zur raumselektiven Audiowiedergabe, mit
    einem Eingang (12) für ein erstes und zweites Audiosignal (141, 142);
    einem Ausgang (16) für eine Mehrzahl von Lautsprechern (18);
    einem Strahlformungsverarbeiter (20), der zwischen den Eingang (12) einerseits und den Ausgang (16) andererseits geschaltet ist und ausgebildet ist, um das erste und zweite Audiosignal (141, 142) zur raumselektiven Wiedergabe über den Ausgang an die Lautsprecher (18) auszugeben; und
    einem Berechner (28), der ausgebildet ist, um mittels eines Ausbreitungsmodells für das erste und zweite Audiosignal (141, 142) jeweils eine sich durch die raumselektive Wiedergabe in einem ersten Bereich (24) eines Beschallungsgebietes (22) der Lautsprecher (18) ergebende Fassung (341, 342) des jeweiligen Audiosignals zu berechnen;
    wobei der Strahlformungsverarbeiter (20) ausgebildet ist, um die Ausgabe des ersten und zweiten Audiosignals (141, 142) zur raumselektiven Wiedergabe an den Ausgang durch Durchführung einer Strahlformung an zumindest dem zweiten Audiosignal (142) zu erzielen;
    dadurch gekennzeichnet, dass die Vorrichtung ferner folgende Merkmale umfasst:
    einen Maskierungsschwellenberechner (30), der ausgebildet ist, um abhängig von der Fassung (341) des ersten Audiosignals (141) über ein psychoakustisches Modell eine Maskierungsschwelle (36) zu berechnen; und
    einen Anpasser (32), der ausgebildet ist, um abhängig von einem Vergleich der Maskierungsschwelle (36) mit der Fassung (342) des zweiten Audiosignals (142) die Ausgabe des ersten und zweiten Audiosignals (141, 142) zur raumselektiven Wiedergabe über den Ausgang (16) an die Lautsprecher (18) zu beeinflussen,
    wobei der Strahlformungsverarbeiter (20) mehrere Modi für die Durchführung der Strahlformung aufweist, die sich hinsichtlich einer Güte einer Unterdrückung des zweiten Audiosignals (142) an dem ersten Bereich (24) für unterschiedliche Frequenzbereiche unterscheiden,
    wobei der Anpasser (32) ausgebildet ist, um abhängig von dem Vergleich die Strahlformung durch einen Wechsel von einem aktuell verwendeten Modus zu einem anderen Modus zu variieren.
  2. Vorrichtung gemäß Anspruch 1, die ferner die Mehrzahl von Lautsprechern (18) aufweist.
  3. Vorrichtung gemäß Anspruch 1 oder 2, bei der der Strahlformungsverarbeiter (20) ausgebildet ist, um eine Strahlformung (602) an dem zweiten Audiosignal (142) durchzuführen, um eine erste Mehrzahl von Lautsprechersignalen zu erhalten, und die aus dem zweiten Audiosignal erhaltenen Lautsprechersignale über den Ausgang (16) an die Lautsprecher (18) anzulegen.
  4. Vorrichtung gemäß Anspruch 3, bei der der Strahlformungsverarbeiter ausgebildet ist, das erste Audiosignal (141) einer Strahlformung (601) zu unterziehen, um eine zweite Mehrzahl von Lautsprechersignalen zu erhalten, und die zweite Mehrzahl von Lautsprechersignalen durch Überlagerung (62) mit der ersten Mehrzahl von Lautsprechersignalen über den Ausgang (16) an die Lautsprecher (18) anzulegen.
  5. Vorrichtung gemäß Anspruch 4, bei der der Strahlformungsverarbeiter (26) ausgebildet ist, um die Strahlformung (601, 602) an dem ersten und zweiten Audiosignal unterschiedlich - zur raumselektiven Wiedergabe in unterschiedlichen Bereichen (24, 26) des Beschallungsgebietes (22) - durchzuführen, so dass für jeden Bereich eines der Audiosignale ein Sollsignal darstellt, während das jeweils andere Audiosignal in dem jeweiligen Bereich ein Störsignal darstellt.
  6. Vorrichtung gemäß Anspruch 5, bei dem
    der Berechner (28) ausgebildet ist, um mittels des Ausbreitungsmodells für jedes Audiosignal und für jeden der unterschiedlichen Bereiche jeweils eine sich durch die raumselektive Wiedergabe in dem jeweiligen Bereich des Beschallungsgebietes (22) der Lautsprecher (18) ergebende Fassung des jeweiligen Audiosignals zu berechnen,
    der Maskierungsschwellenberechner (30) ausgebildet ist, um für jeden Bereich des Beschallungsgebietes abhängig von der sich durch die raumselektive Wiedergabe in dem jeweiligen Bereich des Beschallungsgebietes (22) der Lautsprecher (18) ergebende Fassung desjenigen Audiosignals, das für den jeweiligen Bereich ein Solsignal darstellt, eine Maskierungsschwelle (36) zu berechnen; und
