EP3054478B1 - Bestückmaschine und verfahren zum bestücken eines trägers mit ungehäusten chips - Google Patents

Bestückmaschine und verfahren zum bestücken eines trägers mit ungehäusten chips Download PDF

Info

Publication number
EP3054478B1
EP3054478B1 EP16153896.2A EP16153896A EP3054478B1 EP 3054478 B1 EP3054478 B1 EP 3054478B1 EP 16153896 A EP16153896 A EP 16153896A EP 3054478 B1 EP3054478 B1 EP 3054478B1
Authority
EP
European Patent Office
Prior art keywords
carrier
receiving device
chips
markings
assembling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16153896.2A
Other languages
English (en)
French (fr)
Other versions
EP3054478A1 (de
Inventor
Martin PRÜFER
Bernd Ohnrich
Sylvester Demmel
Manfred Wörl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASMPT GmbH and Co KG
Original Assignee
ASM Assembly Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASM Assembly Systems GmbH and Co KG filed Critical ASM Assembly Systems GmbH and Co KG
Publication of EP3054478A1 publication Critical patent/EP3054478A1/de
Application granted granted Critical
Publication of EP3054478B1 publication Critical patent/EP3054478B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67121Apparatus for making assemblies not otherwise provided for, e.g. package constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected

