EP3022726A1 - Procédé et capteur de transfert d'informations entre véhicules - Google Patents

Procédé et capteur de transfert d'informations entre véhicules

Info

Publication number
EP3022726A1
EP3022726A1 EP14826393.2A EP14826393A EP3022726A1 EP 3022726 A1 EP3022726 A1 EP 3022726A1 EP 14826393 A EP14826393 A EP 14826393A EP 3022726 A1 EP3022726 A1 EP 3022726A1
Authority
EP
European Patent Office
Prior art keywords
sensor
vehicle
detected
information
wireless information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14826393.2A
Other languages
German (de)
English (en)
Other versions
EP3022726A4 (fr
Inventor
Mikael Lindberg
Mikael SALMÉN
Carl Fredrik Ullberg
Fredrich Claezon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scania CV AB
Original Assignee
Scania CV AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scania CV AB filed Critical Scania CV AB
Publication of EP3022726A1 publication Critical patent/EP3022726A1/fr
Publication of EP3022726A4 publication Critical patent/EP3022726A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/162Decentralised systems, e.g. inter-vehicle communication event-triggered
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0965Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages responding to signals from another vehicle, e.g. emergency vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/40Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the details of the power supply or the coupling to vehicle components
    • B60R2300/406Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the details of the power supply or the coupling to vehicle components using wireless transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/50Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the display information being shared, e.g. external display, data transfer to other traffic participants or centralised traffic controller