    der Anpasser (32) ausgebildet ist, um aus einem Vergleich der Maskierungsschwelle (36) für jeden der Bereiche mit einer sich aus der Fassung (342) des Audiosignals, das in dem jeweiligen Bereich ein Störsignal darstellt, ergebenden Störung die Ausgabe der Audiosignale zur raumselektiven Wiedergabe über den Ausgang (16) an die Lautsprecher (18) zu beeinflussen.
  7. Vorrichtung gemäß Anspruch 6, bei dem die Anzahl der Audiosignale größer zwei ist.
  8. Vorrichtung gemäß einem der vorhergehenden Ansprüche, bei der der Maskierungsschwellenberechner (30) ausgebildet ist, um bei der Berechnung der Maskierungsschwelle abhängig von der Fassung (341) des ersten Audiosignals (141) ein Hintergrundaudiosignal zu berücksichtigen.
  9. Vorrichtung gemäß einem der vorhergehenden Ansprüche, bei der der Anpasser (32) ausgebildet ist, um den Strahlformungsverarbeiter (20) so anzusteuern, dass in Frequenzbereichen, in welchen die Fassung (342) des zweiten Audiosignals (142) die Maskierungsschwelle überschreitet, das zweite Audiosignal (142) bei der raumselektiven Wiedergabe global reduziert wird.
  10. Vorrichtung gemäß einem der vorhergehenden Ansprüche, bei der der Anpasser (32) ausgebildet ist, um den Strahlformungsverarbeiter (20) derart anzusteuern, dass in Frequenzbereichen, in welchen die Fassung (342) des zweiten Audiosignals (142) die Maskierungsschwelle überschreitet, das erste Audiosignal (141) bei der raumselektiven Wiedergabe global verstärkt wird.
  11. Vorrichtung gemäß einem der vorhergehenden Ansprüche, wobei der Anpasser (32) ausgebildet ist, um die Änderung der Ausgabe des ersten und zweiten Audiosignals (141, 142) hinsichtlich absoluter Ausprägung und/oder hinsichtlich einer Änderungsrate der Ausprägung der Änderung zu begrenzen.
  12. Vorrichtung gemäß einem der vorhergehenden Ansprüche, wobei der Berechner ausgebildet ist, um bei der Berechnung zeitliche und spektrale auditive Verdeckungseffekte zu berücksichtigen.
  13. Verfahren zur raumselektiven Audiowiedergabe mittels eines zwischen einen Eingang (12) für ein erstes und zweites Audiosignal (141, 142) und einen Ausgang (16) für eine Mehrzahl von Lautsprechern (18) geschalteten Strahlformungsverarbeiters (20), der ausgebildet ist, um das erste und zweite Audiosignal (141, 142) zur raumselektiven Wiedergabe über den Ausgang (16) an die Lautsprecher (18) auszugeben, mit
    Berechnen, mittels eines Ausbreitungsmodells für das erste und zweite Audiosignal (141, 142), jeweils einer sich durch die raumselektive Wiedergabe in einem ersten Bereich (24) eines Beschallungsschalters (22) der Lautsprecher (18) ergebende Fassung (341, 342) des jeweiligen Audiosignals;
    wobei der Strahlformungsverarbeiter (20) ausgebildet ist, um die Ausgabe des ersten und zweiten Audiosignals (141,142) zur raumselektiven Wiedergabe an den Ausgang durch Durchführung einer Strahlformung an zumindest dem zweiten Audiosignal (142) zu erzielen;
    gekennzeichnet durch
    abhängig von der Fassung (341) des ersten Audiosignals (14), Berechnen einer Maskierungsschwelle (36) über ein psychoakustisches Modell ; und
    abhängig von einem Vergleich der Maskierungsschwelle (36) mit der Fassung (342) des zweiten Audiosignals (142), Beeinflussen der Ausgabe des ersten und zweiten Audiosignals (141, 142) zur raumselektiven Wiedergabe über den Ausgang (16) an die Lautsprecher (18),
    wobei der Strahlformungsverarbeiter (20) mehrere Modi für die Durchführung der Strahlformung aufweist, die sich hinsichtlich einer Güte einer Unterdrückung des zweiten Audiosignals (142) an dem ersten Bereich (24) für unterschiedliche Frequenzbereiche unterscheiden,
    wobei das Beeinflussen ein von dem Vergleich abhängiges Variieren der Strahlformung durch einen Wechsel von einem aktuell verwendeten Modus zu einem anderen Modus aufweist.
  14. Computerprogramm mit einem Programmcode zur Durchführung des Verfahrens nach Anspruch 13, wenn das Programm auf einem Computer abläuft.
EP14727481.5A 2013-05-31 2014-05-28 Vorrichtung und verfahren zur raumselektiven audiowiedergabe Active EP3005732B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013210184 2013-05-31
DE102013217367.9A DE102013217367A1 (de) 2013-05-31 2013-08-30 Vorrichtung und verfahren zur raumselektiven audiowiedergabe
PCT/EP2014/061188 WO2014191526A1 (de) 2013-05-31 2014-05-28 Vorrichtung und verfahren zur raumselektiven audiowiedergabe