Definitions

  • the present invention relates generally to the technical field of manufacturing electronic components.
  • the present invention relates in particular to a placement machine and a method for handling unhoused chips in the production of electronic components, each of which has at least one chip packaged in a housing and suitable electrical connection contacts by means of which the packaged chip can be contacted electrically.
  • unpackaged (semiconductor) chips so-called “bare dies" are placed on a carrier.
  • eWLP embedded wafer level package
  • one or more chips per package are placed with the active side down on an adhesive film located on the carrier.
  • a large number of chips are then cast with a mass of plastic, which will later be the housing.
  • the entire potting product is then baked under high pressure and then released from the carrier or the adhesive film.
  • the chips are then contacted, possibly electrically connected and applied as electrical connection contacts solder balls.
  • the entire further processed potting product is sawn into individual components.
  • eWLP is a housing design for integrated circuits in which the electrical connection contacts are produced on a wafer artificially produced from chips and potting compound. All the necessary processing steps for forming a housing on the artificial wafer are thus carried out.
  • the components can be manufactured, for example, as a ball grid array (BGA).
  • BGA ball grid array
  • the handling of the still unhoused chips takes place with a (modified) placement machine, which has a placement head with which the chips are placed on the carrier at predefined placement positions.
  • a placement head with which the chips are placed on the carrier at predefined placement positions.
  • the requirements for the positional accuracy of the assembly are particularly high.
  • a position accuracy or placement accuracy of 10 ⁇ m / 3 ⁇ is currently required, where ⁇ (sigma) is the standard deviation for the placement position. Due to the increasing miniaturization of electronic components, it can be expected that even higher demands will be placed on the placement accuracy in the future.
  • US 5,894,657 A describes an automatic placement machine for electronic components.
  • the machine has a placement head which has a pipette for coupling an electronic component.
  • the placement head is designed to receive the electronic component from a wafer and to transport the electronic component and to place the electronic component on the printed circuit board.
  • the present invention has for its object to provide a placement machine and a method for populating a carrier with unhoused semiconductor chips, which enable particularly high placement accuracy.
  • a placement machine for loading a carrier with unhoused chips is described.
  • the placement machine is used in particular for producing electronic components, each of which has at least one chip which is located in a housing, the housing in particular having a hardened casting compound.
  • the placement machine described has (a) a feed device for providing a wafer which has a multiplicity of chips; (b) a carrier receiving device for receiving the carrier to be loaded; and (c) a placement head for picking up chips from the provided wafer and for placing the picked up chips at predefined placement positions on the carrier.
  • the carrier receiving device has a pneumatic interface, by means of which a negative pressure can be applied to a surface of the carrier.
  • the placement machine also has a temperature control device which is thermally coupled to the carrier receiving device and which is set up to keep the carrier receiving device at least approximately at a constant temperature.
  • the temperature control device is set up to cool the carrier receiving device so that it can assume a temperature that is at least 2 Kelvin lower than the immediate ambient temperature of the carrier receiving device.
  • the placement machine described is based on the knowledge that a carrier to be equipped with unhoused chips can be held with extremely high accuracy and without internal distortion at a predetermined position within the placement machine if the carrier is detachably by means of a negative pressure on a suitably shaped carrier receiving device is fixed.
  • the carrier receiving device used has the pneumatic interface, which bears against the carrier to be fitted, provided that the carrier is located on or on the carrier receiving device.
  • the carrier to be loaded is sucked in via the pneumatic interface on the carrier receiving device.
  • the carrier is prevented from accidentally slipping.
  • the described pneumatic fixation of the carrier to be populated with unhoused chips has the great advantage that it is considerably more temperature-stable. This is due to the fact that the various components of known clamping mechanisms have different geometries and are therefore subjected to different thermal expansions, so that the type of clamping also changes when the temperature changes. This typically shifts the position of at least part of the carrier to be equipped with chips within a placement machine.
  • the pneumatic fixation described has the advantage over conventional clamping that, with a suitable design of the carrier receiving device, the carrier can be fixed flat on an upper side of the carrier receiving device and even undesirable curvatures of partial areas of the carrier upwards or away from the carrier receiving device can be reliably prevented.
  • a deflection of the respective printed circuit board may occur in the case of a lateral clamping typically used for printed circuit boards to be assembled. Deflection of the carrier downwards could thus be prevented in a known manner by means of suitable support pins, but undesired deflection upwards can only be prevented in a simple manner by the here described pneumatic fixation of the carrier to be equipped with unhoused chips can be prevented.
  • the carrier receiving device described represents a vacuum fixing tool with which the carrier to be loaded can be fixed within the placement machine in such a way that the surface of the carrier lies exactly at the level of a plane in which the chips are best and in particular the greatest placement accuracy can be placed.
  • the carrier receiving device In order to ensure that the carrier is fixed in position within the described placement machine even under fluctuating ambient temperatures, it is only necessary to design the carrier receiving device in such a way that its geometry has only a very low temperature dependency. This can be done, for example, by using suitable materials, such as an Invar alloy, which consists of approximately 64% iron and 36% nickel and which has a very low coefficient of thermal expansion in a known manner.
  • suitable materials such as an Invar alloy, which consists of approximately 64% iron and 36% nickel and which has a very low coefficient of thermal expansion in a known manner.
  • an “electronic component” is to be understood in particular as a housed electronic component which (a) has a Chip, (b) has a housing surrounding the chip and (c) suitable electrical connection contacts for the chip.
  • An “electronic component” can be, for example, a component intended for surface mounting, which is typically referred to as a surface mount device (SMD) component.
  • SMD surface mount device
  • chips in this document is understood to mean, in particular, unhoused semiconductor wafers which are produced in a known manner by separating a processed semiconductor wafer.
  • the pneumatic interface has a groove which can be acted upon by the negative pressure which is generated by a negative pressure generating unit.
  • the vacuum generation unit can be a unit which is an external unit with respect to the placement machine described and can only be pneumatically coupled to the carrier receiving device.
  • the vacuum generating unit can also be assigned to the placement machine described.
  • the negative pressure generating unit described can also be used, for example for synergy reasons, to generate a negative pressure which is used in a known manner for temporarily holding chips on so-called suction pipettes of the placement head.
  • a groove for transmitting the negative pressure to the surface of the carrier has the advantage that this negative pressure can be applied not only at points but along a line.
  • the shape and / or the length of the groove can be adapted to the size and / or the mechanical nature of the carrier to be equipped with chips.
  • the groove described can also have a plurality of groove sections which are connected to one another at a branch point or at a plurality of branch points. Furthermore, at least a section of the groove described can be a circumferential groove, which preferably runs around a center point of the surface of the carrier receiving device or around a center point of the carrier fixed to the carrier receiving device.
  • the negative pressure can thus be applied in a largely symmetrical manner to the surface of the carrier to be fitted. This in turn leads to the fact that the carrier to be equipped is not mechanically clamped or only negligibly due to the negative pressure. This also contributes to a high degree of placement accuracy.
  • the placement machine also has a temperature control device which is thermally coupled to the carrier receiving device and which is set up to keep the carrier receiving device at least approximately at a constant temperature.
  • the temperature control device can actively or passively temperature stabilize the carrier receiving device and thus also a carrier pneumatically fixed to the carrier receiving device. Passive temperature stabilization can be achieved in a simple manner in that a gaseous or liquid heat exchange medium, which has a predetermined temperature, flows through a channel which is formed in the carrier receiving device.
  • An active temperature stabilization additionally has a temperature feedback from a temperature sensor to a control unit of the temperature control device, so that the temperature and / or the volume flow of the heat exchange medium is always set such that at least that part of the Carrier receiving device is at a constant and preferably predetermined temperature, which is thermally coupled to the carrier to be equipped.
  • a temperature stabilization of the carrier to be assembled with a view to precisely maintaining the position of the carrier within the placement machine is particularly important for an “embedded wafer level process” (eWLP) process, because in contrast to a circuit board assembly, which is often less than a minute takes, when the carrier is equipped with chips from a wafer, the placement times are significantly longer in view of the typically much larger number of chips.
  • Usual loading times of the carrier with unhoused chips can be between one and several hours. The consequence of this is that all (however small) changes in time of the placement machine and / or of the carrier to be loaded directly influence the placement accuracy.
  • the temperature control device is set up to cool the carrier receiving device so that it can assume a temperature which is at least 2 Kelvin, in particular at least 4 Kelvin and further in particular at least 7 Kelvin lower than the immediate ambient temperature of the carrier receiving device.
  • the cooling of the carrier receiving device described can ensure that waste heat from components of the placement machine, which leads to an undesirable and hardly avoidable temperature increase in a spatial area under a protective hood of the placement machine, does not automatically result in the temperature also increasing the carrier receiving device and in particular the temperature of the carrier increased.
  • the temperature control device can be achieved that the carrier assumes a temperature during the placement, which is at least approximately the same as an ambient temperature of the placement machine. In practice, this means that the carrier is not subjected to any or only negligible temperature changes when it is introduced into and out of the placement machine. If the carrier were introduced, an increase in temperature would have the consequence that the spatial dimensions of the carrier would change as a result of thermal expansion and the placement accuracy would be reduced accordingly.
  • the placement machine also has a chassis and a positioning system.
  • the surface positioning system in turn has (a) a first component which is arranged stationary with respect to the chassis, (b) a second component which can be moved along a predetermined first direction with respect to the first component, and (c) a third component which can be moved along a predetermined second direction in relation to the second component.
  • the placement head is attached to the third component.
  • the first direction is angled to the second direction.
  • angular means any non-parallel alignment of the two directions.
  • the third component and thus the placement head attached to it can determine within one two-dimensional range of motion can be moved freely.
  • this range of motion extends from a spatial area of the feed device in which the areas to be assembled Chips are recorded, up to an assembly area in which the carrier to be assembled is located and in which the chips are placed.
  • the two directions mentioned which are preferably oriented perpendicular to one another, can be defined by two axes, for example an x-axis and a y-axis. These two axes can span a coordinate system of the placement machine described.
  • the first component of the positioning system can have a stationary guide rail, which extends along the x-axis.
  • the movable second component can be a transverse support arm which is arranged on the first component so as to be displaceable along the x-axis and extends along the ⁇ -axis.
  • the third component of the positioning system can be arranged on the transverse support arm and can be moved along a rail which extends along the longitudinal direction of the transverse support or along the ⁇ axis.
  • the carrier receiving device has at least two markings which are optically recognizable and which are in particular attached to the carrier receiving device outside of a spatial area which is provided for receiving the carrier.
  • the position of an equipped chip relative to this marking can be determined with great accuracy by means of a suitable optical measurement. If the position of the mark in question within the placement machine described is precisely known, the actual position of a populated chip can thus be determined precisely within a coordinate system of the placement machine. If also the position of the carrier to be equipped within the coordinate system the placement machine is known exactly, the actual position of a chip inside a coordinate system of the carrier can then be determined with great accuracy.
  • such a position measurement determines a certain spatial offset between the actual placement position and a predetermined placement position, then such an offset can be at least approximately compensated for in subsequent placement processes by suitable control of the movement of the placement head.
  • the exact positions of the optically recognizable markings can be measured with a high-precision optical measuring machine before the installation of the carrier receiving device or a corresponding component of the carrier receiving device, on which component the markings are located. In this way, the optical measurement of placement positions described above can be carried out with particularly high accuracy.
  • the spatial arrangement of the two markings outside the area which is provided for holding the carrier in the operation of the placement machine has the advantage that the (positions of) the markings can also be measured during the placement of a carrier.
  • a placement process which, as described above, can take, for example, 1 to 2 hours, it is possible to identify the placement positions optically precisely and thus to ensure a consistently high placement accuracy.
  • the two markings have a spatial offset in relation to one another along the first direction
  • the two further markings have a spatial offset in relation to one another along the first direction
  • each of the two markings a spatial offset along the second direction relative to each of the two further markings.
  • the two markings only have a spatial offset along the first direction (and no offset along the second direction) relative to one another.
  • all markings are placed on a right-angled two-dimensional grid on the carrier receiving device.
  • An optical measurement of a pair of markings, which have an offset along the first direction, by means of a camera, which is attached to the third component so as to be displaceable along the second direction, can result in a spatial distortion that may be present or that has arisen in the course of assembly the (stationary) first component of the positioning system can be recognized.
  • a spatial delay can arise in particular from the fact that in the course of the Equipping a carrier changes the temperature of at least part of the first component.
  • an optical measurement of a pair of markings, which are offset along the second direction, by means of the above-mentioned camera can be used to identify any spatial distortion of the (movable) second component of the positioning system that may be present or that has arisen in the course of an assembly .
  • This delay can also be caused by undesirable temperature fluctuations in connection with thermal expansion.
  • the coordinate system of the positioning system is distorted if the (stationary) first component warps and / or the (movable) second component warps.
  • This distortion can be determined by an optical position measurement of the corresponding markings, which are assumed to be stationary, and can be compensated for in the further fitting of the carrier by a suitable control of the positioning system.
  • a bilinear model to determine the distortion, an extremely high and stable placement accuracy can be achieved.
  • the carrier receiving device furthermore has at least one intermediate marking which is located along the first direction between the two markings.
  • the carrier receiving device further has at least one further intermediate marking, which is located along the first direction between the two further markings.
  • At least one additional marking is attached to the carrier receiving device and is located between a marking and a further marking along the second direction.
  • at least one additional marking is also attached to the carrier receiving device, which is located between a marking and a further marking along the second direction.
  • the placement machine furthermore has a transport device for supplying carriers to be equipped to the carrier receiving device and for removing carriers at least partially equipped with unhoused chips the carrier cradle.
  • the transport device has two transport tracks which extend along the second direction and are spaced apart from one another in the first direction and which are designed to hold a carrier on two sides.
  • the at least one additional marking and / or the at least one further additional marking is arranged outside the two transport tracks.
  • the optical determination of a distortion of the coordinate system of the positioning system described above can be further improved, in particular with regard to possible spatial changes in the movable and extending second component along the first direction.
  • outside can in particular mean that the respective additional marking is located outside the area which lies between the two transport tracks and is delimited by the two transport tracks along the first direction. Since the respective additional marking is also attached to the carrier receiving device, this means that the carrier receiving device also extends outside the two transport tracks.
  • the carrier receiving device can be designed in several pieces. However, at least the surface of the carrier receiving device is preferably the surface of an integral component of the carrier receiving device.
  • the spatial arrangement of the at least one additional marking and / or the at least one additional additional marking outside the two transport tracks has the advantage that neither the transport nor the reception of the carrier is hindered by the respective additional marking (s).
  • An optical measurement of the additional marking and / or the further additional marking is also possible during an assembly process (when the carrier to be equipped is on the carrier receiving device).
  • the transport tracks are each realized by means of a transport belt.
  • a carrier can rest on these during transport.
  • Two transport grooves are formed in the carrier receiving device, which run along the second direction and are spatially designed such that a transport belt can be countersunk in each transport groove.
  • a temporary lowering of the conveyor belts can be achieved, for example, by vertically, i.e. Slidable rollers are provided perpendicular to both the first direction and the second direction, on which the respective transport belt rests.
  • Such displaceability can be achieved, for example, by means of two sawtooth-shaped sheets, which, when displaced along the second direction, ensure that the axes of rotation of the respective rollers are displaced vertically.
  • the placement machine also has a reference element which is fastened to the carrier receiving device.
  • the at least one additional marking and / or the at least one further additional marking are attached to the reference element.
  • the reference element can be a so-called scale, which is made of a material with a very low thermal expansion.
  • the at least one additional marking and / or the at least one further one Additional markings can be attached to the reference element with an extremely high positional accuracy or the position of the markings can be known from a highly precise measurement. This further improves the accuracy of the measurement of a distortion of the positioning system.
  • the reference element can be a so-called glass scale, for example.
  • the placement machine also has a camera, which is positioned or positionable in such a way that at least one of the markings and chips equipped on the carrier can be recorded together in one image by the camera.
  • the accuracy of the placement machine described can be checked continuously or at least at regular intervals during the operation of the placement machine. If such a check reveals that there is a spatial offset when chips are being fitted, then these can be compensated for by the measures described above, that is to say in particular by a suitable control of the drives of the above-mentioned positioning system.
  • the camera is arranged in a spatially fixed position relative to the placement head.
  • This can mean in particular that the camera is attached to the third component of the above-mentioned positioning system or to the placement head.
