JP6301453B2 - 空間的に選択的なオーディオ再生装置及び方法 - Google Patents

空間的に選択的なオーディオ再生装置及び方法 Download PDF

Info

Publication number
JP6301453B2
JP6301453B2 JP2016516172A JP2016516172A JP6301453B2 JP 6301453 B2 JP6301453 B2 JP 6301453B2 JP 2016516172 A JP2016516172 A JP 2016516172A JP 2016516172 A JP2016516172 A JP 2016516172A JP 6301453 B2 JP6301453 B2 JP 6301453B2
Authority
JP
Japan
Prior art keywords
audio
speaker
spatially selective
audio signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016516172A
Other languages
English (en)
Other versions
JP2016524862A (ja
Inventor
アンドレーアス フランク
アンドレーアス フランク
クリストフ スラデツェック
クリストフ スラデツェック
トーマス スポラー
トーマス スポラー
Original Assignee
フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ
フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ, フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ filed Critical フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ
Publication of JP2016524862A publication Critical patent/JP2016524862A/ja
Application granted granted Critical
Publication of JP6301453B2 publication Critical patent/JP6301453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/323Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • H04R2203/12Beamforming aspects for stereophonic sound reproduction with loudspeaker arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2227/00Details of public address [PA] systems covered by H04R27/00 but not provided for in any of its subgroups
    • H04R2227/001Adaptation of signal processing in PA systems in dependence of presence of noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/01Aspects of volume control, not necessarily automatic, in sound systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Description

