DE102019111580A1 - Verfahren zur Kalibrierung einer Vorrichtung für die Montage von Bauelementen - Google Patents

Verfahren zur Kalibrierung einer Vorrichtung für die Montage von Bauelementen Download PDF

Info

Publication number
DE102019111580A1
DE102019111580A1 DE102019111580.9A DE102019111580A DE102019111580A1 DE 102019111580 A1 DE102019111580 A1 DE 102019111580A1 DE 102019111580 A DE102019111580 A DE 102019111580A DE 102019111580 A1 DE102019111580 A1 DE 102019111580A1
Authority
DE
Germany
Prior art keywords
calibration
substrate
test chip
calibration plate
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102019111580.9A
Other languages
English (en)
Inventor
Juergen Stuerne
Florian Speer
Harald HANDLOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Besi Switzerland AG
Original Assignee
Besi Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Besi Switzerland AG filed Critical Besi Switzerland AG
Publication of DE102019111580A1 publication Critical patent/DE102019111580A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/22Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0061Tools for holding the circuit boards during processing; handling transport of printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0413Pick-and-place heads or apparatus, e.g. with jaws with orientation of the component while holding it; Drive mechanisms for gripping tools, e.g. lifting, lowering or turning of gripping tools
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0815Controlling of component placement on the substrate during or after manufacturing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/089Calibration, teaching or correction of mechanical systems, e.g. of the mounting head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75743Suction holding means
    • H01L2224/75744Suction holding means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/757Means for aligning
    • H01L2224/75753Means for optical alignment, e.g. sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/759Means for monitoring the connection process
    • H01L2224/75901Means for monitoring the connection process using a computer, e.g. fully- or semi-automatic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8012Aligning
    • H01L2224/80121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8013Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/8113Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81121Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors
    • H01L2224/81132Active alignment, i.e. by apparatus steering, e.g. optical alignment using marks or sensors using marks formed outside the semiconductor or solid-state body, i.e. "off-chip"

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Die Erfindung betrifft die Kalibrierung einer Bauelemente-Montagevorrichtung, die eingerichtet ist für die Montage von Bauelementen auf einem Substrat, dessen Montageplätze keine lokalen Markierungen enthalten. Das Substrat enthält entweder an seinem Rand angebrachte globale Substratmarkierungen oder andere globale Merkmale, die für die Montage der Bauelemente herangezogen werden können. Die Kalibrierung erfolgt mittels einer Kalibrierplatte (1), die mehrere, zweidimensional über die Kalibrierplatte (1) verteilte und mit ersten optischen Markierungen (3) versehene Kalibrierpositionen (2) aufweist, einem Testchip (5), der zweite optische Markierungen (6) aufweist, und einer an der Bondstation (17) angebrachten Halterung (9) für die temporäre Aufnahme der Kalibrierplatte (1). Die Anzahl und Anordnung der Kalibrierpositionen (2) der Kalibrierplatte (1) und die Anzahl und Anordnung der Montageplätze des Substrats sind - abgesehen von möglichen Ausnahmefällen - verschieden voneinander.