Publications (2)

Publication Number Publication Date
EP3005732A1 EP3005732A1 (de) 2016-04-13
EP3005732B1 true EP3005732B1 (de) 2017-06-21

Family

ID=51899430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14727481.5A Active EP3005732B1 (de) 2013-05-31 2014-05-28 Vorrichtung und verfahren zur raumselektiven audiowiedergabe

Country Status (7)

Country Link
US (1) US9813804B2 (de)
EP (1) EP3005732B1 (de)
JP (1) JP6301453B2 (de)
KR (1) KR101877323B1 (de)
CN (1) CN105247892B (de)
DE (1) DE102013217367A1 (de)
WO (1) WO2014191526A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036008B2 (ja) * 2016-05-30 2022-03-15 ソニーグループ株式会社 局所消音音場形成装置および方法、並びにプログラム
EP3264734B1 (de) * 2016-06-30 2022-03-02 Nokia Technologies Oy Steuerung von audiosignalparametern
US10531196B2 (en) * 2017-06-02 2020-01-07 Apple Inc. Spatially ducking audio produced through a beamforming loudspeaker array
US10019981B1 (en) 2017-06-02 2018-07-10 Apple Inc. Active reverberation augmentation
WO2019197002A1 (en) 2018-04-13 2019-10-17 Aalborg Universitet Generating sound zones using variable span filters
JP6979665B2 (ja) * 2018-08-31 2021-12-15 株式会社ドリーム 指向性制御システム
EP3906708A4 (de) * 2019-01-06 2022-10-05 Silentium Ltd. Vorrichtung, system und verfahren zur schallsteuerung
CN113574596A (zh) * 2019-02-19 2021-10-29 公立大学法人秋田县立大学 音频信号编码方法、音频信号解码方法、程序、编码装置、音频系统及解码装置
US11968268B2 (en) 2019-07-30 2024-04-23 Dolby Laboratories Licensing Corporation Coordination of audio devices
WO2021021752A1 (en) * 2019-07-30 2021-02-04 Dolby Laboratories Licensing Corporation Coordination of audio devices
WO2021021707A1 (en) * 2019-07-30 2021-02-04 Dolby Laboratories Licensing Corporation Managing playback of multiple streams of audio over multiple speakers
US11871184B2 (en) 2020-01-07 2024-01-09 Ramtrip Ventures, Llc Hearing improvement system
KR102347626B1 (ko) 2020-07-01 2022-01-06 한국과학기술원 거리에 따른 개인화된 음장을 생성하는 방법 및 장치
EP4367906A1 (de) * 2021-07-09 2024-05-15 Soundfocus Aps Verfahren und lautsprechersystem zur verarbeitung eines audioeingangssignals
CN114882721B (zh) * 2022-05-27 2023-05-09 中国第一汽车股份有限公司 一种车载导航信息播放方法、装置、电子设备及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473517B2 (ja) * 1999-09-24 2003-12-08 ヤマハ株式会社 指向性拡声装置
AU7538000A (en) * 1999-09-29 2001-04-30 1... Limited Method and apparatus to direct sound
JP4349123B2 (ja) * 2003-12-25 2009-10-21 ヤマハ株式会社 音声出力装置
GB0405346D0 (en) * 2004-03-08 2004-04-21 1 Ltd Method of creating a sound field
TWI475896B (zh) * 2008-09-25 2015-03-01 Dolby Lab Licensing Corp 單音相容性及揚聲器相容性之立體聲濾波器
US8218783B2 (en) * 2008-12-23 2012-07-10 Bose Corporation Masking based gain control
CN102550048B (zh) * 2009-09-30 2015-03-25 诺基亚公司 一种用于处理音频信号的方法和装置
US8965546B2 (en) * 2010-07-26 2015-02-24 Qualcomm Incorporated Systems, methods, and apparatus for enhanced acoustic imaging
KR101782050B1 (ko) * 2010-09-17 2017-09-28 삼성전자주식회사 비등간격으로 배치된 마이크로폰을 이용한 음질 향상 장치 및 방법
JP5838740B2 (ja) * 2011-11-09 2016-01-06 ソニー株式会社 音響信号処理装置と音響信号処理方法およびプログラム
US20130259254A1 (en) * 2012-03-28 2013-10-03 Qualcomm Incorporated Systems, methods, and apparatus for producing a directional sound field
US20140006017A1 (en) * 2012-06-29 2014-01-02 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for generating obfuscated speech signal
EP3040984B1 (de) * 2015-01-02 2022-07-13 Harman Becker Automotive Systems GmbH Schallzonenanordnung mit zonenweiser sprachunterdrückung