本発明は、例えば、異なるポジションに位置する異なるリスナー又はリスナーのグループへの異なるオーディオ信号の空間的に選択的なオーディオ再生に関する。
配列として典型的に体系化されるいくつかのスピーカーを経てのオーディオ信号の再生は、共通方法である。信号を再現することによって及び個々の修正を用いてスピーカー信号を取得することによって、例えば、フィルタ処理としてもまた一般に説明され得る、振幅の遅延及び変化を課すことによって、スピーカーを用いて放射される音場の外形は、例えば標的化方式(targeted manner)において特定の領域を音にさらすことを目的として、標的指向方式(target−oriented manner)において影響され得る。前記技術は、以下でビームフォーミングと称されるだろう。この技術を用いて、再生より前に、スピーカーとスピーカーとを、合計される個々のフィルタ処理されるスピーカー信号を、全ての信号に対して、生成することによって、異なる指向性特徴を有するいくつかのオーディオ信号を同時に再生することもまた可能となる。この方法において、空間的に選択的な再生が達成され得、いくつかの領域(いわゆる「音ゾーン」)は、異なる信号、前記音領域の中で又は他のゾーン(最小化され、可能な限り無音であることを意図する、いわゆる「クワイエット・ゾーン」)を用いる音再生の相互影響、を用いて音波処理される。
ビームフォーミング・フィルタを決定するための多くのアルゴリズムがある。振幅のウェイト及び/又は遅延のみを適用するそれらに加えて、周波数依存フィルタ処理に基づく方法もまたある。前記方法は、上記した「クワイエット・ゾーン」に従って、選択可能な放射方向又は定義可能な領域の中での放射の抑制のように、しばしば最適化技術に基づき、且つ望ましい放射態様のフレキシブルなデフォルトを可能とする。
このようなビームフォーミング・アルゴリズムにもかかわらず、特に複数の音ゾーンの間で聞き取れる影響の抑制の、空間的に選択的な(音にさらす)音波処理の有効性は、しばしば制限され且つ非合格品質を許す。これの主な理由は、スピーカーの偏向へと向かうビームフォーミング処理の制限された頑強性から結果として生じるエラー、信号の振幅などだけでなく、用いられる周波数領域に亘って望ましい指向性態様を達成することに関してスピーカー配列の制限、再生ルームの影響をフィルタ処理する。それ故に、物理的な方法及び信号処理に関する方法を経ての空間的に選択的な再生の実現性が制限される。
重ね合わされる方法で再生された一つ以上の他のオーディオ信号からこの領域に提供される一つのオーディオ信号の、音波処理エリアの特定の領域で、より明快な分離を達成することを可能とする空間的に選択的なオーディオ再生のためのコンセプトを有することが望まれるだろう。
本発明の目的は、このような一つのコンセプトを提供することである。
この目的は、係属する独立請求項中の主題によって達成される。
複数のスピーカーの音波処理エリアの第1の領域の中で第1のオーディオ信号の改善された分離を見出したことから成り立つ本発明の核となるアイデアは、この領域でオーディオ信号の空間的に選択的な再生から結果として生じるオーディオ信号のバージョンが計算されることにおいて、マスキング閾値がこの領域で一つの又はいくつかの他のオーディオ信号から分離されるべきそのオーディオ信号のバージョンの関数として計算されることにおいて、且つ複数のスピーカーの出力への空間的に選択的な再生のためのオーディオ信号の放出が、一つ以上の他の、すなわちスプリアス(干渉する)、オーディオ信号のバージョンを有するマスキング閾値の比較の関数として影響を及ぼされるので、達成され得る。この第1の領域におけるオーディオ信号の計算又は推定は、この第1の領域への音伝搬のシミュレーションとしてもまた例示され得、且つ前者を実装するために用いられる要素は、計算機又はシミュレータとして、それ故に例示され得る。音波処理エリアの第1の領域で、空間的に選択的な再生によって既に可能とされる、オーディオ信号の分離は、マスキング閾値を評価する際、空間的に選択的な再生から結果として生じるオーディオ信号のバージョンが計算され、及び/又はシミュレーションされるので、それ故に改善され得る。回避又は減衰するための空間的に選択的な再生に影響を及ぼすこと、音波処理エリアの第1の領域でのマスキング閾値「に対する侵害」は、例えばシミュレーションされる他のオーディオ信号のそれぞれがマスキング閾値を超える周波数領域においてスプリアスな他のオーディオ信号それぞれの周波数選択性の減衰を用いるような異なる方法において実行され得る。加えて又は代わりに、対応する周波数領域で実際に対象のオーディオ信号を増幅することを可能とする。加えて又は代わりに、実際に対象の(第1の)オーディオ信号の、スプリアスな(第2の)オーディオ信号のビームフォーミング、又はマスキング閾値を用いる比較の関数としての両方のオーディオ信号を変えることもまた実現可能となるだろう。
有利な実装は、従属請求項の主題を構成する。本願の好ましい実施形態は、図面を参照して以下においてより詳細に説明されるだろう。
空間的に選択的な再生装置のブロック図を示す。 図1のアダプタによって取得される考えられる測定値を例示するためのスケッチを示す。 図1のアダプタの一部によって取得される追加の又は代わりの測定値を例示するためのスケッチを例示する。 従来の空間的に選択的な再生装置のブロック図を示す。 始点を有する図1の実施形態の異なる実装のブロック図を示す。
図1は、一実施形態に係る空間的に選択的なオーディオ再生装置を示す。前記装置は、一般に、参照番号10によて示される。装置10は、複数のスピーカー18のための出力16だけでなく、少なくとも第1のオーディオ信号141及び第2のオーディオ信号142のための入力12も含む。装置10のビームフォーミング処理装置20は、一方で入力12と、他方で出力16との間に接続され、且つ出力16を経てスピーカー18へと空間的に選択的な再生のための第1及び第2のオーディオ信号141及び142を出力するように構成される。スピーカー18は、一つの音波処理エリア22、例えば、それらの予想されるスピーカーのポジションでスピーカーによって囲まれ、若しくはそれらが方向付けられる一つのエリア、又は、一般に、スピーカー18の少なくとも一つによって音波処理される(sonicated)一つのエリア、を音波処理することができる。音波処理エリアは、如何なる反射面もない仮想音波処理エリア、又は例えば壁のような反射効果を備え得る実際の音波処理エリアのように、スピーカー18の架空及び/又は目標スピーカー位置の構成に関して架空ルームであり得る。
スピーカー18でのオーディオ信号141及び142の「空間的に選択的な」再生は、オーディオ信号が重ね合されるフォームにおける相互に同一のコピーのフォームにおいてスピーカー18へと単に放出されないことを意味し、しかし、本願の説明のためのイントロダクションにおいて説明されるように、例えば、個々のスピーカーの遅延及び/又は振幅修正を用いて、又は、一般に、それらがある意味でスピーカー18を経て放出されるように、それらは放出される。それらは、個々のスピーカーのフィルタ処理を用いて、すなわち、第2のオーディオ信号142によって第1のオーディオ信号141と比較してより小さい程度又は少しもないように音波処理される音波処理エリアの少なくとも一つの第1の領域24があるために、オーディオ信号141及び142のための異なる方法で、フィルタ処理される。その反対が正しい、すなわち、空間的に選択的な再生が故に、第1のオーディオ信号141がこの領域26をスピーカー18によって第2のオーディオ信号142と比較してより小さい程度又は少しもないまで音波処理する、第2の領域26でもまたあり得る。重ね合わされる方法で再生される2つ以上のオーディオ信号が同時に存在することもまた可能であることが、後にまた指摘されるだろう。
最適な状態において、他のオーディオ信号142から第1の領域24で第1のオーディオ信号141の分割が、この領域24におけるリスナーが他のオーディオ信号142を聞かない程度のように達することは可能であり得る。残念なことには、しかしながら、空間的選択性がスピーカー18による再生を経て制限され、その制限は、実際に存在する反射から、又は単にスピーカー18のポジションの分配の制限される全体的な拡張に起因し得る。装置10の中に含まれるさらなる要素は、このセンスにおいて「空間的選択性」を改善するように意図される。この詳細については、以下で説明される。