Description

  • Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zur Kalibrierung einer Bauelemente-Montagevorrichtung, auch bekannt als Vorrichtung für die Montage von Bauelementen.
  • Hintergrund der Erfindung
  • Derartige Bauelemente-Montagevorrichtungen sind in der Halbleiterindustrie als Die Bonder oder als Pick and Place Maschinen bekannt. Ein „die“ ist ein Bauelement. Die Bauelemente sind insbesondere elektronische, optische, mikromechanische, mikrooptische oder elektro-optische Bauelemente und dergleichen, oder auch Halbleiterchips oder Flipchips.
  • Kurze Beschreibung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, eine Bauelemente-Montagevorrichtung zu entwickeln, mit der eine Vielzahl von Bauelementen lagegenau auf einem grossflächigen Substrat, das nur an seinem Rand Substratmarkierungen oder andere globale Merkmale aufweist, die für die Positionierung herangezogen werden können, platziert werden kann. Solche grossflächige Substrate sind beispielsweise Wafer mit einem Durchmesser von 12 Zoll oder mehr. Weitere Substrate sind Leiterplatten, Keramiksubstrate, Blechcarrier, Panels und dergleichen mehr. Solche Panels haben beispielsweise Abmessungen von 0.6 m × 0.7 m, oder mehr.
  • Die genannte Aufgabe wird erfindungsgemäss gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1.
  • Die Erfindung betrifft demgemäss ein Verfahren zur Kalibrierung einer Bauelemente-Montagevorrichtung. Die Bauelemente-Montageeinrichtung umfasst eine Bondstation und wenigstens einen Bondkopf zum Platzieren von Bauelementen auf den Montageplätzen eines Substrats, eine erste Kamera und eine zweite Kamera. Die erste Kamera dient zum Aufnehmen eines Bildes des von dem Bondkopf aufgenommenen Bauelements oder Testchips und zur Bestimmung der Abweichung der Ist-Lage des Bauelements bzw. Testchips von seiner Soll-Lage. Die zweite Kamera dient einerseits im Montagebetrieb zur Bestimmung von globalen Substratpositionsdaten, die die Lage und Orientierung des Substrats charakterisieren, und andererseits während der Kalibrierung zur Bestimmung der Abweichung der Ist-Lage des auf einer Kalibrierplatte montierten Testchips von seiner Soll-Lage.
  • Die Bauelemente-Montagevorrichtung umfasst weiter eine Transportvorrichtung, die ein Substrat nach dem anderen zur Bondstation transportiert, wo es mit Bauelementen bestückt wird. Die Bondstation umfasst ein Pick und Place System, das den Bondkopf oder die Bondköpfe zu den Montageplätzen des Substrats bewegt. Um eine hohe Platzierungsgenauigkeit zu erreichen, ist die Bauelemente-Montageeinrichtung mit Vorteil so eingerichtet, dass die Transportvorrichtung das Substrat zur Bondstation transportiert und dann das Substrat während des ganzen Bestückungsprozesses am gleichen Ort festgehalten wird. Der Arbeitsbereich des Bondkopfs bzw. der Bondköpfe ist in diesem Fall so gross wie oder grösser als ein Substrat.
  • Da die einzelnen Montageplätze der Substrate keine Markierungen enthalten, die seine Lage definieren, wird die Position des jeweiligen Montageplatzes, den der Bondkopf anzufahren hat, um ein Bauelement zu montieren, anhand von globalen Substratpositionsdaten berechnet, die die Lage und Orientierung des Substrats charakterisieren. Die globalen Substratpositionsdaten werden entweder anhand von am Rand des Substrats angebrachten Substratmarkierungen oder, falls das Substrat keine Substratmarkierungen aufweist, anhand besonderer globaler Merkmale des Substrats wie beispielsweise „flat“ und/oder „notch“ bei einem Wafer, etc. ermittelt, sobald das Substrat zur Bondstation transportiert und dort fixiert wurde.
  • Um zu erreichen, dass die vom Bondkopf angefahrene Position mit der für den Montageplatz berechneten Position übereinstimmt, wird die Bauelemente-Montagevorrichtung kalibriert. Bei der Kalibrierung werden Kalibrierdaten ermittelt. Die Kalibrierung erfolgt mittels einer Halterung, einer Kalibrierplatte, die eine Vielzahl von Kalibrierpositionen aufweist, und einem oder mehreren Testchips. Die Kalibrierpositionen der Kalibrierplatte sind zweidimensional über die Kalibrierplatte verteilt, sie sind beispielsweise in Reihen und Kolonnen angeordnet. Die Kalibrierpositionen der Kalibrierplatte und der/die Testchip(s) enthalten zueinander passende erste bzw. zweite optische Markierungen.
  • Die Halterung für die Aufnahme der Kalibrierplatte ist entweder stationär oder lösbar in der Bondstation der Bauelemente-Montagevorrichtung angebracht. Die Bauelemente-Montagevorrichtung und die Halterung sind derart ausgebildet, dass die Kalibrierdaten den Arbeitsbereich des Bondkopfs bzw. der Bondköpfe vollständig abdecken. Es kann entweder eine einzige Kalibrierplatte verwendet werden, die den ganzen Arbeitsbereich abdeckt, oder die Halterung kann eingerichtet sein, die Kalibrierplatte nacheinander in verschiedenen Positionen aufzunehmen, mit denen der ganze Arbeitsbereich abgedeckt wird. Der Arbeitsbereich und damit die von den Kalibrierdaten abgedeckte Fläche ist mit Vorteil so gross wie oder grösser als ein ganzes Substrat, damit das Substrat während des ganzen Montageprozesses am gleichen Ort fixiert bleiben kann.
  • Bei der Kalibrierung wird ein einzelner Testchip oder mehrere Testchips an einer Anzahl von ausgewählten Kalibrierpositionen abgesetzt und es wird die Abweichung der Ist-Lage eines jeden abgesetzten Testchips von seiner Soll-Lage mithilfe der beiden Kameras und ebenfalls vorhandener Bildverarbeitungshardware und -software ermittelt. Die Ermittlung der Abweichung erfolgt bevorzugt unmittelbar nach dem Absetzen des jeweiligen Testchips. Die Abweichung ist darstellbar durch einen Differenzvektor v mit wenigstens zwei Komponenten, beispielsweise mit zwei Komponenten v = (x, y) oder mit drei Komponenten v = (x, y, θ), wobei die Komponente x eine Verschiebung in einer ersten Richtung und die Komponente y eine Verschiebung in einer zweiten Richtung bezeichnen und die Komponente θ ein Winkel ist, der eine Verdrehung um ein Zentrum bezeichnet. Ein Differenzvektor v mit zwei Komponenten ist vielfach ausreichend, nämlich dann wenn die Winkelabweichung θ so gering ist, dass kein störender Positionsfehler resultiert.