  • the camera can be attached directly or indirectly to the third component or to the placement head.
  • This can the camera can be implemented in a particularly simple manner as a camera that can be moved within the placement machine.
  • a camera movable within the placement machine can recognize not only the above-mentioned markings but also optical structures on the carrier to be equipped with chips, so that the position of the carrier to be equipped within the coordinate system of the placement machine is at least roughly known.
  • Such a measurement of the position of the carrier is necessary because the carrier to be loaded is typically introduced into the placement area of the placement machine by means of a transport system or is transferred to the carrier receiving device.
  • the transport system can then be controlled in a suitable manner by measuring the position of the optical structures attached or formed on the carrier, so that the carrier to be loaded is transferred as precisely as possible to the carrier receiving device.
  • the placement head has a plurality of holding devices for temporarily receiving one chip each.
  • the use of a so-called multiple placement head has the advantage that the placement head receives a plurality of chips from the feed device within a very short time, this plurality of chips are then transported together to the placement area and placed there on the carrier at predetermined placement positions can. In this way, the placement performance of the placement machine described is significantly improved compared to a placement machine with only a single placement head.
  • the placement machine also has (a) a further feed device for providing a further wafer, which likewise has a multiplicity of chips; and (b) a further placement head for picking up chips from the further wafer provided and for placing the picked-up chips at predefined placement positions on the carrier.
  • a further feed device for providing a further wafer, which likewise has a multiplicity of chips
  • a further placement head for picking up chips from the further wafer provided and for placing the picked-up chips at predefined placement positions on the carrier.
  • the (second) further placement head fetches chips from the (second) supply device and the (first) placement head chips previously picked up by the (first) supply device are placed on the carrier.
  • the placement performance can be increased by at least approximately a factor of 2.
  • a method for loading a carrier with unhoused chips with a placement machine is described, the placement machine being in particular a placement machine of the type described above.
  • the method described has the following steps: (a) provision of a wafer which has a multiplicity of chips by means of a feed device; (b) picking up the carrier to be loaded by means of a carrier pick-up device; (c) fixing the carrier to be fitted to the carrier receiving device by means of a negative pressure which is applied to a surface of the carrier via a pneumatic interface of the carrier receiving device; (d) picking up provided chips from the feed device by means of a placement head; (e) transporting the picked chips to a placement area; and (f) placing the transported chips at predetermined placement positions on the carrier.
  • the method described is also based on the knowledge that negative pressure is particularly suitable for holding a carrier to be populated with unhoused chips with extremely high accuracy at a predetermined position within the placement machine.
  • the carrier has a plate and an adhesive film which is applied to the surface on a flat top.
  • the adhesive film described is in particular a double-sided adhesive film, so that not only the adhesive film adheres to the carrier plate but also the chips placed on the adhesive film.
  • a uniform application of the adhesive film to the carrier plate can be achieved in particular by means of lamination.
  • the adhesive film is preferably a so-called thermal release layer, which is characterized in that the tackiness of the adhesive film diminishes or even disappears completely during heat treatment.
  • the method further comprises (a) feeding the carrier to the carrier receiving device by means of a transport device; (b) detecting the positions of two optical structures located on the supplied carrier; (c) determining the position of the feed Carrier based on the detected positions; and (e) determining the coordinates of the predetermined placement positions in a coordinate system of the placement machine based on the determined position of the supplied carrier.
  • the predetermined placement positions on the carrier depend on the determined coordinates.
  • the two optical structures of the carrier can initially be used to at least approximately determine the position of the supplied carrier in the coordinate system of the placement machine by means of suitable image processing. This makes it easy to ensure that the carrier to be fitted is fixed to the carrier receiving device in a suitable spatial position by means of negative pressure.
  • the two optical structures can simply be two holes which are attached or formed on the carrier at an edge, in particular at opposite positions.
  • the use of simple holes as optical structures has the advantage that these holes can also be used for mechanical handling of the carrier, for example by means of centering pins.
  • the carrier to be fitted can of course also have more than two optically recognizable structures.
  • the accuracy of the determination of the position of the carrier in the coordinate system of the placement machine can thereby be further improved.
  • the two optical structures of the carrier can also be used, after a pneumatic fixing of the carrier to the carrier receiving device, the carrier as a rigid solid (ie without a distortion) so that every possible placement position on the carrier is precisely defined in relation to the two optical structures.
  • the method further comprises detecting the positions of at least two markings which are located on the carrier receiving device.
  • the predetermined placement positions on the carrier also depend on the positions of the at least two markings.
  • the markings on the carrier receiving device can be used for a highly precise relative position measurement of assembled chips.
  • the placement accuracy of the placement machine can be monitored in a simple manner during its operation, and any spatial offset that may occur in the placement positions can be compensated for by suitable control of a surface positioning system supporting the placement head.
  • the two markings are preferably detected by means of a camera and a data processing unit which is connected downstream of the camera and which carries out image processing or image evaluation. In order to improve the accuracy of the method described here, further markings can also be taken into account, which are also located on the carrier receiving device.
  • the positions of the two markings on the carrier receiving device are repeatedly recorded at predetermined time intervals during the loading of a carrier, and the coordinates of the predetermined mounting positions are corrected based on the detected positions.
  • the at least two markings are measured cyclically during the operation of the placement machine.
  • spatial changes can also be recognized and, if necessary, compensated during assembly for which spatial changes occur over longer periods of time and whose causes may not be known.
  • the method further comprises (a) measuring the position of a structure equipped on the carrier; (b) remeasuring the position of the structure at a later time while loading the carrier with bare chips; and (c) determining a relative positional displacement of the structure between the measurement and the re-measurement.
  • the predetermined placement positions on the carrier also depend on the position shift of the structure.
  • a time-dependent position change or position shift of the structure that occurs over time is observed and conclusions are drawn from this about a time-dependent distortion of the positioning system, which is caused in particular by the effects of temperature changes on the components of the positioning system described above.
  • a time-dependent distortion of the positioning system can be used alternatively or in combination for the use of the above-mentioned markings, further markings, intermediate markings, further intermediate markings, additional markings and / or further additional markings can also be determined on the basis of support points which are located within the placement field of the placement machine. It also applies here that the accuracy of the distortion determination increases with the number of structures which are taken into account for the determination.
  • the structure is an optically recognizable structure from an equipped calibration module.
  • the use of special calibration modules has the advantage that the structure can be a marking or several markings which can be recognized optically simply and reliably and / or which can be attached to the respective calibration module (s) with an extremely high spatial accuracy.
  • the calibration blocks can be glass blocks, for example, which can be manufactured with extremely high accuracy.
  • the glass blocks can consist of a special glass which has a very low thermal expansion, so that the accuracy of the measurement of a distortion of the positioning system described above can be particularly high.
  • the structure is an optically recognizable structure from a populated, unhoused chip.
  • This has the advantage that it is not necessary to equip it with special calibration modules.
  • the optically recognizable structure can be, for example, at least one edge or a corner of the unhoused chip.
  • the structure can be, for example, an edge of the bare chip. It is pointed out that embodiments of the invention have been described with reference to different subject matter of the invention. In particular, some embodiments of the invention are described with device claims and other embodiments of the invention with method claims.
  • Figure 1 shows a placement system 100 which has two placement machines 110 which have been structurally combined for the purpose of increasing the placement performance.
  • placement performance means the number of chips that can be picked up by a placement head 120 and placed on a carrier 190 within a predetermined time unit, for example 1 hour.
  • the two placement machines 110 can also each be viewed as a processing area of the entire placement system 100.
  • Each of the two placement machines 110 has a chassis 112 which, as shown in FIG Figure 1 can be seen, adjacent to each other and connected to each other in a manner not shown.
  • a stationary carrier rail 114 which has a first stationary component of a total of four surface positioning systems, by means of which a placement head 120, 121 can be moved in a plane parallel to the drawing plane.
  • a placement head 120, 121 can be moved in a plane parallel to the drawing plane.
  • the stationary support rail 114 extends along a ⁇ direction.
  • the transverse support arms 116 which are extending along an x-direction can be moved in the ⁇ -direction along the stationary carrier rail 114.
  • a movable support plate 118 is attached to each transverse support arm 116 and can be moved in the x direction along the respective transverse support arm 116.
  • the two placement heads 120 and the two other placement heads 121 are each attached to one of the movable carrier plates 118.
  • Each of the two placement machines 110 furthermore has two wafer feed devices, a wafer feed device 140 and a further wafer feed device 141.
  • a wafer 180 are brought into a preparation area, from which individual chips can be picked up using the respective placement head 120, 121.
  • the placement heads 120, 121 are preferably so-called multiple placement heads, each of which has several in Figure 1
  • One chip can be temporarily picked up from a pipette.
  • the suction pipettes can be moved individually along a z direction, which is oriented perpendicular to the plane of the drawing and thus both perpendicular to the ⁇ direction and perpendicular to the x direction.
  • the chips picked up by the respective placement head 120, 121 are then transferred by a suitable control of the surface positioning system in question to a placement area in which they are placed on a carrier 190 to be equipped at predefined positions.
  • the placement machine 110 provided with two placement heads 120, 121 and two feeding devices 140, 141 are advantageously operated in an operating mode in which the two placement heads 120, 121 alternately pick up chips from their respective associated feed device 140, 141 and place them on the carrier 190 to be assembled. This can significantly increase the placement performance.
  • Each of the two placement machines 110 furthermore has a carrier receiving device 130, by means of which the carrier 190 to be assembled is held or fixed in a fixed spatial position in a coordinate system of the respective placement machine 110 during the placement process.
  • the carrier 190 with bare chips takes significantly longer, since the carrier 190 typically compared to the number of packaged electronic components to be mounted on a printed circuit board with a much higher number of chips. For this reason, extremely high demands are placed on the accuracy of the positioning of the carrier 190 to be equipped.
  • the placement machine 110 shown here has a transport device 260 which, according to the exemplary embodiment shown here, comprises two transport rails.
  • the carrier 190 to be equipped is transferred to the carrier receiving device 130 by means of the transport device 260 and, after being completely equipped, is transported away for the purpose of further processing of the chips, in particular the manufacture of packaged components using the known “embedded wafer level process” (eWLP) .
  • the transport direction of the transport device 260 is in FIG Figure 2 illustrated with arrows provided with reference number 261.
  • the wafer feed device 140 is assigned a wafer store 245, in which a plurality of wafers, each with a plurality of unhoused chips, are stacked one above the other in a manner not shown.
  • a wafer 180 can be removed from the wafer storage device 245 by the wafer feed device 140 and, after the corresponding chips have been loaded, the wafer 180, which is at least partially emptied of chips, can be returned to the wafer storage 245.
  • the carrier receiving device 130 has a temperature control device 238 which is intended to keep at least the surface of the carrier receiving device 130, on which surface the wafer 190 is located, at an at least approximately constant temperature. In this way, unwanted thermal stresses can be avoided and a high positional accuracy of the entire carrier 190 can be ensured.
  • the carrier receiving device 130 has a pneumatic interface 232 on its surface, which according to FIG the embodiment shown here is designed as a groove 232 running around a center of the carrier receiving device 130.
  • a negative pressure can be generated in the groove with a vacuum generating unit (not shown), so that the flat underside of the carrier 190 is sucked onto the carrier receiving device 130.
  • each of the two optical structures is designed as a simple hole 296.
  • the carrier used is a conventional carrier 190, which in a known manner has a preferably metallic carrier plate 292 and a double-sided adhesive film 294 applied to the carrier plate 292.
  • the chips are placed on this adhesive film 294 Figure 2 are identified by reference numeral 282.
  • the chips 282 are loaded in a known manner by suitably positioning the placement head 120 and by lowering a chip holding device 222 designed as a suction pipette along the z direction, which is perpendicular to the plane of the drawing.
  • the centering of the carrier 190 on the carrier receiving device 130 described above is based on an optical measurement of the positions of the structures 296.
  • a camera 250 is used for this purpose, which is advantageously attached to the movable placement head 120 and thus by a suitable control of the in Figure 2 Surface positioning system, not shown, can be placed in a suitable manner above the structure 296 to be measured.
  • the Position of the camera 250 within the coordinate system of the placement machine 110 or the surface positioning system is exactly known, the coordinates of the carrier 190 in the coordinate system of the placement machine 110 can be determined by suitable image evaluation of an image captured by the camera 250.
  • special markings 234, 235 can also be used to optically determine the relative position of the carrier in relation to these markings 234, 235. To do this, it is only necessary to use the camera 250 to record both the optically recognizable structures 296 and at least two of the markings 234, 235.
  • any distortion of the surface positioning system that may be present can also be determined and taken into account in a compensating manner when chips 282 are equipped. As already explained in detail above, such a distortion can be caused by thermal distortions of at least one component of the surface positioning system.
  • an intermediate marking 234a and a further intermediate marking 235a are additionally attached to the carrier receiving device 130.
  • the accuracy of the determination of the distortion of the surface positioning system in particular can be increased by measuring the position of these markings.
  • the markings 234, 235, 234a and / or 235a have highly precise internal structures, the positions of which on the carrier-receiving device 130 are known with extremely high accuracy.
  • the carrier receiving device 130 is preferably together with its markings 234, 235, 234a and / or 235a before Measure installation in the placement machine 110 with a high-precision optical measuring machine.
  • the position data of the coordinates of the markings 234, 235, 234a and / or 235a are precisely known, so that these markings 234, 235, 234a and / or 235a can be used for a highly precise measurement of the positions of the chips 282 equipped.
  • any offsets that may occur and possibly vary with time in relation to the placement position can be recognized and compensated for by suitable control of the corresponding surface positioning system.
  • the carrier 190 equipped with chips 282 can also be measured later outside of the placement machine 110 using a high-precision optical measuring machine (not shown). From the actual placement positions thus obtained, the surface positioning system can be controlled in a suitable manner for a subsequent placement of further carriers 190, so that the chips 282 can be placed on the carrier 190 to be equipped with extremely high accuracy. In particular, this can also be carried out as part of a quality check of the placement machine before delivery to a customer.
  • the carrier receiving device 130 can be provided in a number of different formats or sizes. As a result, the placement machine 110 can be easily adapted for operation with different carrier formats.
  • Figure 3 shows part of a placement machine 310 according to a further exemplary embodiment of the invention.
  • the placement machine 310 has one Carrier receiving device 330, which is significantly wider in comparison to the carrier receiving device 130 along the y direction. How out Figure 3 can be seen, the carrier receiving device 330 extends laterally beyond the transport device 260, the width of which is determined by the transport tracks 362 spaced apart from one another in the ⁇ direction.
  • the two transport tracks are each designed as a transport belt 362. During a transport of the carrier 190 along the x-direction, two opposite side regions of the carrier 190 rest on one of the two transport belts 362 in each case.
  • the carrier receiving device 330 also has two elongated transport grooves 363 which are formed below the two transport belts 362.
  • the two transport belts 362 on which the carrier 190 rests have a vertical position perpendicular to the plane of the drawing, which is above the surface of the carrier receiving device 330.
  • the two transport belts 362 are lowered so that they are located within the two transport grooves 363. This lowering of the two transport belts 362 can take place in a wide variety of ways, which are known to a person skilled in the art, a designer in the field of mechanical engineering, and are therefore not explained further here.
  • an equipped carrier 190 is transported away from the carrier receiving device 330, in which the pneumatic coupling is released, the two transport belts 362 are raised again and the transport device 260 is activated.
  • two reference elements 370 are attached to the carrier receiving device 330 outside the area defined by the two transport belts 362.
  • the two reference elements 370 each have a plurality of additional markings, the additional markings of the in Figure 3 Left reference element 370 is provided with the reference number 336a and further additional markings of the right reference element 370 with the reference number 337a.
  • the additional markings 336a and the further additional markings 337a are each part of a high-precision manufactured scale 370, which is preferably a so-called glass scale 370, which represents the reference element 370 in question.
  • the additional markings 336a and / or the further additional markings 337a can be used together with the others and above using FIG Figure 2 Markings 234 already explained, further markings 235, intermediate markings 234a and / or further intermediate markings 235a are used to determine, based on an optical measurement with the camera 250, any existing distortion of the surface positioning system by means of which the placement head 120 is known within the xy-level process can be. As already mentioned above, such a distortion can be caused by thermally induced deformations of at least some components (cf. reference numerals 114, 116, 118 in Figure 1 ) of the surface positioning system and change with temperature fluctuations in the course of the operation of the placement machine 310.
  • the additional markings 336a and / or the further additional markings 337a can, in particular, ensure that expansion, compression and / or bending, for example an S-shaped bending, of the movable transverse support arm 116 identified and can be compensated in the positioning of the placement head 120.
  • the placement machines 310 can also be used to detect a change in, for example, a thermal distortion of the surface positioning system. Such a change in the warpage or the distortion of the surface positioning system can occur during the mounting of the carrier 190 with unhoused chips 282, which mounting can take, for example, 1 to 2 hours. According to the exemplary embodiment shown here, this takes place on the basis of so-called calibration modules 372, the position of which is measured cyclically in the coordinate system of the surface positioning system by means of the camera 222.