Definitions

  • the invention concerns the methods and sensors in vehicles. More specifically, the invention describes a mechanism for transferring information associated with an object detected by a first sensor in a first vehicle to a second sensor in a second vehicle.
  • a vehicle sometimes contains a driver assistance system comprising sensors such as radar, cameras and similar types of sensors, which identify objects around the vehicle, such as road markings, signs, pedestrians, animals and other surrounding vehicles.
  • sensors such as radar, cameras and similar types of sensors, which identify objects around the vehicle, such as road markings, signs, pedestrians, animals and other surrounding vehicles.
  • Vehicle refers in this context to, for example, a goods vehicle, long-haul semi, transport vehicle, car, emergency vehicle, vessel, bus, motorcycle, fire engine, amphibious vehicle, boat, airplane, helicopter or other similar motorized manned or unmanned means of transport adapted for geographic movement on land, at sea or in the air.
  • the senor in a vehicle is obstructed by a lead vehi- cle, particularly when the lead vehicle is a heavy vehicle such as a long-haul semi, a bus or a similarly large and/or obstructive vehicle.
  • a passenger gets out of a bus and walks in front of the bus in order to cross the road, it can be difficult for a trail and/or passing vehicle to perceive the pedestrian in front of the lead vehicle, even if the trail vehicle has a sensor, because the lead vehicle is obstructing the view of both the sensor and the vehicle driver. If the trail vehicle begins to pass the non-moving bus in this situation, a serious accident can result, unless the passenger perceives and realizes the danger in his actions.
  • Another example of a potential near-accident can be when a wild animal such as a wild boar, elk, deer or the like suddenly crosses the road in front of a lead vehicle. The sensor in the host vehicle is then obstructed by the lead vehicle, with the result that the driver of the trail vehicle may be surprised by sudden and transverse braking and/or another wild animal that follows the first animal across the road.
  • this object is achieved by means of a method in a first sensor in a first vehicle for transferring information associated with an object detected by the first sensor to a second sensor in a second vehicle.
  • the method comprises detection of the object.
  • the method further comprises transmission of wireless information associated with the detected object for reception by the second sensor in the second vehicle.
  • this object is achieved by means of a sensor in a first vehicle, which sensor is arranged so as to detect an object and transfer information associated with the detected object to a second sensor in a second vehicle.
  • the sensor comprises a detector arranged so as to detect the object.
  • the sensor further comprises a transmitter arranged so as to transmit wireless information associated with the detected object for reception by the second sensor in the second vehicle.
  • this object is achieved by means of a method in a second sensor in a second vehicle for receiving information associated with an object detected by a first sensor in a first vehicle.
  • Said method comprises the reception of wireless information associated with the object from the first sensor in the first vehicle.
  • the method also comprises the initiation of an accident- avoidance measure with a view to avoiding an accident with the object.
  • this object is achieved by means of a sensor in a second vehicle.
  • Said sensor is arranged so as to receive information associated with an object detected by a first sensor in a first vehicle.
  • the sensor comprises a detector arranged so as to receive wireless information associated with the object from the first sensor in the first vehicle.
  • the sensor further comprises a processor circuit arranged so as to initiate an accident-avoidance measure with a view to avoiding an accident with the object. Forwarding information concerning an object detected in proximity to a first vehicle by a sensor in said first vehicle to a second sensor in a second vehicle that is located on the same section of road as the first vehicle makes it possible to warn the driver of the second vehicle about a hazard that has been detected by the first sensor in the first vehicle.
  • the driver of the second vehicle can thus perceive an object such as a pedestrian or a wild boar that is located on the roadway in proximity to the host vehicle, but concealed by the second vehicle, for example, even though the driver or the sensor in said second vehicle cannot see/detect said object when it is concealed.
  • the traffic safety of the vehicles and of other surrounding drivers is thus enhanced. Transferring information wirelessly over a limited range, e.g. directly between the sensors of the vehicles via a light-borne interface, makes it possible to avoid warning a vehicle driver who is not affected by the situation that has arisen.
  • existing sensors on the vehicles can be used, such as radar, LIDAR and/or a camera, such as a Time of flight camera, which can be used per se for other purposes, such as measuring dis- tances to lead vehicles with a view to warning the driver if the distance is too short, and/or adjusting the vehicle cruise control to the velocity of the vehicle, with the result that an additional functionality can be obtained by means of the invention without the need to increase the number of components in the vehicles and, in turn, the costs of materials and manufacturing. An improvement of the vehicles is achieved thereby.
  • Figure 1A illustrates an embodiment of two vehicles with sensors according to one embodiment, in side view.
  • Figure 1B illustrates an embodiment of two vehicles with sensors according to one embodiment, in plan view.
  • Figure 2A illustrates an embodiment of two vehicles with sensors according to one embodiment, from the perspective of the trail vehicle.
  • Figure 2B shows an enlargement of a display screen according to one embod- iment of the invention.
  • Figure 3 shows a flow diagram that illustrates one embodiment of the invention in a lead vehicle.
  • Figure 4 is an illustration of a sensor in a lead vehicle according to one embodiment of the invention.
  • Figure 5 shows a flow diagram that illustrates an embodiment of the invention in a trail vehicle.
  • Figure 6 is an illustration of a sensor in a trail vehicle according to one embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION
  • the invention is defined as the methods and sensors for transferring information associated with an object detected by a first sensor to a second sensor in a second vehicle, which can be realized in any of the embodiments described below. 5