  • Die Anzahl der ausgewählten Kalibrierpositionen kann während des Verfahrens adaptiv erhöht werden, beispielsweise wenn die erfassten Differenzvektoren auf ein nicht-lineares Verhalten der Bewegungsachsen des Bondkopfs bzw. der Bondköpfe hinweisen.
  • Die Halterung ist vorzugsweise eingerichtet, die Kalibrierplatte mittels Vakuum festzuhalten und die Halterung und die Kalibrierplatte sind vorzugsweise eingerichtet, den Testchip mittels Vakuum zu fixieren. Die Halterung und die Kalibrierplatte können auch eingerichtet sein, die Kalibrierplatte magnetisch festzuhalten. Ebenso können die Halterung und/oder die Kalibrierplatte und der Testchip eingerichtet sein, den Testchip magnetisch zu fixieren.
  • Bei einer anderen Ausführung besteht die Halterung nur aus Positionsstiften, die vorzugsweise permanent an der Bondstation angebracht sind. Das Einlegen der Halterung für die Kalibrierung und später wieder entfernen entfällt in diesem Fall. Eine solche Halterung kann die Kalibrierplatte nicht festhalten, sondern nur positionieren.
  • Die Kalibrierplatte ist bevorzugt eine Glasplatte und der Testchip ist bevorzugt ein Glaschip. Die ersten und zweiten optischen Markierungen sind bevorzugt Strukturen aus Chrom, da solche Strukturen mit extrem hoher Genauigkeit hergestellt werden können. Diese Strukturen sind optisch nicht transparent.
  • Die Ermittlung der Kalibrierdaten umfasst beispielsweise die folgenden Schritte:
    1. A) Positionieren der Kalibrierplatte in der Halterung der Bondstation und/oder Fixieren der Kalibrierplatte an der Halterung der Bondstation;
    2. B) Durchführen der folgenden Schritte C bis I für eine Anzahl von auf der Kalibrierplatte vorhandenen Kalibrierpositionen:
    3. C) mit dem Bondkopf Aufnehmen eines Testchips,
    4. D) mit der ersten Kamera Aufnehmen eines Bildes des vom Bondkopf gehaltenen Testchips und Bestimmen der Abweichung der Ist-Lage des Testchips von seiner Soll-Lage,
    5. E) Berechnen der vom Bondkopf für die Platzierung des Testchips an der Kalibrierposition anzufahrenden Position,
    6. F) Fahren des Bondkopfs an die berechnete Position und Absetzen des Testchips auf der Kalibrierplatte,
    7. G) mit der zweiten Kamera Aufnehmen eines Bildes des auf der Kalibrierplatte abgesetzten Testchips,
    8. H) Ermitteln eines Differenzvektors v, der eine Abweichung der Ist-Lage des Testchips von seiner Soll-Lage beschreibt.
  • Der Differenzvektor v ist ein Nullvektor, wenn keine Abweichung ermittelt wurde.Der Testchip oder die Testchips werden jeweils zu einem geeigneten Zeitpunkt nach dem Schritt G wieder entfernt. Es kann natürlich auch immer der gleiche Testchip verwendet werden. Die Kalibrierung kann verfeinert werden, indem alle oder einige ausgewählte der Schritte C bis H einmal oder mehrmals wiederholt werden, um zusätzliche Differenzvektoren v zu erhalten.
  • Nachdem alle oder einzelne der Schritte C bis H einmal oder mehrmals durchgeführt worden sind, sind zu jeder Kalibrierposition ein oder mehrere Differenzvektoren vorhanden. Es folgt deshalb noch der Schritt:
    • I) Zuordnen von Korrekturdaten, die auf wenigstens einem Differenzvektor v beruhen, zu der Kalibrierposition.
  • Das folgende gilt für den Schritt I von jeder benutzten Kalibrierposition: Falls die Schritte C bis H nur einmal durchgeführt worden sind, dann enthalten die Korrekturdaten der Kalibrierposition den einen Differenzvektor v. Falls einige der Schritte C bis H zusätzlich ein- oder mehrmals durchgeführt worden sind, dann sind mehrere Differenzvektoren v vorhanden. Die Korrekturdaten können dann beispielsweise alle oder nur einige nach bestimmten Kriterien ausgewählte Differenzvektoren v enthalten, oder die Korrekturdaten können alternativ einen Korrekturvektor enthalten, der aus allen oder einigen ausgewählten Differenzvektoren v berechnet wurde.
  • Falls die Bauelemente-Montagevorrichtung mehr als einen Bondkopf aufweist, dann wird das obige Verfahren für den Arbeitsbereich von jedem der Bondköpfe durchgeführt.
  • Falls die Abmessungen der Kalibrierplatte zu gering sind, um den ganzen Arbeitsbereich des Bondkopfs bzw. der Bondköpfe abzudecken, dann wird die Kalibrierplatte in verschiedenen Positionen an der Halterung befestigt und das oben beschriebene Kalibrierverfahren für jede Position durchgeführt. Die verschiedenen Positionen sind so ausgelegt, dass sie den ganzen Arbeitsbereich des Bondkopfs bzw. der Bondköpfe abdecken.
  • Nachdem die Kalibrierung durchgeführt wurde, sind Kalibrierdaten vorhanden, die die verwendeten Kalibrierpositionen und die diesen Kalibrierpositionen zugeordneten Korrekturdaten umfassen. Die Kalibrierpositionen sind definiert durch einen Vektor w mit wenigstens zwei Komponenten, beispielsweise mit zwei Komponenten w = (w1, w2) oder mit drei Komponenten w = (w1, w2, φ), wobei die Komponente w1 die Position in einer ersten Richtung und die Komponente w2 die Position in einer zweiten Richtung bezeichnen und die Komponente φ ein Winkel ist, der die Verdrehung um ein Zentrum bezeichnet. Die Kalibrierdaten umfassen somit für jede der verwendeten Kalibrierpositionen einen Vektor w und Korrekturdaten.
  • Die Anzahl und Anordnung der Kalibrierpositionen der Kalibrierplatte 1 und die Anzahl und Anordnung der Montageplätze des Substrats sind - abgesehen von möglichen Ausnahmefällen - verschieden voneinander.
  • Bei einer Bauelemente-Montagevorrichtung, bei der das Substrat von der Transportvorrichtung zur Bondstation transportiert und dort - beispielsweise durch Ansaugen mit Vakuum - fixiert, dann mit den Bauelementen bestückt, und dann aus der Bondstation weg transportiert wird, decken die Kalibrierdaten eine Fläche ab, die so gross wie oder grösser als ein Substrat ist.
  • Nach erfolgter Kalibrierung kann die Montage der Bauelemente auf den Montageplätzen des Substrats mit folgenden Schritten durchgeführt werden:
    • Transportieren des Substrats zur Bondstation und Fixieren des Substrats;
    • Bestimmen von globalen Substratpositionsdaten, die die Lage und Orientierung des Substrats charakterisieren;