  • the calibration modules 372 can in particular consist of a glass material with an extremely low thermal expansion and are therefore referred to as glass modules.
  • optically well-recognizable and fine structures can also be attached or formed with high precision with regard to their position and shape, which are used for the optical measurement described and, owing to their precision, enable the distortion of the coordinate system of the surface positioning system to be determined extremely precisely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Automatic Assembly (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung betrifft allgemein das technische Gebiet der Herstellung von elektronischen Bauelementen. Die vorliegende Erfindung betrifft insbesondere eine Bestückmaschine sowie ein Verfahren zum Handhaben von ungehäusten Chips im Rahmen der Fertigung von elektronischen Bauelementen, welche jeweils zumindest einen Chip verpackt in einem Gehäuse und geeignete elektrische Anschlusskontakte aufweisen, mittels welchen der verpackte Chip elektrisch kontaktiert werden kann.
  • Hintergrund der Erfindung
  • Bei der Fertigung von gehäusten elektronischen Bauelementen werden ungehäuste (Halbleiter-) Chips, so genannte "Bare Dies", auf einen Träger bestückt. Im Rahmen des sogenannten "embedded Wafer Level package" Prozesses (eWLP) werden dazu ein oder mehrere Chips pro Verpackung mit der aktiven Seite nach unten auf eine an dem Träger befindliche Klebefolie aufgesetzt. Anschließend wird eine Vielzahl von aufgesetzten Chips mit einer Masse aus Kunststoff vergossen, welche später das Gehäuse darstellt. Das gesamte Vergussprodukt wird dann unter hohem Druck gebacken und anschließend von dem Träger bzw. der Klebefolie gelöst. In nachfolgenden Prozess-Schritten werden die Chips dann kontaktiert, ggf. elektrisch verbunden und als elektrische Anschlusskontakte dienende Lotkugeln aufgebracht. Am Ende wird das gesamte weiterverarbeitete Vergussprodukt zu einzelnen Bauelementen zersägt.
  • Anschaulich ausgedrückt ist eWLP eine Gehäusebauform für integrierte Schaltungen, bei der die die elektrischen Anschlusskontakte auf einem aus Chips und Vergussmasse künstlich hergestellten Wafer erzeugt werden. Somit werden alle notwendigen Bearbeitungsschritte für das Ausbilden eines Gehäuses auf dem künstlichen Wafer durchgeführt. Dies erlaubt gegenüber den klassischen Gehäusetechnologien, bei denen das sog. "Wire Bonding" zum Einsatz kommt, die Herstellung extrem kleiner und flacher Gehäuse mit exzellenten elektrischen und thermischen Eigenschaften bei besonders niedrigen Herstellungskosten. Mit dieser Technologie können die Bauelemente beispielsweise als Ball Grid Array (BGA) hergestellt werden.
  • Die Handhabung der noch ungehäusten Chips erfolgt mit einer (modifizierten) Bestückmaschine, welche einen Bestückkopf aufweist, mit dem die Chips an vordefinierten Bestückpositionen auf dem Träger platziert werden. Dafür sind die Anforderungen an die Positionsgenauigkeit der Bestückung besonders hoch. Derzeit wird eine Positionsgenauigkeit bzw. Bestückgenauigkeit von 10µm/3σ gefordert, wobei σ (sigma) die Standardabweichung für die Bestückposition ist. Aufgrund der zunehmenden Miniaturisierung von elektronischen Bauelementen ist zu erwarten, dass zukünftig an die Bestückgenauigkeit noch höhere Anforderungen gestellt werden.
  • US 5 894 657 A beschreibt einen Bestückautomat für elektronische Komponenten. Der Automat weist einen Bestückkopf auf, welcher eine Pipette zum Koppeln einer elektronischen Komponente hat. Der Bestückkopf ist eingerichtet zum Aufnehmen der elektronischen Komponente von einem Wafer und zum Transportieren der elektronischen Komponente und Bestücken der elektronischen Komponente auf die Leiterplatte.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Bestückmaschine sowie ein Verfahren zum Bestücken eines Trägers mit ungehäusten Halbleiter-Chips anzugeben, welche eine besonders hohe Bestückgenauigkeit ermöglichen.
  • Zusammenfassung der Erfindung
  • Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
  • Gemäß einem ersten Aspekt der Erfindung wird eine Bestückmaschine zum Bestücken eines Trägers mit ungehäusten Chips beschrieben. Die Bestückmaschine wird insbesondere verwendet zum Herstellen von elektronischen Bauelementen, welche jeweils zumindest einen Chip aufweisen, der sich in einem Gehäuse befindet, wobei das Gehäuse insbesondere eine ausgehärtete Vergussmasse aufweist. Die beschriebene Bestückmaschine weist auf (a) eine Zuführeinrichtung zum Bereitstellen eines Wafers, der eine Vielzahl von Chips aufweist; (b) eine Träger-Aufnahmevorrichtung zum Aufnehmen des zu bestückenden Trägers; und (c) einen Bestückkopf zum Abholen von Chips von dem bereitgestellten Wafer und zum Platzieren der abgeholten Chips an vordefinierten Bestückpositionen auf dem Träger. Die Träger-Aufnahmevorrichtung weist eine pneumatische Schnittstelle auf, mittels welcher ein Unterdruck an eine Oberfläche des Trägers anlegbar ist. Die Bestückmaschine weist ferner eine Temperiervorrichtung auf, welche thermisch mit der Träger-Aufnahmevorrichtung gekoppelt ist und welche eingerichtet ist, die Träger-Aufnahmevorrichtung zumindest annähernd auf einer konstanten Temperatur zu halten. Hierbei ist die Temperiervorrichtung eingerichtet, die Träger-Aufnahmevorrichtung zu kühlen, so dass diese eine Temperatur annehmen kann, die um zumindest 2 Kelvin niedriger ist als die unmittelbare Umgebungstemperatur der Träger-Aufnahmevorrichtung.
  • Der beschriebenen Bestückmaschine liegt die Erkenntnis zugrunde, dass ein mit ungehäusten Chips zu bestückender Träger mit extrem hoher Genauigkeit und ohne einen inneren Verzug an einer vorgegebenen Position innerhalb der Bestückmaschine gehalten werden kann, wenn der Träger mittels eines Unterdrucks lösbar an einer geeignet geformten Träger-Aufnahmevorrichtung fixiert wird. Zu diesem Zweck weist die verwendete Träger-Aufnahmevorrichtung die pneumatische Schnittstelle auf, welche an den zu bestückenden Träger anliegt, sofern sich dieser an bzw. auf der Träger-Aufnahmevorrichtung befindet.
  • Anschaulich ausgedrückt wird der zu bestückende Träger über die pneumatische Schnittstelle an der Träger-Aufnahmevorrichtung angesaugt. Solange die Oberfläche des Trägers, welche an der pneumatischen Schnittstelle anliegt, mit einem ausreichenden Unterdruck beaufschlagt ist, wird auf zuverlässige Weise ein versehentliches Verrutschen des Trägers verhindert. Im Vergleich zu einer lösbaren Fixierung des Trägers mittels bekannter Klemmmechanismen für mit gehäusten elektronischen Bauelementen zu bestückenden Leiterplatten hat die beschriebene pneumatische Fixierung des mit ungehäusten Chips zu bestückenden Trägers den großen Vorteil, dass sie wesentlich temperaturstabiler ist. Dies liegt daran, dass die verschiedenen Komponenten von bekannten Klemmmechanismen unterschiedliche Geometrien haben und damit unterschiedlichen thermischen Ausdehnungen unterworfen sind, so dass sich bei einer Temperaturänderung gleichzeitig auch die Art und Weise der Klemmung verändert. Dadurch verschiebt sich typischerweise die Position von zumindest einem Teil des mit Chips zu bestückenden Trägers innerhalb einer Bestückmaschine.
  • Abgesehen von der bereits genannten Temperaturstabilität hat die beschriebene pneumatische Fixierung im Vergleich zu einer herkömmlichen Klemmung den Vorteil, dass bei einer geeigneten Ausgestaltung der Träger-Aufnahmevorrichtung der Träger flächig an einer Oberseite der Träger-Aufnahmevorrichtung fixiert werden kann und sogar unerwünschte Wölbungen von Teilbereichen des Trägers nach oben bzw. von der Träger-Aufnahmevorrichtung weg zuverlässig verhindert werden können. In diesem Zusammenhang wird darauf hingewiesen, dass es bei einer typischerweise für zu bestückende Leiterplatten verwendeten seitlichen Klemmung zu einer Durchbiegung der jeweiligen Leiterplatte kommen kann. Ein Durchbiegen des Trägers nach unten könnte somit zwar in bekannter Weise durch geeignete Unterstützungsstifte verhindert werden, ein unerwünschtes Durchbiegen nach oben kann jedoch auf einfache Weise nur durch die hier beschriebene pneumatische Fixierung des mit ungehäusten Chips zu bestückenden Trägers verhindert werden.
  • Anschaulich ausgedrückt stellt die beschriebene Träger-Aufnahmevorrichtung ein Vakuum-Fixierwerkzeug dar, mit dem der zu bestückende Träger innerhalb der Bestückmaschine so fixiert werden kann, dass die Oberfläche des Trägers exakt in der Höhe einer Ebene liegt, in welcher die Chips am besten und insbesondere mit der größten Bestückgenauigkeit platziert werden können.
  • Um innerhalb der beschriebenen Bestückmaschine eine positionsgenaue Fixierung des Trägers auch unter schwankenden Umgebungstemperaturen zu gewährleisten, ist es lediglich erforderlich, die Träger-Aufnahmevorrichtung derart auszugestalten, dass deren Geometrie nur eine sehr geringe Temperaturabhängigkeit aufweist. Dies kann beispielsweise durch die Verwendung von geeigneten Materialien wie beispielsweise einer Invar-Legierung geschehen, welche aus ca. 64 % Eisen und 36 % Nickel besteht und welche in bekannter Weise eine sehr geringen Wärmeausdehnungskoeffizienten aufweist.
  • Es wird darauf hingewiesen, dass die Positionsgenauigkeit, welche notwendig ist, um einen Träger mit ungehäusten Chips zu bestücken, in der Regel wesentlich höher sein muss als die Positionsgenauigkeit, die erforderlich ist, um eine Leiterplatte mit ungehäusten elektronischen Bauelementen zu bestücken. Um eine ausreichend hohe Positionsgenauigkeit zu gewährleisten, leistet die hier beschriebene pneumatische Fixierung des Trägers an der Träger-Aufnahmevorrichtung einen erheblichen Beitrag.
  • In diesem Zusammenhang wird darauf hingewiesen, dass in diesem Dokument unter dem Begriff "elektronisches Bauelement" insbesondere ein gehäustes elektronisches Bauelement zu verstehen ist, welches (a) einen Chip, (b) ein den Chip umgebendes Gehäuse sowie (c) geeignete elektrische Anschlusskontakte für den Chip aufweist. Ein "elektronisches Bauelement" kann beispielsweise ein für eine Oberflächenmontage vorgesehenes Bauelement sein, welches typischerweise als Surface Mount Device (SMD) Bauelement bezeichnet wird.
  • Im Gegensatz dazu werden in diesem Dokument unter dem Begriff "Chips" insbesondere ungehäuste Halbleiterplättchen verstanden, welche in bekannter Weise durch ein Vereinzeln von einem prozessierten Halbleiterwafer entstehen.
  • Gemäß einem Ausführungsbeispiel der Erfindung weist die pneumatische Schnittstelle eine Nut auf, welche mit dem Unterdruck beaufschlagt werden kann, der von einer Unterdruck-Erzeugungseinheit erzeugt wird.
  • Die Unterdruck-Erzeugungseinheit kann eine Einheit sein, welche in Bezug auf die beschriebene Bestückmaschine eine externe Einheit ist und mit der Träger-Aufnahmevorrichtung lediglich pneumatisch koppelbar ist. Die Unterdruck-Erzeugungseinheit kann jedoch auch der beschriebenen Bestückmaschine zugeordnet sein. Insbesondere in letzterem Fall kann die beschriebene Unterdruck-Erzeugungseinheit beispielsweise aus Synergiegründen auch für die Erzeugung eines Unterdrucks verwendet werden, welcher in bekannter Weise für eine temporäre Aufnahme von Chips an so genannten Saugpipetten des Bestückkopfes verwendet wird.
  • Die Verwendung einer Nut zur Übertragung des Unterdrucks an die Oberfläche des Trägers hat den Vorteil, dass dieser Unterdruck nicht lediglich punktuell sondern entlang einer Linie angelegt werden kann. Dabei kann die Form und/oder die Länge der Nut an die Größe und/oder an die mechanische Beschaffenheit des mit Chips zu bestückenden Trägers angepasst werden.
  • Die beschriebene Nut kann auch mehrere Nutabschnitte aufweisen, welche an einem Verzweigungspunkt oder an mehreren Verzweigungspunkten miteinander verbunden sind. Ferner kann zumindest ein Abschnitt der beschriebenen Nut eine umlaufende Nut sein, welche bevorzugt um einen Mittelpunkt der Oberfläche der Träger-Aufnahmevorrichtung bzw. um einen Mittelpunkt des an der Träger-Aufnahmevorrichtung fixierten Trägers umläuft. Somit kann der Unterdruck in weitgehend symmetrischer Weise auf die Oberfläche des zu bestückenden Trägers angelegt werden. Dies wiederum führt dazu, dass der zu bestückende Träger infolge des Unterdrucks nicht oder nur in zu vernachlässigende Weise mechanisch verspannt wird. Auch dies trägt in erheblichen Maße zu einer hohen Bestückgenauigkeit bei.
  • Erfindungsgemäß weist die Bestückmaschine ferner eine Temperiervorrichtung auf, welche thermisch mit der Träger-Aufnahmevorrichtung gekoppelt ist und welche eingerichtet ist, die Träger-Aufnahmevorrichtung zumindest annähernd auf einer konstanten Temperatur zu halten.
  • Die Temperiervorrichtung kann die Träger-Aufnahmevorrichtung und damit auch einen an der Träger-Aufnahmevorrichtung pneumatisch fixierten Träger aktiv oder passiv temperaturstabilisieren. Eine passive Temperaturstabilisation kann auf einfache Weise dadurch realisiert werden, dass ein gasförmiges oder flüssiges Wärmeaustauschmedium, welches eine vorbestimmte Temperatur aufweist, durch einen Kanal strömt, welcher in der Träger-Aufnahmevorrichtung ausgebildet ist. Eine aktive Temperaturstabilisation weist zusätzlich eine Temperatur-Rückkopplung von einem Temperatursensor zu einer Steuereinheit der Temperiervorrichtung auf, so dass die Temperatur und/oder der Volumenstrom des Wärmeaustauschmediums stets so eingestellt ist, dass sich zumindest derjenige Teil der Träger-Aufnahmevorrichtung auf einer konstanten und bevorzugt vorgegebenen Temperatur befindet, welcher thermisch mit dem zu bestückenden Träger gekoppelt ist.
  • Eine Temperaturstabilisierung des zu bestückenden Trägers in Hinblick auf eine präzise Beibehaltung der Position des Trägers innerhalb der Bestückmaschine ist insbesondere für einen "embedded Wafer Level Prozess" Prozess (eWLP) von großer Bedeutung, weil im Gegensatz zu einer Leiterplattenbestückung, welche oft weniger als eine Minute dauert, bei einer Bestückung des Trägers mit Chips aus einem Wafer die Bestückdauern in Anbetracht der typischerweise viel größeren Anzahl an Chips deutlich länger sind. Übliche Bestückdauern des Trägers mit ungehäusten Chips können zwischen einer und mehreren Stunden liegen. Dies hat zur Folge, dass sämtliche (noch so kleine) zeitliche Veränderungen der Bestückmaschine und/oder des zu bestückenden Trägers unmittelbar die Bestückgenauigkeit beeinflussen.
  • Erfindungsgemäß ist die Temperiervorrichtung eingerichtet, um die Träger-Aufnahmevorrichtung zu kühlen, so dass diese eine Temperatur annehmen kann, die um zumindest 2 Kelvin, insbesondere um zumindest 4 Kelvin und weiter insbesondere um zumindest 7 Kelvin niedriger ist als die unmittelbare Umgebungstemperatur Träger-Aufnahmevorrichtung.
  • Durch die beschriebene Kühlung der Träger-Aufnahmevorrichtung kann sichergestellt werden, dass eine Abwärme von Komponenten der Bestückmaschine, welche zu einer unerwünschten und kaum vermeidbaren Temperaturerhöhung in einem räumlichen Bereich unter einer Schutzhaube der Bestückmaschine führt, nicht automatisch zur Folge hat, dass sich auch die Temperatur der Träger-Aufnahmevorrichtung und insbesondere die Temperatur des Trägers erhöht. Insbesondere kann durch eine geeignete Einstellung der Temperiervorrichtung erreicht werden, dass der Träger während des Bestückens eine Temperatur annimmt, die zumindest annähernd gleich ist wie eine Umgebungstemperatur der Bestückmaschine. Dies bedeutet in der Praxis, dass der Träger beim Einführen in die Bestückmaschine und beim Herausführen aus der Bestückmaschine keinen oder nur zu vernachlässigenden Temperaturänderungen unterworfen ist. Bei Einführen des Trägers hätte eine Temperaturerhöhung nämlich zur Folge, dass sich die räumlichen Abmessungen des Trägers als Folge einer thermischen Ausdehnung ändern würde und die Bestückgenauigkeit entsprechend reduziert wäre.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Bestückmaschine ferner ein Chassis und ein Positioniersystem auf. Das Flächen-Positioniersystem wiederum weist auf (a) eine erste Komponente, die in Bezug zu dem Chassis stationär angeordnet ist, (b) eine zweite Komponente, die in Bezug zu der ersten Komponente entlang einer vorgegebenen ersten Richtung verfahrbar ist, und (c) eine dritte Komponente, die in Bezug zu der zweiten Komponente entlang einer vorgegebenen zweiten Richtung verfahrbar ist. Der Bestückkopf ist an der dritten Komponente befestigt. Die erste Richtung ist winklig zu der zweiten Richtung. Dabei ist unter dem Begriff "winklig" jede nicht parallele Ausrichtung der beiden Richtungen zu verstehen.
  • Durch eine geeignete Ansteuerung von einem ersten Linearantrieb, welcher der ersten Komponente und der zweiten Komponente zugeordnet ist, und einem zweiten Linearantrieb, welcher der zweiten Komponente und der dritten Komponente zugeordnet ist, kann die dritte Komponente und damit der an ihr befestigte Bestückkopf innerhalb eines bestimmen zweidimensionalen Bewegungsbereichs frei verfahren werden. Bei der beschriebenen Bestückmaschine erstreckt sich dieser Bewegungsbereich von einem räumlichen Bereich der Zuführeinrichtung, in welchem die zu bestückenden Chips aufgenommen werden, bis hin zu einem Bestückbereich, in welchem sich der zu bestückende Träger befindet und in dem welchem die Chips aufgesetzt werden.
  • Die beiden genannten Richtungen, welche bevorzugt senkrecht zueinander orientiert sind, können durch zwei Achsen, beispielsweise eine x-Achse und eine y-Achse, definiert sein. Diese beiden Achsen können ein Koordinatensystem der beschriebenen Bestückmaschine aufspannen.
  • Die erste Komponente des Positioniersystems kann eine stationäre Führungsschiene aufweisen, welche sich entlang der x-Achse erstreckt. Die bewegliche zweite Komponente kann ein querstehender Trägerarm sein, welcher an der ersten Komponente entlang der x-Achse verschiebbar angeordnet ist und sich entlang der γ-Achse erstreckt. Die dritte Komponente des Positioniersystems kann an dem querstehenden Trägerarm angeordnet und entlang einer Schiene verfahrbar sein, welche sich entlang der Längsrichtung des querstehenden Trägers bzw. entlang der γ-Achse erstreckt.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Träger-Aufnahmevorrichtung zumindest zwei Markierungen auf, welche optisch erkennbar sind und welche insbesondere außerhalb eines räumlichen Bereiches, der für die Aufnahme des Trägers vorgesehen ist, an der Träger-Aufnahmevorrichtung angebracht sind. Anhand von zumindest einer solchen Markierung kann durch eine geeignete optische Vermessung die Position eines bestückten Chips relativ zu dieser Markierung mit großer Genauigkeit bestimmt werden. Sofern die Position der betreffenden Markierung innerhalb der beschriebenen Bestückmaschine genau bekannt ist, kann somit die tatsächliche Position eines bestückten Chips innerhalb eines Koordinatensystems der Bestückmaschine genau ermittelt werden. Sofern außerdem die Position des zu bestückenden Trägers innerhalb des Koordinatensystems der Bestückmaschine genau bekannt ist, kann dann auch die tatsächliche Position eines bestückten Chips innerhalb eines Koordinatensystems des Trägers mit großer Genauigkeit ermittelt werden.
  • Falls bei einer derartigen Positionsvermessung ein gewisser räumlicher Versatz zwischen der tatsächlichen Bestückposition und einer vorgegebenen Bestückpositionen ermittelt wird, dann kann ein solcher Versatz bei nachfolgenden Bestückvorgängen durch eine geeignete Ansteuerung der Bewegung des Bestückkopfes zumindest annähernd kompensiert werden.
  • Die genauen Positionen der optisch erkennbaren Markierungen können vor dem Einbau der Träger-Aufnahmevorrichtung bzw. einer entsprechenden Komponente der Träger-Aufnahmevorrichtung, an welcher Komponente sich die Markierungen befinden, mit einer hochgenauen optischen Messmaschine vermessen werden. Auf diese Weise kann die vorstehend beschriebene optische Vermessung von Bestückpositionen mit besonders hoher Genauigkeit durchgeführt werden.
  • Die räumliche Anordnung der beiden Markierungen außerhalb des Bereiches, welcher im Betrieb der Bestückmaschine für die Aufnahme des Trägers vorgesehen ist, hat den Vorteil, dass die (Positionen der) Markierungen auch während der Bestückung eines Trägers vermessen werden können. Somit ist es auch während eines Bestückvorgangs, welcher, wie vorstehend beschrieben, beispielsweise 1 bis 2 Stunden dauern kann, möglich, die Bestückpositionen optisch genau zu identifizieren und so eine andauernd hohe Bestückgenauigkeit zu gewährleisten.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Träger-Aufnahmevorrichtung zumindest zwei weitere Markierungen auf, welche optisch erkennbar sind und welche insbesondere außerhalb eines räumlichen Bereiches an der Träger-Aufnahmevorrichtung angebracht sind, welcher Bereich für die Aufnahme des Trägers vorgesehen ist. Dies bedeutet, dass an der Träger-Aufnahmevorrichtung insgesamt zumindest vier optisch erkennbare Markierungen vorhanden sind. Diese vier Markierungen können zur Verbesserung der Bestückgenauigkeit für einen ersten Messzweck (A) und/oder für einen zweiten Messzweck (B) verwendet werden, wobei jeweils davon ausgegangen wird, dass die vier Markierungen in räumlich fester Weise in dem Koordinatensystem der Bestückmaschine angeordnet sind bzw. das Koordinatensystem der Bestückmaschine sogar definieren.
    1. (A) Messzweck 1: Durch ein Vermessen von tatsächlichen Bestückpositionen von auf den Träger aufgesetzten Chips relativ zu den vier Markierungen ist es möglich, für eine Kompensation von Bestückpositionen durch ein geeignetes Ansteuern der Bewegung des Bestückkopfes ein erweitertes kinematisches Modell zu verwenden, bei dem mit einer bi-lineareren Koordinaten-Transformation nicht nur eindimensionale Verzeichnungen und Winkelverzeichnungen sondern z. B. auch Trapezverzeichnungen abgebildet werden können. Dies bedeutet, dass auch ein nichtlineares Positionierverhalten von einem Positioniersystem, welches den Bestückkopf trägt, anhand der vier Markierungen approximiert werden und einem Mapping-Feld überlagert werden kann, welches in bekannter Weise dazu verwendet wird, eine Bewegung des Bestückkopfes individuell für eine Vielzahl an möglichen Bestückpositionen positionsgenau zu steuern.
    2. (B) Messzweck 2: Auf oder in unmittelbarer Nähe zu den vier Markierungen kann in einem Kalibrierbetrieb der Bestückmaschine von dem Bestückkopf jeweils ein spezieller Kalibrierchip aufgesetzt werden. Durch eine geeignete optische Positionsvermessung kann ein möglicher Versatz der Bestückpositionen im Bereich der vier Markierungen hochgenau ermittelt werden. Die dadurch gewonnenen Informationen können einen so genannten Mapping-Feld überlagert werden. Ein solches Mapping-Feld kann dann in bekannter Weise dazu verwendet werden, die Positionierung des Bestückkopfes mittels des vorstehend genannten Positioniersystems so vorzunehmen, dass ein gegebenenfalls vorhandener Verzug des Positioniersystem ortsabhängig, d.h. für jede Bestückposition individuell, kompensiert werden kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung (a) haben die beiden Markierungen relativ zueinander einen räumlichen Versatz entlang der ersten Richtung, (b) haben die beiden weiteren Markierungen relativ zueinander einen räumlichen Versatz entlang der ersten Richtung, und (c) hat jede der beiden Markierungen relativ zu jeder der beiden weiteren Markierungen einen räumlichen Versatz entlang der zweiten Richtung.