  • this invention can be executed in many different forms, and is not to be viewed as limited by the embodiments described herein, which are intended rather to clarify and elucidate various aspects of the invention.
  • Figure 1A shows a section of road 100 on which a lead vehicle 101 and a trail vehicle 102 are traveling in a conceived direction of travel 105.
  • the vehicles 101 , 102 can be in motion in the direction of travel 105, or be standing still, prepared for a planned motion in the direction of travel 105. It can also be that the lead vehicle
  • the lead vehicle 101 has a sensor 111 that is arranged so as to detect surrounding objects 120, such as a wild animal, pedestrian, another vehicle, an obstacle or the like. Whether the object 120 is in motion or standing still is of no importance to the invention.
  • the trail vehicle 102 also has a sensor 112. Said sensors 111 , 112 can be disposed in an arbitrary location on the respective vehicles 101 , 102, but preferably with a placement as high up toward or on the roof of the respective vehicle 101 ,
  • the sensors 111 , 112 can also be disposed in the cab of each respective vehicle 101 , 102, e.g. up in proximity to the headliner. There they are protected from external effects such as being soiled by dust or snow splatter, as well as from damage and, to some extent, theft.
  • the first sensor 111 and/or second sensor 112 can consist of, for example, a camera, a 3D camera, a Time of Flight camera (ToF camera), a stereo camera, a light-field camera, a radar measuring device, a laser measuring device, a LIDAR, a distance-measuring device based on ultrasonic waves or a similar sensor.
  • a camera for example, a camera, a 3D camera, a Time of Flight camera (ToF camera), a stereo camera, a light-field camera, a radar measuring device, a laser measuring device, a LIDAR, a distance-measuring device based on ultrasonic waves or a similar sensor.
  • a LIDAR is an optical measuring instrument that measures properties of reflected light in order to determine the range (and/or other properties) of a remote object 120.
  • the technology is highly pronounced of radar (Radio Detection and Ranging), but uses radio waves instead of light.
  • the distance to the object 120 is typically measured by measuring the time delay between an emitted laser pulse and the registered reflection.
  • a ToF camera is a camera system that takes a series of images and measures a distance to the object 120 based on the known speed of light, by measuring the time it takes for a light signal to pass between the sensor 11 , 112 and the object 120.
  • first sensor 111 and the second sensor 112 can consist of the same type of sensor or of different types of sensors according to different embodiments.
  • more than one respective sensor 111 , 112 can be installed in the first vehicle 01 and/or the second vehicle 02.
  • One advantage of having a plurality of sensors 111 , 112 is that more reliable distance determinations can be made, and that a greater range can be covered by said sensors.
  • neither the driver of the trail vehicle 102 nor the sensor 112 can see the object 120 ahead of the lead vehicle 101 , as it is obstructed by the lead vehicle 101.
  • the object 120 is detected by the sensor 111 in the lead vehicle.
  • Said sensor 111 in the lead vehicle 101 sends information about the object 120 detected in front of the host vehicle in order for said information to be received by the sensor 112 in the second vehicle 102. It is thus possible for the driver in the trail vehicle 102 to receiving a warning about an object 120 that has appeared in front of the lead vehicle 101.
  • the driver of the trail vehicle 102 can thus, like the driver of the lead vehicle 101 , be warned by means of an audio signal, an audio message, a light signal, a warning displayed on a display screen, a tactile warning signal that transfers vibrations to the driver via a vibrator in the driver seat, steering wheel and/or gear shifter, or a similar warning signal in various embodiments.
  • this information concerning a concealed object 120 ahead of a lead vehicle 101 can be used to initiate an accident-avoidance measure, such as making it impossible to accelerate, initiating braking and/or initiating an evasive maneuver.
  • the transfer of information from the first sensor 111 in the lead vehicle 101 to the second sensor 112 in the trail vehicle 102 can be made via a wireless interface based on, for example, Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Code Division Access (CDMA), (CDMA 2000), Time Division Synchronous CDMA (TD-SCDMA), Long Term Evolution (LTE), LTE- Advanced; Wireless Fidelity (Wi-Fi), defined by the Institute of Electrical and Electronics Engineers (IEEE) standards 802.11 a, b, g and/or n, Internet Protocol (IP), Bluetooth and/or Near Field Communication, (NFC).
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data Rates for GSM Evolution
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Access
  • CDMA 2000 Code Division Synchronous CDMA
  • TD-SCDMA Time Division Synchronous CDMA
  • LTE Long Term Evolution
  • One advantage of transferring information wirelessly by means of radio waves can be that it provides sufficient range to warn a large number of other vehicles 102. If, for example, an animal has gotten past a wildlife fence along a motorway, it poses a traffic hazard not only to the host vehicle 101 and the trail vehicle 102, but also to other vehicles traveling the relevant section of road in either direction.
  • the wireless interfaces consists of a light-borne interface, whereupon information can be transferred between the first sensor 111 and the second sensor 112 by means of modulation of the emitted light.
  • the second sensor 112 certainly cannot see the object 120, but it can detect light reflections that are emitted from the first sensor 111 , and these lightwaves can be used to transfer information to the second sensor 112.
  • this information can comprise a single bit in certain embodiments, i.e. "object detected” or "no object detected.”
  • This amount of information may seem small, but it can still be sufficient to trigger a warning or action.
  • a comparison can be made to driving in darkness along a road with oncoming traffic. If one sees beams of light from an oncoming vehicle behind a hill up ahead, one does not know what particular vehicle one will be encounter- ing, how fast it is driving etc, but it can still be inappropriate to begin passing.
  • additional information can be transferred, such as the type of object, where the object 120 was detected in relation to the vehicle 101 , the size of the object and other similar information.
  • the information-receiving second sensor 112 can thus be provided with additional information that can enable a deter- mination or assessment of how relevant or dangerous the detected object 120 is with respect to the traffic safety of the host vehicle 102.