    • und Montage von einem Bauelement nach dem andern auf einem Montageplatz des Substrats nach dem andern durch die folgenden Schritte:
      • mit dem wenigstens einen Bondkopf Aufnehmen eines Bauelements von einer Zuführeinheit;
      • mit der ersten Kamera Aufnehmen eines Bildes des vom Bondkopf gehaltenen Bauelements und Bestimmen der Abweichung der Ist-Lage des Bauelements von seiner Soll-Lage,
      • Berechnen der Ist-Lage des Montageplatzes anhand der globalen Substratpositionsdaten;
      • Berechnen eines für den Montageplatz zu verwendenden Korrekturvektors anhand von ausgewählten Kalibrierdaten;
      • Berechnen der mit dem Bondkopf anzufahrenden Position; und
      • Bewegen des Bondkopfs an die berechnete Position und Absetzen des Bauelements auf dem Substrat.
  • Figurenliste
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und anhand der Zeichnung näher erläutert. Die Figuren sind schematisch und nicht massstäblich gezeichnet.
    • 1 zeigt eine für Kalibrierung der Bauelemente-Montagevorrichtung geeignete Kalibrierplatte mit einer Vielzahl von Kalibrierpositionen,
    • 2 zeigt in vergrösserter Darstellung eine Kalibrierposition der Kalibrierplatte,
    • 3 zeigt einen Testchip,
    • 4 und 5 zeigen in Aufsicht und im Querschnitt eine Halterung für die Kalibrierplatte,
    • 6 zeigt für das Verständnis der Erfindung erforderliche Teile einer Bauelemente-Montagevorrichtung, und
    • 7 zeigt einen auf der Kalibrierplatte platzierten Testchip.
  • Eine Bondstation einer Bauelemente-Montagevorrichtung ist mit einer stationären Halterung oder für die temporäre Aufnahme einer Halterung ausgebildet, die eine Kalibrierplatte aufnimmt und festhält. Die Kalibrierplatte ist ein hochstabiler Träger mit extrem lagegenau definierten Kalibrierpositionen, die zweidimensional über die ganze Kalibrierplatte verteilt angeordnet sind, insbesondere in Reihen und Kolonnen. Die Kalibrierplatte und die Testchips bestehen vorzugsweise aus Glas, da Glas durchsichtig ist und für diese Anwendung ausgezeichnete mechanische und optische Eigenschaften besitzt.
  • Die Halterung ist mit Vorteil eingerichtet, die Kalibrierplatte und den/die Testchip(s) vorübergehend festzuhalten. Bei einer bevorzugten Ausführungsform ist jede Kalibrierposition der Kalibrierplatte mit einer Bohrung ausgebildet, die mit Vakuum beaufschlagbar ist, um den/die Testchip(s) mit Vakuum zu fixieren. Das Vakuum wird von einer Vakuumquelle geliefert. Bei einer alternativen Ausführungsform sind die Halterung und/oder die Kalibrierplatte und die Testchips mit Magneten und fakultativ ferromagnetischen Elementen versehen, so dass magnetische Kräfte die Haftung des/der Testchip(s) an der Kalibrierplatte bewirken.
  • Die 1 zeigt in Aufsicht eine für die Kalibrierung der Bauelemente-Montagevorrichtung geeignete Kalibrierplatte 1, hier eine Glasplatte. Die gezeigte Kalibrierplatte 1 enthält eine Vielzahl von in Reihen und Kolonnen angeordneten Kalibrierpositionen 2. Die 2 zeigt eine solche Kalibrierposition 2 der Kalibrierplatte 1 in vergrösserter Darstellung. Jede Kalibrierposition 2 enthält erste optische Markierungen 3. Bei diesem Ausführungsbeispiel enthält zudem jede Kalibrierposition 2 eine durch die Kalibrierplatte 1 hindurchgehende Bohrung 4, um den/die Testchip(s) mit Vakuum festzuhalten. Die Bohrung 4 ist bevorzugt im Zentrum der jeweiligen Kalibrierposition 2 angeordnet.
  • Die 3 zeigt einen Testchip 5. Der Testchip 5 ist optisch transparent und enthält diverse zweite optische Markierungen 6. Der Testchip 5 besteht vorzugsweise aus Glas.
  • Die ersten optischen Markierungen 3 der Kalibrierplatte 1 und die zweiten optischen Markierungen 6 des Testchips 5 sind vorzugsweise Strukturen aus Chrom und damit optisch nicht transparent.
  • Die auf der Kalibrierplatte 1 angebrachten ersten optischen Markierungen 3 und die auf dem Testchip 5 angebrachten zweiten optischen Markierungen 6 enthalten beispielsweise je fünf Ringe 7 bzw. 8, wobei der Durchmesser der Ringe 7 der Kalibrierplatte 1 verschieden von dem Durchmesser der Ringe 8 des Testchips 5 ist. Der gegenseitige Abstand des Zentrums der Ringe ist bei der Kalibrierplatte 1 der gleiche wie beim Testchip 5, so dass bei korrekter Platzierung des Testchips 5 auf der Kalibrierposition 2 die Ringe 7 der Kalibrierplatte 1 konzentrisch zu den Ringen 8 des Testchips 5 verlaufen und zu diesen beabstandet und damit optisch unterscheidbar sind. Die ersten optischen Markierungen 3 und die zweiten optischen Markierungen 6 können zusätzlich - wie dargestellt - Skalen bzw. Noniusse umfassen.
  • Die 4 und 5 zeigen in Aufsicht und im Querschnitt ein Ausführungsbeispiel einer Halterung 9, die erfindungsgemäss ausgebildet ist, erstens die Kalibrierplatte 1 mit Vakuum festzuhalten und zweitens die Bohrungen 4 der Kalibrierplatte 1 mit Vakuum zu beaufschlagen. Die Halterung 9 weist eine ebene Fläche 10 auf, auf die die Kalibrierplatte 1 auflegbar ist. Die ebene Fläche 10 kann einen hervorstehenden umlaufenden Rand haben. Die Fläche 10 ist mit ersten Bohrungen 12 versehen, die in eine erste, unterhalb der Fläche 10 angeordnete, mit Vakuum beaufschlagbare Kammer 11 münden. Die ersten Bohrungen 12 sind so angeordnet, dass sie mit den Bohrungen 4 der Kalibrierplatte 1 fluchten, so dass die auf der Kalibrierplatte 1 abgesetzten Testchips mit Vakuum festgehalten werden. Die Fläche 10 enthält zudem zweite Bohrungen 13, die in eine zweite mit Vakuum beaufschlagbare Kammer oder Nut der Halterung 9 münden, um die Kalibrierplatte 1 ebenfalls mit Vakuum an der Halterung 9 zu fixieren. Die erste Kammer 11 kann auch in mehrere einzelne Kammern unterteilt sein, die separat mit Vakuum beaufschlagbar sind. Mit einer solchen Unterteilung ist es möglich, den Vakuumverbrauch bei Bedarf zu reduzieren.