  • In einer besonders einfachen Realisierung dieser Ausführungsform haben die beiden Markierungen relativ zueinander ausschließlich einen räumlichen Versatz entlang der ersten Richtung (und keinen Versatz entlang der zweiten Richtung). Gleiches gilt für die beiden weiteren Markierungen. Ferner gibt es zwei Markierungspaare, die jeweils eine Markierung und eine weitere Markierung umfassen, wobei die Markierungen eines Paares ausschließlich einen räumlichen Versatz entlang der zweiten Richtung (und keinen Versatz entlang der ersten Richtung) haben. Anschaulich ausgedrückt sind bei dieser Realisierung alle Markierungen auf einem rechtwinkligen zweidimensionalen Raster an der Träger-Aufnahmevorrichtung platziert.
  • Durch eine optische Vermessung von jeweils einem Paar von Markierungen, welche einen Versatz entlang der ersten Richtung haben, mittels einer Kamera, welche entlang der zweiten Richtung verschiebbar an der dritten Komponente angebracht ist, kann ein ggf. vorhandener oder im Verlauf einer Bestückung entstandener räumlicher Verzug der (stationären) ersten Komponente des Positioniersystems erkannt werden. Ein solcher räumlicher Verzug kann insbesondere dadurch entstehen, dass sich im Verlauf der Bestückung eines Trägers die Temperatur von zumindest einem Teil der ersten Komponente ändert.
  • In entsprechender Weise kann durch eine optische Vermessung von jeweils einem Paar von Markierungen, welche einen Versatz entlang der zweiten Richtung haben, mittels der genannten Kamera ein ggf. vorhandener oder im Verlauf einer Bestückung entstandener räumlicher Verzug der (verfahrbaren) zweiten Komponente des Positioniersystems erkannt werden. Auch dieser Verzug kann durch unerwünschte Temperaturschwankungen in Verbindung mit thermischen Ausdehnungen entstehen.
  • Anschaulich ausgedrückt verzerrt sich bei einem Verzug der (stationären) ersten Komponente und/oder bei einem Verzug der (verfahrbaren) zweiten Komponente das Koordinatensystem des Positioniersystems. Durch eine optische Positionsvermessung der entsprechenden als stationär angenommenen Markierungen kann dieser Verzug bestimmt werden und bei der weiteren Bestückung des Trägers durch eine geeignete Ansteuerung des Positioniersystems kompensiert werden. Insbesondere bei der Verwendung eines bilinearen Modells zur Bestimmung der Verzerrung kann dadurch kann eine extrem hohe und zeitlich stabile Bestückgenauigkeit erzielt werden.
  • Es wird darauf hingewiesen, dass es durch eine optische Vermessung sowohl der beiden Markierungen als auch der beiden weiteren Markierungen möglich ist, folgende Ursachen einer Verzerrung des Koordinatensystems des Positioniersystems eindeutig zu identifizieren: (a) Stauchung oder Ausdehnung der ersten Komponente, (b) Krümmung bzw. Aufwölbung der ersten Komponente, (c) Stauchung oder Ausdehnung der zweiten Komponente, (d) Krümmung der zweiten Komponente. Dies ermöglicht eine besonders genaue Bestimmung der Verzerrung des Koordinatensystem auch für Positionen, welche sich zwischen des verschiedenen Markierungen befinden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Träger-Aufnahmevorrichtung ferner zumindest eine Zwischenmarkierung auf, welche sich entlang der ersten Richtung zwischen den beiden Markierungen befindet. Alternativ oder in Kombination weist die Träger-Aufnahmevorrichtung ferner zumindest eine weitere Zwischenmarkierung auf, welche sich entlang der ersten Richtung zwischen den beiden weiteren Markierungen befindet. Dies hat den Vorteil, dass die Genauigkeit der Bestimmung der Verzerrung des Koordinatensystems des Positioniersystems insbesondere in Bezug auf mögliche räumliche Veränderungen der (stationären) ersten Komponente weiter verbessert werden kann. Dabei ist diese Verbesserung umso größer, je höher die Anzahl der Zwischenmarkierungen bzw. der weiteren Zwischenmarkierungen ist.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist an der Träger-Aufnahmevorrichtung zumindest eine Zusatzmarkierung angebracht, welche sich entlang der zweiten Richtung zwischen einer Markierung und einer weiteren Markierung befindet. Alternativ oder in Kombination ist an der Träger-Aufnahmevorrichtung ferner zumindest eine weitere Zusatzmarkierung angebracht, welche sich entlang der zweiten Richtung zwischen einer Markierung und einer weiteren Markierung befindet. Dies hat den Vorteil, dass die Genauigkeit der Bestimmung der Verzerrung des Koordinatensystems des Positioniersystems insbesondere in Bezug auf mögliche räumliche Veränderungen der (verfahrbaren) zweiten Komponente weiter verbessert werden kann. Auch hier ist diese Verbesserung umso größer, je höher die Anzahl der Zusatzmarkierungen bzw. der weiteren Zusatzmarkierungen ist.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Bestückmaschine ferner auf eine Transportvorrichtung zum Zuführen von zu bestückenden Trägern zu der Träger-Aufnahmevorrichtung und zum Abführen von zumindest teilweise mit ungehäusten Chips bestückten Trägern von der Träger-Aufnahmevorrichtung. Die Transportvorrichtung weist zwei Transportspuren auf, welche sich entlang der zweiten Richtung erstrecken und entlang der ersten Richtung voneinander beabstandet sind und welche ausgebildet sind, einen Träger an zwei Seiten zu halten. Ferner ist die zumindest eine Zusatzmarkierung und/oder die zumindest eine weitere Zusatzmarkierung außerhalb der beiden Transportspuren angeordnet.
  • Durch die Verwendung von weiteren Zusatzmarkierungen kann die vorstehend beschriebene optische Bestimmung einer Verzerrung des Koordinatensystems des Positioniersystems insbesondere in Bezug auf mögliche räumliche Veränderungen der verfahrbaren und sich entlang der ersten Richtung erstreckenden zweiten Komponente weiter verbessert werden.
  • "Außerhalb" kann in diesem Zusammenhang insbesondere bedeuten, dass sich die jeweilige Zusatzmarkierung außerhalb des Bereiches befindet, welcher zwischen den beiden Transportspuren liegt und durch die beiden Transportspuren entlang der ersten Richtung begrenzt ist. Da auch die jeweilige Zusatzmarkierung an der Träger-Aufnahmevorrichtung angebracht ist, bedeutet dies, dass sich auch die Träger-Aufnahmevorrichtung bis außerhalb der beiden Transportspuren erstreckt.
  • Die Träger-Aufnahmevorrichtung kann mehrstückig ausgebildet sein. Bevorzugt ist jedoch zumindest die Oberfläche der Träger-Aufnahmevorrichtung die Oberfläche einer einstückigen Komponente der Träger-Aufnahmevorrichtung.
  • Die räumliche Anordnung der zumindest einen Zusatzmarkierung und/oder der zumindest einen weiteren Zusatzmarkierung außerhalb der beiden Transportspuren hat den Vorteil, dass weder der Transport noch die Aufnahme des Trägers durch die jeweilige(n) Zusatzmarkierung(en) behindert wird. Eine optische Vermessung der Zusatzmarkierung und/oder der weiteren Zusatzmarkierung ist auch während eines Bestückvorgangs möglich (wenn sich der zu bestückende Träger auf der Träger-Aufnahmevorrichtung befindet).
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind die Transportspuren mittels jeweils eines Transportriemens realisiert. Auf diesen kann ein Träger während seines Transports aufliegen. In der Träger-Aufnahmevorrichtung sind zwei Transportnuten ausgebildet, welche entlang der zweiten Richtung verlaufen und räumlich derart ausgebildet sind, dass in jeder Transportnut jeweils ein Transportriemen versenkbar ist. Dadurch wird auf vorteilhafte Weise eine pneumatische Fixierung des Trägers auf der Träger-Aufnahmevorrichtung nicht durch die Transportriemen behindert.
  • Ein temporäres Absenken der Transportriemen kann beispielsweise dadurch realisiert werden, dass innerhalb der Transportnut jeweils vertikal, d.h. senkrecht sowohl zur ersten Richtung als auch zur zweiten Richtung, verschiebbare Rollen vorgesehen sind, auf welchen der jeweilige Transportriemen aufliegt. Eine solche Verschiebbarkeit kann beispielsweise mittels zweier sägezahnförmiger Bleche realisiert werden, welche bei einer Verschiebung entlang der zweiten Richtung dafür sorgen, dass die Drehachsen der jeweiligen Rollen vertikal verschoben werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Bestückmaschine ferner ein Referenzelement auf, welches an der Träger-Aufnahmevorrichtung befestigt ist. Die zumindest eine Zusatzmarkierung und/oder die zumindest eine weitere Zusatzmarkierung sind an dem Referenzelement angebracht.
  • Das Referenzelement kann ein sog. Maßstab sein, welcher aus einem Material mit einer sehr geringen thermischen Ausdehnung gefertigt ist. Die zumindest eine Zusatzmarkierung und/oder die zumindest eine weitere Zusatzmarkierung können mit einer extrem hohen Positionsgenauigkeit an dem Referenzelement angebracht sein oder die Position der Markierungen kann durch eine hochgenaue Vermessung bekannt sein. Dadurch wird die Genauigkeit der Vermessung einer Verzerrung des Positioniersystems weiter verbessert.
  • Das Referenzelement kann beispielsweise ein sog. Glasmaßstab sein.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Bestückmaschine ferner eine Kamera auf, welche derart positioniert oder positionierbar ist, dass zumindest eine der Markierungen und auf den Träger bestückte Chips gemeinsam in einem Bild von der Kamera aufgenommen werden können.
  • Das Bereitstellen einer Kamera in der Bestückmaschine, welche Kamera im Prinzip ständig zur Verfügung steht, um die Markierungen und auf den Träger bestückte Chips zu erfassen, kann die Genauigkeit der beschriebenen Bestückmaschine während das Betriebs der Bestückmaschine ständig oder zumindest in regelmäßigen Abständen überprüft werden. Falls eine solche Überprüfung ergibt, dass es bei der Bestückung von Chips zu einem räumlichen Versatz kommt, dann können diese durch die vorstehend beschriebenen Maßnahmen, das heißt insbesondere durch eine geeignete Ansteuerung der Antriebe des oben genannten Positioniersystems, kompensiert werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Kamera relativ zu dem Bestückkopf in einer räumlich festen Position angeordnet. Dies kann insbesondere bedeuten, dass die Kamera an der dritten Komponente des vorstehend genannten Positioniersystems bzw. an dem Bestücckopf angebracht ist. Die Kamera kann dabei direkt oder indirekt an der dritten Komponente bzw. an dem Bestückkopf befestigt sein. Dadurch kann auf apparativ besonders einfache Weise die Kamera als eine innerhalb der Bestückmaschine bewegliche Kamera realisiert werden.
  • Eine innerhalb der Bestückmaschine bewegliche Kamera kann nicht nur die vorstehend genannten Markierungen sondern auch optische Strukturen an dem mit Chips zu bestückenden Träger erkennen, so dass die Position des zu bestückenden Trägers innerhalb des Koordinatensystems der Bestückmaschine zumindest grob bekannt ist. Eine solche Vermessung der Position des Trägers ist deshalb erforderlich, weil der zu bestückende Träger typischerweise mittels eines Transportsystems in dem Bestückbereich der Bestückmaschine eingebracht bzw. zu der Träger-Aufnahmevorrichtung transferiert wird. Durch eine Positionsvermessung der an dem Träger angebrachten bzw. ausgebildeten optischen Strukturen kann das Transportsystem dann auf eine geeignete Weise angesteuert werden, so dass der zu bestückende Träger möglichst genau zu der Träger-Aufnahmevorrichtung transferiert wird.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Bestückkopf eine Mehrzahl von Haltevorrichtungen zum temporären Aufnehmen von jeweils einem Chip auf. Die Verwendung eines sogenannten Mehrfach-Bestückkopfes hat den Vorteil, dass von dem Bestückkopf aus der Zuführeinrichtung innerhalb einer sehr kurzen Zeit eine Mehrzahl von Chips aufgenommen, diese Mehrzahl von Chips dann gemeinsam hin zu dem Bestückbereich transportiert und dort an vorgegebenen Bestückpositionen auf dem Träger platziert werden kann. Auf diese Weise wird die Bestückleistung der beschriebenen Bestückmaschine im Vergleich zu einer Bestückmaschine mit lediglich einem Einfach-Bestückkopf erheblich verbessert.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist die Bestückmaschine ferner auf (a) eine weitere Zuführeinrichtung zum Bereitstellen eines weiteren Wafers, der ebenfalls eine Vielzahl von Chips aufweist; und (b) einen weiteren Bestückkopf zum Abholen von Chips von dem bereitgestellten weiteren Wafer und zum Platzieren der abgeholten Chips an vordefinierten Bestückpositionen auf dem Träger. Dies hat den Vorteil, dass die Bestückmaschine in einem Betriebsmodus betrieben werden kann, in dem die beiden Bestückköpfe jeweils abwechselnd Chips von ihrer jeweils zugeordneten Zuführeinrichtung aufnehmen und auf den zu bestückenden Träger aufsetzen. Anschaulich ausgedrückt: Innerhalb eines ersten Zeitfensters werden von den (ersten) Bestückkopf Chips von der (ersten) Zuführeinrichtung abgeholt und von dem (zweiten) weiteren Bestückkopf werden bereits aufgenommene Chips auf den Träger aufgesetzt. Innerhalb eines nachfolgenden zweiten Zeitfensters werden von den (zweiten) weiteren Bestückkopf Chips von der (zweiten) Zuführeinrichtung abgeholt und von dem (ersten) Bestückkopf zuvor von der (ersten) Zuführeinrichtung aufgenommene Chips auf den Träger aufgesetzt. Durch einen solchen wechselseitigen Betrieb der beiden Bestückkopfes kann die Bestückleistung um zumindest annähernd einen Faktor 2 erhöht werden.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Bestücken eines Trägers mit ungehäusten Chips mit einer Bestückmaschine beschrieben, wobei die Bestückmaschine insbesondere eine Bestückmaschine des vorstehend beschriebenen Typs ist. Das beschriebene Verfahren weist folgende Schritte auf: (a) ein Bereitstellen eines Wafers, der eine Vielzahl von Chips aufweist, mittels einer Zuführeinrichtung; (b) ein Aufnehmen des zu bestückenden Trägers mittels einer Träger-Aufnahmevorrichtung; (c) ein Fixieren des zu bestückenden Trägers an der Träger-Aufnahmevorrichtung mittels eines Unterdrucks, welcher über eine pneumatische Schnittstelle der Träger-Aufnahmevorrichtung an eine Oberfläche des Trägers angelegt wird; (d) ein Abholen von bereitgestellten Chips von der Zuführeinrichtung mittels eines Bestückkopfes; (e) ein Transportieren der abgeholten Chips hin zu einem Bestückbereich; und (f) ein Aufsetzen der transportierten Chips an vorbestimmten Bestückpositionen auf dem Träger.
  • Auch dem beschriebenen Verfahren liegt die Erkenntnis zugrunde, dass sich ein Unterdruck in besonderem Maße dazu eignet, einen mit ungehäusten Chips zu bestückenden Träger mit extrem hoher Genauigkeit an einer vorgegebenen Position innerhalb der Bestückmaschine zu halten.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Träger eine Platte und eine Klebefolie auf, welche an einer flächigen Oberseite auf der Platte aufgebracht ist.
  • Die beschriebene Klebefolie ist insbesondere eine beidseitige Klebefolie, so dass nicht nur die Klebefolie an der Trägerplatte sondern auch die aufgesetzten Chips auf der Klebefolie anhaften. Ein gleichmäßiges Aufbringen der Klebefolie auf die Trägerplatte kann insbesondere mittels Laminierens realisiert werden.
  • Bevorzugt ist die Klebefolie eine so genannte Thermo-Ablöseschicht, welche sich dadurch auszeichnet, dass die Klebrigkeit der Klebefolie bei einer Wärmebehandlung nachlässt oder sogar ganz verschwindet. Somit können bei der Herstellung von gehäusten Bauelementen in einem späteren Schritt, d.h. nach einem gemeinsamen Vergießen der bestückten Chips mit einer aushärtbaren Vergussmasse, die vergossenen Bauelemente auf einfache Weise von der Klebefolie entfernt werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Verfahren ferner auf (a) ein Zuführen des Trägers zu der Träger-Aufnahmevorrichtung mittels einer Transportvorrichtung; (b) ein Erfassen der Positionen von zwei optischen Strukturen, welche sich an dem zugeführten Träger befinden; (c) ein Bestimmen der Position des zugeführten Trägers basierend auf den erfassten Positionen; und (e) ein Ermitteln der Koordinaten der vorbestimmten Bestückpositionen in einem Koordinatensystem der Bestückmaschine basierend auf der bestimmten Position des zugeführten Trägers. Die vorbestimmten Bestückpositionen auf dem Träger hängen von den ermittelten Koordinaten ab.
  • Die beiden optischen Strukturen des Trägers können zunächst dazu verwendet werden, mittels einer geeigneten Bildverarbeitung die Position des zugeführten Trägers in dem Koordinatensystem der Bestückmaschine zumindest annähernd zu bestimmen. Dadurch kann auf einfache Weise sichergestellt werden, dass der zu bestückende Träger an der Träger-Aufnahmevorrichtung in einer geeigneten räumlichen Position mittels Unterdrucks fixiert wird.
  • In einem einfachen Ausführungsbeispiel können die beiden optischen Strukturen einfach zwei Löcher sein, die an einem Rand, insbesondere an einander gegenüberliegenden Positionen, an dem Träger angebracht bzw. ausgebildet sind. Das Verwenden von einfachen Löchern als optische Strukturen hat den Vorteil, dass diese Löcher auch für eine mechanische Handhabung des Trägers beispielsweise mittels Zentrierstiften verwendet werden können.
  • Es wird darauf hingewiesen, dass der zu bestückende Träger selbstverständlich auch mehr als zwei optisch erkennbare Strukturen aufweisen kann. Dadurch kann die Genauigkeit der Positionierungsbestimmung des Trägers in dem Koordinatensystem der Bestückmaschine weiter verbessert werden.
  • Die beiden optischen Strukturen des Trägers können ferner dazu verwendet werden, nach einem pneumatischen Fixieren des Trägers an der Träger-Aufnahmevorrichtung den Träger als einen steifen Festkörper (d.h. ohne einen Verzug) zu modellieren, so dass jede mögliche Bestückposition auf dem Träger in Bezug zu den beiden optischen Strukturen genau definiert ist.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Verfahren ferner ein Erfassen der Positionen von mindestens zwei Markierungen auf, welche sich an der Träger-Aufnahmevorrichtung befinden. Die vorbestimmten Bestückpositionen auf dem Träger hängen ferner von den Positionen der mindestens zwei Markierungen ab.
  • Die Markierungen an der Trägeraufnahmevorrichtung können für eine hochgenaue relative Positionsmessung von bestückten Chips verwendet werden. Dadurch kann die Bestückgenauigkeit der Bestückmaschine während ihres Betriebs auf einfache Weise überwacht und ein gegebenenfalls auftretender räumlicher Versatz bei den Bestückpositionen durch eine geeignete Ansteuerung eines den Bestückkopf tragenden Flächen Positioniersystems kompensiert werden.
  • Das Erfassen der beiden Markierungen erfolgt bevorzugt mittels einer Kamera und einer der Kamera nachgeschalteten Datenverarbeitungseinheit, welche eine Bildverarbeitung bzw. Bildauswertung ausführt. Um die Genauigkeit des hier beschriebenen Verfahrens zu verbessern, können auch noch weitere Markierungen berücksichtigt werden, welche sich ebenfalls an der Träger-Aufnahmevorrichtung befinden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung werden die Positionen der beiden Markierungen an der Träger-Aufnahmevorrichtung während des Bestückens eines Trägers in vorgegebenen zeitlichen Abständen wiederholt erfasst und die Koordinaten der vorbestimmten Bestückpositionen werden basierend auf den erfassten Positionen korrigiert.
  • Anschaulich ausgedrückt werden die zumindest zwei Markierungen während des Betriebs der Bestückmaschine zyklisch vermessen. Damit können über die Kompensation von thermischen Effekten und eine geeignete Approximation eines nichtlinearen Verhaltens des Positioniersystems hinaus auch räumliche Veränderungen erkannt und gegebenenfalls bei der Bestückung kompensiert werden, welche räumlichen Veränderungen über längere Zeiträume auftreten und deren Ursachen gegebenenfalls nicht bekannt sind.
  • Es wird darauf hingewiesen, dass bei der positionsgenauen Fixierung des Trägers auf der Träger-Aufnahmevorrichtung abgesehen von der zyklischen Vermessung der Markierungen an der Träger-Aufnahmevorrichtung ein erneutes Vermessen des Trägers anhand seiner beiden optisch erkennbaren Strukturen nicht mehr notwendig ist, um trotzdem eine hochgenaue Bestückung zu gewährleisten.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist das Verfahren ferner auf (a) ein Vermessen der Position von einer auf den Träger bestückten Struktur; (b) ein erneutes Vermessen der Position von der Struktur zu einem späteren Zeitpunkt während des Bestückens des Trägers mit ungehäusten Chips; und (c) ein Bestimmen einer relativen Positionsverschiebung der Struktur zwischen dem Vermessen und dem erneuten Vermessen. Dabei hängen die vorbestimmten Bestückpositionen auf dem Träger ferner von der Positionsverschiebung der Struktur ab.
  • Anschaulich ausgedrückt wird eine sich mit der Zeit einstellende zeitabhängige Positionsveränderung bzw. Positionsverschiebung der Struktur beobachtet und daraus Rückschlüsse auf eine zeitabhängige Verzerrung des Positioniersystem gezogen, welche insbesondere durch die vorstehend beschriebenen Auswirkungen von Temperaturänderungen auf die Komponenten des Positioniersystems verursacht werden. Dadurch kann eine zeitabhängige Verzerrung des Positioniersystems alternativ oder in Kombination zu der Verwendung der vorstehend genannten Markierungen, weiteren Markierungen, Zwischenmarkierungen, weiteren Zwischenmarkierungen, Zusatzmarkierungen und/oder weiteren Zusatzmarkierungen auch basierend auf Stützstellen ermittelt werden, welche sich innerhalb des Bestückungsfeldes der Bestückmaschine befinden. Auch hier gilt, dass die Genauigkeit der Verzerrungsbestimmung mit der Anzahl der Strukturen zunimmt, welche für die Bestimmung berücksichtigt werden.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Struktur eine optisch erkennbare Struktur von einem bestückten Kalibrierbaustein.
  • Die Verwendung von speziellen Kalibrierbausteinen hat den Vorteil, dass die Struktur eine Markierung oder mehrere Markierungen sein kann, welche optisch einfach und zuverlässig erkannt werden können und/oder welche mit einer extrem hohen räumlichen Genauigkeit an dem jeweiligen Kalibrierbaustein(en) angebracht sein können.
  • Die Kalibrierbausteine können beispielsweise Glasbausteine sein, welche mit einer extrem hohen Genauigkeit hergestellt werden können. Außerdem können die Glasbausteine aus einem speziellen Glas bestehen, welches eine sehr geringe thermische Ausdehnung aufweist, so dass die Genauigkeit der vorstehend beschriebenen Vermessung einer Verzerrung des Positioniersystems besonders hoch sein kann.
  • Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Struktur eine optisch erkennbare Struktur von einem bestückten ungehäusten Chip. Dies hat den Vorteil, dass eine Bestückung mit speziellen Kalibrierbausteinen nicht erforderlich ist. Die optisch erkennbare Struktur kann beispielsweise zumindest eine Kannte oder eine Ecke des bestückten ungehäusten Chips sein.
  • Die Struktur kann beispielsweise eine Kante des ungehäusten Chips sein. Es wird darauf hingewiesen, dass Ausführungsformen der Erfindung mit Bezug auf unterschiedliche Erfindungsgegenstände beschrieben wurden. Insbesondere sind einige Ausführungsformen der Erfindung mit Vorrichtungsansprüchen und andere Ausführungsformen der Erfindung mit Verfahrensansprüchen beschrieben.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen. Die einzelnen Figuren der Zeichnung dieser Anmeldung sind lediglich als schematisch und als nicht maßstabsgetreu anzusehen.