  • the light emitted from respective sensor 111 , 112 can lie within the visible spectrum (ca. 390 to 770 nanometers), although in certain embodiments it can also, or alternatively, contain infrared (IR) light, which has a wavelength in excess of 770 nanometers, and/or ultraviolet (UV) radiation, which has a wavelength shorter than 390 nanometers.
  • IR infrared
  • UV ultraviolet
  • the light modulation can occur by modulating its frequency, wavelength, amplitude and/or time in various embodiments.
  • a constant outflow of infrared light from the first sensor 111 can convey the information "no object detected,” while a strong pulsating orange light can convey the information "object detected.” It is thus possible for the sensor 102 in the trail vehicle 102 to interpret this information. In certain embodiments it can even be possible for the driver of the trail vehicle 102 to directly be made aware of the object 120 ahead of the first vehicle 101 , even if the host vehi- cle 102 has no sensor, or if its sensor 112 is defective or pointing the wrong way, by means of being warned directly by the light signals from the first sensor 111 in the first vehicle 101.
  • One advantage of transferring light-borne information is that it can be sent directly by the first sensor 111 and received directly by the second sensor 112, without needing to be processed or converted via radio waves. Information can thus be transferred more quickly than when the transfer occurs via a radio interface, as no connecting time is needed.
  • the limited range associated with the transfer of light- borne information has the advantage that information that is irrelevant because the emergent object 120 is quite simply located far from the host vehicle 102, perhaps on another road or in another direction horizontal or vertically, will quite simply be filtered out because the sensor 112 in the trail vehicle102 is unable to receive such information. Light-borne information thus has high credibility for the recipient party.
  • the first sensor 111 can send out information related to the detected object to all vehicles; to all vehicles that are adapted so as to receive said information; to all vehicles adapted so as to receive said information within a certain distance, or to all vehicles that are connected to a service that enables reception of such information, according to various embodiments.
  • Figure 1B shows the same section of road 100 with the same vehicles 101 , 102 and the same traffic situation as shown in Figure 1 A, but in plan view.
  • Figure 2A also shows the same section of road 100 with the same vehicles 101 , 102 and the same traffic situation as shown in Figure 1A and Figure 1 B, but as viewed from the perspective of the driver seat in the trail vehicle 102.
  • the sensor 112 in said trail vehicle 102 is receiving information from the first sensor 111 in the lead vehicle 1010.
  • the vehicle 102 contains a side module 130 with a display screen 140, which is arranged so as to communicate with the sensor 112 and communicate a received warning regarding the emergent potential traffic hazard to the ve- hide driver, e.g. by means of an audio signal, or by representing the emergent situation and/or the object 120 on the display screen 140, to name some examples of such a warning, according to various embodiments.
  • Figure 2B shows an example of how such an representation could be carried out in order to ensure that the driver will quickly grasp the emergent situation and have opportunity to take an appropriate measure.
  • a measure can be taken instead or as a complement to a warning with a view to avoiding or at least mitigating the consequences of an accident, such as preventing acceleration, initiating braking of the vehicle 102, initiating evasive maneuvers, releasing a call/odor to frighten off an animal, or the like.
  • Figure 3 illustrates an example of an embodiment of a method 300 in a first sensor 111 in a first vehicle 101.
  • the method 300 is arranged so as to transfer information associated with an object 120 detected by the first sensor 111 to a second sensor 112 in a second vehicle 102.
  • Said information is transferred wirelessly according to certain embodiments.
  • Such wireless information can contain light-borne information, which can be transmitted by means of modulation of the light emitted from the sensor 111. Such modulation can be performed on the phase, amplitude and/or time of the emitted lightwaves.
  • the wireless information can be transferred via radio waves between the vehicles 101 , 102; based for example on any of the following technologies: GSM, EDGE, UMTS, CDMA, CDMA 2000, TD-SCDMA, LTE, LTE Advanced; Wi-Fi, IP, Bluetooth and/or NFC according to various embodiments.
  • the method 300 can comprise a num- ber of steps 301-304.
  • certain of the described steps 301-304 can be performed in a chronological order different from that indicated by the numerical order, and that certain of them can be performed in parallel with one another, according to various embodiments.
  • certain steps are performed only in certain embodiments, such as steps 302 and 303.
  • the method 300 comprises the following steps:
  • Step 302 The object 120 is detected by the first sensor 111.
  • This method step can be performed in some but not necessarily all embodiments of the method 300.
  • the detected 301 object 120 is identified as a potential traffic hazard.
  • Such a detection can be made by determining the position of the object in relation to the vehicle 101 , e.g. whether it is located on the roadway 100 or outside of it; whether the object 120 is moving toward the vehicle 100 or away from it; the size of the object, e.g. via comparison with a limit value; or by means of identification of the type or category of the object 120.
  • objects 120 in the form of, for example, pedestrians or animals that are on the roadway 100 within a distance of, for example, 50 meters, are identified as potential traffic hazards.
  • objects 120 that are located outside of the roadway 100 but moving toward the roadway 100 are identified as potential traffic hazards.
  • objects 120 that are on the roadway and of a size that exceeds a given limit value are identified as potential traffic hazards.
  • Step 303 is just a few non-limitative examples of various possibilities in terms of configuring the identification of potential traffic hazards with a view to activating a warning in the host vehicle 101 and/or the second vehicle 102 in a situation that does not constitute a traffic hazard, e.g. where the sensor 111 has detected a permanently mounted traffic sign along the side of the roadway 100.
  • This method step can be performed in some but not necessarily all embodiments of the method 300.