  • Bei einem anderen Ausführungsbeispiel besteht die Halterung nur aus Positionsstiften, die vorzugsweise permanent an der Bondstation angebracht sind. Das Einlegen der Halterung für die Kalibrierung und später wieder entfernen entfällt in diesem Fall. Die Positionsstifte könnten alternativ temporär für die Kalibrierung in die Bondstation eingesteckt und nach der Kalibrierung wieder entfernt werden. Eine solche Halterung kann die Kalibrierplatte nicht festhalten, sondern nur positionieren, und da sie nur aus Positionsstiften besteht, weist sie auch keine ebene Fläche auf. Bei diesem Ausführungsbeispiel werden weder die Halterung noch die Testchips mit Vakuum festgehalten.
  • Die 6 zeigt schematisch die für das Verständnis der Erfindung erforderlichen Teile einer Bauelemente-Montagevorrichtung. Die Bondstation 17 der Bauelemente-Montagevorrichtung umfasst ein Pick und Place System mit wenigstens einem Bondkopf 14, der die Bauelemente auf einem Substrat platziert. Als Substrat kommen verschiedenartige Substrate zur Anwendung. Die Substrate werden von einer Transportvorrichtung zur Bondstation 17 hin und von der Bondstation 17 weg transportiert. Die Halterung 9 ist in der Bondstation 17 angeordnet. Die Halterung 9 ist bevorzugt auswechselbar befestigt, da sie typischerweise nur für die Kalibrierung der Bauelemente-Montagevorrichtung benötigt wird. Die Bauelemente-Montagevorrichtung umfasst eine erste Kamera 15 und eine zweite Kamera 16, sowie Bildverarbeitungshardware und -software. Die erste Kamera 15 dient dazu, im Montagebetrieb die Abweichung der Ist-Lage des vom Bondkopf 14 aufgenommenen Bauelements von seiner Soll-Lage bzw. während der Kalibrierung die Abweichung der Ist-Lage des vom Bondkopf 14 aufgenommenen Testchips 5 von seiner Soll-Lage zu bestimmen. Die zweite Kamera 16 dient einerseits dazu, im Montagebetrieb die globalen Substratpositionsdaten, die die Lage und Orientierung des Substrats charakterisieren, zu bestimmen und andererseits während der Kalibrierung dazu, die Abweichung der Ist-Lage des auf der Kalibrierplatte 1 abgesetzten Testchips 5 von seiner Soll-Lage zu bestimmen. Es gibt Bauelemente-Montagevorrichtungen, bei denen die zweite Kamera 16 an einer festen Stelle oder verschiebbar an der Bondstation 17 befestigt ist, und es gibt Bauelemente-Montagevorrichtungen, bei denen die zweite Kamera 16 am Bondkopf 14 befestigt ist. Die erste Kamera 15 befindet sich unterhalb des Fahrwegs des Bondkopfs 14 und sieht das Bauelement bzw. den Testchip 5 von unten. Die zweite Kamera 16 befindet sich oberhalb der Halterung 9, so dass das Substrat bzw. die Kalibrierplatte 1 in ihrem Blickfeld ist. Die Halterung 9 ist vorzugsweise schwarz, damit sie in den Bildern der zweiten Kamera 16 nur als schwarzer Hintergrund erscheint und damit die Bildverarbeitung nicht beeinflusst.
  • In der 6 sind die Halterung 9, die Kalibrierplatte 1 und ein Testchip 5 dargestellt, die während der Kalibrierung benutzt werden. Im regulären Montagebetrieb befindet sich das Substrat an der Position der Kalibrierplatte 1 und ein Bauelement an der Position des Testchips 5.
  • Das Verfahren für die Kalibrierung der Bauelemente-Montagevorrichtung benutzt die oben erwähnten Mittel - Kalibrierplatte 1, Halterung 9 für die Kalibrierplatte 1, sowie Bondkopf 14, Kameras 15, 16 und die Bildverarbeitungshardware und -software und umfasst folgende Schritte:
    1. A) Positionieren der Kalibrierplatte 1 in der Halterung der Bondstation 17 und/oder Fixieren der Kalibrierplatte 1 an der Halterung 9 der Bondstation 17;
    2. B) Durchführen der folgenden Schritte C bis I für eine Anzahl von auf der Kalibrierplatte 1 vorhandenen Kalibrierpositionen 2:
    3. C) mit dem Bondkopf 14 Aufnehmen eines Testchips 5,
    4. D) mit der ersten Kamera 15 Aufnehmen eines Bildes des vom Bondkopf 14 gehaltenen Testchips 5 und Bestimmen der Abweichung der Ist-Lage des Testchips 5 von seiner Soll-Lage,
    5. E) Berechnen der vom Bondkopf 14 für die Platzierung des Testchips 5 an der Kalibrierposition 2 anzufahrenden Position,
    6. F) Fahren des Bondkopfs 14 an die berechnete Position und Absetzen des Testchips 5 auf der Kalibrierplatte 1,
    7. G) mit der zweiten Kamera 16 Aufnehmen eines Bildes des auf der Kalibrierplatte 1 abgesetzten Testchips 5,
    8. H) Ermitteln eines Differenzvektors v, der eine Abweichung der Ist-Lage des Testchips 5 von seiner Soll-Lage beschreibt.
  • Nachdem alle oder einzelne der Schritte C bis H einmal oder mehrmals durchgeführt worden sind, sind zu jeder Kalibrierposition ein oder mehrere Differenzvektoren vorhanden. Es folgt deshalb noch der Schritt:
    • I) Zuordnen von Korrekturdaten, die auf wenigstens einem Differenzvektor v beruhen, zu der Kalibrierposition.
  • Die Korrekturdaten von jeder Kalibrierposition enthalten beispielsweise alle oder nur einige nach bestimmten Kriterien ausgewählte Differenzvektoren v, oder die Korrekturdaten können alternativ einen Korrekturvektor enthalten, der aus allen oder einigen ausgewählten Differenzvektoren v berechnet wurde.
  • Die im Schritt E vom Bondkopf 14 anzufahrende Position wird berechnet anhand der Ist-Lage der ausgewählten Kalibrierposition und der im Schritt D ermittelten Abweichung der Ist-Lage des Testchips 5 von seiner Soll-Lage. Die Ist-Lage der ausgewählten Kalibrierposition 2 kann entweder anhand von globalen Markierungen, die beispielsweise im Randbereich der Kalibrierplatte 1 angeordnet sind, oder von lokalen Markierungen, die im Bereich der ausgewählten Kalibrierposition 2 angeordnet sind, ermittelt werden. Im zweiten Fall kann zwischen den beiden Schritten D und E der folgende Schritt durchgeführt werden: mit der zweiten Kamera 16 Aufnehmen eines Bildes der ausgewählten Kalibrierposition 2 und Bestimmen der Ist-Lage der ausgewählten Kalibrierposition 2.
  • Die 7 zeigt ein von der Kamera 15 aufgenommenes Bild eines an der ausgewählten Kalibrierposition 2 der Kalibrierplatte 1 platzierten Testchips 5. In dem Bild sind sowohl die ersten optischen Markierungen 3 der Kalibrierplatte 1 als auch die zweiten optischen Markierungen 6 des Testchips 5 sichtbar. Die Bildverarbeitungshardware- und software der Bauelemente-Montagevorrichtung ist eingerichtet, die Ist-Lage der optischen Markierungen 6 des Testchips 5 relativ zur Ist-Lage der optischen Markierungen 3 der Kalibrierplatte 1 zu ermitteln und daraus die Abweichung der Ist-Lage des Testchips 5 von seiner Soll-Lage zu bestimmen.