しかしながら、オーディオ信号141及び142が、時間領域の中で又は周波数領域の中でなど、アナログ又はデジタル形式で、分割された又は符号化m/s形式で、又はパラメータ化されたダウンミックスを含む形式で、非圧縮又は圧縮形式でのような如何なる形式で、入力12で存在し得ることが、まず簡潔に述べられるだろう。この状態は、出力16で、スピーカー18のためのスピーカー信号と同様である。スピーカー18のための個々のスピーカーのスピーカー信号は、これらが互いに分離されるように出力16を経て放出され得、アナログ又はデジタル、圧縮又は非圧縮、既増幅、事前増幅のみ、又は非増幅形式などで、放出され得る。同様に、スピーカー信号が、符号化MPEGサラウンド又は符号化SAOC形式でのような、空間的なキュー・パラメーターと一緒に、ダウンミックスにおいて圧縮形式で放出されることを可能とするだろう。ビームフォーミング処理装置20は、最初に完全に独立した方法で、例えば、これらのそれぞれのためにスピーカー18のためのスピーカー信号のセットを生成するために、オーディオ信号それぞれのためのスピーカーそれぞれが、遅延及び/又は振幅修正のような、スピーカーそれぞれのスピーカーのポジションそれぞれのための個々である特定のフィルタ処理を被ったように、入力されてくるオーディオ信号141及び142を処理する。それは終了時のみで、例えば、個々のスピーカー信号からそれ故に取得されるスピーカー信号セットが、チャンネル及び/又はスピーカーごとに互いに重ね合されるこれは、次の図においてさらにもう一度例示されるだろう。
図1において領域24及び任意の領域26は、例として円で、すなわち、スピーカー18を通り抜ける方向において、及びこれへの横断方向においての両方に制限される2次元領域のように例示されるが、用語「空間的選択性」は、もちろん、単に「角度の選択性」を指定するため、オーディオ信号それぞれのための個々であり、且つスピーカー18の全体像(perspective)から見えるような異なる立体角の領域へと放出されるオーディオ信号141及び142をもたらすビームフォーミング処理装置20の中で実行される処理という意味において、十分に広義にも理解されるだろう。このような角度選択性は、スピーカー構成のファー・フィールドにおいて放射に影響を及ぼすようにも解釈され得る。スピーカー構成からの小さな距離で(スピーカー構成のサイズ、すなわち、幾何学的な近いフィールドに関して)、2次元エリアの中での放射の標的修正もまた可能である。
より詳細に以下において説明するであろうように、ビームフォーミング処理装置20は、空間的に選択的な再生のために、しっかりとセットされ、又は最適化され得る。言い換えると、ビームフォーミング処理装置20の空間的選択性は、不変であり得る。それは、領域24又は領域24及び26に関して、すなわち、領域24において第1のオーディオ信号141のみ、及び、もし提供されるならば、領域26において第2のオーディオ信号142のみが、領域それぞれの中でリスナーのポジションによって聞かれ得るという効果に関して、予め最適化され得る。最適化は、個々のチャンネル及び/又はスピーカー18のために、上記した遅延、振幅、修正、及び/又はフィルタ、例えばFIRフィルタをそれ故に定義するだろう。また、ビームフォーミング処理装置20は、ハードウェアにより実現され得、例えば、又は、出力16を経てのスピーカー18への空間的に選択的な再生のために配置されるように、ソフトウェア又はプログラム可能なハードウェアにおいて、しっかりと実装される。代わりに、しかしながら、ビームフォーミング処理装置が、1つ以上のオーディオ信号141、142のために(遅延、振幅、変調又はフィルタ処理を)処理する個々のスピーカーに関してもまた調整可能であることもまた可能である。大まかに言えば、ビームフォーミング処理装置20は、以下においてより詳細に説明されるであろうように、出力16でオーディオ信号141、142のそれの空間的に選択的な再生に関して調整及び/又は影響され得る。加えて、又は代わりに、この調整は、ある意味では個々の又は全てのオーディオ信号を修正すること/に影響を及ぼすことによって達成され得、それは、オーディオ信号それぞれへの個々であるがしかし同じ意味では全てのスピーカー/チャンネルで振る舞い、以下に説明されるであろうように、且つ周波数選択性である。装置10の構成要素によって用いられる、影響を及ぼされ及び/又は調整されるビームフォーミング処理装置20の上記で述べられた能力は、領域24における第1のオーディオ信号141の他のオーディオ信号142からの分離を改良するために以下で説明されるであろう。
これまでに説明した構成要素に加えて、装置10は計算機28、マスキング閾値計算機30、及びアダプタ32を含む。計算機28は、入力12にもまた接続され、且つ伝搬モデルを用いて、オーディオ信号141及び142、オーディオ信号141及び/又は142それぞれのバージョンのために、計算するように構成され、それは第1の領域24において空間的に選択的な再生から結果として生じる。すなわち、オーディオ信号141のバージョン341が位置24で再生され、且つ、同様に、オーディオ信号142のバージョン342が位置24で再生される。マスキング閾値計算機30は、バージョン341を取得し、且つそれの関数としてマスキング閾値36を計算するように構成される。そして、アダプタ32は、他のオーディオ信号のバージョン342、及び、任意で、あるいは第1のオーディオ信号141のバージョン341もまた取得し、且つ第2のオーディオ信号342のバージョンを有するマスキング閾値36の比較の関数として、影響を及ぼすように構成され、出力16を経てのスピーカー18への空間的に選択的な再生のための第1及び第2のオーディオ信号の放出が、矢印38によって示されるように、適切な方法でビームフォーミング処理装置20をアダプタ32において制御する。言い換えると、アダプタ32の出力は、ビームフォーミング処理装置20の制御入力に接続される。
計算機28、マスキング閾値計算機30、及びアダプタ32は、ソフトウェア、プログラム可能なハードウェアにおいて、又はハードウェアにおいてそれぞれ実装され得る。計算機28は、伝搬モデルを用い得る。計算機28は、伝搬モデルを用い得、例えば、その内部を最適化するためにもまた用いられ得、個々のチャンネル/スピーカーは、ビームフォーミング20の中でオーディオ信号141、142を処理する。計算機28は、例えば、以下においてより詳細に説明されるであろうように、第1のオーディオ信号141及び第2のオーディオ信号142によって位置24で生成される音事象を計算又は評価する。計算するために、前記計算機は、例えば、ビームフォーミング処理装置20の中でオーディオ信号141、142の個々のチャンネル/スピーカー処理、及びスピーカー18の位置、並びに任意で、例えば、スピーカー18の放射パターン及び/又は整列のような更なるパラメータを用い得る。計算機28は、音圧、振幅又は同様のもの、例えば、及びあるいは周波数依存の方法、すなわち異なる周波数のため、において測定され又は示される音事象を計算する。ビームフォーミング処理装置20の不変の/固定された個々のチャンネル/スピーカー処理の事象において、計算機28は、不変の/固定された方法でシミュレーションを実行し得る。処理装置20の一部で個々のチャンネル/スピーカー処理への許容値及び/又は適合は、計算機28がバージョン341、342を計算するために用いる伝搬モデルの適切な解釈にそれ故に起因するだろう。それ故に、伝搬モデルは、たった今述べたパラメータもまた考慮し得る。次に、計算機28は、時間領域の中で又は周波数領域、又は同様のものの中で、如何なる形式で、すなわち、アナログ又はデジタル形式で、圧縮又は非圧縮形式で、バージョン341及び342を放出し得る。
マスキング閾値計算機30は、バージョン341の、すなわち位置24でオーディオ信号141の可聴バージョンの関数として、マスキング閾値を計算する。破線の矢印40によって示されるように、マスキング閾値計算機は、バージョン341に加えて、マスキング閾値を計算するためにバックグラウンドのオーディオ信号(例えば、騒音又は駆動騒音)もまた用い得る。計算は、如何なる時間的な及び/又はスペクトル聴覚作用のマスキング効果を考慮する。計算されるマスキング閾値は、それ故に、周波数の関数として、位置24でオーディオ信号141のバージョン341の範囲がそれらをマスキングすることによって位置24でリスナーに非可聴な他のオーディオ信号とすることを可能とすることのために、示される。例えば、マスキング閾値計算機30は、それが周波数分解能においてマスキング閾値を決定及び/又は計算するように構成され得、周波数増加としてますます粗くなる。すなわち、周波数帯域が、例えば、バーク周波数分可能においてのように、周波数増加としてますます広くなていく。