  • Kurze Beschreibung der Zeichnung
    • Figur 1 zeigt ein Bestücksystem, welches zwei Bestückmaschinen gemäß einem Ausführungsbeispiel der Erfindung aufweist, wobei jede Bestückmaschine zwei Wafer-Zuführvorrichtungen und zwei Bestückköpfe aufweist.
    • Figur 2 zeigt eine vergrößerte Darstellung von einem Teil des Bestücksystems gemäß Figur 1.
    • Figur 3 zeigt einen Teil einer Bestückmaschine mit einer Träger-Aufnahmevorrichtung, welche sich seitlich über ein Transportsystem hinaus erstreckt und an welcher eine Mehrzahl von Zusatzmarkierungen angebracht ist, die sich außerhalb des Transportsystems befinden.
    Detaillierte Beschreibung
  • Es wird darauf hingewiesen, dass in der folgenden detaillierten Beschreibung Merkmale bzw. Komponenten von unterschiedlichen Ausführungsformen, die mit den entsprechenden Merkmalen bzw. Komponenten von einer anderen Ausführungsform nach gleich oder zumindest funktionsgleich sind, mit den gleichen Bezugszeichen oder mit einem Bezugszeichen versehen sind, welches sich von dem Bezugszeichen der gleichen oder zumindest funktionsgleichen Merkmale bzw. Komponenten lediglich in der ersten Ziffer unterscheidet. Zur Vermeidung von unnötigen Wiederholungen werden bereits anhand einer vorher beschriebenen Ausführungsform erläuterte Merkmale bzw. Komponenten an späterer Stelle nicht mehr im Detail erläutert.
  • Ferner wird darauf hingewiesen, dass die nachfolgend beschriebene Ausführungsform lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellt. Außerdem wird darauf hingewiesen, dass ggf. verwendete raumbezogene Begriffe, wie beispielsweise "vorne" und "hinten", "oben" und "unten", "links" und "rechts", etc. verwendet werden, um die Beziehung eines Elements zu einem anderen Element oder zu anderen Elementen zu beschreiben, wie in den Figuren veranschaulicht. Demnach können die raumbezogenen Begriffe für Ausrichtungen gelten, welche sich von den Ausrichtungen unterscheiden, die in den Figuren dargestellt sind. Es versteht sich jedoch von selbst, dass sich alle solchen raumbezogenen Begriffe der Einfachheit der Beschreibung halber auf die in den Zeichnungen dargestellten Ausrichtungen beziehen und nicht unbedingt einschränkend sind, da die jeweils dargestellte Vorrichtung, Komponente etc., wenn sie in Verwendung ist, Ausrichtungen annehmen kann, die von den in der Zeichnung dargestellten Ausrichtungen verschieden sein können.
  • Figur 1 zeigt ein Bestücksystem 100, welches zwei Bestückmaschinen 110 aufweist, die zum Zwecke der Erhöhung der Bestückleistung baulich zusammengefasst worden sind. In diesem Zusammenhang ist unter dem Begriff der "Bestückleistung" die Anzahl an Chips zu verstehen, die innerhalb einer vorgegebene Zeiteinheit, beispielsweise 1 Stunde, von einem Bestückkopf 120 abgeholt und auf einen Träger 190 aufgesetzt werden können.
  • Es wird darauf hingewiesen, dass die beiden Bestückmaschinen 110 auch jeweils als ein Bearbeitungsbereich des gesamten Bestücksystems 100 angesehen werden können.
  • Jede der beiden Bestückmaschinen 110 weist ein Chassis 112 auf, die, wie aus Figur 1 ersichtlich, aneinander angrenzend und in nicht dargestellter Weise miteinander verbunden sind. An der Schnittstelle zwischen den beiden Chassis 112 befindet sich eine stationäre Trägerschiene 114, welche eine erste stationäre Komponente von insgesamt vier Flächen-Positioniersystemen aufweist, mittels welchen jeweils ein Bestückkopf 120, 121 in einer zu der Zeichenebene parallelen Ebene verfahren werden kann. Auf der in Figur 1 oberen Seite der Trägerschiene 114 befinden sich zwei Flächen-Positioniersysteme, welche jeweils einen querstehenden Trägerarm 116 und eine verfahrbare Trägerplatte 118 aufweisen. Gleiches gilt für die beiden Flächen-Positioniersysteme, welche in Figur 1 unterhalb der Trägerschiene 114 dargestellt sind.
  • Wie aus Figur 1 ersichtlich, erstreckt sich die stationäre Trägerschiene 114 entlang einer γ-Richtung. Die querstehenden Trägerarme 116, welche sich entlang einer x-Richtung erstrecken, sind jeweils entlang der stationären Trägerschiene 114 in γ-Richtung verfahrbar. An jedem querstehenden Trägerarm 116 ist eine verfahrbare Trägerplatte 118 angebracht, welche entlang des jeweiligen querstehenden Trägerarms 116 in x-Richtung verfahrbar ist. Die beiden Bestückköpfe 120 und die beiden weiteren Bestückköpfe 121 sind jeweils an einer der verfahrbaren Trägerplatten 118 angebracht.
  • Jede der beiden Bestückmaschine 110 weist ferner zwei Wafer-Zuführvorrichtungen auf, eine Wafer-Zuführvorrichtung 140 und eine weitere Wafer-Zuführvorrichtung 141. Mit jeder der beiden Wafer-Zuführvorrichtungen 140 kann aus einem in Figur 1 nicht dargestellten Wafer-Speicher ein Wafer 180 in einen Bereitstellungsbereich gebracht werden, von dem einzelne Chips unter Verwendung des jeweiligen Bestücckopfes 120, 121 abgeholt werden können. Bevorzugt sind die Bestückköpfe 120, 121 sogenannte Mehrfach-Bestückköpfe, welche jeweils mehrere in Figur 1 als kleine Kreise dargestellte Saugpipetten aufweisen. Von einer Saugpipette kann jeweils ein Chip temporär aufgenommen werden. Gemäß dem hier dargestellten Ausführungsbeispiel können die Saugpipetten individuell entlang einer z-Richtung verfahren werden, welche senkrecht zu der Zeichenebene und damit sowohl senkrecht zu der γ-Richtung als auch senkrecht zu der x-Richtung orientiert ist.
  • Die von dem jeweiligen Bestückkopf 120, 121 aufgenommenen Chips werden dann durch eine geeignete Ansteuerung des betreffenden Flächen-Positioniersystems in einen Bestückbereich transferiert, in welchem sie auf einen zu bestückenden Träger 190 an vordefinierten Positionen aufgesetzt werden.
  • Wie bereits vorstehend erläutert, kann die mit zwei Bestückköpfen 120, 121 und zwei Zuführvorrichtungen 140, 141 versehene Bestückmaschine 110 auf vorteilhafte Weise in einem Betriebsmodus betrieben werden, in dem die beiden Bestückköpfe 120, 121 jeweils abwechselnd Chips von ihrer jeweils zugeordneten Zuführeinrichtung 140, 141 aufnehmen und auf den zu bestückenden Träger 190 aufsetzen. Dadurch kann die Bestückleistung erheblich erhöht werden.
  • Jede der beiden Bestückmaschinen 110 weist ferner eine Träger-Aufnahmevorrichtung 130 auf, mittels welcher der zu bestückende Träger 190 während des Bestückvorgangs in einer festen räumlichen Position in einem Koordinatensystem der jeweiligen Bestückmaschine 110 gehalten bzw. fixiert wird. In diesem Zusammenhang wird darauf hingewiesen, dass im Gegensatz zu einer Bestückung von Leiterplatten mit gehäusten elektronischen Bauelementen eine Bestückung des Trägers 190 mit ungehäusten Chips deutlich länger dauert, da der Träger 190 im Vergleich zu der Anzahl von auf einer Leiterplatte zu bestückenden gehäusten elektronischen Bauelementen typischerweise mit einer wesentlich höheren Anzahl an Chips bestückt wird. Aus diesem Grund werden an die Genauigkeit der Positionierung des zu bestückenden Trägers 190 extrem hohe Anforderungen gestellt. In diesem Zusammenhang muss gewährleistet werden, dass sich weder die Position des gesamten Trägers 190 noch die Positionen einzelner Teilbereiche des Trägers 190 während der gesamten Bestückdauer von beispielsweise 2 Stunden ändern. Gleiches gilt für die Verfahrwege des betreffenden Flächen-Positioniersystems. In Anbetracht von nie zu vermeidenden Wärmeeinträgen, die beispielsweise von Motoren des jeweiligen Flächen-Positioniersystems 114, 116, 118 verursacht werden, muss daher eine extrem hohe Temperaturstabilität insbesondere der gesamten Träger-Aufnahmevorrichtung 130 gewährleistet werden.
  • Der Aufbau und die Funktionsweise der Wafer-Aufnahmevorrichtung 130 wird im Folgenden anhand von Figur 2 im Detail erläutert.
  • Wie aus Figur 2 ersichtlich, weist die hier dargestellte Bestückmaschine 110 eine Transportvorrichtung 260 auf, welche gemäß dem hier dargestellten Ausführungsbeispiel zwei Transportschienen umfasst. Mittels der Transportvorrichtung 260 wird der zu bestückende Träger 190 auf die Träger-Aufnahmevorrichtung 130 transferiert und nach einem vollständigen Bestücken zum Zwecke einer weiteren Verarbeitung der Chips, insbesondere einer Herstellung von gehäusten Bauelementen mittels des bekannten "embedded Wafer Level Prozesses" (eWLP), abtransportiert. Die Transportrichtung der Transportvorrichtung 260 ist in Figur 2 mit Pfeilen illustriert, die mit dem Bezugszeichen 261 versehen sind.
  • Wie ferner aus Figur 2 ersichtlich, ist der Wafer-Zuführvorrichtung 140 ein Wafer-Speicher 245 zugeordnet, in welchem in nicht dargestellter Weise eine Mehrzahl von Wafern mit jeweils einer Vielzahl von ungehäusten Chips übereinander gestapelt angeordnet sind. Von der Wafer-Zufuhrvorrichtung 140 kann aus dem Wafer-Speicher 245 jeweils ein Wafer 180 entnommen und nach einem Bestücken der entsprechenden Chips der zumindest teilweise von Chips entleerte Wafer 180 wieder in den Wafer-Speicher 245 zurück gebracht werden.
  • Gemäß dem hier dargestellten Ausführungsbeispiel weist die TrägerAufnahmevorrichtung 130 eine Temperiervorrichtung 238 auf, welche dafür vorgesehen ist, zumindest die Oberfläche der Träger-Aufnahmevorrichtung 130, auf welcher Oberfläche sich der Wafer 190 befindet, auf einer zumindest annähernd konstanten Temperatur zu halten. Auf diese Weise können ungewollte thermische Verspannungen vermieden und eine hohe Positionsgenauigkeit des gesamten Trägers 190 gewährleistet werden.
  • Zum Fixieren des Trägers 190 weist die Träger-Aufnahmevorrichtung 130 an ihrer Oberfläche eine pneumatische Schnittstelle 232 auf, welche gemäß dem hier dargestellten Ausführungsbeispiel als eine um ein Zentrum der Träger-Aufnahmevorrichtung 130 herum umlaufende Nut 232 ausgebildet ist. In der Nut kann mit einer nicht dargestellten Vakuum-Erzeugungseinheit ein Unterdruck erzeugt werden, so dass die flächige Unterseite des Trägers 190 an der Träger-Aufnahmevorrichtung 130 angesaugt wird.
  • Für eine grobe Positionierung bzw. Zentrierung des Trägers 190 auf der Träger-Aufnahmevorrichtung 130 mittels der Transportvorrichtung 260 sind im Außenbereich des Trägers 190 zwei einander gegenüberliegende optische Strukturen 296 ausgebildet. Gemäß dem hier dargestellten Ausführungsbeispiel ist jede der beiden optischen Strukturen als ein einfaches Loch 296 ausgebildet.
  • Es wird darauf hingewiesen, dass der verwendete Träger ein herkömmlicher Träger 190 ist, welcher in bekannter Weise eine bevorzugt metallische Trägerplatte 292 sowie eine auf der Trägerplatte 292 aufgebrachte doppelseitige Klebefolie 294 aufweist. Auf diese Klebefolie 294 werden die Chips platziert, welche in Figur 2 mit dem Bezugszeichen 282 gekennzeichnet sind. Das Bestücken der Chips 282 erfolgt in bekannter Weise durch eine geeignete Positionierung des Bestückkopfes 120 sowie durch ein Absenken einer als Saugpipette ausgebildeten Chip-Halteeinrichtung 222 entlang der z-Richtung, welche senkrecht zu der Zeichenebene ist.
  • Die vorstehend beschriebene Zentrierung des Trägers 190 auf der Träger-Aufnahmevorrichtung 130 basiert auf einer optischen Vermessung der Positionen der Strukturen 296. Gemäß dem hier dargestellten Ausführungsbeispiel wird dazu eine Kamera 250 verwendet, welche auf vorteilhafte Weise an dem verfahrbaren Bestückkopf 120 angebracht ist und somit durch eine geeignete Ansteuerung des in Figur 2 nicht dargestellten Flächen-Positioniersystems in geeigneter Weise oberhalb der zu vermessenden Struktur 296 platziert werden kann. Sofern bei dieser Vermessung die Position der Kamera 250 innerhalb des Koordinatensystems der Bestückmaschine 110 bzw. des Flächen-Positioniersystems genau bekannt ist, können durch eine geeignete Bildauswertung eines von der Kamera 250 erfassten Bildes die Koordinaten des Trägers 190 in dem Koordinatensystem der Bestückmaschine 110 bestimmt werden.
  • Alternativ oder in Kombination können auch spezielle Markierungen 234, 235 verwendet werden, um die relative Position des Trägers in Bezug zu diesen Markierungen 234, 235 optisch zu bestimmen. Dazu ist es lediglich erforderlich, mit der Kamera 250 sowohl die optisch erkennbaren Strukturen 296 als auch zumindest zwei der Markierungen 234, 235 zu erfassen.
  • Es wird darauf hingewiesen, dass anhand einer Positionsvermessung der speziellen Markierungen 234, 235 auch eine ggf. vorhandenen Verzerrung des Flächen-Positioniersystems ermittelt und bei der Bestückung von Chips 282 in kompensierender Weise berücksichtigt werden kann. Wie bereits vorstehend im Detail erläutert, kann eine solche Verzerrung durch thermisch bedingte Verzüge von zumindest einer Komponente des Flächen-Positioniersystems verursacht werden.
  • Gemäß dem hier dargestellten Ausführungsbeispiel sind an der Träger-Aufnahmevorrichtung 130 zusätzlich noch eine Zwischenmarkierung 234a und eine weitere Zwischenmarkierung 235a angebracht. Durch eine Positionsvermessung dieser Markierungen kann die Genauigkeit insbesondere der Ermittlung der Verzerrung des Flächen-Positioniersystems erhöht werden.
  • Es wird darauf hingewiesen, dass die Markierungen 234, 235, 234a und/oder 235a hochgenaue innere Strukturen aufweisen, deren Positionen auf der Träger-Aufnahmevorrichtung 130 mit extrem hoher Genauigkeit bekannt sind. Dazu wird bevorzugt die Träger-Aufnahmevorrichtung 130 zusammen mit ihren Markierungen 234, 235, 234a und/oder 235a vor dem Einbau in die Bestückmaschine 110 mit einer hochgenauen optischen Messmaschine vermessen. Dadurch sind die Positionsdaten der Koordinaten der Markierungen 234, 235, 234a und/oder 235a genau bekannt, so dass diese Markierungen 234, 235, 234a und/oder 235a für eine hochgenaue Vermessung der Positionen der bestückten Chips 282 verwendet werden können.
  • Durch eine regelmäßige Vermessung der exakten Bestückpositionen können auftretende und gegebenenfalls mit der Zeit variierende Offsets in Bezug auf die Bestückposition erkannt und durch eine geeignete Ansteuerung des entsprechenden Flächen-Positioniersystems kompensiert werden.
  • Es wird darauf hingewiesen, dass der mit Chips 282 bestückte Träger 190 auch später außerhalb der Bestückmaschine 110 mit einer hochgenauen optischen Messmaschine (nicht dargestellt) vermessen werden kann. Auch aus den dadurch gewonnenen tatsächlichen Bestückpositionen kann für eine nachfolgende Bestückung von weiteren Trägern 190 das Flächen-Positioniersystemen in geeigneter Weise angesteuert werden, so dass die Chips 282 mit extrem hoher Genauigkeit auf dem zu bestückenden Träger 190 platziert werden können. Dies kann insbesondere auch im Rahmen einer Qualitätsüberprüfung der Bestückmaschine vor einer Auslieferung an einen Kunden durchgeführt werden.
  • Es wird ferner darauf hingewiesen, dass die Träger-Aufnahmevorrichtung 130 in mehreren unterschiedlichen Formaten bzw. Größen vorgehalten werden kann. Dadurch kann die Bestückmaschine 110 auf einfache Weise auf den Betrieb mit unterschiedlichen Träger-Formaten angepasst werden.
  • Anschaulich ausgedrückt kann die hier beschriebene Chip-Bestückmaschine 110 und einige ihrer Vorteile wie folgt zusammengefasst werden:
    1. (A) Die Chip-Bestückmaschine 110 ist im Vergleich zu Bestückautomaten, welche für eine Bestückung von Leiterplatten mit gehäusten elektronischen Bauelementen verwendet werden, nicht nur mit zwei sondern mit mehr Markierungen 234 ausgestattet. Dadurch kann für jede mögliche Chip-Bestückposition mit hoher Genauigkeit ein Verzug bzw. ein Bestück-Offset bestimmt oder modelliert werden. Für diese Bestimmung kann ein erweitertes (bilineares) kinematisches Modell verwendet werden.
    2. (B) Die Markierungen 234 können während des Betriebs der Bestückmaschine 110 zyklisch vermessen werden, um Veränderungen während der Verweilzeit des Trägers 190 in der Bestückmaschine 110 durch eine geeignete Ansteuerung des Flächen-Positioniersystems zu kompensieren.
    3. (C) Die Temperiervorrichtung 238 ermöglicht eine Stabilisierung der Temperatur der Träger-Aufnahmevorrichtung 130, so dass damit automatisch auch der darauf aufliegende Träger 190 als Bestückmedium auf einer definierten konstanten Temperatur gehalten wird. Damit können während des Bestückens keine oder lediglich nur zu vernachlässigende thermische Veränderungen bzw. Verzüge auftreten.
    4. (D) Die Position des zu bestückenden Trägers 190 muss nur zu Beginn einer Bestückung einmal relativ zu den Markierungen 234, 235, 234a und/oder 235a bestimmt werden. Durch die erfindungsgemäße feste pneumatische Fixierung des Trägers 190 auf der Träger-Aufnahmevorrichtung 130 wird der Träger 190 in dem Koordinatensystem der Bestückmaschine 110 in einer räumlich festen und genau definierten Position gehalten.
  • Figur 3 zeigt einen Teil einer Bestückmaschine 310 gemäß einem weiteren Ausführungsbeispiel der Erfindung. Die Bestückmaschine 310 weist eine Träger-Aufnahmevorrichtung 330 auf, welche im Vergleich zu der Träger-Aufnahmevorrichtung 130 entlang der y-Richtung deutlich breiter ist. Wie aus Figur 3 ersichtlich, erstreckt sich die Träger-Aufnahmevorrichtung 330 seitlich über die Transportvorrichtung 260 hinaus, deren Breite durch die entlang der γ-Richtung voneinander beabstandeten Transportspuren 362 bestimmt ist. Gemäß dem hier dargestellten Ausführungsbeispiel sind die beiden Transportspuren jeweils als ein Transportriemen 362 ausgebildet. Während eines Transportes des Trägers 190 entlang der x-Richtung liegen zwei einander gegenüberliegende Seitenbereiche des Trägers 190 auf jeweils einem der beiden Transportriemen 362 auf.
  • Die Träger-Aufnahmevorrichtung 330 weist ferner zwei längliche Transportnuten 363 auf, die unterhalb der beiden Transportriemen 362 ausgebildet sind. Während eines Transports des Trägers 190 haben zumindest die Abschnitte der beiden Transportriemen 362, auf welchen der Träger 190 aufliegt, senkrecht zur Zeichenebene eine Höhenlage, die oberhalb der Oberfläche der Träger-Aufnahmevorrichtung 330 ist. Zum pneumatischen Fixieren des Trägers 190 werden die beiden Transportriemen 362 abgesenkt, so dass sie sich innerhalb der beiden Transportnuten 363 befinden. Dieses Absenken der beiden Transportriemen 362 kann auf verschiedenste Art und Weise erfolgen, welche dem Fachmann, einem Konstrukteur auf dem Gebiet des Maschinenbaus, bekannt sind und deshalb an dieser Stelle nicht weiter erläutert werden.
  • In entsprechender Weise wird gemäß dem hier dargestellten Ausführungsbeispiel ein bestückter Träger 190 von der Träger-Aufnahmevorrichtung 330 abtransportiert, in dem die pneumatische Kopplung gelöst wird, die beiden Transportriemen 362 wieder angehoben werden und die Transportvorrichtung 260 aktiviert wird.
  • Wie aus Figur 3 ersichtlich, sind außerhalb des Bereiches, der durch die beiden Transportriemen 362 definiert ist, zwei Referenzelemente 370 an der Träger-Aufnahmevorrichtung 330 angebracht. Die beiden Referenzelemente 370 weisen jeweils mehrere Zusatzmarkierungen auf, wobei die Zusatzmarkierungen des in Figur 3 linken Referenzelements 370 mit dem Bezugszeichen 336a und weitere Zusatzmarkierungen des rechten Referenzelements 370 mit dem Bezugszeichen 337a versehen sind. Gemäß dem hier dargestellten Ausführungsbeispiel sind die Zusatzmarkierungen 336a bzw. die weiteren Zusatzmarkierungen 337a jeweils Teil eines hochpräzise gefertigten Maßstabes 370, welcher bevorzugt ein sogenannter Glasmaßstab 370 ist, welcher das betreffende Referenzelement 370 darstellt.
  • Die Zusatzmarkierungen 336a und/oder die weiteren Zusatzmarkierungen 337a können zusammen mit den anderen und vorstehend anhand von Figur 2 bereits erläuterten Markierungen 234, weiteren Markierungen 235, Zwischenmarkierungen 234a und/oder weiteren Zwischenmarkierungen 235a dazu verwendet werden, basierend auf einer optischen Vermessung mit der Kamera 250 eine gegebenenfalls vorhandene Verzerrung des Flächen-Positioniersystems zu bestimmen, mittels welchem der Bestückkopf 120 in bekannter Weise innerhalb der xy-Ebene Verfahren werden kann. Eine solche Verzerrung kann, wie vorstehend bereits erwähnt, durch thermisch bedingte Verformungen von zumindest einigen Komponenten (vgl. die Bezugszeichen 114, 116, 118 in Figur 1) des Flächen-Positioniersystems verursacht werden und sich bei Temperaturschwankungen im Verlauf des Betriebs der Bestückmaschine 310 ändern.
  • Es wird darauf hingewiesen, dass die Zusatzmarkierungen 336a und/oder die weiteren Zusatzmarkierungen 337a insbesondere dafür sorgen können, dass eine Dehnung, eine Stauchung und/oder eine Verbiegung, beispielsweise eine S-förmige Verbiegung, des verfahrbaren querstehenden Trägerarms 116 identifiziert und bei der Positionierung des Bestückkopfes 120 kompensiert werden können.
  • Mit der Bestückmaschinen 310 kann ferner eine Veränderung eines beispielsweise thermisch bedingten Verzuges des Flächen-Positioniersystems erkannt werden. Eine solche Veränderung des Verzug bzw. der Verzerrung des Flächen-Positioniersystems kann sich während der Bestückung des Trägers 190 mit ungehäusten Chips 282, welche Bestückung beispielsweise 1 bis 2 Stunden dauern kann, auftreten. Gemäß dem hier dargestellten Ausführungsbeispiel erfolgt dies anhand einer Bestückung von sogenannten Kalibrierbausteinen 372, deren Position in dem Koordinatensystem des Flächen-Positioniersystems mittels der Kamera 222 zyklisch vermessen wird. Dadurch kann eine gegebenenfalls auftretende Positionsveränderung der Kalibrierbausteine 372 (in dem Koordinatensystem des Flächen-Positioniersystems) erkannt und daraus ggf. eine geänderte Verzerrung (des Koordinatensystems des Flächen-Positioniersystems) bestimmt und bei der Bestückung von weiteren Chips 282 in kompensierender Weise berücksichtigt werden.
  • Die Kalibrierbausteine 372 können insbesondere aus einem Glasmaterial mit einer extrem geringen thermischen Ausdehnung bestehen und demzufolge als Glasbausteine bezeichnet werden. An den Kalibrierbausteinen 372 können ferner optisch gut erkennbare und feine Strukturen hinsichtlich ihrer Position und Form hochpräzise angebracht bzw. ausgebildet sein, welche für die beschriebene optische Vermessung verwendet werden und infolge ihrer Präzision eine extrem genaue Bestimmung der Verzerrung des Koordinatensystems des Flächen-Positioniersystems ermöglichen.
  • BEZUGSZEICHEN:
  • 100
    Bestücksystem
    110
    Bestückmaschine
    112
    Chassis
    114
    erste Komponente / stationäre Trägerschiene
    116
    zweite Komponente / verfahrbarer querstehender Trägerarm
    118
    dritte Komponente / verfahrbare Trägerplatte
    120
    Bestückkopf
    121
    weitere Bestückkopf
    130
    Träger-Aufnahmevorrichtung
    140
    Wafer-Zuführvorrichtung
    141
    weitere Wafer-Zuführvorrichtung
    180
    Wafer
    190
    Träger
    222
    Chip-Halteeinrichtungen / Saugpipetten
    232
    pneumatische Schnittstelle / umlaufende Nut
    234
    Markierungen
    234a
    Zwischenmarkierung
    235
    weitere Markierungen
    235a
    weitere Zwischenmarkierung
    238
    Temperiervorrichtung
    245
    Wafer-Speicher
    250
    Kamera
    260
    Transportvorrichtung
    261
    Transportrichtung
    282
    Chips (bestückt)
    292
    Trägerplatte
    294
    Klebefolie
    296
    optisch erkennbare Struktur / Loch
    310
    Bestückmaschine
    330
    Träger-Aufnahmevorrichtung
    336a
    Zusatzmarkierungen
    337a
    weitere Zusatzmarkierungen
    362
    Transportspuren / Transportriemen
    363
    Transportnuten
    370
    Referenzelement / Glasmaßstab
    372
    Kalibrierbausteine