  • Das Fixieren der Kalibrierplatte 1 an der Bondstation 17 erfolgt dadurch, dass die genannte Halterung 9 an der vorgesehenen Stelle eingesetzt und die Kalibrierplatte 1 auf die Halterung 9 aufgelegt und mit Vakuum oder magnetisch fixiert wird.
  • Das Bestimmen der Ist-Lage des Testchips 5 bzw. der Kalibrierposition 2 bzw. das Ermitteln der Abweichung der Ist-Lage des Testchips 5 von seiner Soll-Lage aus dem jeweiligen Bild erfolgt mittels der Bildverarbeitungshardware und -software der Bauelemente-Montagevorrichtung.
  • Weil der Testchip 5 durchsichtig ist, sind in dem von der zweiten Kamera 16 aufgenommenen Bild sowohl die optischen Markierungen 6 des Testchips 5 als auch die optischen Markierungen 3 der darunterliegenden Kalibrierposition 2 sichtbar.
  • Wenn die Halterung 9 mit einer einzigen ersten Kammer 11 ausgebildet ist, dann werden zu Beginn des Testverfahrens selbstverständlich die Bohrungen 12 aller Kalibrierpositionen 2 mit Vakuum beaufschlagt. Wenn die Halterung 9 mit mehreren Kammern ausgebildet ist, dann wird jeweils eine Kammer nach der andern mit Vakuum beaufschlagt und ein Testchip 5 auf den der mit Vakuum beaufschlagten Kammer zugeordneten Kalibrierposition platziert. Es kann ein einziger Testchip 5 verwendet werden. In diesem Fall platziert der Bondkopf 14 diesen Testchip 5 entsprechend dem oben angegebenen Verfahren nacheinander auf jeder der ausgewählten Kalibrierpositionen 2 der Kalibrierplatte 1. Die verwendete Anzahl der Kalibrierpositionen 2 kann alle Kalibrierpositionen 2 der Kalibrierplatte 1 oder auch nur einige ausgewählte Kalibrierpositionen 2 der Kalibrierplatte 1 umfassen. Der Testchip bzw. die Testchips 5 können auch mehrmals auf den ausgewählten oder allen Kalibrierpositionen 2 platziert werden.
  • Im normalen Arbeitsbetrieb der Bauelemente-Montagevorrichtung können nun Bauelemente mit hoher Lagegenauigkeit auf den Substratplätzen eines Substrats platziert werden, nämlich mit den Schritten
    • A2) Transportieren des Substrats zur Bondstation 17 und Fixieren des Substrats an der Bondstation 17;
    • B2) Bestimmen von globalen Substratpositionsdaten;
    • C2) und Montage von einem Bauelement nach dem andern auf einem Montageplatz des Substrats nach dem andern durch die Schritte D2 bis H2:
    • D2) mit dem Bondkopf 14 oder einem der Bondköpfe Aufnehmen eines Bauelements von einer Zuführeinheit;
    • E2) mit der ersten Kamera 15 Aufnehmen eines Bildes des vom Bondkopf 14 gehaltenen Bauelements und Bestimmen der Abweichung der Ist-Lage des Bauelements von seiner Soll-Lage,
    • F2) Berechnen der Ist-Lage des Montageplatzes anhand der globalen Substratpositionsdaten;
    • G2) Berechnen der mit dem Bondkopf 14 anzufahrenden Position; und
    • H2) Bewegen des Bondkopfs 14 an die berechnete Position und Absetzen des Bauelements auf dem Substrat.
  • Die globalen Substratpositionsdaten charakterisieren die Lage und Orientierung des Substrats und damit auch die Lage und Orientierung der Montageplätze. Die Bestimmung der globalen Substratpositionsdaten im Schritt B2 erfolgt entweder anhand von am Rand des Substrats angebrachten Substratmarkierungen oder, falls das Substrat keine Substratmarkierungen aufweist, anhand besonderer, globaler Merkmale des Substrats. Wenn das Substrat ein Wafer ist, dann werden beispielsweise globale Merkmale wie „flat“ und/oder „notch“ des Wafers dazu verwendet. Für die Bestimmung der globalen Substratpositionsdaten werden mit der zweiten Kamera 16 ein oder mehrere Bilder der Substratmarkierungen bzw. der besonderen Merkmale des Substrats aufgenommen und mit der Bildverarbeitungshardware und -software die Position des Substrats in Bezug auf die Maschinenkoordinaten des Bondkopfs 14 bzw. der Bondköpfe 14 ermittelt.
  • Die Berechnung der Ist-Lage (die auch seine Orientierung einschliesst) des Montageplatzes im Schritt F2 erfolgt basierend auf den globalen Substratpositionsdaten.
  • Die Berechnung der mit dem Bondkopf anzufahrenden Position im Schritt G2 erfolgt anhand der im Schritt E2 ermittelten Abweichung der Ist-Lage des vom Bondkopf aufgenommenen Bauelements von seiner Soll-Lage, der im Schritt F2 berechneten Ist-Lage des Montageplatzes und eines Korrekturvektors, der anhand ausgewählter Kalibrierdaten ermittelt wird. Die Anzahl und Anordnung der Kalibrierpositionen der Kalibrierplatte 1 und die Anzahl und Anordnung der Montageplätze des Substrats sind - abgesehen von möglichen Ausnahmefällen - verschieden voneinander. Die Berechnung des für den Montageplatz zu verwendenden Korrekturvektors erfolgt deshalb mit Vorteil mittels einer Interpolationsmethode, die den zu verwendenden Korrekturvektor anhand ausgewählter Kalibrierdaten berechnet, wobei die ausgewählten Kalibrierdaten eine oder mehrere Kalibrierpositionen, die den aktuellen Montageplatz umgeben, und die Korrekturdaten, die der einen Kalibrierposition bzw. den mehreren Kalibrierpositionen zugeordnet sind, umfassen.
  • Bei einer Bauelemente-Montagevorrichtung, bei der das Substrat von der Transportvorrichtung zur Bondstation 17 transportiert und dort fixiert, dann mit den Bauelementen bestückt und dann aus der Bondstation 17 weg transportiert wird, decken die Kalibrierdaten eine Fläche ab, die so gross wie oder grösser als ein Substrat ist.
  • Das erfindungsgemässe Verfahren kann auch benutzt werden, um die Positionsgenauigkeit bzw. die Gültigkeit der Kalibrierung der Bauelemente-Montagevorrichtung unter Langzeiteffekten wie zum Beispiel Temperaturänderungen, Luftfeuchtigkeitsänderungen, etc. zu testen, da das Absetzen des/der Testchips 5 auf den Kalibrierpositionen 2 während langer Zeiträume, zum Beispiel während einer ganzen Nacht, durchgeführt werden kann, ohne dass manuelle Arbeiten wie zum Beispiel das Reinigen der Kalibrierplatte 1 nötig sind.
  • Das erfindungsgemässe Verfahren kann für die Bestückung von Substraten jeglicher Grösse angewendet werden, obwohl es für grossflächige Substrate entwickelt worden ist. Das Verfahren kann auch angewendet werden, wenn die Substrate lokale Markierungen enthalten.