  • the second sensor 112 in the second vehicle 102 which is arranged so as to re- ceive a transmission of wireless information, is detected. Furthermore, a transmission of such wireless information is performed only when the second sensor 12 in the second vehicle 102 is detected, according to certain embodiments.
  • This detection can be performed in that the first sensor 111 in the lead vehicle 101 detects light emitted from the second sensor 112 in the trail vehicle 102. It can thus be confirmed that the second sensor 112 is also located in sufficient proximity to be able to receive information from the first sensor 112, e.g. by means of light- borne information transmitted by the first sensor 112.
  • Wireless information associated with the detected 301 object 120 is transmitted for reception by the second sensor 112 in the second vehicle 102.
  • the transmitted information can consist of the presence or absence of an object 120, the type of detected object 120, the distance to said object 120 from the first sensor 111 , the size of the object 120, its geographical position, its threat level.
  • wireless information is transmitted only when the detected 301 object 120 is identified 302 as a potential traffic hazard. The issuance of unnecessary warnings to surrounding vehicles 102 can be avoided thereby.
  • wireless information is transmitted only when a second sensor 112 arranged so as to receive wireless information, such as light- borne such information, has been detected 303.
  • Figure 4 shows an embodiment of a sensor 111 in a first vehicle 101.
  • Said sensor 111 is configured so as to perform at least certain of the aforedescribed method steps 301-304 included in the description of the method 300 for detecting an object 120 and transferring information associated with the detected object 120 to a second sensor 112 in a second vehicle 102.
  • the sensor 111 can consist, for example of a camera, a 3D camera, a Time of Flight camera, a stereo camera, a light-field camera, a radar measuring device, a laser measuring device, a LIDAR and/or a distance-measuring device based on ultrasonic waves.
  • the sensor 111 contains a number of components, which are described in detail in the text below. Certain of the described subcomponents appear in some but not necessarily all embodiments. Additional electronics may also be present in the sensor 111 that are not entirely necessary to an understanding of the function of the sensor 111 according to the invention.
  • the sensor 111 comprises a detector 410 arranged so as to detect the object 120.
  • the detector 410 can further be arranged so as to detect the second sensor 112 in the second vehicle 102, which is arranged so as to receive the transmission of wireless information.
  • the sensor 111 further comprises a transmitter 430 arranged so as to transmit wireless information associated with the detected object 120 for reception by the second sensor 112 in the second vehicle 102.
  • said transmitter 430 can be arranged so as to transmit light-borne information for reception by the second sensor 112 in the second vehicle 102.
  • the transmitter 430 can further be arranged so as to transmit wireless information via radio waves based, for example, on one of the following technologies: GSM, EDGE, UMTS, CDMA, CDMA 2000, TD-SCDMA, LTE, LTE- Advanced; Wi-Fi, according to any of IEEE standards 802.11 a, b, g and/or n, IP, Bluetooth and/or NFC.
  • the transmitter 430 can also be arranged so as to transmit wireless information solely when the second sensor 112 in the second vehicle 102 is detected.
  • the sensor 111 can further contain a processor circuit 420 arranged so as to iden- tify the detected object 120 as a potential traffic hazard.
  • the processor circuit 420 can consist of, for example, one or a plurality of a Central Processing Unit (CPU), microprocessor or other logic designed so as to interpret and execute instructions and/or to read and write data.
  • the processor circuit 420 can process data for inflows, outflows or data-processing of data that also includes the buffering of data, control functions and the like.
  • the sensor 111 can further contain or be connected to a memory unit 425, which can, in certain embodiments, consist of a storage medium for data.
  • the memory unit 425 can consist, for example, of a memory card, flash memory, USB memory, hard drive or other similar data- storage unit, such as any from the group consisting of ROM (Read-Only Memory), PROM (Programmable Read-Only Memory), EPROM (Erasable PROM), Flash memory, EEPROM (Electrically Erasable PROM), etc in various embodiments.
  • the invention further comprises a computer program for transferring information associated with an object 120 detected by a first sensor 111 in a first vehicle 101 to a second sensor 112 in a second vehicle 102 by means of a method 300 according to at least one step 301-304 when the computer program is executed in one or a plurality of processor circuits 420 in the sensor 111.
  • the method 300 according to at least one of the steps 301-304 for transferring information associated with an object 120 detected by a first sensor 111 in a first vehicle 101 to a second sensor 112 in a second vehicle 102 can thus be imple- mented by means of one or a plurality of processor circuits 420 in the sensor 111 together with computer program code for performing one, several, certain or all of the steps 301-304 described above.
  • a computer program containing instructions for performing the steps 301-304 when the program is loaded into the processor circuit 420 can thereby be [sic].
  • the aforedescribed computer program in the vehicle 101 is arranged so as to be installed in the memory unit 425 in the sensor 111 , e.g. via a wireless interface.
  • Figure 5 illustrates an example of an embodiment of a method 500 in a second sensor 112 in a second vehicle 102 for receiving information associated with an object 120 detected by a first sensor 111 in a first vehicle 101.
  • Such wireless information can contain light-borne information, which can be transmitted by means of modulation of the light emitted from the sensor 111 and interpreted by means of corresponding demodulation by the second sensor 112.
  • Such modu- lation and demodulation can be performed on the phase, amplitude and/or time of the transmitted/received lightwaves.
  • the wireless information can be transferred via radio waves between the vehicles 101 , 102; based for example on one of the following technologies: GSM, EDGE, UMTS, CDMA, CDMA 2000, TD-SCDMA, LTE, LTE Advanced; Wi-Fi, IP, Bluetooth and/or NFC according to various embodiments.
  • the method 500 can comprise a number of steps 501-504.
  • steps 501-504. certain of the described steps 501-504 can be performed in a chronological order somewhat different from that indicated by the numerical order, and that certain of them can be performed in parallel with one another, according to various embodiments.
  • certain steps are performed only in certain embodiments, such as steps 501 and 503.