Claims (14)

  1. Bestückmaschine zum Bestücken eines Trägers (190) mit ungehäusten Chips (282), insbesondere zum Zwecke des Herstellens von elektronischen Bauelementen, welche jeweils zumindest einen Chip (282) aufweisen, der sich in einem Gehäuse befindet, welches insbesondere eine ausgehärtete Vergussmasse aufweist, die Bestückmaschine (110) aufweisend
    eine Zuführeinrichtung (140) zum Bereitstellen eines Wafers (180), der eine Vielzahl von Chips (282) aufweist;
    eine Träger-Aufnahmevorrichtung (130) zum Aufnehmen des zu bestückenden Trägers (190);
    einen Bestückkopf (120) zum Abholen von Chips (282) von dem bereitgestellten Wafer (180) und zum Platzieren der abgeholten Chips (282) an vordefinierten Bestückpositionen auf dem Träger (190);
    wobei die Träger-Aufnahmevorrichtung (130) eine pneumatische Schnittstelle (232) aufweist, mittels welcher ein Unterdruck an eine Oberfläche des Trägers (190) anlegbar ist;
    dadurch gekennzeichnet, dass die Bestückmaschine ferner aufweist eine Temperiervorrichtung (238), welche thermisch mit der Träger-Aufnahmevorrichtung (130) gekoppelt ist und welche eingerichtet ist, die Träger-Aufnahmevorrichtung (130) zumindest annähernd auf einer konstanten Temperatur zu halten,
    wobei die Temperiervorrichtung (238) eingerichtet ist, die Träger-Aufnahmevorrichtung (130) zu kühlen, so dass diese eine Temperatur annehmen kann, die um zumindest 2 Kelvin niedriger ist als die unmittelbare Umgebungstemperatur der Träger-Aufnahmevorrichtung (130).
  2. Bestückmaschine gemäß dem vorangehenden Anspruch, wobei
    die pneumatische Schnittstelle eine Nut (232) aufweist, welche mit dem Unterdruck beaufschlagt werden kann, der von einer Unterdruck-Erzeugungseinheit erzeugt wird.
  3. Bestückmaschine gemäß Anspruch 1 oder 2, wobei
    die Temperiervorrichtung (238) eingerichtet ist, die Träger-Aufnahmevorrichtung (130) zu kühlen, so dass diese eine Temperatur annehmen kann, die um zumindest 4 Kelvin und insbesondere um zumindest 7 Kelvin niedriger ist als die unmittelbare Umgebungstemperatur Träger-Aufnahmevorrichtung (130).
  4. Bestückmaschine gemäß einem der vorangehenden Ansprüche, ferner aufweisend
    ein Chassis (112); und
    ein Positioniersystem (114, 116, 118), welches aufweist
    - eine erste Komponente (114), die in Bezug zu dem Chassis (112) stationär angeordnet ist,
    - eine zweite Komponente (116), die in Bezug zu der ersten Komponente (114) entlang einer vorgegebenen ersten Richtung (y) verfahrbar ist, und
    - eine dritte Komponente (118), die in Bezug zu der zweiten Komponente (116) entlang einer vorgegebenen zweiten (x) Richtung verfahrbar ist;
    wobei der Bestückkopf (120) an der dritten Komponente (118) befestigt ist und wobei die erste Richtung (y) winklig zu der zweiten Richtung (x) ist.
  5. Bestückmaschine gemäß dem vorangehenden Anspruch, wobei
    die Träger-Aufnahmevorrichtung (130) zumindest zwei Markierungen (234) aufweist, welche optisch erkennbar sind und welche insbesondere außerhalb eines räumlichen Bereiches an der Träger-Aufnahmevorrichtung (130) angebracht sind, welcher Bereich für die Aufnahme des Trägers (190) vorgesehen ist.
  6. Bestückmaschine gemäß dem vorangehenden Anspruch, wobei
    die Träger-Aufnahmevorrichtung (130) zumindest zwei weitere Markierungen (235) aufweist, welche optisch erkennbar sind und welche insbesondere außerhalb eines räumlichen Bereiches an der Träger-Aufnahmevorrichtung (130) angebracht sind, welcher Bereich für die Aufnahme des Trägers (190) vorgesehen ist, wobei insbesondere
    die Bestückmaschine dadurch gekennzeichnet ist, dass
    die beiden Markierungen (234) relativ zueinander einen räumlichen Versatz entlang der ersten Richtung (y) haben,
    die beiden weiteren Markierungen (235) relativ zueinander einen räumlichen Versatz entlang der ersten Richtung (y) haben, und
    jede der beiden Markierungen (234) relativ zu jeder der beiden weiteren Markierungen (235) einen räumlichen Versatz entlang der zweiten Richtung (x) hat.
  7. Bestückmaschine gemäß dem vorangehenden Anspruch,
    wobei die Träger-Aufnahmevorrichtung (130) ferner zumindest
    eine Zwischenmarkierung (234a) aufweist, welche sich entlang der ersten Richtung (y) zwischen den beiden Markierungen (234) befindet, und/oder
    wobei die Träger-Aufnahmevorrichtung (130) ferner zumindest
    eine weitere Zwischenmarkierung (235a) aufweist, welche sich entlang der ersten Richtung (y) zwischen den beiden weiteren Markierungen (235) befindet, wobei insbesondere
    die Bestückmaschine dadurch gekennzeichnet ist, dass
    an der Träger-Aufnahmevorrichtung (130) zumindest
    eine Zusatzmarkierung (336a) angebracht ist, welche sich entlang der zweiten Richtung (x) zwischen einer Markierung (234) und einer weiteren Markierung (235) befindet, und/oder
    an der Träger-Aufnahmevorrichtung (130) ferner zumindest
    eine weitere Zusatzmarkierung (337a) angebracht ist, welche sich entlang der zweiten Richtung (x) zwischen einer Markierung (234) und einer weiteren Markierung (235) befindet.
  8. Bestückmaschine gemäß dem vorangehenden Anspruch, ferner aufweisend
    eine Transportvorrichtung (260) zum Zuführen von zu bestückenden Trägern (190) zu der Träger-Aufnahmevorrichtung (130) und zum Abführen von zumindest teilweise mit ungehäusten Chips bestückten Trägern (190) von der Träger-Aufnahmevorrichtung (130),
    wobei die Transportvorrichtung (260) zwei Transportspuren (362) aufweist, welche sich entlang der zweiten Richtung (x) erstrecken und entlang der ersten Richtung (y) voneinander beabstandet sind und welche ausgebildet sind, einen Träger (190) an zwei Seiten zu halten, und
    wobei die zumindest eine Zusatzmarkierung (336a) und/oder die zumindest eine weitere Zusatzmarkierung (337a) außerhalb der beiden Transportspuren (362) angeordnet sind, wobei insbesondere
    die Bestückmaschine dadurch gekennzeichnet ist, dass
    die beiden Transportspuren jeweils als ein Transportriemen (362) ausgebildet sind und
    in der Träger-Aufnahmevorrichtung (130) zwei Transportnuten (363) ausgebildet sind, welche entlang der zweiten Richtung (x) verlaufen und räumlich derart ausgebildet sind, dass in jeder Transportnut (363) jeweils ein Transportriemen (362) versenkbar ist, wobei weiter insbesondere
    die Bestückmaschine aufweist
    ein Referenzelement (370), welches an der Träger-Aufnahmevorrichtung (130) befestigt ist,
    wobei die zumindest eine Zusatzmarkierung (336a) und/oder die zumindest eine weitere Zusatzmarkierung (337a) an dem Referenzelement (370) angebracht sind.
  9. Bestückmaschine gemäß einem der vorangehenden Ansprüche 5 bis 8, ferner aufweisend
    eine Kamera (250), welche derart positioniert oder positionierbar ist, dass zumindest eine der Markierungen (234) und auf den Träger (190) bestückte Chips (282) gemeinsam in einem Bild von der Kamera (250) aufgenommen werden können,
    wobei insbesondere
    die Kamera (250) relativ zu dem Bestückkopf (120) in einer räumlich festen Position angeordnet ist, wobei weiter insbesondere
    der Bestückkopf (120) eine Mehrzahl von Haltevorrichtungen (222) zum temporären Aufnehmen von jeweils einem Chip (282) aufweist.
  10. Bestückmaschine gemäß einem der vorangehenden Ansprüche, ferner aufweisend
    eine weitere Zuführeinrichtung (141) zum Bereitstellen eines weiteren Wafers (180), der ebenfalls eine Vielzahl von Chips (282) aufweist; und
    einen weiteren Bestückkopf (121) zum Abholen von Chips (282) von dem bereitgestellten weiteren Wafer (180) und zum Platzieren der abgeholten Chips (282) an vordefinierten Bestückpositionen auf dem Träger (190).
  11. Verfahren zum Bestücken eines Trägers (190) mit ungehäusten Chips (282) mit einer Bestückmaschine (110) gemäß einem der vorangehenden Ansprüche, das Verfahren aufweisend
    Bereitstellen eines Wafers (180), der eine Vielzahl von Chips (282) aufweist, mittels einer Zuführeinrichtung (140);
    Aufnehmen des zu bestückenden Trägers mittels einer Träger-Aufnahmevorrichtung (130);
    Fixieren des zu bestückenden Trägers (190) an der Träger-Aufnahmevorrichtung (130) mittels eines Unterdrucks, welcher über eine pneumatische Schnittstelle (232) der Träger-Aufnahmevorrichtung (130) an eine Oberfläche des Trägers (190) angelegt wird;
    Abholen von bereitgestellten Chips (282) von der Zuführeinrichtung (140) mittels eines Bestückkopfes (120);
    Transportieren der abgeholten Chips (282) hin zu einem Bestückbereich; und
    Aufsetzen der transportierten Chips (282) an vorbestimmten Bestückpositionen auf dem Träger (190).
  12. Verfahren gemäß dem vorangehenden Anspruch, wobei
    der Träger (190) eine Platte (292) und Klebefolie (294) aufweist, welche an einer flächigen Oberseite auf der Platte (292) aufgebracht ist, wobei das Verfahren insbesondere ferner aufweist
    Zuführen des Trägers (190) zu der Träger-Aufnahmevorrichtung (130) mittels einer Transportvorrichtung (260);
    Erfassen der Positionen von zwei optischen Strukturen (296), welche sich an dem zugeführten Träger (190) befinden;
    Bestimmen der Position des zugeführten Trägers (190) basierend auf den erfassten Positionen; und
    Ermitteln der Koordinaten der vorbestimmten Bestückpositionen in einem Koordinatensystem der Bestückmaschine (110) basierend auf der bestimmten Position des zugeführten Trägers (190);
    wobei die vorbestimmten Bestückpositionen auf dem Träger (190) von den ermittelten Koordinaten abhängen.
  13. Verfahren gemäß einem der zwei vorangehenden Ansprüche, ferner aufweisend
    Erfassen der Positionen von mindestens zwei Markierungen (234), welche sich an der Träger-Aufnahmevorrichtung (130) befinden;
    wobei die vorbestimmten Bestückpositionen auf dem Träger (190) ferner von den Positionen der mindestens zwei Markierungen (234) abhängen,
    wobei insbesondere
    die Positionen der Markierungen (234) an der Träger-Aufnahmevorrichtung (130) während des Bestückens eines Trägers (190) in vorgegebenen zeitlichen Abständen wiederholt erfasst werden und die Koordinaten der vorbestimmten Bestückpositionen basierend auf den erfassten Positionen korrigiert werden.
  14. Verfahren gemäß einem der drei vorangehenden Ansprüche, ferner aufweisend
    Vermessen der Position von einer auf den Träger (190) bestückten Struktur;
    erneutes Vermessen der Position von der Struktur zu einem späteren Zeitpunkt während des Bestückens des Trägers (190) mit ungehäusten Chips (282); und
    Bestimmen einer relativen Positionsverschiebung der Struktur zwischen dem Vermessen und dem erneuten Vermessen;
    wobei die vorbestimmten Bestückpositionen auf dem Träger (190) ferner von der Positionsverschiebung der Struktur abhängen, wobei insbesondere die Struktur eine optisch erkennbare Struktur von einem bestückten Kalibrierbaustein (372) ist oder eine optisch erkennbare Struktur von einem bestückten ungehäusten Chip (282) ist.
EP16153896.2A 2015-02-06 2016-02-02 Bestückmaschine und verfahren zum bestücken eines trägers mit ungehäusten chips Active EP3054478B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015101759.8A DE102015101759B3 (de) 2015-02-06 2015-02-06 Bestückmaschine und Verfahren zum Bestücken eines Trägers mit ungehäusten Chips