アダプタ32は、第2のオーディオ信号142のバージョン342を用いてマスキング閾値36を比較し、且つこの方法で、例えば、第2のオーディオ信号142が位置24で人に可聴であるかどうか、すなわち、第2のオーディオ信号が如何なる周波数でもマスキング閾値を超えるかどうかを確かめる。これがそうである場合、アダプタ32は対応策を取り、且つ適切な方法でビームフォーミング処理装置20を制御する。このような制御操作のためのいくつかの例は、既に上記で示された。これは、次の図に関して再度例示されるであろう。
例えば、図2は、ヒアリング容量を測定する実質上のスケールにおいて、周波数f、マスキング閾値36、バージョン341、及びバージョン342をプロットされる図解を示す。周波数領域42、スプリアスなオーディオ信号142のその中で、又はシミュレーションに従って位置24で結果として生じるバージョン342は、例として例示されるマスキング閾値36を一般に超える。一つの考えられる対応策は、矢印44によって示されるように、前記周波数領域42の中で第2のオーディオ信号342が減衰されるように、ビームフォーミング処理装置20を制御するアダプタ32で成り立つであろう。加えて又は代わりに、アダプタ32は、この周波数領域の中で、−又は、前記周波数領域42を超えて、周波数のおそらく独立してさえ−第1のオーディオ信号141が、矢印46によって示されるように、増幅されるように、ビームフォーミング処理装置20を制御し得る。減衰44及び/又は増幅46は、好ましくは、増幅/減衰の程度が時間内に及び/又は頻繁に突然の急上昇がないことを明示するように、実行される。減衰及び/又は増幅の程度及び/又は値は、時間的に及び/又はスペクトル的に滑らかにされる。
考えられる測定は、上記で図2に関して説明され、且つ、空間的選択性の観点から及び/又はチャンネル/スピーカーの観点からの全体的な測定、及び/又は全てのチャンネル/スピーカー18のための等しく効果的な測定に関して、位置24でバージョン342の可聴性に反して、アダプタ32によってなされ得た。ビームフォーミング処理装置20が、例えば、予め入力されてくるオーディオ信号141又は142のそれぞれで増幅46及び/又は減衰44を実行し、且つその後のみ、チャンネル/スピーカー−等しく前処理される空間的に選択的な再生のためのオーディオ信号の個々の処理を実行することが、後ほど示されるであろう。加えて又は代わりに、アダプタ32は、既に上記で示されたように、マスキング閾値36との上記された比較の関数として、ビームフォーミングそれ自体を変えるように構成され得る。これは、図3に関して例示されるであろう。
図3は、ビームフォーミング処理装置20が、例えば、オーディオ・チャンネル141及び142、例としてここでは481から48Nまでによって示される前記異なるモードの個々のチャンネル/スピーカーのビームフォーミング処理のためのいくつかのオプション又はモードを備え得ることを示す。これらの一つ−例えば481に従うビームフォーミング処理−は、空間的に選択的な再生のために、ある基準の観点から、最適な処理であり得、すなわち、位置及び周波数の観点から位置24でオーディオ信号142及び/又は342の最良な抑制という結果をおそらく生じ得る。しかしながら、48Nへの他方のモード242は、同様に良好な分離、又は他の基準又は異なる重み付けの基準の観点から等しく良好な若しくは最良の分離もおそらく結果として生じ得る。全てのモード481から48Nまでは、例えば、異なる周波数領域のための抑制の品質に関して相違を備える。そして、この場合、例えば、アダプタ32は、マスキング閾値36及びインターバル42の位置との比較の関数として、一般に選択される個々のチャンネル/スピーカー処理モード、又は同じものから他方のものへの切り替えを変化し得る。マスキング閾値36に関する侵害が存在し、図3において、矢印50は、例えば、一般に選択されるモード481から48Nまでの選択を示し、且つ両方向の矢印52は、マスキング閾値36との上記した比較の関数として、現在用いられているこのモードからビームフォーミング処理装置20によって一般に用いられる他のものへの切り替えを示す。一つのモードから他方への切り替えは、ビームフォーミング処理装置20において、最新モードを用いて取得されるスピーカー信号と、新しいモードを用いて取得されるスピーカー信号との間をフェードする個々のスピーカー/チャンネルを伴い得る。
計算機28、マスキング閾値30、及びアダプタ32のため、図1の装置10はそれ故に、この目的のために最適化される不変のビームフォーミング分離と比較されるようにスピーカー構成18の音波処理エリアの位置24でもう一つのオーディオ信号142の抑制を改善することができる。様々な測定が、修正を制御されたマスキング閾値によって、位置24及び/又は位置26で、第1の及び/又は第2のオーディオ信号(s)のオーディオ品質の潜在的な劣化を避けるために可能である。既に上記で述べたように、増幅46及び/又は減衰44の程度は、それの絶対値、すなわち、増幅46の強度、及び/又は減衰44の強度に関して、しかしながら時間及び/又は周波数においてこの値の変化に関してもまた、両方が制限され得る。図3の実現性を用いる場合において、フェードすることが、例えば、一つのモードから他のモードへの切り替えのため、用いられ得る。これを機に、ビームフォーミング処理装置20において空間的に選択的な再生を実行することを目的とする演算を処理することを結果として生じる遅延を処理することに加えて、それを指摘することは価値のあることである。遅延は、計算機28、マスキング閾値計算機30、及びアダプタ32の中での演算の一連の処理によって引き起こされる遅延を処理するために、遅延適合処理を実行することもまた提供され得る。この方法において、アダプタ32によって実行される適合が、時間的に正確な及び/又は時間的に同期化された方法において、オーディオ信号141及び142へと適合のためのデータ制御が取得されたことから適用されることが可能となる。ビームフォーミング処理装置20のパスにおけるこのような追加の遅延は、計算機28、マスキング閾値計算機30、及びアダプタ32に沿ったパスの中での処理と比較されるように、異なるビームフォーミング・モード481から48Nまでの間の上記したフェードオーバーをマスキングするためにもより容易にまた用いられ得る。
空間的に選択的な再生装置の具体的な実装が以下で説明されるであろう前に、上記で既に述べられた要素の可能な構造を説明するために、図3に従って複数のモードが切り替わることの事象において、個々のチャンネル/スピーカー処理における連続した変化は、対応するパラメータが変化されないことにおいてもまた可能であり得、しかしながら、連続した方法において修正52によって変化され得ることに留意されたい。既に述べられたように、演算48を処理する個々のチャンネル/スピーカーは、例えば、少なくともオーディオ信号482のためのチャンネル/スピーカーそれぞれのための遅延のセット、しかしながら、オーディオ信号141及び142の両方、及び/又は対応する増幅変化またはFIRフィルタのためのフィルタ係数のためにもまた、基づく。
最後に、2つのオーディオ信号141及び142のみよりも多く提供することが可能であることもまた留意されたい。これは、図1において破線の矢印54によって示される。上記の説明は、この場合に容易に適用可能である。追加のオーディオ信号54は、例えば、今しがたのオーディオ信号142のように、すなわち、オーディオ信号のように扱われるだろう。位置24での再生は、この位置24に位置するリスナーに非可聴であると思われる。