  • the method 500 comprises the following steps: Step 501
  • This method step can be performed in certain, but not necessarily all embodiments of the method 500.
  • Wireless information is transmitted to inform the first sensor 111 in the first vehicle 101 that a transfer of wireless information can be made. Step 502
  • Wireless information associated with the object 120 is received from the first sensor 111 in the first vehicle 101.
  • the received wireless information can contain light-borne information in certain embodiments, wherein the information is decoded by means of demodulation of the received light.
  • the received wireless information can be received over a radio interface, e.g. based on or inspired by any of the following technologies: GSM, EDGE, UMTS, CDMA, CDMA 2000, TD-SCDMA, LTE, LTE - Advanced; Wi-Fi, IP, Bluetooth and/or NFC.
  • This method step can be performed in some but not necessarily all embodiments of the method 500.
  • the object 120 is identified as a potential traffic hazard, based on the received 502 information.
  • An accident-avoidance measure is initiated in the second vehicle 102 with a view to avoiding an accident with the object 120.
  • Such an accident-avoidance measure can include, for example communication of a warning to the driver of the second vehicle 102.
  • Such a warning can comprise, for example, an audio signal, a voice message, a light signal, a tactile vibration and/or a representation of the detected object 120.
  • the accident-avoidance measure that is initiated can consist of a reduction of the velocity of the second vehicle 102, making a velocity in- crease impossible, activation of the brakes and/or initiation of an evasive maneuver in a direction away from the object 120 according to various embodiments, optionally in combination with the aforedescribed warning.
  • Figure 6 shows an embodiment of a sensor 112 in a second vehicle 102.
  • Said sensor 112 is configured so as to perform at least certain of the previously de- scribed method steps 501-504 included in the description of the method 500 for receiving information associated with an object 120 detected by a first sensor 111 in a first vehicle 101.
  • the sensor 112 can consist of, for example, a camera, a 3D camera, a Time of Flight camera, a stereo camera, a light-field camera, a radar measuring device, a laser measuring device, a LIDAR and/or a distance-measuring device based on ultrasonic waves.
  • the sensor 112 contains a number of components, which are described in detail in the text below. Certain of the described subcomponents appear in some but not necessarily all embodiments. Additional electronics can also be present in the sensor 112 that are not entirely necessary for an understanding of the sensor 112 according to the invention.
  • the sensor 2 contains a detector 610 arranged so as to receive wireless information associated with the object 120 from the first sensor 111 in the first vehicle 101.
  • the detector 610 can also be arranged so as to detect light-borne information that is received from the first sensor in the first vehicle 101.
  • the detector 610 can also be arranged so as to receive wireless information via radio waves, e.g. based on or inspired by any of the following technolo- gies: GSM, EDGE, UMTS, CDMA, CDMA 2000, TD-SCDMA, LTE, LTE - Advanced; Wi-Fi, IP, Bluetooth and/or NFC.
  • the sensor 112 further contains a processor circuit 620 arranged so as to initiate an accident-avoidance measure with a view to avoiding an accident with the object 120.
  • the processor circuit 620 can also be arranged so as to identify the object 120 as a potential traffic hazard, based on information received from the first sensor 111 in the first vehicle 1010.
  • the processor circuit 620 can be arranged so as to decode the wireless information that is received from the first sensor 111 by means of de- modulation of the received light.
  • the processor circuit 620 can consist of, for example, one or a plurality of a Central Processing Unit (CPU), microprocessor or other logic designed so as to interpret and perform instructions and/or to read and write data.
  • the processor circuit 620 can manage data for inflows, outflows or data-processing of data that also includes buffering of data, control functions and the like.
  • the senor 112 can also contain or be connected to a memory unit 625 that can, in certain embodiments, consist of a stor- age medium for data.
  • the memory unit 625 can consist of, for example, a memory card, flash memory, USB memory hard drive or other similar data-storage unit, such as any from the group consisting of ROM, PROM, EPROM, Flash memory, EEPROM, etc in various embodiments.
  • the sensor 112 can also contain a transmitter 630 arranged so as to inform the first sensor 111 in the first vehicle 101 that a transfer of wireless information can be performed.
  • said transmitter 630 can be arranged so as to transmit light-borne information for reception by the first sensor 111 in the first vehicle 101.
  • the transmitter 630 can further be arranged so as to transmit wireless information via radio waves, e.g. based on or inspired by any of the following technologies: GSM, EDGE, UMTS, CDMA, CDMA 2000, TD- SCDMA, LTE, LTE- Advanced; Wi-Fi, according to any of IEEE standards 802.11 a, b, g and/or n, IP, Bluetooth and/or NFC.
  • the invention further comprises a computer program for receiving information associated with an object 120 detected by a first sensor 111 in a first vehicle 101 by means of a method 500 according to at least one of the steps 501-504 when the computer program is executed in one or a plurality of process circuits 620 in the sensor 112.
  • the method 500 according to at least one of the steps 501-504 for receiving in- formation associated with an object 120 detected by a first sensor 111 in a first vehicle 101 can thus be implemented by means of one or a plurality of processor circuits 620 in the sensor 112 together with computer program code for performing one, some, certain or all of the steps 501-504 described above.
  • a computer program containing instructions for performing at least one of the steps 501-504 when the program is loaded into one or a plurality of processor circuits 620 in the sensor 112 can thereby [sic].
  • the aforedescribed computer program in the vehicle 102 is arranged so as to be installed in the memory unit 425 in the sensor 112, e.g. via a wireless interface.
  • the invention further comprises a vehicle 101 , 102 containing an aforedescribed sensor 111 , 112 respectively arranged so as to perform a method 300, 500 according to the foregoing description for transferring information associated with an object 120 detected by a first sensor 111 to a second sensor 112.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Traffic Control Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