Also Published As

Publication number Publication date
CN105247892A (zh) 2016-01-13
EP3005732A1 (de) 2016-04-13
JP2016524862A (ja) 2016-08-18
CN105247892B (zh) 2019-02-22
US9813804B2 (en) 2017-11-07
KR20160007584A (ko) 2016-01-20
KR101877323B1 (ko) 2018-08-09
JP6301453B2 (ja) 2018-03-28
DE102013217367A1 (de) 2014-12-04
WO2014191526A1 (de) 2014-12-04
US20160088388A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
EP3005732B1 (de) Vorrichtung und verfahren zur raumselektiven audiowiedergabe
EP1977626B1 (de) Verfahren zur aufnahme einer tonquelle mit zeitlich variabler richtcharakteristik und zur wiedergabe
EP1013141B1 (de) Verfahren und anordnung zur wiedergabe eines stereophonen audiosignals
EP1972181B1 (de) Vorrichtung und verfahren zur simulation von wfs-systemen und kompensation von klangbeeinflussenden wfs-eigenschaften
WO2014187877A2 (de) Mischpult, tonsignalerzeuger, verfahren und computerprogramm zum bereitstellen eines tonsignals
EP1671516A1 (de) Vorrichtung und verfahren zum erzeugen eines tieftonkanals
EP2754151B1 (de) Vorrichtung, verfahren und elektroakustisches system zur nachhallzeitverlängerung
EP3677053B1 (de) Lautsprechersystem für raumklang mit unterdrückung unerwünschten direktschalls
WO2022218822A1 (de) Vorrichtung und verfahren zum erzeugen eines ersten ansteuersignals und eines zweiten ansteuersignals unter verwendung einer linearisierung und/oder einer bandbreiten-erweiterung
EP2595414A1 (de) Hörvorrichtung mit einer Einrichtung zum Verringern eines Mikrofonrauschens und Verfahren zum Verringern eines Mikrofonrauschens
WO1995030323A1 (de) Verfahren und vorrichtung zur kompensation akustischer verfälschungen
DE102015008000A1 (de) Verfahren zur Schallwiedergabe in Reflexionsumgebungen, insbesondere in Hörräumen
DE102005060036B4 (de) Verfahren und Gerät zur Audiosignalverarbeitung
DE10215775A1 (de) Verfahren zur räumlichen Darstellung von Tonquellen
DE102016121989B4 (de) Klangsystem, verfahren zur optimierung eines raumklangs und verfahren zur speicherung und/oder wiedergabe von akustischen signalen
DE102011108788A1 (de) Verfahren zur Verarbeitung eines Audiosignals, Audiowiedergabesystem und Verarbeitungseinheit zur Bearbeitung von Audiosignalen
WO2022183231A1 (de) Verfahren zur erzeugung von audiosignalfiltern für audiosignale zur erzeugung virtueller schallquellen
DE102018108852B3 (de) Verfahren zur Beeinflussung einer auditiven Richtungswahrnehmung eines Hörers
EP1900250B1 (de) Elektroakustisches verfahren
DE102006051229A1 (de) Klangerzeugungssystem für ein Fahrzeug und ein Verfahren zur Optimierung eines Klangerzeugungssystems eines Fahrzeuges
WO2015022578A1 (de) Zweidimensionale anordnung von schallwandlern für eventbeschallungen
WO2024099733A1 (de) Verfahren zur richtungsabhängigen korrektur des frequenzganges von schallwellenfronten
DE102018216604A1 (de) System zur Übertragung von Schall in den und aus dem Kopf eines Hörers unter Verwendung eines virtuellen akustischen Systems
CH709271A2 (de) Kodierung und Dekodierung eines niederfrequenten Kanals in einem Audiomultikanalsignal.
EP2503799A1 (de) Verfahren und System zur Berechnung synthetischer Außenohrübertragungsfunktionen durch virtuelle lokale Schallfeldsynthese

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPORER, THOMAS

Inventor name: FRANCK, ANDREAS

Inventor name: SLADECZEK, CHRISTOPH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 1/32 20060101ALI20161222BHEP

Ipc: H04R 27/00 20060101AFI20161222BHEP

INTG Intention to grant announced

Effective date: 20170110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014004339

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014004339

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20180322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 903902

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190528

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 10

Ref country code: DE

Payment date: 20230519

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014004339

Country of ref document: DE

Owner name: BRANDENBURG LABS GMBH, DE

Free format text: FORMER OWNER: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., 80686 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20240104 AND 20240110