さらに言い換えると、上記した実施形態ではこれが心理音響的効果を考慮することによって空間に関連する再生の感性品質の改善を許す。このコンテキストにおいて、オーディオ信号が、もう一つの要素のより静かな信号の可聴性を干渉し得るという事実が用いられる。この効果は、マスキングとして言及される。これは、例えば、不可逆なオーディオ符号化において重要な部分を果たす。心理音響学において、一つが時間におけるマスキングと周波数領域との間を区別する。時間領域におけるマスキングにおいて、騒々しい信号、いわゆるマスキング音(masker)が、後で直ぐに生じる他の構成要素、または狭い制限の中で、この音事象の前でさえ、マスクする。周波数領域におけるマスキングにおいて、特定の周波数を有する信号要素は、同様の周波数及びより低い振幅を有する他の要素をマスクするだろう。マスキングまでの閾値が、周波数及びマスキング音の絶対値に並びにマスキング音と他の信号との周波数の間の距離に依存して生じる。マスキング閾値、及び、それ故に、信号の構成要素がマスクされるであろうかどうかの決定は、心理音響モデルを経て決定され得る。マスキング閾値計算機30は、このような心理音響モデルを用い得る。
既に上記で示したように、図1の実施形態の可能な実装は、以下で説明されるだろう。これに関する技術的な詳細は、図1の個々の要素に個々へと個々に移転可能であるべきである。しかしながら、この実装が図5を参照して説明されるであろう前に、空間的に選択的な再生のための基本的な構成が図4を参照して説明されるであろう。その後で、上記した実施形態に従って、図5の実装を用いて改善されるであろう。図4は、2つのオーディオ信号S1(t)及びS2(t)が、前記信号が領域Z1及びZ2において再生されるように、すなわち、オーディオ信号S1(t)が領域Z1の中で主に再生され、且つオーディオ信号S2(t)が領域Z2において主に再生されるように、2つのビームフォーミング・フィルタのセット601及び602、加算ステージ62、及び複数のスピーカー18から成る一つのスピーカー配列を経て、処理される方法を示す。しかしながら、構成の物理的な制限に起因して、既に上記で説明したような理想的な分離は不可能である。構成要素601,602及び62は、不変の方法で作動するシンプルなビームフォーミング処理装置64を形成し、例えば、上記で述べた分離を実行するために最適化される。ビームフォーマ601は、前記信号のためのスピーカー信号のセットを生成するために、入ってくるオーディオ信号S1(t)にビームフォーミングを受けさせる。同じことが第2のオーディオ信号S2(t)のためにビームフォーマ602によってなされる。ビームフォーマ601,2の両方は、これらのスピーカー信号セットを加算器62へと出力する。加算器62は、個々のチャンネル/スピーカー方法で前記スピーカー信号を加算し、且つスピーカー18へと同様にフィードする。
ここで図5は、図1の実施形態に従って図4の構成を改善し得る方法を示す。図5の装置は、これらの関数の観点から図1において示されたそれらに対応する部分を示すために、図1の参照番号でもある10が引き継がれたことよって示される。示され得るように、図5のビームフォーミング処理装置20は、レベル・アダプタ66がチャンネル/スピーカー18の全てで等しい効果を有するレベル適合を実行することもまた可能であろうけれども、例として、図4の始点と比べられるように、単にここでは、レベル・アダプタ66が、例としてビームフォーマ602の入力側でスプリアスなオーディオ信号S2の信号経路へと挿入されて、修正される。レベル・アダプタ66は、図2を参照して上記で例示された減衰44を実行するため、アダプタ32によって制御される。加えて、図5は、オーディオ信号の一つのために実行された他のオーディオ信号からの信号分離が、一つより多いオーディオ信号のためにもまた実行され得ることを示す。この場合において、計算機28は、ビームフォーマ601及び602によって実行されるビームフォーミング演算に対応する同様の伝搬モデルを用いて、両方の位置、すなわち、位置Z1及びZ2で、オーディオ信号60の両方のS1およびS2それぞれの可聴バージョンのために、シミュレーションする。これは、図5が、同様の伝搬モデルをオーディオ信号S1に適用する伝搬モデル・アプライヤ681も、オーディオ信号S2のために同様のことを実行する伝搬モデル・アプライヤ682も示すということである。マスキング閾値計算機30は、それぞれのオーディオ信号が、それぞれの位置で、すなわち、位置Z2でのオーディオ信号S2の可聴バージョン、及び位置Z1での信号S1の可聴バージョンで提供されるために、それぞれのバージョンに対してマスキング閾値計算を実行し、且つその結果、すなわち、位置Z1及びZ2に対するそれぞれのマスキング閾値、すなわち、位置Z1で信号S1によって達成されるマスキング、及び/又は位置Z2でオーディオ信号S2によって達成されるマスキングを、制御データ適合、又はアダプタ32へと転送し、そのことに加えて、それぞれの場合で干渉する可聴バージョン、すなわち、位置Z1での信号S2の可聴バージョン、及び位置Z2での信号S1の可聴バージョンを保つだろう。
図4と比べて状況を改善するために、ゾーンZ1における信号S2の可聴性マスキング閾値は、図5の装置において決定される。この目的のために、信号S1(t)及びS2(t)から結果として生じる信号は、例えば、周波数領域の中での大きさのように、ゾーンZ1の中で最初に決定される。この目的のために、伝搬モデルは、計算され又は用いられ、それは複数のスピーカー18のスピーカー配列の伝達関数を含む。信号は、S1(t,Z1)及びS2(t,Z1)として参照される。心理音響モデルにおいてのように、信号S2(t、Z1)の可聴性のためにマスキング閾値は、マスキング音S1(t,Z1)を用いている間に決定される。前記閾値に基づいて、変更の評価は、(特定の周波数領域のために)一つの構成要素においてオーディオ信号S1(t)の大きさのために決定される。マスキング閾値に加えて、他の心理音響的に動機付けされるパラメータは、例えば、Z1でのS1(t)の再生でアダプタ32によってなされる適合の効果を制限するために、信号S1(t)における変更を最大限に許すように、考慮され得る。任意で、大きさにおける変更の時間的経過は、不安定な、潜在的に干渉する変更を避けるためにもまた制限される。前記時間制御のパラメータは、心理音響的パラメータによってもまた決定され得る。
今しがた説明されたのと同じアルゴリズムは、前記計算が図5においてもまた分配され得るにもかかわらず、図5において与えられる事実、すなわち、可聴バージョンを計算するためのシミュレーションが位置Z2でもまた実行されることによっても、この位置でのマスキング閾値の計算によっても示されるように、ゾーンZ2の中でS2(t)の再生でS1(t)の影響を最小化するために、同時に用いられ得る。加えて、図5において、オーディオ信号S1の信号経路で、レベル・アダプタがまた挿入され得、それは、位置Z2でスプリアスなオーディオ信号S1を用いて位置Z2に対するマスキング閾値の比較に基づいてアダプタ32によって制御される。アダプタ32は、比較の全ての結果、位置Z2でS1を用いてZ2におけるマスキング閾値の比較の結果、及び位置Z1でS2を用いてZ1におけるマスキング閾値の比較の結果を知っているため、アダプタは、そこから、位置及び/又は領域Z1/2、それぞれの場合、すなわち、Z1におけるS2及びZ2におけるS1、望ましい信号に関して、すなわち、Z2におけるS2及びZ1におけるS1の場合における干渉効果を有する信号に及ぼす影響の減衰の全てに対して、計算することができる。アダプタ32がこの目的のために妥協することが可能である。個々の領域における干渉が、他の領域、又は複数の領域における劣化を示すことをなされるための測定が必要となるためである。この妥協は、他の信号によってより高い優先度を有する信号に及ぼされる悪影響が、これらの目的地それぞれで、より低い優先度を有する信号のためよりもより高い優先度を用いて、実現されることができるように、アダプタ32が領域の中での優先度及び関連する望ましい信号を得るという事実によって影響を及ぼされ得る。
当然、オーディオ信号の数は、上記の実施形態においてのように、2つのオーディオ信号を超え得る。