L'invention concerne des procédés (300, 500) et des capteurs (111, 112) destinés à transférer des informations associées à un objet (120) détecté par un premier capteur (111) dans un premier véhicule (101) à un second capteur (112) dans un second véhicule (102) via une interface sans fil.
EP14826393.2A 2013-07-18 2014-06-30 Procédé et capteur de transfert d'informations entre véhicules Withdrawn EP3022726A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1350901A SE539053C2 (sv) 2013-07-18 2013-07-18 Förfarande och sensor för informationsöverföring mellan fordon
PCT/SE2014/050817 WO2015009221A1 (fr) 2013-07-18 2014-06-30 Procédé et capteur de transfert d'informations entre véhicules

Publications (2)

Publication Number Publication Date
EP3022726A1 true EP3022726A1 (fr) 2016-05-25
EP3022726A4 EP3022726A4 (fr) 2017-05-31

Family

ID=52346546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14826393.2A Withdrawn EP3022726A4 (fr) 2013-07-18 2014-06-30 Procédé et capteur de transfert d'informations entre véhicules

Country Status (5)

Country Link
EP (1) EP3022726A4 (fr)
CN (1) CN105339993B (fr)
BR (1) BR112015029482B1 (fr)
SE (1) SE539053C2 (fr)
WO (1) WO2015009221A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328582B1 (en) 2021-07-07 2022-05-10 T-Mobile Usa, Inc. Enhanced hazard detection device configured with security and communications capabilities

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635428B2 (ja) * 2015-05-20 2020-01-22 修一 田山 自動車周辺情報表示システム
JP6582587B2 (ja) * 2015-06-16 2019-10-02 株式会社デンソー 報知処理装置
DE102016205139B4 (de) * 2015-09-29 2022-10-27 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Charakterisierung von Objekten
JP6730654B2 (ja) * 2015-12-04 2020-07-29 三菱自動車工業株式会社 車両の運転支援システム
US10062290B2 (en) * 2015-12-16 2018-08-28 Ford Global Technologies, Llc Convoy vehicle look-ahead
CN105882528B (zh) * 2016-04-25 2019-02-12 北京小米移动软件有限公司 平衡车的路况共享方法、装置及平衡车
US10730512B2 (en) 2016-05-06 2020-08-04 Pcms Holdings, Inc. Method and system for collaborative sensing for updating dynamic map layers
CN106210625B (zh) * 2016-06-30 2019-04-30 浙江宇视科技有限公司 一种视频数据的传输方法、装置和系统
CN107578632A (zh) * 2016-07-05 2018-01-12 奥迪股份公司 交通密度检测系统、交通工具及方法
US20180032822A1 (en) * 2016-08-01 2018-02-01 Ford Global Technologies, Llc Vehicle exterior monitoring
CN108128256A (zh) * 2016-11-30 2018-06-08 镇江石鼓文智能化系统开发有限公司 一种无人驾驶汽车使用的安全检测设备
GR1009508B (el) * 2017-07-24 2019-04-19 Δημητριος Στεφανου Μπραντζος Μεθοδος μεταφορας εικονας μεταξυ δυο οχηματων και διαταξη για την εφαρμογη της
DE102017214185A1 (de) * 2017-08-15 2019-02-21 Zf Friedrichshafen Ag Steuerung eines Transportfahrzeugs
US11040683B2 (en) 2018-08-22 2021-06-22 Toyota Motor Engineering & Manufacturing North America, Inc. Short range communication for vehicular use
CN110889965B (zh) * 2019-11-22 2021-08-03 北京京东乾石科技有限公司 无人车控制方法、装置和无人车
DE102020203014B4 (de) 2020-03-10 2022-06-15 Zf Friedrichshafen Ag Ereignisbasierte Objekterkennung in einem Umfeld eines Fahrzeugs