Publications (2)

Publication Number Publication Date
EP3054478A1 EP3054478A1 (de) 2016-08-10
EP3054478B1 true EP3054478B1 (de) 2020-05-20

Family

ID=55357861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16153896.2A Active EP3054478B1 (de) 2015-02-06 2016-02-02 Bestückmaschine und verfahren zum bestücken eines trägers mit ungehäusten chips

Country Status (4)

Country Link
EP (1) EP3054478B1 (de)
CN (1) CN105870038B (de)
DE (1) DE102015101759B3 (de)
TW (1) TWI574329B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123362B3 (de) * 2016-12-02 2018-03-08 Asm Assembly Systems Gmbh & Co. Kg Bestückmaschine mit einer Verschiebevorrichtung zum Verschieben einer Aufnahmevorrichtung für einen Träger mit Bestückmedium und ein Verfahren zum Bestücken
DE102018129805B3 (de) * 2018-11-26 2020-02-20 Asm Assembly Systems Gmbh & Co. Kg Aufnahme eines zu bestückenden Trägers mit Träger-Aufnahmevorrichtung aufweisend einen Grundkörper und ein Adapterelement sowie System und Bestückmaschine diese aufweisend und Verfahren zum Bestücken eines Trägers
JPWO2022162863A1 (de) * 2021-01-29 2022-08-04
CN116593421A (zh) * 2023-05-26 2023-08-15 曲靖晶龙电子材料有限公司 一种单晶硅在线连续检测装置及使用方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980971A (en) * 1989-12-14 1991-01-01 At&T Bell Laboratories Method and apparatus for chip placement

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162797A (ja) * 1994-12-08 1996-06-21 Matsushita Electric Ind Co Ltd 電子部品実装装置
JP2001135658A (ja) * 1999-11-08 2001-05-18 Towa Corp 電子部品の組立方法及び組立装置
US6640423B1 (en) * 2000-07-18 2003-11-04 Endwave Corporation Apparatus and method for the placement and bonding of a die on a substrate
US6529686B2 (en) * 2001-06-06 2003-03-04 Fsi International, Inc. Heating member for combination heating and chilling apparatus, and methods
AU2003269495A1 (en) * 2002-10-25 2004-05-13 Matsushita Electric Industrial Co., Ltd. Semiconductor device and resin binder for assembling semiconductor device
JP4159431B2 (ja) * 2002-11-15 2008-10-01 株式会社ルネサステクノロジ 半導体装置の製造方法
DE10300518B4 (de) * 2003-01-09 2005-06-23 Siemens Ag Vorrichtung zum Bestücken von Substraten mit Bauelementen und Verfahren zum Kalibrieren einer solchen Vorrichtung
JP3993114B2 (ja) * 2003-02-06 2007-10-17 株式会社新川 ダイボンディング方法及び装置
JP4111160B2 (ja) * 2004-03-26 2008-07-02 松下電器産業株式会社 電子部品搭載装置および電子部品搭載方法
US20050284915A1 (en) * 2004-06-15 2005-12-29 Beatson David T Apparatus and method for indexing of substrates and lead frames
KR20090125151A (ko) * 2007-04-03 2009-12-03 파나소닉 주식회사 부품 실장 방법
NL1036851C2 (nl) * 2009-04-14 2010-10-18 Assembléon B V Inrichting geschikt voor het plaatsen van een component op een substraat alsmede een dergelijke werkwijze.
KR101819043B1 (ko) * 2010-09-15 2018-01-16 마이크로닉 아베 워크피스들 상에 패턴들을 생성하기 위한 장치
TWM412577U (en) * 2011-05-06 2011-09-21 Discovery High Technology Co Ltd An improved patch bonder structure
KR101923531B1 (ko) * 2011-12-23 2018-11-30 삼성전자주식회사 반도체 칩 본딩 장치
JP6001326B2 (ja) * 2012-05-23 2016-10-05 東京エレクトロン株式会社 プローブ装置及びプローブ装置用ウエハ載置台
JP2014060249A (ja) * 2012-09-18 2014-04-03 Hitachi High-Tech Instruments Co Ltd ダイボンダ、および、ダイの位置認識方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980971A (en) * 1989-12-14 1991-01-01 At&T Bell Laboratories Method and apparatus for chip placement

Also Published As

Publication number Publication date
CN105870038B (zh) 2020-02-07
EP3054478A1 (de) 2016-08-10
TW201630090A (zh) 2016-08-16
CN105870038A (zh) 2016-08-17
DE102015101759B3 (de) 2016-07-07
TWI574329B (zh) 2017-03-11

Similar Documents

Publication Publication Date Title
DE102015112518B3 (de) Bestückmaschine und Verfahren zum Bestücken eines Trägers mit ungehäusten Chips
EP3054478B1 (de) Bestückmaschine und verfahren zum bestücken eines trägers mit ungehäusten chips
DE602005000512T2 (de) Verfahren und vorrichtung zum montieren von bauelementen
DE112009000667B4 (de) Abgabevorrichtung und Verfahren zur Abgabe von Material auf ein Substrat
DE102017131322B4 (de) Verwenden von bestückfähigen Markierungsbausteinen für ein stufenweises Bestücken eines Trägers mit Bauelementen
EP2126645B1 (de) Verfahren zum kalibrieren der x-y positionierung eines positionierwerkzeugs, sowie vorrichtung mit einem derartigen positionierwerkzeug
DE102016123362B3 (de) Bestückmaschine mit einer Verschiebevorrichtung zum Verschieben einer Aufnahmevorrichtung für einen Träger mit Bestückmedium und ein Verfahren zum Bestücken
DE102008024928A1 (de) Elektronikbauelement-Montagesytem und Elektronikbauelement-Montageverfahren
DE112007000341T5 (de) System zum Montieren von elektronischen Bauelementen, Platzierungszustands-Prüfvorrichtung und Verfahren zum Montieren von elektronischen Bauelementen
DE202010018086U1 (de) Testvorrichtung
DE10245398B3 (de) Vorrichtung und Verfahren zur Aufbringung von Halbleiterchips auf Trägern
WO2000067544A1 (de) Verfahren zum betrieb eines bestückautomaten, bestückautomat, auswechselbare komponente für einen bestückautomaten und system aus einem bestückautomaten und einer auswechselbaren komponente
AT517157B1 (de) Wiederholtes Vermessen eines in einem Bestückbereich eines Bestückautomaten befindlichen Bauelementeträgers
DE10300518B4 (de) Vorrichtung zum Bestücken von Substraten mit Bauelementen und Verfahren zum Kalibrieren einer solchen Vorrichtung
DE602004011214T2 (de) Verfahren zum zusammenbau einer schaltung
DE102017116042A1 (de) Verfahren und Bestückautomat zum Bestücken von Bauelementeträgern mit elektronischen Bauelementen
DE10017742C2 (de) Vorrichtung zum Handling von Bauelementen
DE102020113002B3 (de) Bestimmen der Genauigkeit einer Bestückmaschine bei mehrfacher Verwendung eines Test-Bauelements
DE102019111580A1 (de) Verfahren zur Kalibrierung einer Vorrichtung für die Montage von Bauelementen
AT516417B1 (de) Begrenzung für das Ablegen von elektronischen Bauteilen auf eine Unterlage
DE102020115598B3 (de) Verfahren und Bestückmaschine zum Bestücken von Bauelementeträgern basierend auf einem Rekalibrieren der Bestückmaschine im realen Bestückbetrieb, Computerprogramm zum Steuern einer Bestückmaschine
DE102014103373A1 (de) Bestückkopf mit zwei relativ zu einem Schaft beweglichen Gruppen von Pinolen
DE102008044740A1 (de) Apparat zum Montieren leitender Kugeln
DE102018129805B3 (de) Aufnahme eines zu bestückenden Trägers mit Träger-Aufnahmevorrichtung aufweisend einen Grundkörper und ein Adapterelement sowie System und Bestückmaschine diese aufweisend und Verfahren zum Bestücken eines Trägers
WO2007033701A1 (de) Verfahren und vorrichtung zum ablegen von elektronischen bauteilen auf einem substrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170210

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009975

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1273174

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009975

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016009975

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210202

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160202

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: ASMPT GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: ASM ASSEMBLY SYSTEMS GMBH & CO. KG

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1273174

Country of ref document: AT

Kind code of ref document: T

Owner name: ASMPT GMBH & CO. KG, DE

Effective date: 20230829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240219

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520