それ故に、コンセプト、又はアルゴリズムの信号フローは、Z1の中で音圧縮、大きさなどのような音響事象が、音響伝搬モデルを用いて、信号S1(t)及びS2(t)から決定されるように、図5において示される。この伝搬モデルは、典型的に周波数の関数であり、且つ周波数に関連するそれぞれの、個々の離散する値を生成する最も単純な場合において、ゾーンZ1の中心のような、一つの点へのビームフォーマ601の伝達関数は、例えば、伝達モデルのように用いられる。しかしながら、他のモデルは、例えば、Z1におけるドット格子への大きさ伝達関数の加重平均もまた用い得る。伝搬モードの核となる特性は、それが入力信号S1(t)を、考慮した周波数帯域のそれぞれに対して明確に、ゾーンZ1において、この信号から由来する、音入射の強度を説明する測定へと、変換することである。周波数帯域へのオーディオ周波数領域の細分化は、異なる方法でもたらされ得、しかしながら、有用なことは、例えば、定数Q又はバーク尺度のような、心理音響的な特性によって由来される細分化である。心理音響モデルの初期値は、例えば、オーディオ・サンプリング率よりも低い周波数を有して、出力され得る。これは、例えば、サブサンプリングを用いて、又は例えばデシメーションを用いて移動平均を形成することによって、成立され得る。マスキング閾値計算機の初期値は、図5の実施形態においてまだ生の制御データであり、そのデータは個々の周波数帯域において望ましいレベル変更を説明する。前記データは、周波数帯域の格子によってもまた定義され、且つオーディオ・サンプリング率よりも低い率において典型的に存在している。生の制御データは、アダプタの中で後処理される。個々の周波数領域のレベル変更のためのより高い及びより低い制限は、このモジュールにおいて、明記され得る。他方で、変更の時間的経過は、例えば、レベル変更を遅延すること及びスームズにすることによって、適合され得る。
アダプタの適合された制御信号は、スピーカー−レベルの観点から、周波数帯域による周波数帯域、ビームフォーマ602の中の明確なビームフォーミング・フィルタを用いてフィルタ処理する前に信号S1(t)を適合するために、レベル・アダプタの中で、用いられる。それ故に、レベル・アダプタ66は、多帯域イコライザとして振る舞う。アダプタの時間的ダイナミクスとの接続において、関数、同類の多帯域コンプレッサ、又は、より一般に、影響を及ぼす多帯域ダイナミックは、達成され、通常の使用とは対照的に、増幅値を制御するために異なる信号をここでは用いる前記ユニットである。
図5において示されるように、信号S2(t)は、Z1の中でS2(t)の影響を減少するために、同様の方法において最適に変更され得る。それ故に、同時にクロストークを減少することもまた可能となる。当然、この可能性は、図5の詳細に関わりなく、図1の例に対してより一般にもまた存在する。
上記の実施形態に加えて、基準信号40は、自動車応用または同種のものにおける、背景雑音レベル、室内騒音のような、環境雑音のためにもまた任意で用いられ得る。この信号40は、上記で説明したように、マスキング閾値計算機に対する追加の入力として用いられ得る。基準信号40は、好ましくは、「音ゾーン」24及び/又は26又はZ2におけるZ1の中で、環境雑音信号に対する測定値又は有用な推定値である。
加えて、それは、信号の乱されない再生よりもむしろ他のソースからのクロストークの減少のみの、一つ(又はそれ以上)のゾーンにおいて、達成することができる。
それ故に、上記の実施形態は、例えば、一つの配列に配置され得る複数のスピーカーによる、心理音響的な環境の効果、オーディオ信号の空間的な再生を用いることによって、スピーカー配列を用いる空間的に選択的な再生のためのコンセプトを説明した。特に、それは、異なるオーディオ信号が相互影響を最小化されまたは明確に減少されるために、様々な空間的な領域へと放射され得る方法を説明された。いくらかの実施形態において、これは、スプリアス信号の可聴性が有用な信号の側で心理音響的なマスキングによって減衰されるように、オーディオ信号を修正する心理音響モデルを有するビームフォーミング・アルゴリズムを結び付けることによって、もたらされた。
いくつかの局面が装置のコンテキストの中で説明されたけれども、それは、ブロック又は装置の構造的な要素が対応する方法ステップとして又は方法ステップの特徴としてもまた理解されるべきであるように、対応する方法の説明もまた表すことが理解される。それと共に例示によって、方法ステップとの又はとしての接続において説明された局面は、対応する装置の対応するブロック又は詳細又は特徴の説明もまた表す。方法ステップのいくつか又は全ては、マイクロプロセッサ、プログラム可能なコンピュータ、又は電子回路のように、ハードウェア装置によって(又はハードウェア装置を用いることによって)実行され得る。いくつかの実施形態において、殆どの重要な方法ステップのいくつかの又は一部は、そのような装置によって実行され得る。
必須要件の具体的な実装に依存して、発明の実施形態は、ハードウェア又はソフトウェアにおいて実装され得る。実装は、デジタル記憶媒体、例えば、フロッピー(登録商標)ディスク、DVD、Blu−ray(登録商標)ディスク、CD、ROM、PROM、EPROM、EEPROM、又はFLASHメモリ、ハードディスク、又は、協働し得、又は方法のそれぞれが実行されるようにプログラム可能なコンピュータ・システムと協働し得るその上において記憶される電子的に読み取り可能な制御信号を有する、如何なる他の磁気又は光メモリを用いるとき果たされ得る。これが、デジタル記憶媒体がコンピュータ読取り可能であり得る理由である。
本発明に係るいくつかの実施形態は、それ故に、ここで説明された方法のいくつかが実行されるようにプログラム可能なコンピュータ・システムと協働することができる電子的に読取り可能な制御信号を備えるデータ・キャリアを備える。
概して、本発明の実施形態は、プログラム・コード、コンピュータ・プログラム生産物がコンピュータで動作するとき、方法のいずれかを実行するために効果的であるそのプログラム・コード有するコンピュータ・プログラム生産物として実装され得る。
プログラム・コードは、例えば、機械読取り可能なキャリアでもまた記憶され得る。
他の実施形態は、ここで説明された方法のいずれかを実行するためのコンピュータ・プログラム、機械読取り可能なキャリアで記憶される前記コンピュータ・プログラムを含む。
言い換えると、本発明の方法の実施形態は、それ故に、コンピュータ・プログラムがコンピュータで動作するとき、ここで説明された方法のいずれかを実行するためのプログラム・コードを有するコンピュータ・プログラムである。
本発明の方法の更なる実施形態は、それ故に、ここで説明された方法のいずれかを実行するためのコンピュータ・プログラムが記憶されることに関するデータ・キャリア(又はデジタル記憶媒体又はコンピュータ読取り可能な媒体)である。
発明の方法の更なる実施形態は、それ故に、データ・ストリーム、又はここで説明された方法のいずれかを実行するためのコンピュータ・プログラムを表す信号のセットである。データ・ストリーム又は信号のセットは、例えば、データ通信リンクによって、例えばインターネットによって、伝達されるように構成され得る。
更なる実施形態は、処理する方法、例えば、ここで説明された方法のいずれかを実行するように構成され又は適合された、例えばコンピュータ又はプログラム可能な論理機構を含む。
更なる実施形態は、ここで説明される方法のいずれかを実行するためのコンピュータ・プログラムがインストールされるコンピュータを含む。
本発明に係る更なる実施形態は、ここで説明された方法の少なくとも一つを実行するためのコンピュータ・プログラムを受信機へと送信するように構成された装置又はシステムを含む。送信は、例えば、電子又は光であり得る。受信機は、例えば、コンピュータ、モバイル装置、メモリ装置、又は同様の装置であり得る。装置又はシステムは、例えば、コンピュータ・プログラムを受信機へと送信するためのファイル・サーバを含み得る。
いくつかの実施形態において、論理機構(例えば現場プログラム可能ゲート・アレイ、FPGA)は、ここで説明された方法のいくつか又は全ての機能性を実行するために用いられ得る。いくつかの実施形態において、現場プログラム可能なゲート・アレイは、ここで説明されたいずれかの方法を実行するためのマイクロプロセッサと協働し得る。概して、方法は、いずれかのハードウェア装置によって、いくつかの実施形態において、実行される。前記ハードウェア装置は、コンピュータ・プロセッサ(CPU)のような普遍的に適用できるいずれかのハードウェアであり得、又はASICのような具体的な方法のためのハードウェアであり得る。
上記で説明された実施形態は、本発明の本質の例示を単に示す。他の当業者が如何なる配置の修正及びバリエーション並びにここで説明された詳細を認識するだろうことを理解されたい。これは、実施形態の説明又は議論を用いてここで示された具体的な詳細によってよりもむしろ、以下の特許請求の範囲によってのみ制限されることを意図する訳である。