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL134518A0 (en) * 2000-02-13 2001-04-30 Hexagon System Engineering Ltd Integrated radar and communication system
US6615137B2 (en) * 2001-06-26 2003-09-02 Medius, Inc. Method and apparatus for transferring information between vehicles
DE10158719A1 (de) * 2001-11-29 2003-07-03 Daimler Chrysler Ag KFZ-Nahbereichsradar mit erweiterter Funktionalität sowie Verfahren zum Betreiben eines KFZ-Nahbereichsradars mit erweiterter Funktionalität
DE102004049870A1 (de) * 2004-10-13 2006-04-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verbesserung der Sicht von Fahrern von Kraftfahrzeugen
JP4752486B2 (ja) * 2005-12-15 2011-08-17 株式会社日立製作所 撮像装置、映像信号の選択装置、運転支援装置、自動車
DE102006055344A1 (de) * 2006-11-23 2008-05-29 Vdo Automotive Ag Verfahren zur drahtlosen Kommunikation zwischen Fahrzeugen
DE102008040274A1 (de) * 2008-07-09 2010-01-14 Robert Bosch Gmbh Gefahrenwarnsystem zwischen Fahrzeugen
US20100019932A1 (en) * 2008-07-24 2010-01-28 Tele Atlas North America, Inc. Driver Initiated Vehicle-to-Vehicle Anonymous Warning Device
ES2594231T3 (es) * 2008-07-24 2016-12-16 Tomtom North America Inc. Dispositivo para alerta anónima de vehículo a vehículo iniciada por conductor
DE102011120502A1 (de) * 2011-12-07 2013-01-10 Audi Ag Warnvorrichtung und Verfahren zum Betreiben einer Warnvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2015009221A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328582B1 (en) 2021-07-07 2022-05-10 T-Mobile Usa, Inc. Enhanced hazard detection device configured with security and communications capabilities

Also Published As

Publication number Publication date
BR112015029482A2 (pt) 2017-07-25
SE1350901A1 (sv) 2015-01-19
SE539053C2 (sv) 2017-03-28
EP3022726A4 (fr) 2017-05-31
CN105339993B (zh) 2018-06-08
BR112015029482B1 (pt) 2022-09-20
WO2015009221A1 (fr) 2015-01-22
CN105339993A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
EP3022726A1 (fr) Procédé et capteur de transfert d'informations entre véhicules
US10114117B2 (en) Detection of an object by use of a 3D camera and a radar
US9944392B2 (en) Unmanned aerial vehicle for hazard detection
US10800455B2 (en) Vehicle turn signal detection
US9333954B2 (en) Driver assistance system for a motor vehicle
US20150127190A1 (en) Method for preventing a collision of a motor vehicle with a vehicle driving the wrong way and a control and detection device for a vehicle to prevent a collision of the motor vehicle with a vehicle driving the wrong way
US20150307131A1 (en) Autonomous Driving in a Hazard Situation
WO2016194297A1 (fr) Dispositif embarqué
US20200198783A1 (en) Vehicular alert system
WO2014018453A1 (fr) Système d'alerte inter-véhicules à antémémorisation à lecture anticipée de vidéo pouvant être explorée
JP2020107324A (ja) 車両隊列構成車両間で分配されたデータの収集と処理
WO2015151507A1 (fr) Module de radar, équipement de transport, et procédé d'identification d'objet
US11801859B2 (en) Driver assistance system
CN110709907B (zh) 对无车对车性能车辆的检测
CN105336216A (zh) 无信号交叉路口防碰撞预警方法及终端
WO2015009217A1 (fr) Gestion de détection de capteur dans un système d'aide au conducteur d'un véhicule
KR20200040357A (ko) 차량의 주행 제어 장치, 방법 및 시스템
WO2016126318A1 (fr) Procédé de commande automatique d'un véhicule autonome sur la base des informations de localisation de téléphone cellulaire
US20180158336A1 (en) Method and device for operating a vehicle
US20190258872A1 (en) Stationary vision system at vehicle roadway
WO2023012671A1 (fr) Système d'évitement de collision avec usager vulnérable de la route (vru)
US10691136B2 (en) Method and device for providing a signal for operating at least two vehicles
EP4202490A1 (fr) Signalisation radar pour scénarios d'urgence
US20230256901A1 (en) Security System for an Autonomous Vehicle and Method for Its Operation
WO2024070539A1 (fr) Dispositif de commande de message, procédé de commande de message et véhicule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170503

RIC1 Information provided on ipc code assigned before grant

Ipc: B60R 1/00 20060101ALI20170425BHEP

Ipc: G08G 1/16 20060101AFI20170425BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201124

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20220121