Claims (4)

  1. Verfahren zur Kalibrierung einer Bauelemente-Montagevorrichtung, wobei die Bauelemente-Montagevorrichtung eine Bondstation (17) und wenigstens einen Bondkopf (14) zum Platzieren von Bauelementen auf Montageplätzen eines Substrats, eine erste Kamera (15) und eine zweite Kamera (16) umfasst, wobei die Montage der Bauelemente auf den Montageplätzen des Substrats folgende Schritte umfasst: Transportieren des Substrats zur Bondstation (17) und Fixieren des Substrats; Bestimmen von globalen Substratpositionsdaten, die die Lage und Orientierung des Substrats charakterisieren; und Montage von einem Bauelement nach dem andern auf einem Montageplatz des Substrats nach dem andern durch die folgenden Schritte: mit dem wenigstens einen Bondkopf (14) Aufnehmen eines Bauelements von einer Zuführeinheit; mit der ersten Kamera (15) Aufnehmen eines Bildes des vom Bondkopf (14) gehaltenen Bauelements und Bestimmen der Abweichung der Ist-Lage des Bauelements von seiner Soll-Lage, Berechnen der Ist-Lage des Montageplatzes anhand der globalen Substratpositionsdaten; Berechnen eines für den Montageplatz zu verwendenden Korrekturvektors anhand von ausgewählten Kalibrierdaten; Berechnen der mit dem Bondkopf (14) anzufahrenden Position; und Bewegen des Bondkopfs (14) an die berechnete Position und Absetzen des Bauelements auf dem Substrat; und wobei die Kalibrierung die Ermittlung von Kalibrierdaten mit den folgenden Schritten umfasst: Positionieren einer Kalibrierplatte (1) in einer Halterung (9) der Bondstation (17) und/oder Fixieren einer Kalibrierplatte (1) an einer Halterung (9) der Bondstation (17), wobei die Kalibrierplatte (1) mehrere, zweidimensional über die Kalibrierplatte (1) verteilte und mit ersten optischen Markierungen (3) versehene Kalibrierpositionen (2) aufweist; Durchführen der folgenden Schritte für eine Anzahl von Kalibrierpositionen (2): mit dem Bondkopf (14) Aufnehmen eines Testchips (5), der zweite optische Markierungen (6) aufweist, mit der ersten Kamera (15) Aufnehmen eines Bildes des vom Bondkopf (14) gehaltenen Testchips (5) und Bestimmen der Abweichung der Ist-Lage des Testchips (5) von seiner Soll-Lage, Berechnen der vom Bondkopf (14) für die Platzierung des Testchips (5) an der Kalibrierposition (2) anzufahrenden Position, Fahren des Bondkopfs (14) an die berechnete Position und Absetzen des Testchips (5) auf der Kalibrierplatte (1), mit der zweiten Kamera (16) Aufnehmen eines Bildes des auf der Kalibrierplatte (1) abgesetzten Testchips (5), Ermitteln eines Differenzvektors, der eine Abweichung der Ist-Lage des Testchips (5) von seiner Soll-Lage beschreibt; Zuordnen von Korrekturdaten, die auf wenigstens einem Differenzvektor beruhen, zu der Kalibrierposition, wobei die Kalibrierdaten die verwendeten Kalibrierpositionen und die diesen zugeordneten Korrekturdaten umfassen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die einzelnen Montageplätze der Substrate keine Markierungen enthalten.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl und Anordnung der bei der Kalibrierung verwendeten Kalibrierpositionen und die Anzahl und Anordnung der Montageplätze des Substrats verschieden voneinander sind, und dass die Berechnung des für den Montageplatz zu verwendenden Korrekturvektors mittels einer Interpolationsmethode erfolgt, die den zu verwendenden Korrekturvektor anhand ausgewählter Kalibrierdaten berechnet, die eine oder mehrere Kalibrierpositionen, die den aktuellen Montageplatz umgeben, und die Korrekturdaten, die der einen oder den mehreren Kalibrierpositionen zugeordnet sind, umfassen.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Substrat während der Montage der Bauelemente fixiert bleibt und dass die Kalibrierdaten eine Fläche abdecken, die so gross wie oder grösser als ein Substrat ist.
DE102019111580.9A 2018-05-28 2019-05-03 Verfahren zur Kalibrierung einer Vorrichtung für die Montage von Bauelementen Withdrawn DE102019111580A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6772018 2018-05-28
CH00677/18 2018-05-28