Claims (14)

  1. 空間的に選択的なオーディ再生装置は、
    第1及び第2のオーディオ信号(141,142)のための入力(12)と、
    複数のスピーカー(18)のための出力(16)と、
    一方で前記入力(12)と、他方で前記出力(16)との間に接続され、且つ前記出力を経て前記スピーカー(18)へと空間的に選択的な再生のための前記第1及び第2のオーディオ信号(141,142)を放出するように構成されるビームフォーミング処理装置(20)と、
    前記第1及び第2のオーディオ信号(141,142)のために、伝搬モデルを用いて、前記スピーカー(18)の音波処理エリア(22)の第1の領域(24)において、前記空間的に選択的な再生から結果として生じる前記オーディオ信号それぞれのバージョン(341,342)それぞれを計算するように構成される計算機(28)と、
    心理音響モデルを経て、前記第1のオーディオ信号(141)の前記バージョン(341)の関数としてマスキング閾値(36)を計算するように構成されるマスキング閾値計算機(30)と、
    前記第2のオーディオ信号(142)の前記バージョン(342)を有する前記マスキング閾値(36)の比較の関数として、前記出力(16)を経る前記スピーカー(18)への空間的に選択的な再生のための前記第1及び第2のオーディオ信号(141,142)の前記放出に、影響を及ぼすように構成されるアダプタ(32)とを備え、
    前記ビームフォーミング処理装置(20)は、少なくとも前記第2のオーディオ信号(142)でビームフォーミングを実行することによって前記出力への空間的に選択的な再生のための前記第1及び第2のオーディオ信号(141,142)の放出を達成するように構成され、前記ビームフォーミング処理装置(20)は、異なる周波数領域に対して前記第1の領域(24)で前記第2のオーディオ信号(142)の抑制の品質に関して互いに異なるビームフォーミングを実行するためのいくつかのモードを備え、
    前記アダプタ(32)は、前記ビームフォーミングをスイッチングによって現在用いられているモードから異なるモードへと前記比較の関数として変更するように構成される、空間的に選択的なオーディオ再生装置。
  2. 複数のスピーカー(18)をさらに備える、請求項1に記載の空間的に選択的なオーディオ再生装置。
  3. 前記ビームフォーミング処理装置(20)は、第1の複数のスピーカー信号を取得するために前記第2のオーディオ信号(142)でビームフォーミング(602)を実行するように、且つ前記第2のオーディオ信号から取得された前記スピーカー信号を、前記出力(16)を経て前記スピーカー(18)へと適用するように構成される、請求項1又は2に記載の空間的に選択的なオーディオ再生装置。
  4. 前記ビームフォーミング処理装置は、第2の複数のスピーカー信号を取得するために前記第1のオーディオ信号(141)をビームフォーミング(601)に従属させるように、且つ前記第2の複数のスピーカー信号を前記第1の複数のスピーカー信号を有する重ね合せ(62)を用いて前記出力(16)を経て前記スピーカー(18)へと適用するように構成される、請求項3に記載の空間的に選択的なオーディオ再生装置。
  5. 前記ビームフォーミング処理装置(26)は、それぞれの領域のために、前記オーディオ信号の一つが目標信号を表すが、それぞれ他の前記オーディオ信号は前記領域それぞれにおいてスプリアス信号を表すことができるように、−前記音波処理エリア(22)の異なる領域(24,26)における空間的に選択的な再生のために−前記第1及び第2のオーディオ信号で異なるように前記ビームフォーミング(601,602)を実行するように構成される、請求項4に記載の空間的に選択的なオーディオ再生装置。
  6. 前記計算機(28)は、前記伝搬モデルを用いて、それぞれのオーディオ信号、及びそれぞれの異なる領域のために、前記スピーカー(18)の前記音波処理エリア(22)の前記領域それぞれにおいて前記空間的に選択的な再生から結果として生じる、前記オーディオ信号それぞれのバージョンそれぞれを計算するように構成され、
    前記バージョンの関数として前記音波処理エリアの領域それぞれに対してマスキング閾値(36)を計算するように構成されるマスキング閾値計算機(30)は、前記スピーカー(18)の前記音波処理エリア(22)の前記領域それぞれにおいて前記空間的に選択的な再生から結果として生じ、そのオーディオ信号が前記領域それぞれに対する目標信号を表し、且つ
    前記アダプタ(32)は、前記領域それぞれにおいてスプリアス信号を表すそのオーディオ信号の前記バージョン(342)から結果として生じる影響を伴うそれぞれの前記領域に対する前記マスキング閾値(36)の比較に基づき前記出力(16)を経て前記スピーカー(18)へと空間的に選択的な再生のための前記オーディオ信号の前記放出に影響を及ぼすように構成される、請求項5に記載の空間的に選択的なオーディオ再生装置。
  7. 前記オーディオ信号の数は2よりも多い、請求項6に記載の空間的に選択的なオーディオ再生装置。
  8. 前記マスキング閾値計算機(30)は、前記第1のオーディオ信号(141)の前記バージョン(341)の関数として前記マスキング閾値を計算するとき、バックグラウンド・オーディオ信号を考慮するように構成される、請求項1〜7のいずれかに記載の空間的に選択的なオーディオ再生装置。
  9. 前記アダプタ(32)は、周波数領域の中での前記第2のオーディオ信号(142)の前記バージョン(342)が前記マスキング閾値を超え、前記第2のオーディオ信号(142)が前記空間的に選択的な再生において全体的に減衰されるように、前記ビームフォーミング処理装置(20)を制御するように構成される、請求項1〜8のいずれかに記載の空間的に選択的なオーディオ再生装置。
  10. 前記アダプタ(32)は、周波数領域の中での前記第2のオーディオ信号(142)の前記バージョン(342)が前記マスキング閾値をえ、前記第1のオーディオ信号(141)が前記空間的に選択的な再生において全体的に増幅されるように、前記ビームフォーミング処理装置(20)を制御するように構成される、請求項1〜9のいずれかに記載の空間的に選択的なオーディオ再生装置。
  11. 前記アダプタ(32)は、絶対値に関して、及び/又は変化の割合に関して前記第1及び第2のオーディオ信号(141、142)の前記放出における前記変化を制限するように構成される、請求項1〜10のいずれかに記載の空間的に選択的なオーディオ再生装置。
  12. 前記計算機は、時間的及び空間的な聴覚作用のマスキング効果を前記計算機において考慮するように構成される、請求項1〜11のいずれかに記載の空間的に選択的なオーディオ再生装置。
  13. 第1及び第2のオーディオ信号(141、142)のための入力(12)と、複数のスピーカー(18)のための出力(16)との間に接続されるビームフォーミング処理装置(20)を用いる空間的に選択的なオーディオ再生方法であって、前記ビームフォーミング処理装置(20)は、前記出力(16)を経て前記スピーカー(18)へと空間的に選択的な再生のための前記第1及び第2のオーディオ信号(141、142)を放出するように構成され、
    前記第1及び第2のオーディオ信号(141、142)のための伝搬モデルを用いて、前記スピーカー(18)の音波処理スイッチ(22)の第1の領域(24)において前記空間的に選択的な再生から結果として生じる前記オーディオ信号それぞれのバージョン(341,342)それぞれを、
    心理音響モデルを経てマスキング閾値(36)を計算する、前記第1のオーディオ信号(14 1 )の前記バージョン(341)の関数として、且つ
    前記出力(16)を経て前記スピーカー(18)へと空間的に選択的な再生のための前記第1及び第2のオーディオ信号(141,142)の前記放出に影響を及ぼす、前記第2のオーディオ信号(142)の前記バージョン(342)を有する前記マスキング閾値(36)の比較の関数として、
    計算することを備え、
    前記ビームフォーミング処理装置(20)は、少なくとも前記第2のオーディオ信号(142)でビームフォーミングを実行することによって前記出力への空間的に選択的な再生のための前記第1及び第2のオーディオ信号(141,142)の放出を達成するように構成され、前記ビームフォーミング処理装置(20)は、異なる周波数領域に対して前記第1の領域(24)で前記第2のオーディオ信号(142)の抑制の品質に関して互いに異なるビームフォーミングを実行するためのいくつかのモードを備え、
    前記影響を及ぼすことは、前記ビームフォーミングをスイッチングによって現在用いられているモードから異なるモードへと前記比較の関数として変更することを備える、空間的に選択的なオーディオ再生方法。
  14. プログラムがコンピュータで動作する場合、請求項13において請求されるような前記方法を実行するためのプログラム・コードを備える、コンピュータ・プログラム。
JP2016516172A 2013-05-31 2014-05-28 空間的に選択的なオーディオ再生装置及び方法 Active JP6301453B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102013210184 2013-05-31
DE102013210184.8 2013-05-31
DE102013217367.9 2013-08-30
DE102013217367.9A DE102013217367A1 (de) 2013-05-31 2013-08-30 Vorrichtung und verfahren zur raumselektiven audiowiedergabe
PCT/EP2014/061188 WO2014191526A1 (de) 2013-05-31 2014-05-28 Vorrichtung und verfahren zur raumselektiven audiowiedergabe

Publications (2)

Publication Number Publication Date
JP2016524862A JP2016524862A (ja) 2016-08-18
JP6301453B2 true JP6301453B2 (ja) 2018-03-28

Family

ID=51899430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016516172A Active JP6301453B2 (ja) 2013-05-31 2014-05-28 空間的に選択的なオーディオ再生装置及び方法

Country Status (7)

Country Link
US (1) US9813804B2 (ja)
EP (1) EP3005732B1 (ja)
JP (1) JP6301453B2 (ja)
KR (1) KR101877323B1 (ja)
CN (1) CN105247892B (ja)
DE (1) DE102013217367A1 (ja)
WO (1) WO2014191526A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036008B2 (ja) * 2016-05-30 2022-03-15 ソニーグループ株式会社 局所消音音場形成装置および方法、並びにプログラム
EP3264734B1 (en) * 2016-06-30 2022-03-02 Nokia Technologies Oy Controlling audio signal parameters
US10531196B2 (en) * 2017-06-02 2020-01-07 Apple Inc. Spatially ducking audio produced through a beamforming loudspeaker array
US10019981B1 (en) 2017-06-02 2018-07-10 Apple Inc. Active reverberation augmentation
US11516614B2 (en) 2018-04-13 2022-11-29 Huawei Technologies Co., Ltd. Generating sound zones using variable span filters
WO2020044728A1 (ja) * 2018-08-31 2020-03-05 株式会社ドリーム 指向性制御システム
KR102572474B1 (ko) 2019-01-06 2023-08-29 사일런티움 리미티드 사운드 제어 장치, 시스템 및 방법
CN113574596B (zh) * 2019-02-19 2024-07-05 公立大学法人秋田县立大学 音频信号编码方法、音频信号解码方法、程序、编码装置、音频系统及解码装置
US11968268B2 (en) 2019-07-30 2024-04-23 Dolby Laboratories Licensing Corporation Coordination of audio devices
WO2021021750A1 (en) 2019-07-30 2021-02-04 Dolby Laboratories Licensing Corporation Dynamics processing across devices with differing playback capabilities
EP4005248A1 (en) * 2019-07-30 2022-06-01 Dolby Laboratories Licensing Corporation Managing playback of multiple streams of audio over multiple speakers
JP2022542388A (ja) * 2019-07-30 2022-10-03 ドルビー ラボラトリーズ ライセンシング コーポレイション オーディオ装置の協調
US11871184B2 (en) 2020-01-07 2024-01-09 Ramtrip Ventures, Llc Hearing improvement system
US20230171555A1 (en) * 2020-06-04 2023-06-01 Nippon Telegraph And Telephone Corporation Speaker calibration method, apparatus and program
KR102347626B1 (ko) 2020-07-01 2022-01-06 한국과학기술원 거리에 따른 개인화된 음장을 생성하는 방법 및 장치
EP4367906A1 (en) * 2021-07-09 2024-05-15 Soundfocus Aps Method and loudspeaker system for processing an input audio signal
CN114882721B (zh) * 2022-05-27 2023-05-09 中国第一汽车股份有限公司 一种车载导航信息播放方法、装置、电子设备及存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473517B2 (ja) * 1999-09-24 2003-12-08 ヤマハ株式会社 指向性拡声装置
JP5306565B2 (ja) * 1999-09-29 2013-10-02 ヤマハ株式会社 音響指向方法および装置
JP4349123B2 (ja) * 2003-12-25 2009-10-21 ヤマハ株式会社 音声出力装置
GB0405346D0 (en) * 2004-03-08 2004-04-21 1 Ltd Method of creating a sound field
TWI475896B (zh) * 2008-09-25 2015-03-01 Dolby Lab Licensing Corp 單音相容性及揚聲器相容性之立體聲濾波器
US8218783B2 (en) 2008-12-23 2012-07-10 Bose Corporation Masking based gain control
WO2011039413A1 (en) * 2009-09-30 2011-04-07 Nokia Corporation An apparatus
US8965546B2 (en) 2010-07-26 2015-02-24 Qualcomm Incorporated Systems, methods, and apparatus for enhanced acoustic imaging
KR101782050B1 (ko) * 2010-09-17 2017-09-28 삼성전자주식회사 비등간격으로 배치된 마이크로폰을 이용한 음질 향상 장치 및 방법
JP5838740B2 (ja) * 2011-11-09 2016-01-06 ソニー株式会社 音響信号処理装置と音響信号処理方法およびプログラム
US20130259254A1 (en) * 2012-03-28 2013-10-03 Qualcomm Incorporated Systems, methods, and apparatus for producing a directional sound field
US20140006017A1 (en) * 2012-06-29 2014-01-02 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for generating obfuscated speech signal
EP3040984B1 (en) * 2015-01-02 2022-07-13 Harman Becker Automotive Systems GmbH Sound zone arrangment with zonewise speech suppresion

Also Published As

Publication number Publication date
EP3005732A1 (de) 2016-04-13
CN105247892B (zh) 2019-02-22
WO2014191526A1 (de) 2014-12-04
US20160088388A1 (en) 2016-03-24
DE102013217367A1 (de) 2014-12-04
EP3005732B1 (de) 2017-06-21
US9813804B2 (en) 2017-11-07
CN105247892A (zh) 2016-01-13
KR101877323B1 (ko) 2018-08-09
KR20160007584A (ko) 2016-01-20
JP2016524862A (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
JP6301453B2 (ja) 空間的に選択的なオーディオ再生装置及び方法
US9015051B2 (en) Reconstruction of audio channels with direction parameters indicating direction of origin
EP2130403B1 (en) Method and apparatus for enhancement of audio reconstruction
KR102160645B1 (ko) 개별 사운드 구역을 제공하기 위한 장치 및 방법
KR101468343B1 (ko) 공간에서의 음향 이미지의 향상된 생성을 위한 시스템, 방법 및 장치
JP6326071B2 (ja) 部屋およびプログラム反応型ラウドスピーカシステム
JP4167286B2 (ja) 残響調整装置、残響補正方法、および、音響再生システム
RU2704635C2 (ru) Дифференциальное воспроизведение звука
US7822496B2 (en) Audio signal processing method and apparatus
KR102573843B1 (ko) 음성 제어를 갖는 낮은 복잡도의 다중 채널 스마트 라우드스피커
JP6479287B1 (ja) オーディオ再生のためのサブバンド空間クロストークキャンセル
JP4435232B2 (ja) オーディオシステム
EP2484127B1 (en) Method, computer program and apparatus for processing audio signals
US10560782B2 (en) Signal processor
US11277689B2 (en) Apparatus and method for optimizing sound quality of a generated audible signal
US10965265B2 (en) Method and device for adjusting audio signal, and audio system
CN110312198B (zh) 用于数字影院的虚拟音源重定位方法及装置
JP2006279862A (ja) リファレンスフィルタの生成方法
US11310621B2 (en) Signal processing device and signal processing method for performing sound localization processing
JP2012100117A (ja) 音響処理装置及び方法
CA3142575A1 (en) Stereo headphone psychoacoustic sound localization system and method for reconstructing stereo psychoacoustic sound signals using same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180228

R150 Certificate of patent or registration of utility model

Ref document number: 6301453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250