Publications (1)

Publication Number Publication Date
DE102019111580A1 true DE102019111580A1 (de) 2019-11-28

Family

ID=68499541

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019111580.9A Withdrawn DE102019111580A1 (de) 2018-05-28 2019-05-03 Verfahren zur Kalibrierung einer Vorrichtung für die Montage von Bauelementen

Country Status (8)

Country Link
US (1) US10629465B2 (de)
JP (1) JP2020010017A (de)
KR (1) KR20190135422A (de)
CN (1) CN110545656A (de)
CH (1) CH715039A2 (de)
DE (1) DE102019111580A1 (de)
MY (1) MY195148A (de)
TW (1) TW202004931A (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017131322B4 (de) * 2017-12-27 2019-07-04 Asm Assembly Systems Gmbh & Co. Kg Verwenden von bestückfähigen Markierungsbausteinen für ein stufenweises Bestücken eines Trägers mit Bauelementen
DE102020115598B3 (de) * 2020-06-12 2021-08-26 Asm Assembly Systems Gmbh & Co. Kg Verfahren und Bestückmaschine zum Bestücken von Bauelementeträgern basierend auf einem Rekalibrieren der Bestückmaschine im realen Bestückbetrieb, Computerprogramm zum Steuern einer Bestückmaschine
CN113985246B (zh) * 2021-10-21 2024-09-03 武汉光谷信息光电子创新中心有限公司 一种芯片的测试与封装工装及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212840A (ja) 1988-06-30 1990-01-17 Fuji Electric Co Ltd 半導体装置の製造方法
US5742393A (en) * 1995-06-07 1998-04-21 Varian Associates, Inc. Optical position calibration system
JP2002076696A (ja) * 2000-08-28 2002-03-15 Yamaha Motor Co Ltd 実装機における基板認識装置
JP4514322B2 (ja) * 2000-12-08 2010-07-28 パナソニック株式会社 部品実装方法、及び部品実装装置
JP4943300B2 (ja) * 2007-11-07 2012-05-30 Juki株式会社 部品実装装置
JP5174583B2 (ja) * 2008-08-25 2013-04-03 Juki株式会社 電子部品実装装置の制御方法
US8313958B2 (en) 2010-05-12 2012-11-20 Intel Corporation Magnetic microelectronic device attachment
JP2013251475A (ja) * 2012-06-04 2013-12-12 Panasonic Corp 電子部品実装ラインにおける校正値取得方法及び電子部品実装ラインによる電子部品実装方法
JP5996979B2 (ja) * 2012-09-07 2016-09-21 ヤマハ発動機株式会社 電子部品実装装置および実装位置補正データ作成方法
WO2014144533A1 (en) * 2013-03-15 2014-09-18 Applied Materials, Inc. Position and temperature monitoring of ald platen susceptor
NL2013237B1 (en) * 2014-07-22 2016-08-16 Roth & Rau B V Inkjet printing system and method for processing wafers.
KR102238649B1 (ko) 2014-09-16 2021-04-09 삼성전자주식회사 반도체 칩 본딩 장치
JP6548040B2 (ja) * 2016-09-06 2019-07-24 パナソニックIpマネジメント株式会社 電子部品の実装方法及び実装装置
DE102017131322B4 (de) * 2017-12-27 2019-07-04 Asm Assembly Systems Gmbh & Co. Kg Verwenden von bestückfähigen Markierungsbausteinen für ein stufenweises Bestücken eines Trägers mit Bauelementen

Also Published As

Publication number Publication date
CN110545656A (zh) 2019-12-06
TW202004931A (zh) 2020-01-16
CH715039A2 (de) 2019-11-29
US10629465B2 (en) 2020-04-21
JP2020010017A (ja) 2020-01-16
US20190362998A1 (en) 2019-11-28
MY195148A (en) 2023-01-11
KR20190135422A (ko) 2019-12-06

Similar Documents

Publication Publication Date Title
DE112008002467B4 (de) Verfahren für die Entnahme von Halbleiterchips von einem Wafertisch und die Montage der Halbleiterchips auf einem Substrat
DE102018109512B4 (de) Vorrichtung und Verfahren zum Montieren von Bauelementen auf einem Substrat
DE60312573T2 (de) Verfahren zur Lokalisierung und zur Setzung von Markierungspunkte eines Halbleiterbauteils auf einem Substrat
DE102019111580A1 (de) Verfahren zur Kalibrierung einer Vorrichtung für die Montage von Bauelementen
DE102016113328B4 (de) Verfahren für die Montage von mit Bumps versehenen Halbleiterchips auf Substratplätzen eines Substrats
DE102007030390B4 (de) Koordinaten-Messmaschine und Verfahren zur Kalibrierung der Koordinaten-Messmaschine
DE10349847B3 (de) Positionierungsvorrichtung und -Verfahren für die Übertragung elektronischer Bauteile
DE102017131322B4 (de) Verwenden von bestückfähigen Markierungsbausteinen für ein stufenweises Bestücken eines Trägers mit Bauelementen
EP1174014A1 (de) Verfahren zum betrieb eines bestückautomaten, bestückautomat, auswechselbare komponente für einen bestückautomaten und system aus einem bestückautomaten und einer auswechselbaren komponente
EP3054478B1 (de) Bestückmaschine und verfahren zum bestücken eines trägers mit ungehäusten chips
DE102020113002B3 (de) Bestimmen der Genauigkeit einer Bestückmaschine bei mehrfacher Verwendung eines Test-Bauelements
EP0968637A2 (de) Verfahren und vorrichtung zum vermessen einer einrichtung zur herstellung von elektrischen baugruppen
EP1802192A1 (de) Verfahren für die Montage eines Flipchips auf einem Substrat
DE10303902B4 (de) Verfahren und Vorrichtung zum Ausrichten eines Justier-Mikroskops mittels verspiegelter Justiermaske
DE102007039983A1 (de) Verfahren zum Messen von Positionen von Strukturen auf einem Substrat mit einer Koordinaten Messmaschine
EP1020106B1 (de) Verfahren und vorrichtung zur lageerkennung von anschlüssen und/oder kanten von bauelementen
DE102020115598B3 (de) Verfahren und Bestückmaschine zum Bestücken von Bauelementeträgern basierend auf einem Rekalibrieren der Bestückmaschine im realen Bestückbetrieb, Computerprogramm zum Steuern einer Bestückmaschine
AT391773B (de) Vorrichtung zum exponieren eines halbleitersubstrates gegen ein strahlungsmuster
DE10394243B4 (de) Bondvorrichtung und Bondverfahren
DE102018129805B3 (de) Aufnahme eines zu bestückenden Trägers mit Träger-Aufnahmevorrichtung aufweisend einen Grundkörper und ein Adapterelement sowie System und Bestückmaschine diese aufweisend und Verfahren zum Bestücken eines Trägers
DE112013004281T5 (de) 3D-TSV-Montageverfahren für Masse-Reflow
CH656223A5 (de) Photogrammetrisches entzerrungsgeraet und verfahren zur ermittlung der einstellwerte.
EP1432013A1 (de) Halbleiter-Montageeinrichtung zum Auftragen von Klebstoff auf ein Substrat
DE4304301A1 (de) Transportsystem und -verfahren für zueinander auszurichtende Objekte
WO1998042167A2 (de) Verfahren und vorrichtung zum vermessen einer einrichtung zur herstellung von elektrischen baugruppen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R163 Identified publications notified
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee